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ABSTRACT

In this work, we propose a generalized framework for designing op-

timal sensor constellations for spatio-temporally correlated field es-

timation using wireless sensor networks. The accuracy of the field

intensity estimate in every point of a given service area strongly de-

pends upon the number and the constellation of the sensors along

with the spatio-temporal statistics of the field. We formulate and

solve a sparsity-enforcing optimization problem to select the best

sensor locations that achieve some desired estimation performance.

The sparsity-enforcing iterative selection algorithm is aware of the

non-separable space-time covariance structure of the field.

Index Terms— Wireless sensor network, field estimation,

Bayesian framework, convex optimization, sparsity.

1. INTRODUCTION

Restricted use of the sensors in any sensor network over a spec-

ified service area due to life-time, bandwidth and other resource-

related constraints is a wonted problem in environmental field esti-

mation applications. To alleviate this problem, sparsity can be en-

forced in selecting only a subset of informative sensors which is

well-investigated in [1] and references therein. Sparsity can also

be introduced in sensor selection for the conventional kriging ap-

proach [2] by minimizing the kriging error variance while penaliz-

ing the kriging weights [3]. An elegant optimization framework has

been proposed in [4] that handles the aforementioned performance-

constrained and cardinality-aware optimization problems. A similar

optimization framework can be utilized to handle a generalized non-

linear measurement model [5], and can be successfully applied for

different applications like anchor placement for localization [6], sen-

sor selection for direction-of-arrival (DOA) estimation [7], etc. Also

a Bayesian extension of the optimization framework is illustrated

in [4], where a Bayesian error metric is minimized, constrained by

the number of sensors to be selected. In [8], an information-theoretic

approach is utilized for near-optimal sensor placements for Gaussian

processes, where the mutual information of the selected and not-

selected sensor locations is minimized exploiting the submodularity

of the mutual information. Another significant contribution for se-

lecting the optimal sensor locations is presented in [9], where the

cost function is related to the frame potential property of the mea-

surement matrix.

In this paper, we propose an off-line sparsity-enforcing sensor

constellation design methodology for stationary field estimation, in

a Bayesian framework. It is assumed that the first and second order
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statistics of the field intensity to be estimated are known a priori.

Leveraging the space-time wide sense stationarity of the physical

field, we select the best sensor locations constrained by an estima-

tion performance metric which depends on the spatial and temporal

lags. The developed approach can be generalized for any spatial res-

olution in different temporal sensing windows without any knowl-

edge about the dynamics of the field. We use a space-time non-

separable stationary covariance model which can readily be used for

fitting spatio-temporal environmental and climatological fields [10].

The performance constraint is a cost function which is related to the

mean squared error (MSE) covariance matrix. To be more specific, if

an estimate of the field intensity in every point of the service area is

given by the vector û, then what is the optimal way to deploy the sen-

sors so that some desired tr(E[(u−û)(u−û)T ]) is achieved, where

u is the true value of the field intensity vector. In terms of experi-

mental design, the aforementioned problem can also be viewed as

an A-optimal design that minimizes the trace of the MSE covariance

matrix, i.e., the sum of the eigen values of E[(u− û)(u− û)T ] [11,

Pg. 384].

The above problem is solved in two different space-time sens-

ing/observation modalities which are,

• Sliding measurement window: The measurement window

contains measurements from the past and the future as well

as from the present snapshot, where the field is to be esti-

mated. The next window shifts by one snapshot.

• Non-overlapping measurement window: The measurement

window contains measurements at all snapshots where the

field is to be estimated. The next window shifts by the total

number of snapshots in the window.

The optimal sensor constellations for the above two scenarios

are designed assuming all the field locations are candidate sensor

locations. The effect of both the spatial as well as the temporal co-

variances are analyzed for both these scenarios. The developed sen-

sor selection framework is based on the assumption that the physical

field to be estimated is a Gaussian process. This is a realistic as-

sumption, as the realizations of many physical stochastic processes

like a Wiener process (used for modeling Brownian motion) or air

pollution models (specially the ozone distribution) exhibit Gaussian

behavior. Along with this, as mentioned in [12], stationarity is also a

valid assumption for some environmental fields like rainfall, where

off-line sensor (e.g., rain-gauge) deployment based on observations

in different temporal regimes, is a standard practice.

