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a b s t r a c t

We develop sparsity-enforcing spatio-temporal sensor management methods for environmental field
monitoring applications. Leveraging the space–time stationarity, an environmental field can be estimated
with a desired spatio-temporal resolution based on recorded measurements. If the field is non-stationary, it
can be monitored dynamically based on the collected measurements and predictions made through a state
model, if known a priori. We develop algorithms to implement sparse sensing, i.e., sensing only the most
informative locations in space and time for both spatio-temporally stationary and non-stationary field
monitoring applications. The selected sensing locations form an underdetermined measurement model
which can be used to estimate the field based on the prior knowledge regarding the space–time variability
of the field. The task of locating the most informative sensing locations can be performed for both multiple
snapshots and a single snapshot based on the availability of prior knowledge (space–time correlation and
dynamics) regarding the field, available computing power and the application. Centralized sensor place-
ment problems for the estimation of both stationary and non-stationary fields are formulated as relaxed
convex optimization problems, constrained by static or dynamic performance criteria. Finally, an iterative
sparsity-enhancing saddle point method is formulated to solve both of these sensor placement problems.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Monitoring an environmental field, e.g., rainfall, surface tem-
perature, pollution concentration, humidity over an area, is gen-
erally performed by a network of dedicated sensors deployed in an
intelligent constellation. The sensitivity of the estimation perfor-
mance strongly depends on the sensor deployment (static) or
movement (dynamic) strategies. In a centralized paradigm, due to
the resource-related constraints of the sensors (e.g., bandwidth and
life-time), it is always desirable to use a limited number of sensors
to perform the sensing task with a required accuracy. Sensor se-
lection promoting sparsity both for linear and non-linear mea-
surement models is extensively studied for field estimation [1], lo-
calization [2], and tracking [3] problems. Specifically for spatial field
estimation, sparsity-aware kriging [4] and correlation-aware sensor
placement [5] promoting sparsity are also proposed. The problem of
performance-aware sensor selection constrained by the number of
resources has been well-formulated as a convex problem in [6], for
statistical A, D, and E optimality criteria [7]. Also a distributed
oject, the flagship project of
ft University of Technology).
implementation of the sparsity inducing sensor selection problem is
presented in [8]. The problem of sensor placement for field esti-
mation has also been solved using tools from network and in-
formation theory. In [9], information theoretic approaches are
adopted for placing sensors to estimate Gaussian processes, where
the submodularity of the mutual information between the sensor
locations is exploited. To monitor a dynamic process, periodic sen-
sor activation and deactivation is optimal for an infinite time hor-
izon [10], and it is shown to be approximately optimal for a finite
time window [11]. In [12], a sparsity-enforcing sensor scheduling
method is presented and applied to monitor a dynamic field.

Computational complexity is an issue for realistic sensor pla-
cement problems, where the service area is quite large. As men-
tioned earlier, the accuracy-constrained sensor selection problem
can be formulated as a convex problem and solved using off the
shelf solvers like CVX [13] and SeDuMi [14]. But to select sensing
locations over a large service area and/or multiple time snapshots
these solvers can be computationally inefficient. In [1,,12], alter-
nating direction method of multipliers (ADMM) and accelerated
proximal gradient method (APGM) algorithms are used to improve
the speed of the sensor selection process.

In this work, we select the most informative sensing locations for
the estimation of a general class of environmental fields. The main
difference of this work with the standard sensor selection literature
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(like [2,6,8,15]) is the primary measurement model, which we con-
sider to be underdetermined. Resorting to the Bayesian philosophy, we
exploit the available prior statistical knowledge regarding the un-
known field. In the first case, we model the field as a spatio-temporally
stationary stochastic process. The spatio-temporal covariance structure
is considered to be known as prior information. In the second case, the
field is considered to be non-stationary, where the prior knowledge
comes from the known dynamics. For a non-stationary field, we
specifically model the spatio-temporal evolution using a state model
incorporating some common physical phenomena present in many
environmental processes like diffusion and advection [16].

The estimation of the field intensities with a prescribed re-
solution can be performed offline based on recorded measure-
ments at different locations over multiple snapshots if the field is
spatio-temporally stationary. If the field is non-stationary, then
first and second order statistics can be computed multiple snap-
shots ahead based on the available prior statistics and the dy-
namics of the field. This allows for dynamic estimation of the non-
stationary field multiple snapshots ahead.

In both of these scenarios, it is always useful to know the best
time/place to deploy the sensors in order to reduce the number of
sensors to economize the overall processing time and power. We next
briefly elucidate the importance of sensor placement for stationary
and non-stationary environmental field estimation applications.

One plausible application of sensor placement for stationary
field estimation could be the deployment of rain gauges in an area
for long term precipitation monitoring, where stationarity is a
valid assumption [17]. A dynamic deployment of sensors is needed
for spatio-temporal field tracking applications like robotic sensor
networks, social sensing, and mobile sensor networks (sensors
deployed on vehicles, bikes) for environment monitoring as well
as disaster management. For many such applications, it is essential
to know the locations where to deploy/move the sensors in the
next snapshots. For the aforementioned applications, a single
snapshot or multiple snapshots ahead sensor placement method
can be applied for the sensor deployment over upcoming snap-
shots, if the dynamics for the future snapshots are known a priori.

The main contributions of the paper are,

� We formulate sensor placement problems for both spatio-
temporally stationary and non-stationary environmental field
estimation as convex optimization problems with similar
structures but with different Bayesian performance metrics.

� We develop a mathematical framework to efficiently utilize the
spatial/temporal correlation information of the environmental
field to optimize the required number of sensing locations.

� We propose a first-order iterative sparsity-enhancing saddle-
point method to solve the sensor placement problems.

To enforce sparsity in selecting the optimal sensing locations and
time instances, we follow the iterative reweighted ℓ1 minimiza-
tion technique [18]. Simulations are carried out to select the
optimal sensing locations for different stationary and non-sta-
tionary environmental field models.

Organization: We organize the paper in the following way. In
Section 2, we describe the measurement model, the main problem
statement, and the statistical characterizations of the environ-
mental field. The mean square error (MSE) matrix of a linear
minimum mean square error (LMMSE) estimator is derived in
Section 3 for both stationary and non-stationary field estimation
problems. In Section 4, we formally address the sensor placement
problems for both stationary and non-stationary field estimation
applications. An iterative sparsity-enhancing saddle point method
is formulated in Section 5 to solve the proposed sensor placement
problems. Simulation results are presented in Section 6. The final
conclusions are drawn in Section 7.
Notations: Matrices are in upper case bold while column vectors
are in lower case bold. The notation [ ]X ij is the (i j, )-th entry of the
matrix X, [ ]x i is the i-th entry of the vector x , and [ ]Xtr denotes the
trace of X, i.e., the sum of the diagonal elements of X. The notation

( )xsupp is defined as the set of indices of the non-zero entries of x ,
while ( )xdiag and ( )Xdiag are the diagonal matrix with diagonal x
and the main diagonal of the matrix X, respectively. An iden
tity matrix of size ×N N is denoted by IN . The notation (·)T

is the transpose operator, x̂ is the estimate of x , and
∥ ∥ = ( ∑ [ ] )=

−x xp i
N

i
p p

0
1 1/ is the ℓp norm of x . The notation ≜ defines

an entity. Vectors of all zeros and ones of length N are denoted by 0N

and 1N , respectively. An all zero matrix of size ×N N is given by ×0N N .
The set of symmetric matrices of size ×N N and the set of symmetric
positive-definite matrices of size ×N N are denoted by N and ++N ,
respectively.
2. Signal model and problem statement

