COMBINATIONAL LOGIC

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

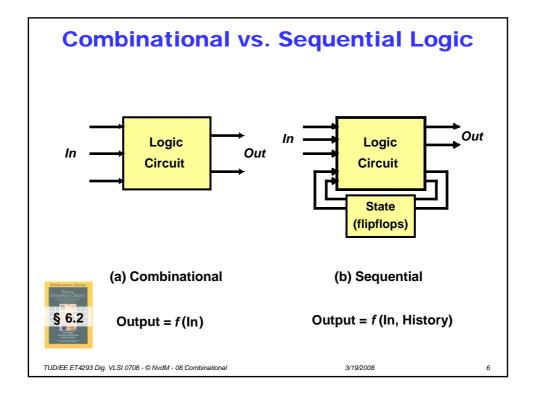
Exam

- April 3rd, 9am 12am
- Written exam, open book, also printed slides with your notes on it.

Material	Topic	Remarks
Ch 1	Intro	Completely, pay attention to §1.3
Ch 2	Manufacturing	Only §2.1 - §2.3
Ch 3	Devices	Completely
Ch 4	Interconnect	Except §4.4.5, §4.5
Ch 5	Inverter	Completely
Ch 6	Combinational	Only §6.1, §6.2
Ch 7	Sequential	Only §7.1, §7.2

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

	I .	March 2008		
	Thu 20		Tue 25	
Final Lecture:	15:45-17:30	8:45-10:30	10:45-12:30	13:45-15:30
March 25, 10:45-12:30	ок		OK	OK
Warch 25, 10.45-12.50	ОК	ОК	OK	OK
		OK	OK	OK
- Doom D (nyobobly)			OK	
Room D (probably)		OK	OK	OK
			OK	OK
		OK	OK	
■ §7.1 – 7.2		OK	OK	OK
		OK	OK	OK
		OK	OK	OK
			OK	
			OK	
	9	OK	OK	OK
	OK		OK	
		OK	OK	OK
			OK	OK
			OK	
	4	OK	OK	OK
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational	15:45-17:30	8:45-10:30 3/19/20	10:45-12:30	13:45-15:30


Combinational Logic - Outline

- Conventional Static CMOS basic principles
- **■** Complementary static CMOS
 - **Complex Logic Gates**
 - VTC, Delay and Sizing
- Ratioed logic
- Pass transistor logic
- Dynamic CMOS gates →only illustration

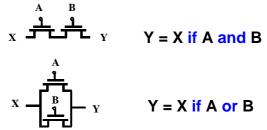
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

Complementary Static CMOS Basic Principles

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

Reminder

DeMorgan Transformations


$$\overline{A+B} = \overline{A}.\overline{B}$$

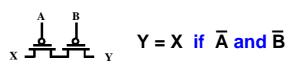
$$\overline{A.B} = \overline{A} + \overline{B}$$

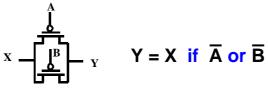
NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

