
Interconnect

- Wires are not ideal interconnections
- They may have non-negligible capacitance, resistance, inductance
- These are called wire parasitics
- Can dominate performance of chip
- Must be accounted for during design
- Using approximate models
- Detailed post-layout verification also necessary

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

Outline

- Capacitance Area/perimeter model, coupling
- Resistance

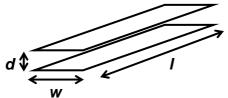
Sheet resistance

Interconnect delayDelay metrics, rc delay, Elmore delay

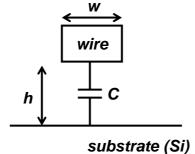
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

3 interconnect 5


Capacitance

■ Area/perimeter model, coupling


TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

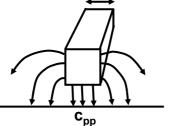
20-Feb-08

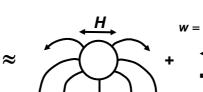
Wire Capacitance - Parallel Plate

$$C = \frac{\varepsilon_0 \varepsilon_r W I}{d}$$

$$\frac{C}{I} = \varepsilon_0 \varepsilon_r \, \frac{w}{h}$$

$$\epsilon_0 = 8.85 \text{ pF/m}$$


$$\varepsilon_{\rm r}$$
 = 3.9 (SiO₂)


TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

3 interconnect 7

Wire Capacitance - Fringing Fields

$$c_{wire} = c_{fringe} + c_{pp} = \frac{2\pi\varepsilon_{di}}{\log(t_{di}/H)} + \frac{w\varepsilon_{di}}{t_{di}}$$

- Works reasonably well in practice
- Not directly applicable for interconnects with varying widths

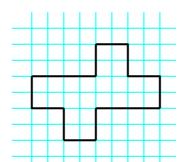
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

Wire Capacitance - Area/Perimeter Model

- Ca was calculated with modified wire width
- Formula inapplicable for irregular interconnects (nonconstant width)

3 interconnect 9


■ More practical approximation

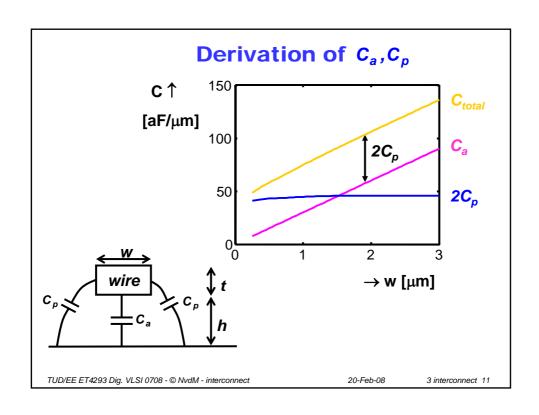
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

$C = A \times C_a + P \times C_p$	units	alternative
A = Area	m²	μm^2
C _a = Area capacitance	F/m²	aF/μm²
P = Perimeter	m	μ m
C_p = Perimeter capacitance	F/m	aF/μm
1 <i>μ</i> \$	$C = \times C$	$C_a + \prod \times C_p$

Area / Perimeter Capacitance

Model

 $C = \times C_a + \times C_p$

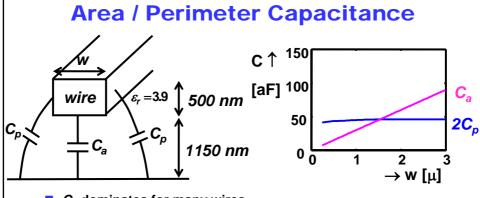

Question: How to derive C_a, C_p ?

How accurate is this model?