2.1. Measurement model

We assume a finite uniform pixelation of the entire service area
of interest into N pixels, where we would like to estimate the field
intensities. The field intensity at N pixels at time index = …t 1, 2,
can be represented by ∈ ut

N . It is assumed that the field in-
tensities are the same everywhere within a pixel. The elements of
ut are given by [ ] = ( )uu xt j t j , for = …j N1, , , where ( )u xt is the
continuous function representing the field at time t at any arbi-
trary position ∈ x 2 and ∈ xj

2 is the centroid of the j-th pixel.
The measurements are given by ∈ yt

Mt , collected from Mt

sensing locations (pixels) of the aforementioned service area. Only
a single dimension of ut is measured by a sensor deployed at any
of the N pixels. The model is compressive as <M Nt . The time-
varying linear compressive measurement model can be constructed
as

= + ( )y C u e , 1t t t t

where the compressive measurement matrix ∈ { } ×C 0, 1t
M Nt

maps Mt measurements from N pixels in yt . The measure
ment matrix can be constructed by = ( )C wdiagt X t , where

= [ … ] ∈ { }w ww , , 0, 1t t tN
T N

1 is the sensor location selection vector
for time t, and ( )wdiagX t removes the zero rows from ( )wdiag t . So, if
we have [ ] = ( )w 1 0t j , then the j-the field location is selected (not
selected) for sensor deployment at time t. The measurement ma-
trix Ct is related to the sensor location selection vector wt by the
relations

= ( ) = ( )C C w C C Idiag ; . 2t
T

t t t t
T

Mt

The Mt measurements are corrupted by additive spatio-temporally
white Gaussian noise σ∼ ( )e 0 I,t e M

2
t , where se

2 is the noise var-
iance. Further, we also assume that et is uncorrelated with ut .

Any spatio-temporal distribution of the field, i.e., the field in-
tensities at the N pixels for any observation window of Ns snapshots,
can be represented by the vector ˜ = [ … ] ∈+ − u u u, ,t t

T
t N
T T NN

1s
s. In this

case, the overall measurement model to estimate the field at N lo-
cations over any Ns snapshots can be expressed as

˜ = ˜ ˜ + ˜ ( )y C u e , 3t t t t

where ˜ = ( … ) ∈ { }+ −
˜ ×C C Cblkdiag , , 0, 1t t t N

M NN
1 t

s
s, with

˜ = ∑τ τ=
−

+M Mt
N

t0
1s and (·)blkdiag denoting a block diagonal matrix.

The measurements are given as ˜ = [ … ]+ −y y y, ,t t
T

t N
T T

1s
of length M̃t

and the noise components at all snapshots are represented by the
vector ˜ = [ … ]+ −e e e, ,t t

T
t N
T T

1s of the same length as ỹt . The noise vector
ẽt is spatio-temporally white and characterized by σ˜ ∼ ( )˜ ˜e 0 I,t M e M

2
t t .
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By using the relation (2), we obtain

˜ ˜ = ( ( ) … ( )) ( )+ −C C w wblkdiag diag , , diag 4t
T

t t t N 1s

˜ ˜ = ( ˜ ) ( )C C wdiag , 5t
T

t t

where ˜ = [ … ]+ −w w w, ,t t
T

t N
T T

1s is the sensor location selection vector
for the N locations in all the Ns snapshots.

2.2. Problem statement

The optimal placement of the sensors at the informative loca-
tions can be formulated as a sensor location selection problem, i.e.,
the design of a selection vector ˜ ∈ { }w 0, 1t

NNs. However, generally
choosing the best subset of sensing locations achieving some de-
sired estimation performance is a combinatorially complex pro-
blem. A standard approach to tackle this problem is to relax it into
a convex problem, which can be efficiently solved in polynomial
time [6,8,2]. In this case, a sparsity-enforcing, performance-con-
strained design of w̃t can be obtained by solving

γ˜̂ = ∥ ˜ ∥ ( ˜ ) ≤
( )˜ ∈[ ]

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭gw w warg min , s.t. ,

6
t t t

w 0,1
1

t NNs

where ( ˜ )g wt is a performance metric expressed as a function of the
selection vector, and γ is the desired threshold on the perfor-
mance. After solving (6), we obtain ˜ ∈ [ ]w 0, 1t

NNs. To generate a
Boolean selection vector ˜ ∈ { }w 0, 1t

NNs from ˜ ∈ [ ]w 0, 1t
NNs, we can

adopt the randomized rounding technique of [2] or a simple
thresholding. The randomization is done by simply generating
random realizations of w̃t with the probability that [ ˜ ] =w 1t k

specified by [ ˜̂ ]wt k, where = …k NN1, , s. The realizations satisfying
γ( ˜ ) ≤g wt are selected and the minimum ℓ0 norm realization is

picked up, whose support denotes the sparsest optimal sensor
placement scheme.

2.3. Statistical characterization of ut

In this paper, we consider two statistical characterizations of
the field vector ut .

2.3.1. Stationary field
In the first case, we consider the elements of ut , i.e.,

[ ] = ( )uu xt j t j for = …j N1, , , to be Gaussian random variables. We
further assume that they are realizations of a spatio-temporally
(second-order) stationary isotropic process [16] with mean

μ[ ( )] = u xt j s for all t and = …j N1, , . The spatio-temporal covar-
iance matrix is derived from a space–time separable exponential
covariance function. For any temporal lag τ, i.e., the time difference
between the snapshots ut and τ−ut , and any two spatial locations
x x,i j, with ≜ ∥ − ∥d x xij i j 2, the elements of the spatial covariance
matrix for lag τ, which is denoted as Γτ , are modeled as

( )μ μ

σ τ

Γ[ ] = − ( − )

= − − | |
( )

τ τ

τ

−⎡⎣ ⎡⎣ ⎤⎦⎤⎦
⎡
⎣⎢

⎤
⎦⎥



s
d

s

u 1 u 1

exp
1 1

.
7

ij t N t N
T

ij

u
h

ij

s s

2

Here, μ σ[( ( ) − ) ] = u xt j us
2 2 and sh, sτ are the positive scaling

parameters for space and time, respectively. In this work, we as-
sume that the parameters su

2, sh and sτ are all known a priori.
The nature of the covariance function of (7) with different lags
over space and time is shown in Fig. 2a. The overall spatio-
temporal covariance matrix can be expressed as

μ μΓ̃ = [( ˜ − ˜ )( ˜ − ˜ ) ] ∈ ++ u ut t t t t
T NNs, where μ μ˜ = [ ˜ ] = u 1t t s NNs. The

diagonal and off-diagonal blocks of Γ̃t are given by
Γ
Γ Γ

Γ Γ
˜ =

…
⋮ ⋱ ⋮

… ( )

− +

−

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
.

8
t

N

N

0 1

1 0

s

s

It should be noted that, if the field is spatio-temporally un-
correlated then the spatio-temporal covariance matrix is simply
given as σΓ̃ = It u NN

2
s.