$$Y = X \text{ if } A \text{ or } B$$

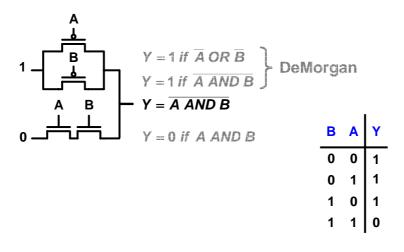


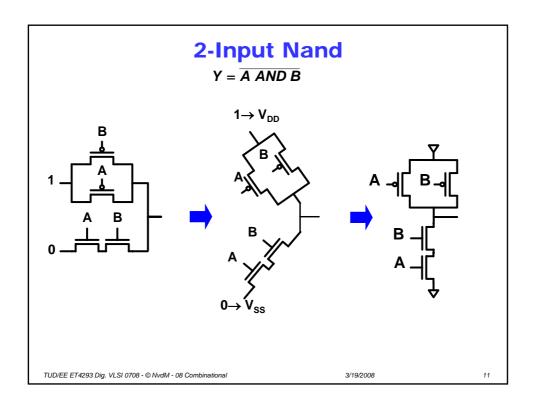

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

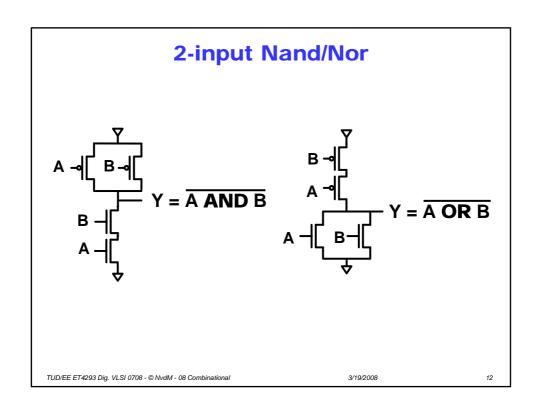
PMOS Transistors in Series/Parallel Connection

PMOS switch closes when switch control input is low

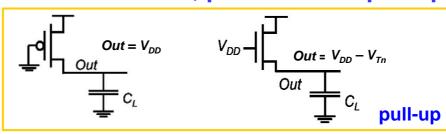
$$Y = X$$
 if ...




TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

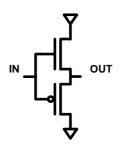

19/2008

2-Input Nand



TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

NMOS vs. PMOS, pull-down vs. pull-up


- PMOS is better pull-up
- NMOS is better pull-down

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

13

Bad Idea

Exercise: Determine logic function

Determine V_{out} for $V_{in} = V_{DD}$ and $V_{in} = V_{SS}$

Why is this a bad circuit?

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

CMOS Gate is Inverting

Assume full-swing inputs (high = V_{DD} , low = V_{SS})

■ Highest output voltage of NMOS is

$$V_{GS}$$
 - V_{Tn} = V_{DD} - V_{Tn}

- An 1 on NMOS gate can produce a strong 0 at the drain, but not a strong 1
- Lowest output voltage of PMOS is

$$V_{DD} + V_{GS} - V_{Tp} = |V_{Tp}|$$

(with V_{GS} , $V_{Tp} < 0$ for PMOS)

- An 0 on PMOS gate can produce a strong 1 at the drain, but not a strong 0
- Need NMOS for pull-down, PMOS for pull-up

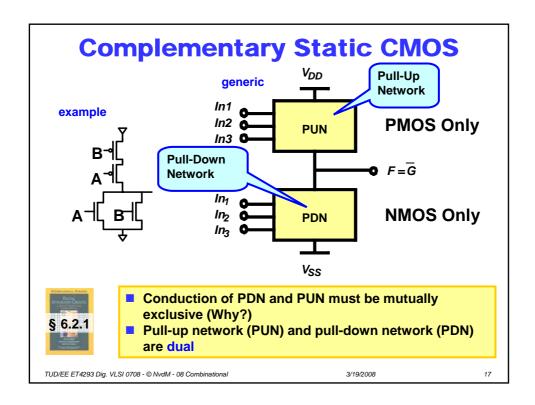
A 1 at input can pull-down, 0 at input can pull-up

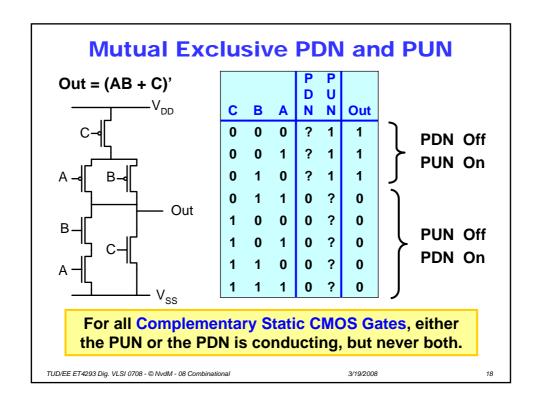
Inverting behavior

For a non-inverting Complementary CMOS Gate, you can only use 2 inverting gates

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008


15


Complementary static CMOS

- **Complex Logic Gates**
- VTC, Delay and Sizing

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinationa

3/19/2008

Complementary Static CMOS (2)