Notations: Matrices are in upper case bold while column vectors

are in lower case bold. [X]ij is the (i, j)-th entry of the matrix X.

[x]i is the i-th entry of the vector x. tr[X] denotes the trace of X,

i.e., the sum of the diagonal elements of X. IN is the identity matrix

of size N × N . (·)T is the transpose operator, x̂ is the estimate of

x, , defines an entity, ‖x‖p = (
∑N−1

i=0 |[x]i|
p)

1/p
is the ℓp norm
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of x. 0N and 1N are the vectors of all zeros and ones of length

N , respectively. X ∈ S
N denotes that X is in the set of symmetric

matrices of size N ×N .

2. SYSTEM MODEL

2.1. Data model

In this section, we assume a finite uniform discretization of the entire

service area into N spatial points. It is assumed that the field inten-

sity within any pixel is characterized by the intensity at the centre of

the pixel. The field intensities in all the N pixels describe the spa-

tial field distribution over the area at any time instance t, denoted by

u(t) ∈ R
N . All of these N locations are potential sensor locations.

A deployed sensor, in any of these pixels monitors the field intensity

within that particular pixel, i.e, only a single dimension of the field

intensity vector u(t). Based on this, a compressive measurement

model (less measurements than unknowns) can be constructed as

y(t) = Ctu(t) + e(t), t = 1, 2 . . . (1)

where y(t) ∈ R
M collects the set of M measurements out of N

locations (M ≤ N ) at any snapshot t. The compressive measure-

ment matrix Ct ∈ {0, 1}M×N
determines the presence/absence of a

sensor in any of the N spatial points, at any t. This is designed by se-

lecting M out of N rows of IN . The indices of the M selected rows

are encoded by the support (set of indices of non-zero entries) of a

selection vector defined as wt = [wt1, . . . , wtN ]T ∈ {0, 1}N , for

any snapshot t. So, [wt]j = 1(0) denotes if the measurement at the

j-th spatial point is available (unavailable), where j = 1, . . . , N .

The M measurements are corrupted by additive spatio-temporally

white Gaussian noise e(t) ∼ N (0M ,Σe), where Σe = σ2
eIM .

Further, e(t) is uncorrelated with u(t).

2.2. Statistical characterization of the field

In a Bayesian framework, to reconstruct u(t) from less observations

than its dimension, prior knowledge about u(t) is utilized. We as-

sume that, at any time instance t, the realization of the field at any lo-

cation x = [x, y]T , i.e., u(x, t), is a Gaussian random variable. It is

also assumed that u(x, t) is a zero-mean spatio-temporally (second-

order) stationary isotropic process [2]. The elements of the spatio-

temporal covariance matrix are derived from a generalized model of

a non-separable covariance function, widely used for environmental

prediction [10]. For any temporal lag τ , i.e., the difference between

two snapshots of u(t), and any two spatial locations xi,xj , with

hij , ‖xi − xj‖2, the elements of the spatio-temporal covariance

matrix are given by,

[Γτ ]ij = fc(hij , τ) =
σ2
u

(a|τ |2α + 1)
β
exp

[

−
c h

2φ
ij

(a|τ |2α + 1)
βφ

]

.

(2)

Here, α, φ ∈ (0, 1] are the smoothing parameters, while a and c

are the non-negative scaling parameters for time and space, respec-

tively. The parameter β ∈ [0, 1] is responsible for the space-time

interaction of the covariance. The available lag-0 and lag-τ space-

time covariance matrices can be given by E[u(t)u(t)T ] = Γ0, and

E[u(t)u(t− τ)T ] = Γτ . It is also clear from (2) that Γτ = ΓT
(−τ).

2.3. The two observation scenarios and the related MSE

Before we detail the two observation scenarios as mentioned in the

introduction, let us first review the MSE matrix in the Bayesian

paradigm. If an unknown parameter θ ∼ N (0,Σθ) is estimated

from Gaussian observations y, using a minimum mean square er-

ror (MMSE) estimator, then the error covariance/MSE matrix can be

given by

Eθ|y[(θ − θ̂)(θ − θ̂)T ] = Σθ −ΣθyΣ
−1
yy Σyθ. (3)

Here, Σθy and Σyθ are the cross covariance matrices between the

unknown parameter and the observations [13].