2.3.2. Non-stationary field
In the second case, we consider ut to be a non-stationary en-

vironmental field. The spatio-temporal evolution of the environ-
mental field can be described by an integro-difference
equation (IDE) [16]. For a specific sampling interval Ts (i.e., the time
duration between two consecutive time indices) the discrete time
IDE can be represented as,

∫( ) = ( ′) ( ′) ′ + ( )
( )−u f u d qx x x x x x, ,
9t t t1

s

where ⊂ s
2 is the service area of interest. The spatio-temporal

evolution of ( )u xt is modeled by the function ( ′)f x x, . Here, ( )q xt is
the Gaussian process noise which can be spatially colored but is
temporally white. The space–time interaction function ( ′)f x x, can
be modeled as a time-varying parameterized kernel function

θν( ′) = ( ′ )f hx x x x, , ,t t , where the parameters of the function, i.e.,
θt , can be deterministic or random. Here ν is a positive scaling
parameter to ensure the stability of the process [19]. In this case,
the IDE is given as

∫ θν( ) = ( ′ ) ( ′) ′ + ( )
( )−u h u d qx x x x x x, ; .
10t t t t t1

s

Note that, the state models in (9) and (10) are infinite dimensional.
One way to approximate these to finite dimensional models is by
using a spectral representation of (·)f or (·)ht , and (·)ut using a
known orthonormal basis and selecting only the K dominant
coefficients [20].

However, here we have considered a finite uniform spatial
discretization of the field into N pixels. So, the process model of
(10) can be discretized over N pixels by

∑ θν( ) = ( ) ( ) + ( )
( )=

−u h u qx x x x x, ; ,
11

t i
j

N

t i j t t j t i
1

1

where = …i N1, , . Here, we assume that the parameters of the
kernel function, i.e., θt , are perfectly known and deterministic. It
should be noted that the parameters of the kernel function depend
upon the temporal sampling interval Ts.

Spatial phenomena like advection and diffusion can be mod-
eled by changing the translation and dilation parameters of a
Gaussian kernel [19,21]. More specifically, we consider a time-
varying 2D Gaussian kernel

( ) = [ − ( − − ) ( − − )] ( )−h x x x x a D x x a, exp , 12t i j i j t
T

t i j t
1

where the translation parameter ∈ at
2 and the dilation para-

meter ∈ ++Dt
2 model the advection and the isotropic/anisotropic

diffusion, respectively. In this case, the parameter vector of the
kernel function, i.e, θt in (11), contains the elements of at and Dt .
Here, we model at as the time-varying displacement and Dt as the
time-varying diffusion in every Ts seconds. Note that, at and Dt can
also be varied over space in order to model more complicated
dynamics of the field [19]. The directions of anisotropy of diffusion
can be incorporated through Dt . Otherwise, isotropic diffusion can
be modeled as κ=D It t 2, with κ > 0t . For example, like (12),
modeling the function (·)ht as a Gaussian dispersal kernel can be
used for short term rainfall prediction [21]. The above approach
can be generalized to describe the dynamics of many environ-
mental phenomena such as the distribution of pollutants,



Fig. 1. Spatio-temporal evolution of the field in 10�10 square km area; spatial resolution: 1�1 square km; =D It 2; ν = 0.4; ∼ ( )−q 0 I, 10t 100
3

100 ; displacement due to
advection, i.e., at on every snapshot is given by [ ] [ ] [ ] [ ] [ − ] [ − ] [ − ]0.5, 0.5 , 1.5, 1.5 , 0, 2 , 0, 2 , 1.5, 1.5 , 0.5, 1.5 , 1.5, 1.5T T T T T T T where = …t 1, , 7 min .
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movement of aerosols, vapor concentrations, etc. that possess
properties like advection, diffusion, etc.

Let us now assume a state transition matrix ∈ ×Ht
N N which is

modeled using a simple 2D Gaussian kernel whose elements are
given by ν[ ] = ( )hH x x,t ij t i j . After proper vectorization of the field
intensities and the process noise for the N pixels, the overall state
model can be represented as

= + ( )−u H u q . 13t t t t1

Here, ∼ ( )q 0 Q,t t is the spatially colored yet temporally white
Gaussian process noise. In Fig. 1, an example of the spatio-tem-
poral evolution of the field is shown with a time-invariant iso-
tropic diffusion and a time-varying advection. The initial state of
ut , i.e., the state at t¼0 is generated by a simple Gaussian function.
In Fig. 1, it is seen that the field is isotropically diffused as well as
shifted in different directions given by the advection vector at

changing with time t.
In this case, the field is statistically characterized by the dy-

namics as

( | ) ∼ ( ) ( )− −p u u H u Q, . 14t t t t t1 1

The Ns snapshots ahead first and second order statistics of the field
can be derived using the state model. In this case, the Ns snapshots
ahead mean and covariance matrix, i.e., μ̃ = [ ˜ ] ut t and

μ μΓ̃ = [( ˜ − ˜ )( ˜ − ˜ ) ] u ut t t t t
T can be computed in the following way.

Using (13), the mean can be computed as

μ

μ
μ

μ
˜ =

[ ]
[ ]

⋮
… [ ]

= ⋮

( )

−

+ −

+ − + − −

+

+ −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥







H u
H H u

H H H u

.

15

t

t t

t t t

t N t N t t

t

t

t N

1

1 1

1 2 1

1

1s s s

The time-dependent covariance matrix for any Ns snapshots, i.e., Γ̃t

is given by
μ μΓ̃ = ˜ − ˜ ˜ ( )R , 16t t t t
T

where the correlation matrix ˜ = [ ˜ ˜ ]R u ut t t
T is given by

˜ =
[ ] … [ ]

⋮ ⋱ ⋮
[ ] … [ ] ( )

+ −

+ − + − + −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 

R
u u u u

u u u u

.

17

t

t t
T

t t N
T

t N t
T

t N t N
T

1

1 1 1

s

s s s

The diagonal blocks of R̃t are given as

= [ ] = + ( )τ τ τ τ τ τ τ+ + + + + − + +R u u H R H Q , 18t t t
T

t t t
T

t1

where τ = … −N0, , 1s . The general form of the right and left off-
diagonal blocks of R̃t can be given for any two temporal lags τm
and τn, where τ = … −N0, , 1m s , τ = … −N0, , 1n s and τ τ≠m n. The
right off-diagonal blocks τ τ( < )m n are given as

[ ] = … ( )τ τ τ τ τ τ+ + + + + + − + u u R H H H , 19t t
T

t t
T

t
T

t
T

1 1m n m m n n

and the left off-diagonal blocks τ τ( > )m n are given as

[ ] = … ( )τ τ τ τ τ τ+ + + + − + + + u u H H H R , 20t t
T

t t t t1 1m n m m n n

where τ+Rt m and τ+Rt n can be computed by the recursive re-
lationships of (18). Substituting (17) into (16) and using the ex-
pression of (15) only the diagonal blocks of Γ̃t can be recursively
represented as

