MODULE 5

COMBINATIONAL LOGIC

Course Material for Combinational

Extra: Slides about how to implement a static combinational gate with NMOS/PMOS transistors, given the Boolean function

P	6.1	Introduction	236
P	6.2	Static CMOS Design	236-237
P	6.2.1	Complementary CMOS	237-242
I		Propagation Delay of Complementary CMOS gates	242-249
1		Design Techniques for large fan-in	249-251
0		Optimizing performance in combinational networks	251-257
0		Power consumption in CMOS logic gates	257-263
P	6.2.2	Ratioed Logic	263-267
I		How to build even better loads	267-268
P	6.2.3	Pass-transistor basics	269-270
I		Example 6.10	271-272
0		Diversen	272-277
P		Solution 3: Transmission gate logic	277-280
I		Rest of § 6.2.3	280-284
1	6.3	Dynamic CMOS Design	
1	6.3.1	Dynamic Logic: Basic Principles	284-286
1	6.3 .2	Speed and Power Dissipation of Dynamic Logic	287-290
1	6.3.3	Signal Integrity Issues in Dynamic Design	290-295
0	6.3.4	Cascading Dynamic Gates	295-303
0	6.4	Perspectives	303-306
P	6.5	Summary	306-307

Combinational Logic - Outline

■ Conventional Static CMOS basic principles
■ Complementary static CMOS
■ Complex Logic Gates
■ VTC, Delay and Sizing

- Ratioed logic

■ Pass transistor logic
■ Dynamic CMOS gates \rightarrow only illustration

Complementary Static CMOS Basic Principles

Combinational vs. Sequential Logic

(a) Combinational

§ $6.2 \quad$ Output $=f(\mathrm{In})$
(b) Sequential

Output $=f(\mathrm{In}$, History $)$

Reminder

DeMorgan Transformations

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \cdot \bar{B} \\
& \overline{A \cdot B}=\bar{A}+\bar{B}
\end{aligned}
$$

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

$$
Y=X \text { if } A \text { or } B
$$

PMOS Transistors in Series/Parallel Connection

PMOS switch closes when switch control input is low

$$
Y=X \text { if ... }
$$

$$
Y=X \text { if } \bar{A} \text { and } \bar{B}
$$

$$
Y=X \text { if } \bar{A} \text { or } \bar{B}
$$

2-Input Nand

2-Input Nand
 $Y=\overline{A \operatorname{AND~B}}$

2-input Nand/Nor

NMOS vs. PMOS, pull-down vs. pull-up

$$
v_{D D}+\underbrace{\square} \text { Out }=v_{D D}-v_{T n}
$$

\square PMOS is better pull-up
■ NMOS is better pull-down

Bad Idea

Exercise: Determine logic function

Determine $\mathrm{V}_{\text {out }}$
for $V_{\text {in }}=V_{D D}$ and $V_{\text {in }}=V_{\text {Ss }}$
Why is this a bad circuit?

CMOS Gate is Inverting.

Assume full-swing inputs (high $=\mathrm{V}_{\mathrm{DD}}$, low $=\mathrm{V}_{\mathrm{SS}}$)
\square Highest output voltage of NMOS is

$$
V_{G S}-V_{T n}=V_{D D}-V_{T n}
$$

- An 1 on NMOS gate can produce a strong 0 at the drain, but not a strong 1
\square Lowest output voltage of PMOS is

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{Tp}}=\left|\mathrm{V}_{\mathrm{Tp}}\right| \\
& \text { (with } \mathrm{V}_{\mathrm{GS}}, \mathrm{~V}_{\mathrm{Tp}}<0 \text { for PMOS) }
\end{aligned}
$$

■ An 0 on PMOS gate can produce a strong 1 at the drain, but not a strong 0

- Need NMOS for pull-down, PMOS for pull-up

A 1 at input can pull-down, 0 at input can pull-up A 1 can produce a 0 , a can produce a 1

Inverting behavior

For a non-inverting Complementary CMOS Gate, you can only use 2 inverting gates

Complementary static CMOS
 ■ Complex Logic Gates

■ VTC, Delay and Sizing

Complementary Static CMOS

- Conduction of PDN and PUN must be mutually exclusive (Why?)
- Pull-up network (PUN) and pull-down network (PDN) are dual