In the first sensing scenario, the measurement window con-

sists of measurements from the past, present, and the future. Let

us assume that the measurements are given by ỹ = [yT (t − Ns +

1), . . . ,yT (t), . . . ,yT (t+Ns−1)]T ∈ R
M(2Ns−1), where 2Ns−1

is the size of the measurement window. The parameter to be esti-

mated is θ = u(t) ∈ R
N . Note that the measurement window can

be slided over the entire swath of t and the measurements to estimate

u(t) overlap those of u(t+1). Using (1) for all the measurements at

2Ns−1 snapshots we have ỹ = C̃tũ+ẽ, where C̃t = I2Ns−1⊗Ct,

ũ = [uT (t − Ns + 1), . . . ,uT (t), . . . ,uT (t + Ns − 1)]T ∈

R
N(2Ns−1) and ẽ = [eT (t−Ns+1), . . . , eT (t), . . . , eT (t+Ns−

1)]T ∈ R
M(2Ns−1), respectively.

The individual terms for the expression in (3) can be derived as

follows. First of all, we have Σθ = Γ0. The cross terms are Σθy =

E[u(t)[uT (t − Ns + 1), . . . ,uT (t), . . . ,uT (t + Ns − 1)]C̃T
t ] =

ΓXC̃T
t , where ΓX = [ΓNs−1, . . . ,Γ0, . . . ,Γ−(Ns−1)] of size

N ×N(2Ns − 1). For the measurements we have E[ỹỹT ] =

C̃tΓY C̃T
t + σ2I with ΓY = E[ũũT ], and σ2I = E[ẽẽT ]. Here,

ΓY is the symmetric positive-definite space-time covariance matrix

of size N(2Ns−1)×N(2Ns−1), whose diagonal and off-diagonal

blocks are Γ0 and Γτ with τ = −2Ns + 2, . . . , 2Ns − 2, respec-

tively. Substituting these terms in (3) we obtain the MSE matrix as

a function of the selection vector wt which is given as

Σa(wt) = Γ0 − ΓXC̃
T
t [C̃tΓY C̃

T
t + σ

2
I]−1

C̃tΓX
T
. (4)

For the positive definite matrices ΓY and σ2I, using the ma-

trix inversion lemma (MIL), we have the matrix identity ΓY −
ΓY C̃T

t (C̃tΓY C̃T
t + σ2I)−1C̃tΓY = (Γ−1

Y + 1
σ2 C̃

T
t C̃t)

−1 [14].

Using the above identity we have

C̃
T
t (C̃tΓY C̃

T
t + σ

2
I)−1

C̃t =

Γ
−1
Y [ΓY − (Γ−1

Y +
1

σ2
C̃

T
t C̃t)

−1]Γ−1
Y . (5)

Substituting (5) in (4) we obtain the following expression

Σa(wt) = Γ0−ΓXΓ
−1
Y [ΓY −(Γ−1

Y +
1

σ2
C̃

T
t C̃t)

−1]Γ−1
Y Γ

T
X (6)

Comment: In some cases, due to the parameters of the covariance

function, number of grid points, size of the mesh etc. [15], ΓY can be

ill-conditioned. In such cases, the aforementioned formulation can

be generalized by replacing ΓY by Z− βI, where Z = (ΓY + βI)
is the well-conditioned matrix, with β > 0. Applying the fact that

C̃tC̃
T
t = I, and using the MIL as before, an alternative form of (6)

can be given as,

Σa(wt) = Γ0 −ΓXZ
−1[Z− (Z−1 +

1

σ2 − β
C̃

T
t C̃t)

−1]Z−1
Γ

T
X .

However, for the time being, assuming ΓY is well-conditioned, and

using the fact that CT
t Ct = diag(wt), (6) can also be written as,

Σa(wt)=Γ0 − ΓXΓ
−1
Y [ΓY − (Γ−1

Y +

1

σ2
(I2Ns−1 ⊗ diag(wt)))

−1]Γ−1
Y Γ

T
X . (7)
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In the second scenario, the available measurements are the same as

before i.e., ỹ ∈ R
M(2Ns−1) but the parameter to be estimated now is

θ = ũ ∈ R
N(2Ns−1). The set of time-varying sensor constellations,

i.e., the observation matrices are Ct−Ns+1, . . . ,Ct, . . . ,Ct+Ns−1.