μ μΓ = [( − )( − ) ] ( )τ τ τ τ τ+ + + + + u u 21t t t t t
T

( )μ μΓ = − + ( )τ τ τ τ τ τ τ+ + + − + − + − + +H R H Q 22t t t t t
T

t
T

t1 1 1

Γ Γ= + ( )τ τ τ τ τ+ + + − + +H H Q , 23t t t t
T

t1

where τ = … −N0, , 1s . Note that, at any time t, the Ns snapshots



Fig. 2. Effect of the parameters of the covariance function on the MSE (a) plot of the space–time variation of the covariance function ( σ= = =τs s5; 5, 1h u
2 ) and (b) MSE

variation with sh and sτ ( σ σ= = ˜ = ( ) = =N N C I I I I25, 4, blkdiag , , , , 1, 0.1t u es 25 25 25 25
2 2 ).
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ahead first and second order statistics of the field can be pre-
computed if [ ]− ut 1 , Γ−t 1, τ+Ht , and τ+Q t for τ = … −N0, , 1s are all
known a priori. One way to estimate the first and second order
statistics of −ut 1 is to use a “sequential minimum mean square
error (MMSE) estimator”, i.e., a standard Kalman filter [22] that
uses the previous measurements up to time −t 1. Let us assume
that this estimate is given by ^

−ut 1, with an estimation error cov-
ariance matrix Σ −t 1, i.e., Σ = [( − ^ )( − ^ ) ]− − − − − u u u ut t t t t

T
1 1 1 1 1 . We use

these as the first and second order statistics of the state −ut 1, i.e.,
Σ∼ (^ )− − −u u ,t t t1 1 1 .
3. Performance metrics

In this section, we derive the performance metric, i.e., ( ˜ )g wt as
mentioned in (6) for both stationary and non-stationary field es-
timation problems. In the space–time measurement model of (3),
the unknown parameter ũt is statistically characterized by

μ Γ˜ ∼ ( ˜ ˜ )u ,t t t . The mean and the covariance matrix can be com-
puted for both the stationary and the non-stationary fields as
mentioned in the previous section.

The unknown parameter ũt can be estimated using an LMMSE

estimator [22], i.e., μ μσ σΓ˜̂ = ˜ + ( ˜ + ˜ ˜ ) ˜ ( ˜ − ˜ ˜ )− − −u C C C y Ct t e t e t
T

t t
T

t t t
2 1 2 . The

MSE matrix, i.e., [( ˜ − ˜̂ )( ˜ − ˜̂ ) ] u u u ut t t t
T is then given by

σΣ Γ( … ) = ( ˜ + ˜ ˜ ) ( )+ −
− − −w w C C, , . 24t t t N t e t

T
t1

1 2 1
s

We mention that (24) is considered as the generalized expression
(for both stationary and non-stationary field estimation) of the
MSE matrix in this work. The performance metric to estimate the
field at N locations over Ns snapshots is quantified as

Σ[ ( … )]+ −w wtr , ,t t t N 1s or Σ[ ( ˜ )]wtr t t . By using the relation of (5), the
performance metric in (24) can be written as

σΣ Γ( … ) = ( ˜ + ( ˜ )) ( )+ −
− − −w w w, , diag . 25t t t N t e t1

1 2 1
s

Here, we assume that Γ̃t is well-conditioned and accurately in-
vertible. We will come back to this issue later on in this section.

Remark (Recursive performance metric): When the field is non-
stationary as mentioned in the previous section, we can use
Σ∼ (^ )− − −u u ,t t t1 1 1 to compute the Ns snapshots ahead first and
second order statistics, i.e, μ̃t and Γ̃t . The expression of the MSE

matrix of (25) can be evaluated by substituting Σ∼ (^ )− − −u u ,t t t1 1 1

in the recursive relationship of (23). After the aforementioned
substitutions, for =N 1s , the performance metric of (25), i.e., Σ ( ˜ )wt t ,
becomes Σ ( )wt t . This is given as

( )
( )

( )
( )

σ

σ

Σ Σ

Σ

= [( + ) + ]

= [( + ) + ] ( )

− −
− − −

− −
− − −

w H w H Q C C

H w H Q wdiag . 26

t t t t t t
T

t e t
T

t

t t t t
T

t e t

1 1
1 2 1

1 1
1 2 1

This expression is the same as the single snapshot ahead update of
the state error covariance matrix of a simple Kalman filter as a
function of the selection vectors at time index t and −t 1.

We can see that, for a large service area (large N) and/or high
Ns, the computations of μ̃t and Γ̃t as derived in (15) and (16), re-
spectively, can be cumbersome from the real time monitoring
perspective. However, in the simulation section we solve both the
single snapshot and the multiple snapshots ahead sensor place-
ment problems.

3.1. Effect of spatio-temporal correlation

The parameters sh and sτ control the strength of the spatial and
temporal correlations, respectively. Increasing these values, the
field becomes more correlated over space and time. Also for a fixed
noise power, the MSE with all the candidate locations equipped
with sensors, i.e., Σ[ ( … )]1 1tr , ,t N N , reduces as sh and sτ jointly
increase as shown in Fig. 2b. From the aforementioned analysis, it
can be said that to achieve a desired estimation performance, less
sensors are required to estimate a highly space–time correlated
field than to estimate a lightly correlated field.

3.2. Highly correlated fields

For highly space–time correlated fields the spatio-temporal
covariance matrix can be ill-conditioned [23], meaning that Γ̃t in
(25) is close to singular. In that case, we propose alternative for-
mulations of the MSE matrix Σt . In this paper, we leverage the
matrix inversion lemma (MIL) and a special regularization



1 Spatial selection of sensing locations can be performed in a more efficient
manner by employing a structural constraint on τ+wt like group sparsity. The
evolution of wt can also be controlled by using a smoothing penalty in the cost
function of (34), where the sensing locations are selected on a single snapshot basis
[24].
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parameter to remove the ill-conditioning, as follows. By using the
MIL, the error expression in (24) can be equivalently expressed as

σ

σ

Σ Γ

Γ Γ Γ Γ

( … ) = ( ˜ + ˜ ˜ )

= ˜ − ˜ ˜ ( ˜ ˜ ˜ + ) ˜ ˜ ( )

+ −
− − −

˜ −

w w C C

C C C I C

, ,

. 27

t t t N t e t
T

t

t t t
T

t t t
T

e M t t

1
1 2 1

2 1
t

s

Assuming a nonzero scalar constant β ∈ , the ill-conditioned
matrix Γ̃t can be regularized to a well-conditioned matrix S as

βΓ= ˜ + ( )S I . 28t NNs

We now substitute βΓ̃ = −S It NNs in the middle inverse of the

right-most term of (27) and using the fact that ˜ ˜ = ˜C C It t
T

Mt , we
obtain

σ βΣ Γ Γ Γ( … ) = ˜ − ˜ ˜ ( ˜ ˜ + ( − ) ) ˜ ˜ ( )+ − ˜ −w w C C SC I C, , . 29t t t N t t t
T

t t
T

e M t t1
2 1

ts

Using the MIL we can write

σ β σ β( + ( − ) ˜ ˜ ) = − ˜ ( ˜ ˜ + ( − ) ) ˜ ( )− − − ˜ −S C C S SC C SC I C S. 30e t
T

t t
T

t t
T

e M t
1 2 1 1 2 1

t

Using (30), we have the following matrix identity

( )σ β

σ β

˜ ˜ ˜ + ( − ) ˜

= − ( + ( − ) ˜ ˜ )
( )