- Conduction of PUN and PDN must be mutually exclusive
- PUN is dual (complement) network of PDN series ⇔ parallel nmos ⇔ pmos
- Complementary gate is inverting
- No static power dissipation
- Need 2N transistors for N-input gate

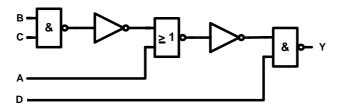
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

19

Implementation of Combinational Logic

- How van we construct an arbitrary combinational logic network in general, using NMOS and PMOS transistors (using Complementary static CMOS)?
- Example: Y = (A + BC)D
- Remember: only inverting gates available



TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinationa

3/19/2008

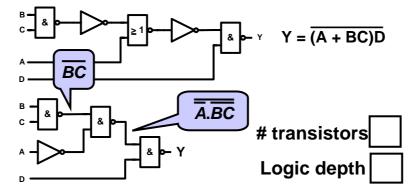
Implementation of Combinational Logic

- Example: Y = (A + BC)D
- Remember: only inverting gates available
- Logic depth: number of gates in longest path ⇒ DELAY

transistors

logic depth

Q: Can this be improved?

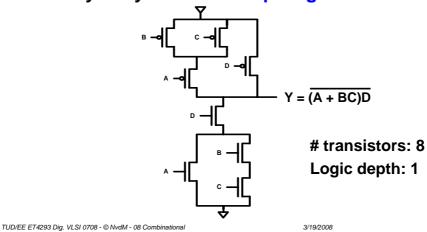

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

21

Improved Gate Level Implementation

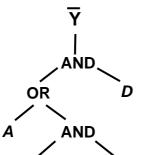
■ Using DeMorgan $A + BC = \overline{A.BC}$


Q: Can this be further improved?

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

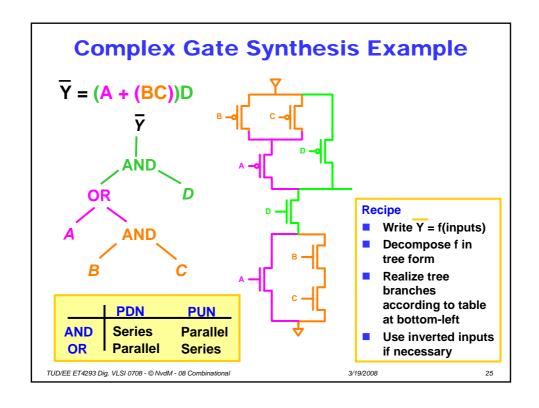
Complex CMOS Logic Gates

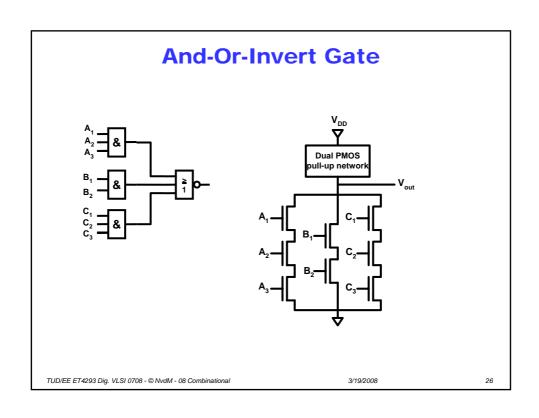

- Restriction to basic NAND, NOR etc. not necessary
- Easy to synthesize complex gates