In this case, we have Σθ = E[ũũT ] = ΓY .

Let us define the joint space-time observation matrix as C̆ =
blkdiag(Ct−Ns+1, . . . ,Ct, . . . ,Ct+Ns−1) of size M(2Ns −

1) × N(2Ns − 1), where C̆ is a block diagonal matrix with

Ct−Ns+1, . . . ,Ct, . . . ,Ct+Ns−1 as diagonal blocks. The spatio-

temporal noise components are the same as before, i.e., ẽ ∈
R

M(2Ns−1).

In this case, the error covariance matrix can be directly de-

rived from (3) as a multivariate function of the selection vec-

tors wt−Ns+1, . . . ,wt, . . . ,wt+Ns−1. This can be given as

Σb(wt−Ns+1, . . . ,wt+Ns−1) = ΓY − ΓY C̆T (C̆ΓY C̆T +

σ2I)−1C̆ΓY = (Γ−1
Y + 1

σ2 C̆
T C̆)−1. Using the same trick as

before, i.e., CT
t Ct = diag(wt), the MSE matrix as a function of

the selection vectors can be represented as,

Σb(wt−Ns+1, . . . ,wt+Ns−1) = [Γ−1
Y +

1

σ2
blkdiag[diag(wt−Ns+1), . . . , diag(wt+Ns−1)]]

−1
. (8)

3. PROBLEM FORMULATION

3.1. Main problem

We formulate an optimal space-time sensor location selection prob-

lem assuming that all the mid points of the pixels are candidate sen-

sor locations (see Section 2.1). This is accomplished by designing

all the selection vectors wt, for both scenarios, constrained by the

desired accuracy requirement (MSE) expressed as a function of wt.

Let us assume that, the desired upper bounds on the MSE to estimate

u(t) and ũ are given by γa and γb, respectively. The optimization

problem for the first case can be expressed as

argmin
wt∈{0,1}N

‖wt‖0 (9a)

s.t. tr[Σa(wt)] ≤ γa. (9b)

For the next case, i.e., to design the selection vectors for all 2Ns−1
snapshots, the optimization problem is given by

argmin
wt−Ns+1,...,wt+Ns−1∈{0,1}N

Ns−1
∑

i=−Ns+1

‖wt+i‖0 (10a)

s.t. tr[Σb(wt−Ns+1, . . . ,wt+i, . . . ,wt+Ns−1)] ≤ γb.

(10b)

Note that the performance constraints in (9b) and (10b) are related

to the functions of the spatio-temporal covariance matrix as derived

in (7) and (8), respectively.

3.2. Sparsity-enforcing correlation-aware sensor location selec-

tion

The optimization problems of (9) and (10) are intractable due to

the following reasons: the ℓ0 norm in the cost function makes

the problem NP-hard and non-convex and the Boolean constraint

wt ∈ {0, 1}N , is non-convex and combinatorially complex. We

use standard convex relaxations and formulate the problems of (9)

and (10) with the MSE cost functions derived in (7) and (8) for the

two aforementioned sensing modalities. The overall optimization

problems in semi-definite form with the appropriate convex relax-

ations can be formulated as the following optimization problems.

The relaxed version of (9) in semi-definite form is given as

argmin
wt∈RN ,U∈SN(2Ns−1)

‖wt‖1 (11a)

s.t.

[

U I

I [Γ−1
Y + 1

σ2
a

(I(2Ns−1) ⊗ diag(wt))]]

]

� 0, (11b)

tr [Γ0 − ΓXΓ
−1
Y [ΓY −U]Γ−1

Y Γ
T
X ] ≤ γa, (11c)

0 ≤ [wt]j ≤ 1, j = 1, . . . , N. (11d)

In (11a), the ℓ1-norm is a standard convex relaxation for ‖wt‖0,

that enforces sparsity in selection. The threshold on the MSE per-

formance in (11c) is given by γa. The wt ∈ {0, 1}N constraint is

relaxed to wt ∈ [0, 1]N in (11d). The solution of the optimization

problem (11) results in a constant wt = w, which can be used to

estimate u(t) from all the measurements from (2Ns − 1) snapshots.