˜
−

− − − − −
⎡
⎣⎢

⎤
⎦⎥

C C SC I C

S S S C C S .
31

t
T

t t
T

e M t

e t
T

t

2
1

1 1 2 1 1 1

t

Substituting (31) into (29), the error expression of
Σ ( … )+ −w w, ,t t t N 1s can be viewed as a function of the space–time
sensor location selection vectors given as

( )

σ β

σ β

σ β

Σ

Γ Γ Γ

Γ Γ Γ Γ Γ

…

= ˜ − ˜ − ( + ( − ) ˜ ˜ ) ˜

= ˜ − ˜ ˜ + ˜ + ( − ) ˜ ˜ ˜

= + + ( − ) ˜ ( )

+ −

− − − − −

− − − −
−

−

− − −

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

w w

S S S C C S

S S S C C S

A B S w B

, ,

diag , 32

t t t N

t t e t
T

t t

t t t t e t
T

t t

T
e t

1

1 1 2 1 1 1

1 1 1 2 1
1

1

1 2 1 1

s

where the matrices Γ Γ Γ= ˜ − ˜ ˜−A St t t
1 and Γ= ˜−B S t

1 are independent
of the selection vectors, and therefore known a priori.

Here we comment that the regularization in (28) is valid for
any nonzero β ∈  if S is only desired to be invertible. However, to
maintain the positive definiteness of S as well as

σ β[ + ( − ) ( ˜ )]− −S wdiage t
1 2 1 , we specifically choose β σ< <0 e

2.
We notice that the MSE matrix Σ ( … )+ −w w, ,t t t N 1s computed as

in (32) does not involve any inversion of the possible ill-condi-
tioned Γ̃t . The only inversions are of the regularized, and thus well-
conditioned matrix S. The expression (32) therefore offers a better
alternative than (27) for highly correlated fields.

3.3. Uncorrelated fields

In this work, we mainly target the application of spatio-tem-
poral monitoring of environmental fields like pollutant con-
centrations in the atmosphere, concentrations of some hazardous
gas, rainfall, ground layer ozone, humidity, etc. Generally, these
fields are spatio-temporally correlated. But in some scenarios the
spatial/temporal correlation may be very small. In these cases, the
off-diagonal elements of Γ̃t are close to 0. In such cases, Γ̃t can be
modeled as σΓ̃ = It u NN

2
s. Then the MSE matrix is given by

( )
( ( ))

σ σ

σ σ

Σ … = + ˜ ˜

= + ˜ ( )

+ −
− −

−

− − −

⎛
⎝⎜

⎞
⎠⎟w w I C C

I w

, ,

diag . 33

t t t N u NN e t
T

t

u NN e t

1
2 2

1

2 2 1

s s

s

Note that, if the field is uncorrelated the estimation error is
mainly characterized by the signal to noise ratio (SNR) of the
system, i.e., σ σ/u e

2 2. In this case, the term σ − Iu NN
2

s acts both as a
regularization term ensuring the computability of (33) and as a
scaling term for the MSE. For the current measurement model of
(3), to estimate an uncorrelated field (with the same su

2 over space
and time) the number of sensors is more relevant for estimation
performance than their constellation as long as the MSE is con-
sidered to be the performance criterion.
4. Sensor placement problem

A generalized performance metric to estimate both stationary
and non-stationary fields can be formulated as Σ[ ( ˜ )]wtr t t , where
Σ ( ˜ )wt t is the generalized MSE matrix (24). Following the main
optimization problem of (6), an offline selection of sensing loca-
tions from N locations over Ns snapshots can be performed by
solving the following optimization problem:

γΣ˜̂ = ∥ ˜ ∥ ( ˜ ) ≤ ′
( )˜ ∈[ ]

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭w w warg min , s.t. tr ,

34
t t t t

w 0,1
1

t NNs

where γ′ is a threshold on the estimation performance. An extra
set of affine constraints can be added to the problem of (34), to
restrict the minimum number of sensing locations to be selected
at every time index t. This is given as

τ∥ ∥ ≥ = … − ( )τ+ p Nw , 0, , 1. 35t 1 s

This constraint enforces at least p sensors to be selected at every
snapshot. This is an optional design constraint to efficiently utilize
every available snapshot.1 Considering the general form of the per-
formance metric, i.e., (32), the optimization problem of (34) can be
formulated as a semidefinite programming (SDP). For the N candidate
sensing locations, the performance constraint can be expressed as N
linear matrix inequalities (LMI) [7,6]. If the column vectors of the
matrix B are given by bj, where = …j N1, , , then the SDP is given by

σ β

˜̂ = ∥ ˜ ∥

+ ( − ) ( ˜ )
≽ = …

( )

˜ ∈[ ] ∈

− −

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥



v
j N

w w

b

b S w

arg min ,

s. t.
diag

0, 1, ,
36

t t

j j
T

j e t

w v0,1 ,
1

1 2 1

t N N

γ≤ ′ − ( ) ( )1 v Atr , 37T

where we use the auxiliary variable = [ … ]v vv , , N
T

1 . The set of N LMIs
in (36) signify the fact that σ β≥ [ + ( − ) ( )]− − −v b S w bdiagj j

T
e t j

1 2 1 1 ,
where = …j N1, , (using the Schur complement of the block

σ β+ ( − ) ( )− −S wdiage t
1 2 1 ).
The solution of the aforementioned optimization problem gives the

sensor placement patterns achieving the desired estimation perfor-
mance γ′. It is clear that lowering γ′, i.e., putting a tighter threshold on
the performance, more sensing locations need to be selected.

In practical scenarios, the performance threshold can generally
be derived from the application, i.e., the nature of the field to be
estimated, required resolution, etc. In the present work, we cal-
culate the thresholds by scaling the best case, i.e., sensors are
deployed in all N candidate locations. In other words, we consider
γ ζ Σ′ = [ ( )]1tr t NNs , where ζ > 1 is a positive scaling parameter.
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5. Sensor placement algorithm using iterative saddle-point
method

From the above discussions, the structure of the general opti-
mization problem, i.e., (34) with the performance metric (32), can
be formulated as,

( )
( )

σ β γ^ = ∥ ∥ ( + ( − ) ) − ≤″
∈[ ]

− − −⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭ 38

w w B S w Barg min s.t. tr diag 0
L

T
e

w 0,1
1

1 2 1 1

where γ γ″ = − ( )Atr , and the matrices A and B are independent of
w . In this section, we use w instead of w̃t for the sake of notational
simplicity. Note that, the aforementioned problem can be used to
select sensing locations for both the stationary and the non-sta-
tionary scenarios. The length of the selection vector is given as

=L NNs. In this work, we consider the fact that the spatio-temporal
covariance matrix is accurately invertible, i.e, we take β = 0, =B IL,
and = ×A 0L L. Using these the optimization problem of (38) can be
given as

( )σ γ^ = ∥ ∥ [ + ] − ≤
( )∈[ ]

− − −
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭w w Z warg min s.t. tr diag 0 ,

39
e

w 0,1
1

1 2 1

L

where the matrix Z is the spatio-temporal covariance matrix. We
define a function ( )h w as

σ γ( ) = [ + ( )] − ( )− − −h w Z wtr diag . 40e
1 2 1

However, as mentioned earlier, the convex problem (39) can be
easily formulated as a semidefinite programming (SDP) problem
and solved for w using off-the-shelf solvers like CVX [13] and
SeDuMi [14]. But for a large service area and/or many snapshots
the number of unknowns (L), i.e., the number of LMIs becomes
increasingly high. In this case, SDP based approaches using stan-
dard solvers can be time consuming. In this section, we propose an
alternative approach to solve the optimization problem (39)
directly.