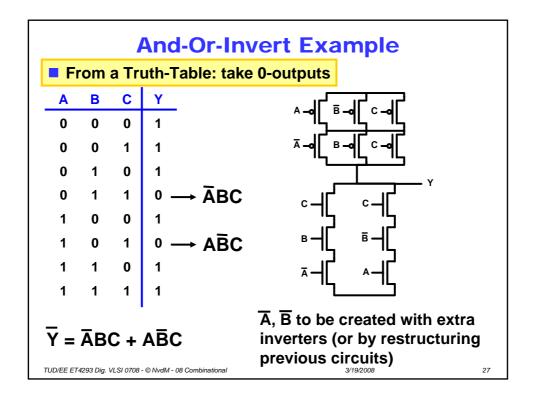
How to Synthesize Complex Gates

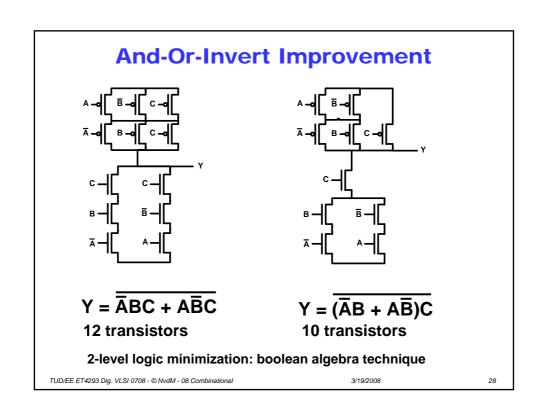
$$Y = \overline{(A + BC)D}$$

Using tree representation of Boolean function

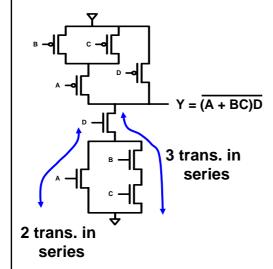



- Operator with branches for operands
- As a series-parallel network


	PDN	PUN
AND	Series	Parallel
OR	Parallel	Series


3/19/2008

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational



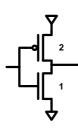
CMOS Complex Gate Sizing

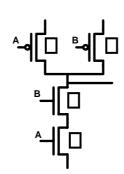
- Function of gate independent of transistor sizes: ratioless
- But current-drive capability (timing) depends on transistor sizes
- Worst-case currentdrive depends on number of transistors in series

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

20


CMOS Complex Gate Sizing

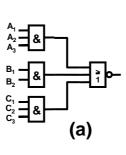

- Assume all transistors will have mininum length L
- Determine W_n for PDN transistor of inverter that would give the desired 'drive strength'
- For each transistor in PDN of complex gate do the following:
 - Determine the length l of the longest PDN chain in which it participates
 - Set $W = l W_n$
- Repeat this procedure for PUN, using W_p for PUN transistor of inverter.

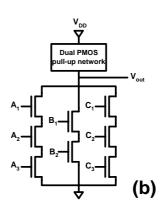
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

Gate Sizing

- W/L ratios
- what are the W/L of 2-input NAND for same drive strength?