Next, we design the set of sparse selection vectors, to orga-

nize the sensor deployment in every snapshot in order to estimate

the field intensity in all of these snapshots jointly. Assuming the

performance threshold is γb, the optimization problem to design

wt−Ns+1, . . . ,wt+Ns−1 can be given as

argmin
wt−Ns+1, . . . ,wt+Ns−1 ∈ R

N

V ∈ S
N(2Ns−1)

Ns−1
∑

i=−Ns+1

‖wt+i‖1 (12a)

s.t.

[

V I

I Σ−1
b (wt−Ns+1, . . . ,wt+i, . . . ,wt+Ns−1)

]

� 0,

(12b)

tr [V] ≤ γb, (12c)

0 ≤ [wt+i]j ≤ 1, i = −Ns + 1, . . . , Ns − 1; j = 1, . . . , N,

(12d)

‖wt+i‖1 ≥ p, i = −Ns + 1, . . . , Ns − 1. (12e)

Note that, the constraint in (12e) implies that at least p sensor

locations will be selected in every snapshot. This design constraint

is applied to utilize the measurements on individual snapshots more

efficiently, i.e., to distribute the selected sensing locations over all

snapshots. Using this constraint, we avoid solutions where all loca-

tions are selected in a single snapshot, which may satisfy the perfor-

mance constraint but not in an energy-efficient design. The value of

p generally depends upon the application and the available resources.

3.3. Discussion

The solution of (11) and (12) gives respectively the selection vector

w and the set of selection vectors wt−Ns+1, . . . ,wt+Ns−1 achiev-

ing the desired performance γa and γb. It is clear that lowering the

values of γa and γb, i.e., putting a tighter threshold on the perfor-

mance, more sensor locations are needed to be selected. One way to

calculate the performance threshold to estimate u(t), i.e., γa, is by

scaling the best MSE which occurs when all sensors are present, i.e.,

γa = λtr[Σa(1N )], where λ ≥ 1.

As mentioned in [16], the unwanted dependence on the magni-

tude of the elements can be avoided by using an iterative re-weighted
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Fig. 1: (a) Space-time variation of fc(h, τ). (b) Selected sensor lo-

cations with Ns = 1.

ℓ1-norm minimization technique. Hence, we will solve (11) and (12)

using the same sparsity enhancing iterative algorithm as in [16] . To

design the selection vectors exactly to be in the set {0, 1} we use the

randomization method described in [5]. It is repeated briefly below.

If a solution of the iterative version of (11) is ŵt = [ŵt1, . . . , ŵtN ]T ,

then many random realizations of wt are generated, where the prob-

ability of wti = 1 is specified by ŵti, with i = 1, . . . , N . Here we

denote the locations with high probability of being wti = 1, (i.e.,

|ŵti| is very close to 1) as informative sensor locations. Others are

considered to be non-informative sensor locations. Then, those real-

izations of wt are selected which satisfy the performance constraint,

and the minimum norm wt is selected. The resulting wt ∈ {0, 1}N

is the close-to-optimal solution of (11) whose support denotes the

sparsely distributed sensor locations. The same approach is followed

to estimate wt−Ns+1, . . . ,wt+Ns−1 from the optimization problem

(12).

4. SIMULATION RESULTS

We assume a given service area is uniformly discritized in N = 16
pixels, where we would like to measure the field intensities. The can-

didate sensor locations are the midpoints of the pixels (see Fig.1(b)).

From all these coordinates, the distance matrix (matrix of all possi-

ble pair-wise Euclidean distances) is calculated and the spatial co-

variance matrix for any lag τ is calculated.

In Fig.1(a), we plot the non-separable space-time covariance

function, with different space and time lags. The selected param-

eters are σu = 1, α, φ = 1, a, c = 1, and β = 1, i.e., we consider

the maximum space-time interaction. We further take σ2 = 1. We

use the MATLAB implementation of CVX [17] for solving the semi-

definite programming (SDP) problems of (11) and (12).