5.1. Primal–dual iterations

We use an iterative saddle-point method [25], to solve the
optimization problem (39). We adopt first-order methods rather
than Newton's method because Newton's method requires the
expression of the Hessian and its inverse, which increases the
computational complexity and leads to storage issues. First of all,
we define the dual variable associated with the inequality con-
straint (39) as λ. Under convexity and Slater's condition (which
holds for (39), given the choice of γ), we can prove that the dual
variable λ lives in a bounded compact set λ[ ]0, max [25, Lemma 3].
The value of λ > 0max is easily computable a priori, given any
Slater's vector. Let us now define the compact constraint sets,

∈ [ ] 0, 1 L and λ∈ [ ] 0, max for the primal and the dual variables
∈ w , and λ ∈ , respectively. The Lagrangian function

λ( ) × →  w, : , for the optimization problem (38) is given by,

λ λ( ) = + ( ) ( )hw 1 w w, . 41T

The primal–dual iterations for ≥i 0 can be given as,

α λ^ = [ − ∇ ( )] ( )+
w w w , , 42

i i i i
w

1

λ λ α λ^ = [ + ∇ ( )] ( )λ
+

 w , , 43
i i i i1

where  and  are the projection operators onto the sets  and
, respectively. The scalar α > 0 is the step size. We define ∇ (·)w

and ∇ (·)λ as the gradients w.r.t. w and λ, respectively. Note that, the
primal–dual iterations actually minimize λ( )w, w.r.t. w and
maximize it w.r.t. λ in order to achieve the saddle point λ( ^ ^)w, [25],
which satisfies

λ λ λ λ( ^ ) ≤ ( ^ ^) ≤ ( ^) ∀ ∈ ∈ ( ) w w w w, , , , , . 44

The expressions of the gradients ∇ (·)w and ∇ (·)λ are computed in
the Appendix. They are given as

λ λ σ σ∇ ( ) = + ( − [ + ( )] ) ( )− − − −w 1 Z w, diag diag 45i i
L

i
e e

i
w

2 1 2 2

λ σ γ∇ ( ) = [ + ( )] − ( )λ
− − −w Z w, tr diag . 46i i

e
i1 2 1

Due to compactness of the sets  and  and the invertibility of Z,
it can be proven that the gradients are bounded. And, in particular,
we can write

λ λ λ{∥∇ ( )∥ ∥∇ ( )∥} ≤ ∀ ∈ ∈ ( )λ  Cw w wmax , , , , , , 47w

where >C 0 is a constant. With this in place, due to Propositions
1 and 2 of [25], the iterates λ{ }w ,i i converge weakly (in the ergodic
mean sense) to a neighborhood of the saddle point of the La-
grangian (41). The size of the neighborhood (i.e., the asymptotical
error bound) is proportional to αC2. In addition, convergence goes
as α( )O i1/ , i being the iteration counter. A similar result is also
valid for the amount of constraint violation. In practice, in the si-
mulation results, we will select the step size α to trade-off con-
vergence speed and asymptotical error. The stopping criteria will
be based either on a maximum number of iterations or on a re-
quired tolerance on the value of ∥ ( )∥h wi .

5.2. Iterative reweighted ℓ1 algorithm to improve sparsity

The well-known convex approximation of the non-convex ℓ0
norm is the sought-after ℓ1 norm. However, there are better
functions to model a sparsity-promoting cost like a sum of loga-
rithms or a sum of inverse Gaussians. Unfortunately both of these
functions are non-convex. For example, in the optimization pro-
blem of (6), the objective function can be replaced by a sparsity-
promoting non-convex cost, i.e., ∑ (ϵ + [ ] )= wlnl

L
l1 . Here, ϵ > 0 is

used to maintain the stability of the sum of the logarithm cost. As
mentioned in [18], such a log-concave function can be well ap-
proximated by its first order linear approximation. This means that
minimizing ∑ (ϵ + [ ] )= wlnl

L
l1 can be approximated by iteratively

minimizing its linear approximation, i.e.,

∑ [ ]

ϵ + [ ^ ] ( )=

w

w
arg min ,

48l

L
l

j
lw 1

where ŵ
j
is the estimate of w in the j-th iteration [18]. Following

the derivation of [18], the optimization problem (6), can be for-
mulated as the iterative reweighted ℓ1 minimization given by

� Initialize j¼0, weight vector =z 1L
0 , ϵ, and maximum number

of iterations J
� for = …j J0, ,

γ^ = ( ) ( ) ≤
∈[ ]

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭gw z w warg min , s.t.

j j T

w 0,1 L

� [ ] =+
ϵ +[ ^ ]

zj
l

w

1 1
j

l

, for every = …l L1, ,
� end;
� set ^ = ^w w

J
.

The aforementioned algorithm is envisaged to avoid the depen-
dence of ŵ on the magnitude of its elements. Using this iterative
approach, a higher weight is put on the smaller elements of w to
push them towards 0, enhancing the sparsity in w. On the other
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Fig. 3. Service area with the candidate sensing locations.
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hand, it maintains the magnitude of the larger elements by putting
a smaller weight. However, after this “sparsity-enhancing” iterative
algorithm we still have ^ ∈ [ ]w 0, 1 L . After the computation of ŵ
from the above iterative algorithm we compute ∈ { }w 0, 1 L using
randomized rounding or thresholding.

5.3. Primal–dual iterations with the iterative reweighted ℓ1
minimization

The sparsity-enhancing iterative algorithm mentioned in the
previous section can be implemented in combination with the
saddle-point method. In this case, the Lagrangian can be for-
mulated as

λ λ( ) = ( ) + ( ) ( )hw z w w, , 49j j T j j

where zj is the weighting vector of the j-th iteration of the iterative
algorithm. As before, we can compute the saddle-point iterates
with this new Lagrangian, which (for the same reasons as men-
tioned in the Section 5.1) will converge weakly to a saddle point
up to a bounded error.

In Algorithm 1, the saddle-point iterations for the reweighted
ℓ1 minimization are presented. The overall algorithm is im-
plemented using two nested loops, where the inner loop (indexed
by i) is used for the primal–dual iterations and the outer loop
(indexed by j) is used for the iterative reweighted ℓ1 algorithm.

To place the sensors dynamically every snapshot, the same Algo-
rithm 1 is implemented for = …t T1, , snapshots with =N 1s , i.e.,
L¼N. The estimation error is initialized as Σ0 at t¼0. After estimating
wt at any t, the estimation error, i.e., Σ ( )wt t is updated based on the
recursive relation of (26). We refer to this algorithm as Dynamic
Iterative Sparsity-Enhancing Sensor Placement (DISESP).