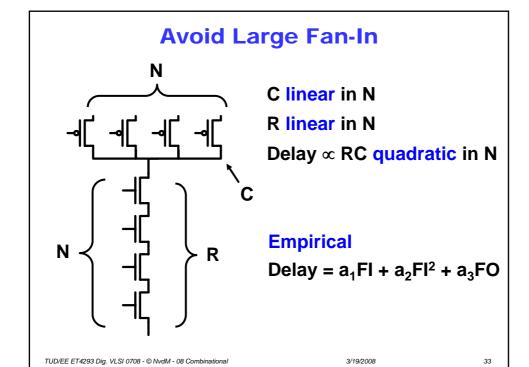

0-th order calculation

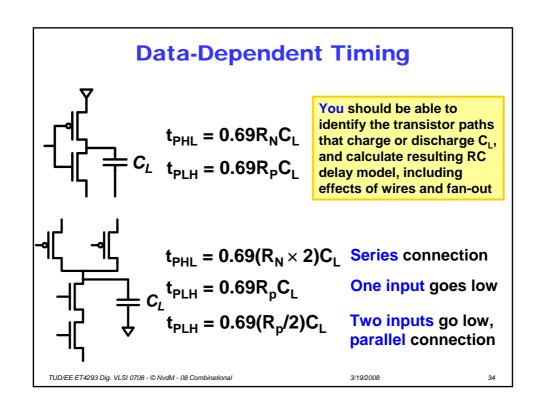

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

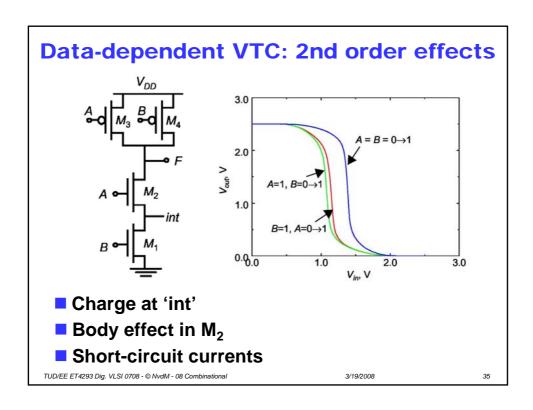
3/19/2008

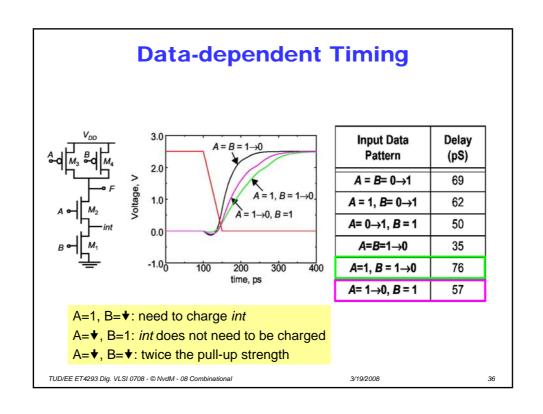
31

Exercise




Exercise:


- Perform gate sizing of (a) for nominal drive strength equal to that of min size inverter, assume PU/PD = 3
- Determine PUN of (b)
- Perform gate sizing of (b) for same drive strength (same PU/PD)
- Compare sum of gate areas in (a) and (b). Note: area ~ width


TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

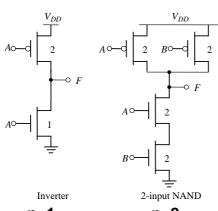
3/19/2008

Logical Effort Methodology

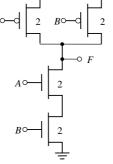
Inverter delay:

$$t_{p} = t_{p0} \left(1 + \frac{f}{\gamma} \right)$$

Gate delay:


$$t_{p} = t_{p0} \left(p + \frac{gf}{\gamma} \right) = t_{p0} \left(p + \frac{h}{\gamma} \right)$$

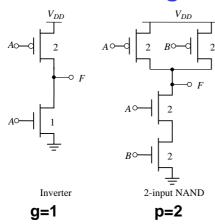
Logical Effort Methodology Definitions:


- ratio of intrinsic delay compared to inverter
- electrical effort ratio between C_{load} and C_{in}
- logical effort ratio of drive strength for same size g
- gate effort $-h = f \cdot g$

[Logical Effort - Designing Fast CMOS Circuits, Sutherland, Sproul, Harris]

Intrinsic Delay

p=1


p=2

- p ratio of intrinsic delay compared to inverter
- p is ratio of output capacitances if gate is sized for identical drive strength