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

20-Feb-08



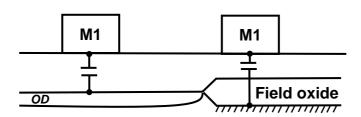
Derivation of C_a, C_p

- 2D (cross-section) numerical computation (or measurement)
- \mathbf{C}_{I} : total wire capacitance per unit length
- $\mathbf{C}_a = \varepsilon_0 \varepsilon_r / h$
- C_p depends on t, h → determined by technology, layer
- C_p would depend slightly on w (see previous graph), this dependence is often ignored in practice

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

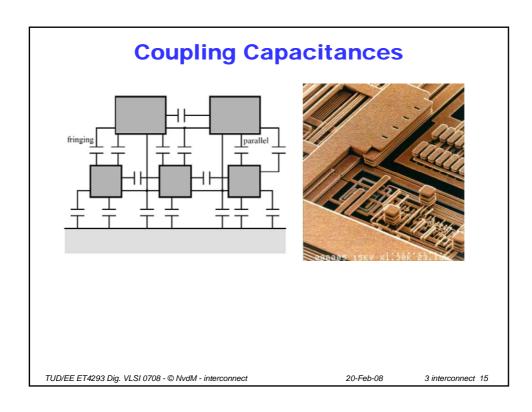
- C_p dominates for many wires
- C_p may not be neglected
- **A** constant value for C_p is usually a good approximation
- lacksquare C_p is sometimes called C_f (fringe capacitance)

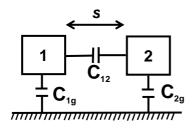

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

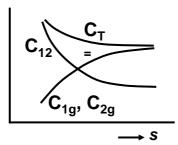
20-Feb-08

3 interconnect 13

Interconnect Capacitance Design data


- See Table 4.2 (or inside backside cover)
- Example: M1 over Field vs. M1 over Active (hypothetical)


M1 over Active	M1 over Field	Unit
$C_a = 41$	$C_a = 30$	aF $/\mu$ m 2
$C_p = 47$	$C_p = 40$	aF $/\mu$ m


TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

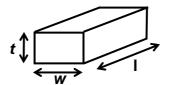
Coupling Capacitances (2)

- ${f C}_{\rm T} = {f C}_{1g} + {f C}_{12} = {f C}_{2g} + {f C}_{12}$ fairly constant
- Use that as first order model
- Interconnect capacitance design data (e.g. Table 4.3)

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

Resistance


■ Sheet resistance

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

3 interconnect 17

Wire Resistance

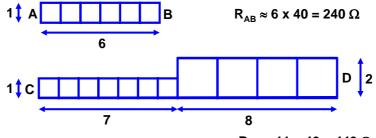
- Proportional to I
- Inversely proportional to w and t (cross-sectional area)
- Proportional to ρ: specific resistance, material property [Ωm]
- $R = \rho I/wt$
- Aluminum: $ρ = 2.7x10^{-8} Ωm$ Copper: $ρ = 1.7x10^{-8} Ωm$

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

Sheet Resistance

- $= R = \rho I/wt$
- t, ρ constant for layer, technology
- R = R I/w
- R : sheet resistance [Ω/]
 resistance of a square piece of interconnect
 other symbol: R_s
- Interconnect resistance design data e.g. Table 4.5 (or inside back-cover)


TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

3 interconnect 19

Interconnect Resistance

- Assume R_{\square} = 40 Ω
- **E**stimate the resistance between A and B in the wire below.

 $R_{CD} \approx 11 \times 40 = 440 \Omega$

Engineering is about making controlled approximations to something that is too complicated to compute exactly, while ensuring that the approximate answer still leads to a working (functional, safe, ...) system

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

Exercise

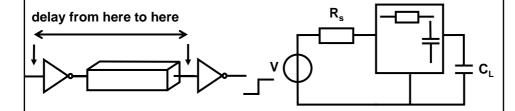
An interconnect line is made from a material that has a resistivity of $\rho=4~\mu\Omega$ -cm. The interconnect is 1200 Å thick, where 1 Angstrom (Å) is $10^{\text{-}10}~\text{m}$. The line has a width of 0.6 μm .

- a) Calculate the sheet resistance R_{\square} of the line.
- b) Find the line resistance for a line that is 125 μm long.

