MODULE 6

SEQUENTIAL ELEMENTS

Р	7.1	Introduction	326 – 327
<u> </u>			
Р	7.1.1	Timing Metrics for Sequential Circuits	327 – 328
Р	7.1.2	Classification of Memory Elements	328 – 330
	7.2	Static Latches and Registers	330
Р	7.2.1	The Bistability Principle	330 – 332
Р	7.2.2	Multiplexer-Based Latches	332 – 333
Р	7.2.3	Master-Slave Edge-Triggered Register	333 – 335
I		Timing Properties of Multiplexer-Based Master	335 – 339
0	7.2.4	Low-Voltage Static Latches	339 – 341
Р	7.2.5	Static SR Flip-Flops — Writing Data by Pure Force	341 – 344
	7.3	Dynamic Latches and Registers	344
	7.3.1	Dynamic Transmission-Gate Edge-Triggered Registers	344 – 346
0	7.3.2	C2MOS — A Clock-Skew Insensitive Approach	346 – 350
0	7.3.3	True Single-Phase Clocked Register (TSPCR)	350 – 354
0	7.4	Alternative Register Styles	354 – 358
Р	7.5	Pipelining: An Approach to Optimize Sequential Circuits	358 – 360
Р	7.5.1	Latch versus register based pipelines	360
0	7.5.2	NORA-CMOS A logic style for pipelined circuits	361 – 363
	7.6	Nonbistable Sequential Circuits	
P	7.6.1	The Schmitt Trigger	364 – 367
0	7.6.2	Monostable Sequential Circuits	367 – 368
I	7.6.3	Astable Circuits	368 – 370
0	7.7	Perspective: Choosing a Clocking Strategy	370 – 371
Р	7.8	Summary	371 – 372
	1		

§ 7.5 Will be discussed with module 08 timing design

Sequential Elements - Outline

- Background
 - Timing, terminology, classification
- Static Flipflops
 - Latches
 - Registers
- Dynamic Flipflops
 - I Latches
 - Registers
- Non-bistable elements
 - Schmitt Trigger

Brown Ch. 7

[Sorin Cotofana]

- Much of this material has already been covered in DS1 (v Genderen), Brown Ch. 7
- Here we will add transistorlevel implementation

FSM with Positive Edge Triggered Registers

- **Flip-flops provide memory/state**
- VLSI uses predominantly D-type flip-flops

Memory elements

- Store a temporary value, remember a state
- Typically controlled by clock.
- May have load signal, etc.
- In CMOS, memory is created by:
 - capacitance (dynamic);
 - **feedback** (static).

Also see http://en.wikipedia.org/wiki/Flip-flop_(electronics)

Variations in memory elements

- Form of required clock signal.
- How behavior of data input around clock affects the stored value.
- When the stored value is presented to the output.
- Whether there is ever a combinational path from input to output.

Timing Metrics Reminder

t_{c-q}: delay from clock (edge) to Q

t_{su}: setup time

t_{hold}: hold time

t_{plogic}: worst case propagation delay of logic

t_{cd}: best case propagation delay

(contamination delay)

T: clock period

$$\begin{aligned} \mathbf{T} &\geq \mathbf{t_{c-q}} + \mathbf{t_{plogic}} + \mathbf{t_{su}} \\ \mathbf{t_{cdregister}} + \mathbf{t_{cdlogic}} &\geq \mathbf{t_{hold}} \end{aligned}$$

Nomenclature

Beware for confusion

	Brown (CS1)	Rabaey		
Latch	Level sensitive storage element	Level sensitive storage element		
Register	Group of storage elements	Edge triggered storage element		
Flip Flop	Edge triggered storage element	Bistable element using feedback		

$$CLK = CK = \phi$$

Latches vs. Registers

Latch

Level-sensitive

Transparent when clock is active

Clock active high: positive latch

Clock active low: negative latch

Faster, smaller

Register

Edge-triggered

Input and output isolated

Sampling on 0 → 1 clock: positive edge triggered

Sampling on 1 → 0 clock: negative edge triggered

Safer

Static vs. Dynamic Memory Elements.

Static

Operate through positive feedback

Preserve state as long as power is on

Can work when clock is off

More robust

Dynamic

Store charge on (parasitic) capacitor

Charge leaks away (in milliseconds)

Clock must be kept running (for periodic refresh)

Faster, smaller

Rabaey: bistable elements are called Flip Flops

Static Latches and Registers

- Latches → can be gated or not
- Registers

Positive Feedback: Bi-Stability

SR-Latch

S	R	Q	Q	
0	0	Q	Q 0	
1	0	1	0	
0 1	1 1	0	1 0 ←	forbidden

S	R	Q	Q			
1 0	1	Q	Q 0			
0	1	1	0			
1	0	0	1 1 ←	 fork	oido	den

Clocked SR-Latch

- Katz: gated latch
- Positive latch (active on CK high)
- Naïve implementation
- 16 transistors
- D latch requires 9xN, 9xP
- Larger area, cost, power

- Construction of D-latch
- D-latch, D-register most common in VLSI

CMOS Clocked SR-Latch

 $\phi = CK$

- Save 6 PMOS transistors and 2 NMOS
- D-latch requires 7 x N, 3 x P (instead of 9xN, 9xP)
- Q: Is this a ratioed design or not?

 Does it consume static power?

Multiplexer-Based Latches

Recirculating latch

Mux-based latches much more common in modern dig. IC's

Recirculating latch

- Quasi-static, static on one phase
- Feedback restores value
- Requires 4 x N, 4 x P, minimum size(compare 7 x N, 3 x P, non-minimum size)
- ϕ_1 and ϕ_2 inverse but should be non-overlapping
- Can suffer from charge sharing (when φ not non-overlapping)
 C_{in} and C_{load} form communicating vessels when Output connected directly to input

Insensitive for Charge Sharing

- Non ratioed
- High load to CLK

Uni-directionality of this inverter prevents coupling between Q and D

Recirculating NMOS Latch.

- Degraded 1 at X
- Lower noise margin, higher delay, power

Latch Designs can Suffer from Race Problems

Signal can race around during $\phi = 1$

Registers

- Not transparent—use multiple storage elements to isolate output from input.
- Master-slave, edge triggered principle

Master-slave operation

$$\phi = 0$$
:

- master latch is disabled;
- slave latch is enabled,
- but master latch output is stable,
- so output does not change.

$$\phi = 1$$
:

- master latch is enabled,
- loading value from input;
- slave latch is disabled,
- maintaining old output value.

Transistor Level Master Slave Positive Edge Triggered Register

- Robust Design
- Can eliminate I₁ and I₄, however, they make design more robust (avoid charge sharing, robust input)
- High Clock Load (8 x)

Set-up Time Simulation

Slightly smaller delay between D and CLK

Ratioed Reduced Clock Load Register.

- I₂ and I₄ are small, even long
- Lower clock load
- Increased design complexity
- Reduced robustness (reverse conduction)

Non-bistable Elements

■ Schmitt Trigger

Schmitt Trigger

V_{out}

- VTC with hysteresis
- Restores signal slopes

Noise Suppression using Schmitt Trigger

CMOS Schmitt Trigger

Schmitt Trigger Simulated VTC

CMOS Schmitt Trigger (2).

Summary

- Background
 - Timing, terminology, classification
- Static Flipflops
 - Latches
 - Registers
- Dynamic Flipflops

 - **I** Registers
- Non-bistable elements
 - Schmitt Trigger