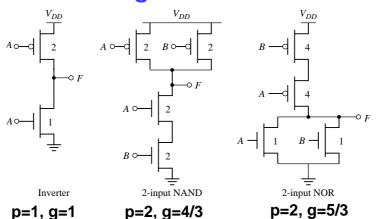
is (2+2+2)/(2+1) = 2

$$t_{p} = t_{p0} \left(p + \frac{gf}{\gamma} \right)$$

Logical Effort

- g logical effort ratio of drive strength for same size
- g same as ratio of input cap for same strength
- g_{nand} is (2+2)/(2+1) = 4/3

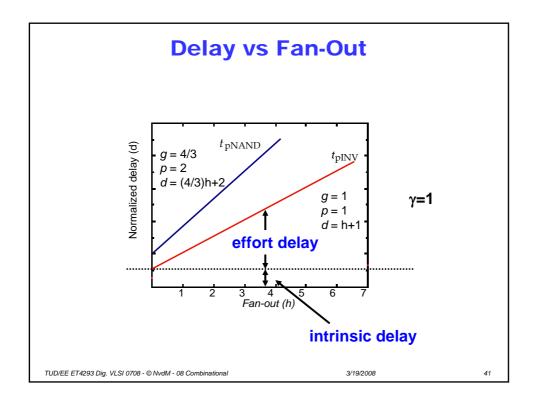
$$t_{p} = t_{p0} \left(p + \frac{gf}{\gamma} \right)$$


- Logical effort: a multi-input gate has more input cap compared to inverter for same drive strength
- Needs to be corrected for in delay calculations
- Can be done by inclusion in electrical effort: replace f by g.f

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

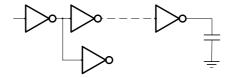
3/19/2008

39


Logical Effort

- p ratio of intrinsic delay compared to inverter
- g logical effort ratio of drive strength for same size
- p, g independent of sizing, only topology of circuit

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational


3/19/2008

Add Branching Effort

Branching effort:

$$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$$

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + g_i \cdot f_i)$$

Normalized w.r.t. unit delay

Stage effort: $h_i = g_i f_i$

Path electrical effort: $F = C_{out}/C_{in}$

Path logical effort: $G = g_1 g_2 ... g_N$

Branching effort: $B = b_1 b_2 ... b_N$

Path effort: H = GFB

Path delay $D = \sum d_i = \sum p_i + \sum h_i$

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

19/2008

43

Optimum Effort per Stage

When each stage bears the same effort:

$$h^N = H$$

$$h = \sqrt[N]{H}$$

Stage efforts: $g_1 f_1 = g_2 f_2 = \dots = g_N f_N = h$

Effective fanout of each stage: $f_i = h/g_i$

larger fanout for simpler stages

Minimum path delay

$$\hat{D} = \sum (g_i f_i + p_i) = NH^{1/N} + P$$

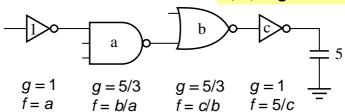
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinationa

3/19/2008

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

$$D = NH^{1/N} + Np_{inv}$$


$$\frac{\partial D}{\partial N} = -H^{1/N} \ln(H^{1/N}) + H^{1/N} + p_{inv} = 0$$

 $h = H^{1/\hat{N}}$ Substitute 'best stage effort'

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

Example: Optimize Path

a, b, c: gate sizes t.b.d.