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

3 interconnect 21

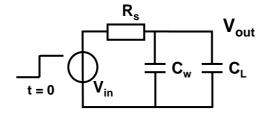

Interconnect delay

■ Delay metrics, rc delay, Elmore delay

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

Delay


- Model driver as linearized Thevenin source V, R_s, assume step input
- Model load as C_L
- Wire is an RC network (two-port)

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

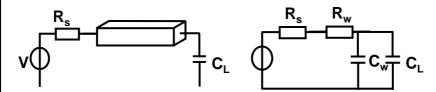
20-Feb-08

3 interconnect 23

Wire Capacitance

Assume wire behaves purely capacitive

$$(C_w + C_L)\frac{dV_{out}}{dt} + \frac{V_{out} - V_{in}}{R_s} = 0$$

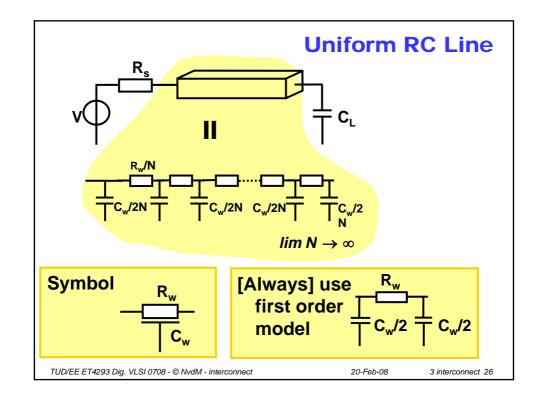

$$V_{out} = V_{in} - \tau \frac{dV_{out}}{dt}$$
 $\tau = R_s(C_w + C_L)$

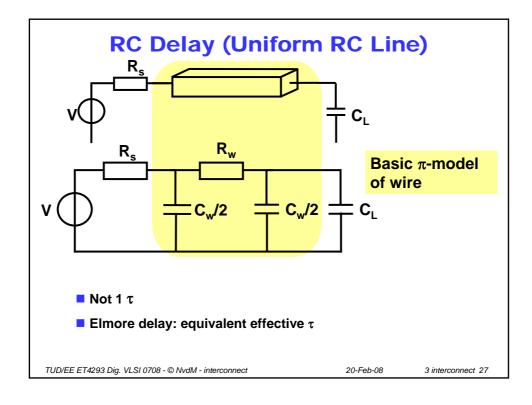
$$V_{out} = \left(1 - e^{-t/\tau}\right) V_{in}$$

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

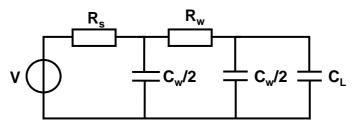
20-Feb-08

Wire Resistance



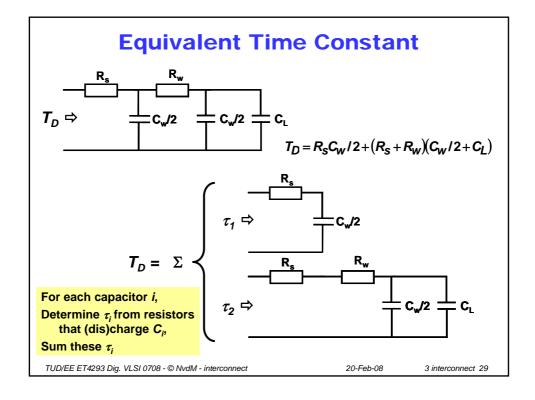

Now, assume wire capacitance and resistance

- Not a a good model
- R and C are distributed along the wire

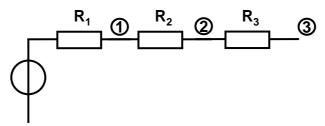

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08

- Multiple time-constants
- Need for one "equivalent" number
- Offered by *Elmore Delay T_D*

