Sensing Heterogeneous Information Network Environment

Publications

  1. Spatio-temporal field estimation using Kriged Kalman Filter (KKF) with sparsity-enforcing sensor placement
    V. Roy; A. Simonetto; G. Leus;
    Sensors,
    Volume 8, Issue 6, 2018. DOI: 10.3390/s18061778
    document

  2. Spatio-temporal environment monitoring leveraging sparsity
    V. Roy;
    PhD thesis, TU Delft, Fac. EEMCS, October 2018. ISBN: 978-94-6380-073-0. DOI: 10.4233/uuid:f6e26091-5885-4949-b1b0-a388e1bff3d3
    document

  3. Dynamic rainfall monitoring using microwave links
    V. Roy; S. Gishkori; G. Leus;
    EURASIP J. Adv. Signal Processing,
    pp. 1-17, 2016. DOI: 10.1186/s13634-016-0367-6
    document

  4. Spatio-temporal sensor management for environmental field estimation
    V. Roy; A. Simonetto; G. Leus;
    Signal Processing,
    Volume 128, pp. 369-381, November 2016. DOI: 10.1016/j.sigpro.2016.05.011
    document

  5. Correlation-aware sparsity-enforcing sensor placement for spatio-temporal field estimation
    V. Roy; G. Leus;
    In Proc. Int. Conf. Acoustics, Speech, Signal Proc. (ICASSP 2015),
    Brisbane (Australia), IEEE, pp. 2389-2393, May 2015. DOI: 10.1109/ICASSP.2015.7178399
    document

  6. Spatial Rainfall Mapping From Path-Averaged Rainfall Measurements Exploiting Sparsity
    V. Roy; S. Gishkori; G. Leus;
    In Proc. IEEE Global Conference on Signal and Information Processing,
    Atlanta (GA), IEEE, December 2014.

  7. Sparsity-Enforcing Sensor Selection for DOA Estimation
    V. Roy; S.P. Chepuri; G. Leus;
    In Proc. 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2013),
    Saint Martin (French West Indies), IEEE, December 2013.
    document

BibTeX support