Algorithm 1. Saddle point iterations enhancing sparsity.
1: Initialize: j¼0, weight vector =z 1L
0 , α, I, J, tol, and ϵ.

2: for = …j J0, ,
3: solve the saddle point iterations
4: while <i I or | ( ) | ≥h w tol

α λ

λ λ α λ

^ = [ − ∇ [( ) + ( )]]
^ = [ + ∇ [( ) + ( )]]λ

+

+




h

h

w w z w w

z w w

,
i j i j j T i j i j i j

i j i j j T i j i j i j

w
1, , , , ,

1, , , , ,

5: end while

6: update the weight vector by [ ] =+
ϵ +[ ^ ]

zj
l

w

1 1
j

l

, where
= …l L1, , .
: end for

: ^ = ^w w
J
.
8

6. Simulation results

In this section, we present simulation results for both sta-
tionary and non-stationary field estimation applications using the
developed sensor placement method. Let us assume a service area
of 10�10 square kmwhich is discretized into N¼100 pixels of size
1 square km. The service area and the centroids of the pixels are
shown in Fig. 3. We assume that all of these centroids are candi-
date sensing locations. They are row-wise indexed from top to
bottom as shown in Fig. 3.

6.1. Sensor placement for stationary field estimation

In the first case, we assume that the field is spatio-temporally
stationary. We consider to have =N 3s snapshots. In this case, the
size of the spatio-temporal covariance matrix (Γ̃t) is 300�300. The
temporal lags are τ = 0, 1, 2 as =N 3s . The diagonal and off-diag-
onal blocks of Γ̃t are given by Γ ∈ ++0

100 and Γ Γ Γ Γ ∈− − ++, , ,2 1 1 2
100,

respectively. The elements of these matrices are generated by the
exponential covariance function mentioned in (7) (Section 2.3.1)
with parameters σ = = =τs s1, 5, 2u h

2 . The dij parameters are
computed from the distance matrix (matrix of all possible pair-
wise Euclidean distances) of the pixel centroids as shown in Fig. 3.
Based on these, Γ̃t is a symmetric, positive-definite and block-
toeplitz matrix.

The measurement noise variance is assumed to be σ = 1e
2 . The

performance threshold γ′ is computed by scaling the best case MSE
(i.e. Σ[ ( )]1tr t 300 ) by ζ = 2. The parameters of the sparsity-enforcing
iterative algorithm are ϵ = −10 8 and J¼5. A constant step-size of
α = ( )NN0.1/ s is used in the saddle point algorithm and the algo-
rithm is iterated until a desired tolerance level ( tol) or the max-
imum number of iterations (I) is achieved. Here, we take = −tol 10 4

and =I NN300 s.
The estimated sensor location selection vectors for =N 3s

snapshots, i.e., ^ ^ ^w w w, ,1 2 3 before and after the randomized
rounding are shown in Fig. 4a and b, respectively. In the next case,
we keep the same γ′ but assume that the field is spatio-temporally
more correlated than the last time. In this case, we use sh¼7 and

=τs 3. The resulting selected sensing locations, i.e., ^ ^ ^w w w, ,1 2 3

before and after the randomized rounding are shown in Fig. 5a and
b, respectively.

It is observed that less sensors are needed to achieve a desired
estimation performance, when the field is highly correlated over
space and/or time. In Fig. 5a and b, we see that less sensing lo-
cations are selected than in Fig. 4a and b. This observation is
consistent with the fact that the Bayesian MSE is reduced as the
correlation over space/time is increased, as shown in Fig. 2b.

We study space–time sensor placement patterns for a simple
exponential covariance function (uniformly decaying). It can be
conjectured that for such a covariance function the optimal sensor
placement is more or less uniform over space and time. However,
different sensor placement patterns can be observed for different
spatio-temporal covariance matrices, i.e., Γ̃t .

6.2. Sensor placement for non-stationary field estimation

In the second case, we consider that the field is non-stationary.
We consider that the dynamics, i.e, Ht for = …t 1, , 7 snapshots
(minutes) are assumed to be known a priori. We present two



Fig. 4. Sensor placement pattern ( = =τs s5; 2h ) (a) before randomization and (b) after randomization.

Fig. 5. Sensor placement pattern ( = =τs s7; 3h ) (a) before randomization and (b) after randomization.
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scenarios. First, we solve the multiple snapshots ahead sensor
placement problem. We solve this only once without any updating
although this could be considered as well. In the next case, we
solve the single snapshot ahead sensor placement problem, where
the performance metric is updated every snapshot. We consider
the same service area as shown in Fig. 3.

6.2.1. Multiple snapshots ahead sensor placement
We consider =N 3s snapshots. The parameters of the state

transition matrix are given by ν = 0.4, = =D D It 2, which is an
isotropic diffusion, and = = [ ]a a 0.5, 0.5t

T for H H H, ,1 2 3. We as-
sume that the initial distribution of the field is given as

μ Γ∼ ( )u ,0 0 0 , where we take μ = 10 100 and the elements of
Γ ∈ ++0

100 are given by (7) with parameters σ = = =τs s1, 1, 0u h
2 , i.

e, Γ[ ] = [ − ]dexpij ij0 for = …i j, 1, , 100. The process noise is
characterized by ∼ ( )q 0 I, 0.001t 100 100 for all t. The diagonal, right
and left off-diagonal blocks of R̃t are computed using (18), (19),
and (20), respectively. Finally, the overall space–time covariance
matrix is computed by μ μΓ̃ = ˜ − ˜ ˜Rt t t t

T , where μ̃t and R̃t are com-
puted using the expressions of (15) and (17), respectively. The
measurement noise variance is assumed to be same as before, i.e.,
σ = 1e

2 . The parameters of the iterative saddle point algorithm are
also maintained to be the same as before. In this case, we again
adopt the performance threshold γ′ by scaling the best MSE by
ζ = 2. The sensor location selection vectors, i.e., ^ ^ ^w w w, ,1 2 3 (before
and after randomization) are shown in Fig. 6a and b, respectively.

It is observed that when the field is non-stationary, the selected
sensing locations are less uniformly distributed than for the sta-
tionary field case. It is also seen that when a non-stationary field is
to be estimated jointly using the measurements from multiple
snapshots then measurements from alternate snapshots are more
informative than measurements from consecutive snapshots. This



Fig. 6. Sensor placement pattern (non-stationary field) (a) before randomization and (b) after randomization.

Fig. 7. (a) Sensor deployment pattern for =H Ht and (b) sensor deployment pattern for a time-varying advection parameter at .
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makes sense as sensors in alternate snapshots are less correlated
and the values for the middle snapshot can be easily predicted.
The dependence on the dynamics is even more clearly observed in
the next case, where we update the performance metric every
snapshot.

6.2.2. Single snapshot ahead sensor placement
In this case, we select the sensing location for every snapshot,

i.e., we consider =N 1s . To avoid the computation of Γ̃t we update
the performance metric every snapshot based on (26), i.e., we use
the developed DISESP approach mentioned in Section 5.3.