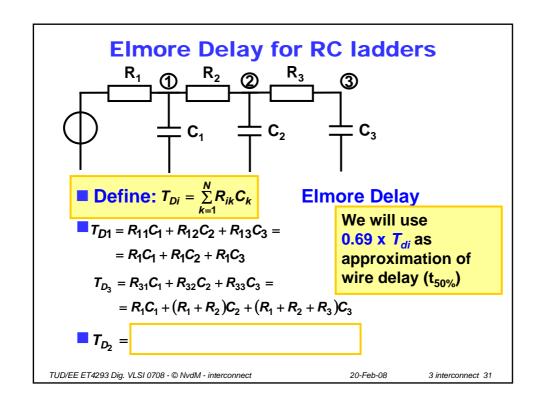

$$T_D = R_S C_W / 2 + (R_S + R_W)(C_W / 2 + C_L)$$

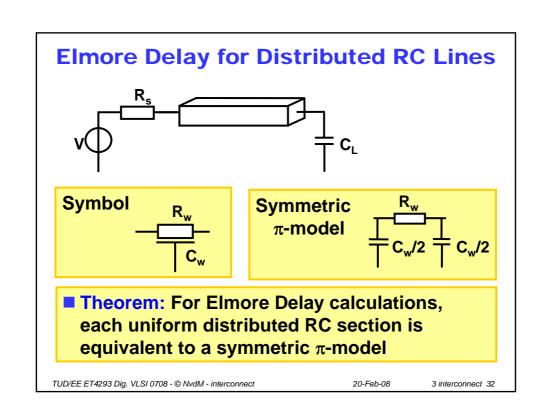
■ Effective "one number" model for delay

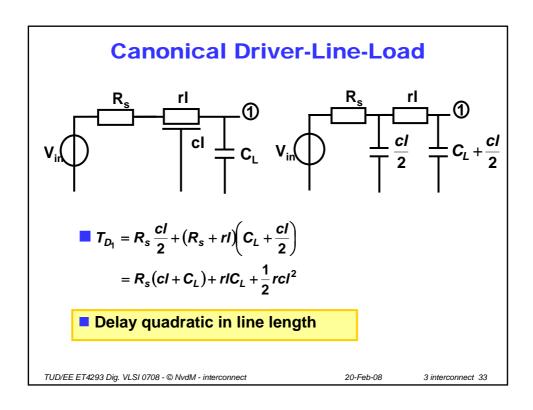

How to compute Elmore Delay?

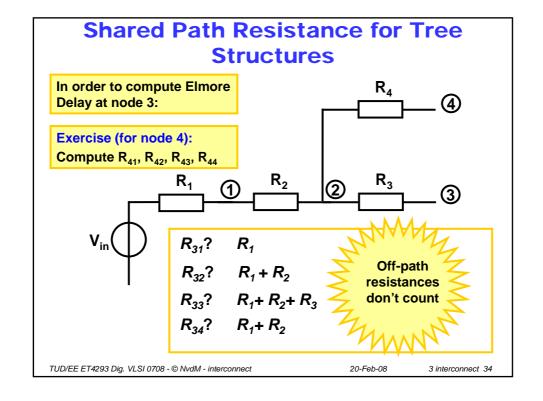
TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

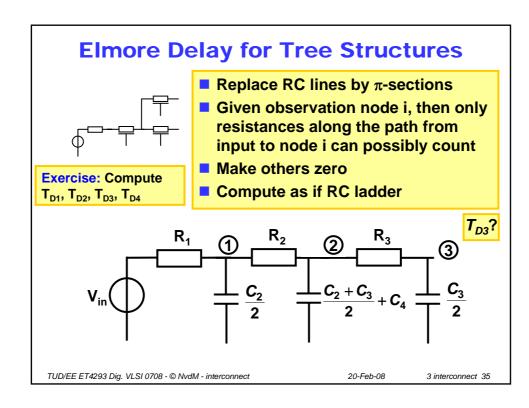
20-Feb-08


Shared Path Resistance




- Define: R_{ii} = Resistance from node i to input
- **Example:** $R_{11} = R_1$ $R_{22} = R_1 + R_2$ $R_{33} = R_1 + R_2 + R_3$
- Define: R_{ik} = Shared path resistance to input for node i and k
- $R_{12}=R_1$ $R_{13}=R_1$ $R_{23}=$


TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect


20-Feb-08

Summary

- CapacitanceArea/perimeter model, coupling
- ResistanceSheet resistance
- Interconnect delayDelay metrics, rc delay, Elmore delay

TUD/EE ET4293 Dig. VLSI 0708 - © NvdM - interconnect

20-Feb-08