Effective fanout, F = 5

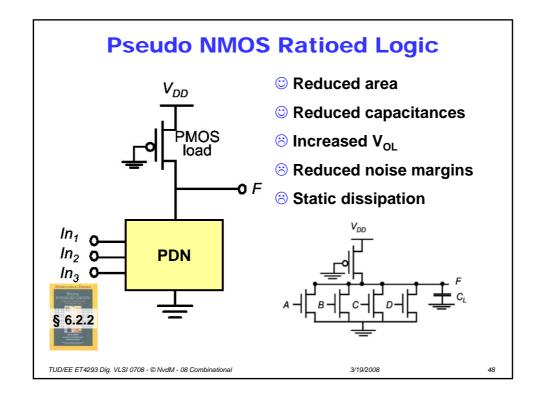
$$G = \Pi g_i = 25/9$$

$$H = GFB = 125/9 = 13.9$$

$$h = H^{1/4} = 1.93$$

$$a = 1.93$$

$$b = ha/g_2 = 2.23$$


$$b = ha/g_2 = 2.23$$

 $c = hb/g_3 = 5g_4/f = 2.59$

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

Ratioed logic Pass transistor logic

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

Ratioed Logic V_{OL} Computation

I_{Dn} (linear) = I_{Dp} (saturation)

Exercise: verify these assumptions/steps

$$k_n \left((V_{DD} - V_{Tn}) V_{OL} - \frac{V_{OL}^2}{2} \right) = k_p \left((-V_{DD} - V_{Tp}) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right)$$

Ignore quadratic terms (they are relatively small)

$$k_n(V_{DD} V_{Tn})V_{OL} \approx k_p(-V_{DD} V_{Tp})V_{DSAT}$$

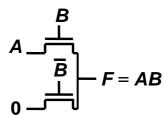
Ignore, because approximately equal

$$V_{OL} pprox rac{k_p}{k_n} |V_{DSAT}| pprox rac{\mu_p W_p}{\mu_n W_n} |V_{DSAT}|$$

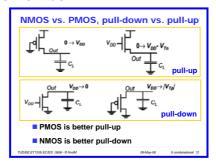
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

49


Pass-transistor and Pass-gate circuits

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinationa

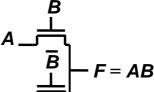

3/19/2008

Pass Transistor Logic

- Save area, capacitances
- Need complementary inputs (extra inverters)

But remember:

§ 6.2.3


TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

51

Pass Transistor Logic

- Save area, capacitances
- Need complementary inputs (might mean extra inverters)

- Reduced V_{OH}, noise margins 0
- $V_{OH} = V_{DD} \left(V_{Tno} + \gamma \left(\left(\sqrt{|2\phi_f| + V_{OH}} \right) \sqrt{|2\phi_f|} \right) \right)$
- Static dissipation in subsequent static inverter/buffer
- Disadvantages (and advantages) may be reduced by complementary pass gates (NMOS + PMOS parallel)

Exercise: Why is there static dissipation in next conventional gate?

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

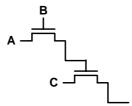
3/19/2008

Pass Gates

Remedy: use an N-MOS and a P-MOS in parallel

- Pass gates eliminate some of the disadvantages of simple pass-transistors
- But also some of the advantages
- Design remains a trade-off!

Pass-gate a.k.a. Transmission-gate

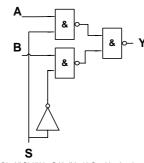

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

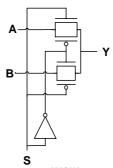
3/19/2008

53

Exercise

■ Discuss what happens when you connect the output of a single pass-transistor (not a pass-gate) to the input of another pass-transistor stage (i.e. the gate of another pass-transistor). Why should you never use such a circuit?




TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008

Pass Transistor Logic

- Most typical use: for multiplexing, or path selecting
- Assume in circuit below it is required to either connect A or B to Y, under control by S
- Y = AS + BS' (S' is easier notation for S-bar = S-inverse = S)
- Y = ((AS)' (BS)')' allows realization with 3 NAND-2 and 1 INV: 14 transistors
- Pass gate needs only 6 (or 8) transistors (see also Katz, section 4.2)

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinationa

Summary

- Conventional Static CMOS basic principles
- Complementary static CMOS
 - Complex Logic Gates
 - VTC, Delay and Sizing
- Ratioed logic
- Pass transistor logic

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - 08 Combinational

3/19/2008