Considering the same service area shown in Fig. 3, we would
like to choose the sensing locations every snapshot dynamically.
Note that, for every t we compute wt (with the prior knowledge of
Ht , Q t , and the estimation error covariance of the previous snap-
shot, i.e., Σ −t 1) whose support gives the locations where to move/
place the sensors to estimate the field for the current snapshot.
The scaling and diffusion parameters of the state transition matrix
are given by ν = 0.4 and = =D D It 2, which is same as before. For
the advection, we consider two scenarios. In the first case, we
assume that at is fixed for all t, i.e., we have =H Ht . In the next
case, we change at every minute. In that case, the values of at for

= …t 1, , 7 are given as [ ] [ ] [ ]0.5, 0.5 , 1.5, 1.5 , 0, 2T T T ,
[ ] [ − ] [ − ] [ − ]0, 2 , 1.5, 1.5 , 0.5, 1.5 , 1.5, 1.5T T T T . Here, we mention
that the parameters of the matrix Ht are chosen in such a way that
the maximum eigenvalue of Ht is always less than 1, in order to
assure the stability of the model. The measurement noise variance
is assumed to be σ = 1e

2 , for all t. The process noise is chosen to be
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the same as before. i.e., ∼ ( )q 0 I, 0.001t 100 100 for all t. We assume
that at time t¼0 the estimation error covariance is Σ = I0 100. The
performance threshold γ′ is dynamically computed by scaling the
best case MSE, i.e., Σ[ ( )]1tr t 100 , by ζ = 1.3 every t. We perform J¼3
iterations of the iterative algorithm at every snapshot t. In order to
improve the speed, the selected sensing locations are computed by
thresholding w.r.t. 0 (i.e., setting the non-zero elements to 1) ra-
ther than performing randomization on every snapshot.

The resulting sensor placement patterns for the fixed and time-
varying Ht are shown in Fig. 7a and b, respectively. The y-axis
represents the indices of the selected sensing locations indexed as
shown in Fig. 3. The x-axis represents the time in minutes. In
Fig. 7a, it is seen that more or less the same subset of sensing
Fig. 8. MSE comparison with random sensor placement (stationary field; =N 100,
=N 1s ).

Fig. 9. (a) MSE comparison with random sensor placement (non-stationary field; N¼25
field; N¼100, σ = 1e

2 ).
locations are selected with increasing time as the state error
covariance converges to the steady state. The number of required
sensing locations for individual snapshots is also decreasing with
time due to the reduction of the state error.

On the contrary, in Fig. 7b different sensing locations are se-
lected with time due to the time-varying state transition matrix
Ht . It is seen that the number and position of the optimal sensing
locations, achieving a prescribed estimation performance are
guided by the dynamics of the field, as well as the required per-
formance (which is also dependent on the noise level) of the
system.

6.3. Analysis of the performance metric

In this section, we compare the performance of the developed
sensor placement algorithm with random sensor placement in
terms of their respective mean square errors for different mea-
surement noise variances (se2). For every noise variance, 100
random realizations of the selection vector ˜ ∈ { }w 0, 1t

NNs are
generated with the same number of 1 s generated by the proposed
approach. The average MSE of all these realizations are compared
with the achieved MSE using the proposed algorithm.

We consider two scenarios. In the first case, we consider the
spatial sensor placement problem, i.e, =N 1s , to estimate a sta-
tionary field in the service area shown in Fig. 3, i.e., N¼100. The
elements of the spatial covariance matrix Γ̃t are generated using
the exponential covariance function mentioned in (7) with sh¼5.
The comparison of the MSE for the proposed approach and the
average MSE of random sensor placement for different noise var-
iances is shown in Fig. 8. The standard deviation of the MSEs for
different realizations of the random placement are also shown for
every se

2. In the second case, we consider the field to be non-
stationary with the same =H Ht as mentioned in Section 6.2.1. In
this case, we consider N¼25 (5�5 square km service area with 25
pixels), =N 3s and solve for ˜ ∈ { }w 0, 1t

75, i.e, in a multiple snapshot
ahead fashion. The comparison of the MSE with random place-
ment is shown in Fig. 9a. In the last two cases, we consider ζ = 2
and ζ = 1.5, respectively.

In the third case, we consider the single snapshot ahead sensor
, =N 3s ) and (b) MSE comparison with random sensor placement (non-stationary
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placement problem, i.e., the performance metric is updated every
iteration. We fix σ = 1e

2 and ζ = 2. Every t, the MSE of the proposed
approach and the average MSE for 100 different realizations of

∈ { }w 0, 1t
N (with the same number of 1 s generated by the proposed

approach) are compared. We consider the same setup as mentioned in
Section 6.2.2. The performance comparison is shown in Fig. 9b.

First of all, it is observed that the achieved MSE using the
proposed approach is lower than randomly placing the sensors for
a given number of available sensing locations. It is also seen that
when the field is stationary with a smoothly varying spatial cov-
ariance function, on average random placement performs well.
The reason behind this is that a uniform placement is close to
optimal in order to estimate a stationary field as observed in
Figs. 4b and 5b. So, the performance gap is not significant in this
case, as long as the average MSE of the uniformly at random rea-
lizations is concerned. But there could be some realizations pro-
ducing a high MSE, as seen by the standard deviation plot.

But when the field is non-stationary, the optimal sensor pla-
cement patterns are non-uniform over space and time as shown in
Figs. 6a, b, and 7a, b, for multiple and single snapshot ahead sensor
placements, respectively. They are mainly guided by the dynamics
of the field. In this case, the performance gap between the pro-
posed approach and a random placement is significant.
7. Conclusion

We have presented sparsity-enforcing sensor placement methods
for the estimation of both stationary and non-stationary spatio-tem-
poral environmental fields. The developed methodologies can be used
for both offline and online field estimation applications. They exploit
the space–time correlation information as well as the dynamics of the
field to deploy sensors at the most informative locations in space and
time. We have also developed a sparsity-enforcing iterative first order
approach to select the sensing locations that achieve a prescribed
estimation accuracy in terms of the MSE. We further compared the
performance of the developed sensor placement approach with ran-
dom sensor placement.

It is observed that for an exponentially decaying stationary
covariance function, the higher the spatio-temporal correlation
the less sensing locations are needed. For a non-stationary field,
the number and the position of the selected sensing locations are
controlled by the dynamics of the field, the required estimation
accuracy, and the noise level. If the dynamics are not changing
with time then the same set of sensors are selected with time once
the posterior error covariance reaches a steady state.
Appendix

In this section, we compute the derivatives of the Lagrangian
which are used in (42) and (43). The derivatives w.r.t. w and λ are
given as

λ λ∇ ( ) = + ∇ ( ) ( )hw 1 w, , and 50Lw w

λ∇ ( ) = ( ) ( )λ hw w, , 51

respectively. To compute ∇ ( )h ww we use the following identities
for the differentiation of a scalar function of matrix and vector
variables [26]. They are
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where = …l L1, , . Now using the above identities we can compute,
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Extended derivation: We consider ( ( )) = ( )f hX w w , where
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where A1 is an ×L L matrix with only one non-zero element at
( )1, 1 given as [ ] =A 11 11 . Similarly,
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where AL is an ×L L matrix with only one non-zero element at (L,
L) given as [ ] =A 1L LL . So, the overall gradient is computed as
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Substituting the elements we have σ∇ ( ) = −h w diagew
2

σ( − [ + ( )] )− − −Z wdiage
1 2 2 .
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