The performance threshold to estimate u(t), i.e., γa is calcu-

lated using Ns = 1, λ = 1.5, and the aforementioned smoothness

and scaling parameters for the covariance function. The optimiza-

tion problem of (10) is first solved with Ns = 1, i.e., only the present

measurements are used. We use 20 iterations of the sparsity enhanc-

ing iterative algorithm with ǫ = 10−8 [16]. Then, the randomization

method is applied to 5000 random realizations of ŵt to calculate

wt ∈ {0, 1}. In Fig.1(b), the selected sensor locations are shown.

The indices of the sensors are given in numbers in Fig.1(b). To ex-

plore the effect of the space-time covariance in sensor selection, the

following numerical experiments are performed. We use Ns = 2
with the same γa. Keeping a, c, and β fixed, the smoothness param-

eters, i.e., α and φ are varied. The resulting sparse sensor locations

are exhibited in Table 1. First of all, we note that the optimal sen-

sor locations change when the past and future measurements are also

used. The selection pattern in Fig.1(b) is for Ns = 1, whereas Ta-

Table 1: Numerical results: optimization problem (11)

No. Parameters Selected senor locations

I α = 1; φ = 1 {2, 3, 5, 8, 12, 14, 15}
II α = 0.5; φ = 1 {2, 3, 5, 8, 9, 12, 14}
III α = 1; φ = 0.5 {2, 5, 8, 9, 12, 14, 15}
IV α = 0.5; φ = 0.5 {2, 3, 5, 8, 9, 14, 15}

ble 1 shows the selection patterns for Ns = 2. With Ns = 1, no tem-

poral correlation is involved, i.e., ΓY = ΓX = Γ0. With Ns = 2,

i.e., taking also the past and future measurements into account, the

required number of sensor locations reduces.

In the next case, we use γb = (2Ns − 1)γa. We solve

the optimization problem of (12) for Ns = 2, i.e., we solve

for wt−1,wt,wt+1 iteratively for 20 iterations with the same

ǫ = 10−8. We take p = 1, i.e., at least one sensing location will

be selected on every snapshot. We denote the sets of the indices of

the non-zero entries of wt−1,wt,wt+1 as k−1, k0, and k1. The

obtained k−1, k0, and k1 for different smoothing parameters with

the fixed γb are given in Table 2.

Table 2: Numerical results: optimization problem (12)

No. Parameters Selected senor locations

I α = 1; φ = 1
k
−1 = {2, 5, 9, 12}

k0 = {1, 3, 6, 7, 8, 11, 13, 14, 16}
k1 = {2, 3, 5, 8, 12}

II α = 0.5; φ = 1
k
−1 = {2, 5, 8, 12, 14}

k0 = {1, 3, 6, 10, 11, 12, 13}
k1 = {2, 3, 5, 9, 14, 15}

III α = 1; φ = 0.5
k
−1 = {6, 7, 10}

k0 = {1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16}
k1 = {6, 7, 11}

IV α = 0.5; φ = 0.5
k
−1 = {7, 10, 11}

k0 = {1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16}
k1 = {6, 10, 11}

From Table 1 it is seen that, altering the spatial/temporal

smoothness, the selected sensor locations slightly change. The set of

the most informative sensor locations, i.e., for instance {2, 5, 8, 14}
are the same in most of the cases. In Table 2, the average number

of locations over 3 snapshots is 6, for all four cases but their con-

stellations change with different smoothing parameters. Here, the

number of required locations per snapshot is less than when only a

single snapshot of u(t) is estimated separately (Table 1).

From the resulting selection patterns in Tables 1 and 2, it is seen

that the selected locations are more or less uniformly distributed over

the entire area rather than forming clusters in a specific area or snap-

shot. Further simulations show that, increasing the values of γa, γb,

less locations are selected but the aforementioned uniformity is gen-

erally present. However, selection patterns will vary with a different

class of the covariance function fc.

5. CONCLUSION AND FUTURE WORK

It is seen that, MSE-optimal space-time sensor deployment can be

designed to be efficient (less required sensing locations) in different

space-time sensing modalities, availing the prior correlation infor-

mation of the physical field. As many practical environmental fields

exhibit space-time sparsity in a proper representation basis, further

research is envisioned to develop an optimal sensor constellation that

is jointly MSE-optimal as well as satisfies the criteria for uniqueness

in a sparse recovery framework.
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