Mutual Exclusive PDN and PUN

$\left.\begin{array}{|ccc|cc|c|}\hline & & & P & P & \\ C & B & A & \mathrm{~N} & \mathrm{U} & \\ \hline 0 & 0 & 0 & ? & 1 & 1 \\ 0 & 0 & 1 & ? & 1 & 1 \\ 0 & 1 & 0 & ? & 1 & 1 \\ 0 & 1 & 1 & 0 & ? & 0 \\ 1 & 0 & 0 & 0 & ? & 0 \\ 1 & 0 & 1 & 0 & ? & 0 \\ 1 & 1 & 0 & 0 & ? & 0 \\ 1 & 1 & 1 & 0 & ? & 0 \\ \hline\end{array}\right\}$

PDN Off
PUN On

PUN Off
PDN On

For all Complementary Static CMOS Gates, either the PUN or the PDN is conducting, but never both.

Complementary Static CMOS (2)

■ Conduction of PUN and PDN must be mutually exclusive
■ PUN is dual (complement) network of PDN series \Leftrightarrow parallel nmos \Leftrightarrow pmos

- Complementary gate is inverting
- No static power dissipation

■ Need 2N transistors for N-input gate

Implementation of Combinational Logic

\square How van we construct an arbitrary combinational logic network in general, using NMOS and PMOS transistors (using Complementary static CMOS)?

■ Example: $\quad \mathrm{Y}=(\mathrm{A}+\mathrm{BC}) \mathrm{D}$
■ Remember: only inverting gates available

Implementation of Combinational Logic

- Example: $\quad Y=(A+B C) D$
- Remember: only inverting gates available

■ Logic depth: number of gates in longest path \Rightarrow DELAY

\# transistors \square
logic depth \square
\square Q: Can this be improved?

Improved Gate Level Implementation

\square Using DeMorgan $A+B C=\overline{\bar{A} \cdot \overline{B C}}$

■ Q: Can this be further improved?

Complex CMOS Logic Gates

■ Restriction to basic NAND, NOR etc. not necessary
■ Easy to synthesize complex gates

How to Synthesize Complex Gates

$Y=\overline{(A+B C) D}$

■ Using tree representation of Boolean function

■ Operator with branches for operands
■ As a series-parallel network

Complex Gate Synthesis Example

Recipe

- Write $\bar{Y}=f($ inputs)
- Decompose f in tree form
- Realize tree branches according to table at bottom-left
- Use inverted inputs if necessary

And-Or-Invert Gate

And-Or-Invert Example

■ From a Truth-Table: take 0-outputs

A	B	C	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	$0 \rightarrow \overline{A B C}$
1	0	0	1
1	0	1	$0 \longrightarrow A \overline{B C}$
1	1	0	1
1	1	1	1

$\bar{Y}=\bar{A} B C+A \bar{B} C$

TUD/E ET1205 D2 0910-(© NviM

$\overline{\mathrm{A}}, \overline{\mathrm{B}}$ to be created with extra inverters (or by restructuring previous circuits)

And-Or-Invert Improvement

$Y=\overline{\bar{A} B C+A \bar{B} C}$
12 transistors

$Y=\overline{(\bar{A} B+A \bar{B}) C}$
10 transistors

2-level logic minimization: see Brown (CS1), Ch. 4

CMOS Complex Gate Sizing

2 trans. in
series

- Function of gate independent of transistor sizes: ratioless
■ But current-drive capability depends on transistor sizes
- Worst-case currentdrive depends on number of transistors in series

CMOS Complex Gate Sizing

Assume all transistor lengths are equal
Find (W/L) isuch that PDN has strength of W/L=2
$(\mathrm{W} / \mathrm{L})_{\mathrm{B}}=(\mathrm{W} / \mathrm{L})_{\mathrm{C}}=(\mathrm{W} / \mathrm{L})_{\mathrm{D}}=6$ $(W / L)_{A}=4$

1. For all possible single pull-down paths:
a. Let $\mathrm{L}_{\text {sum }}$ be the sum of lengths of all transistors in path,
b. Compute W to give the desired drive strength to a transistor of this length $L_{\text {sum }}$
2. For all transistors:
a. Set W to be the maximum found among all the paths of which the transistor is part
3. Repeat this procedure for PUN, using W_{p} for PUN transistor of inverter.

Gate Sizing

\square W/L ratios
\square what are the WIL of 2-input NAND for same drive strength?

0 -th order calculation

Exercise

Exercise:

- Perform gate sizing of (a) for nominal drive strength equal to that of min size inverter, assume PU/PD $=3$
- Determine PUN of (b)
- Perform gate sizing of (b) for same drive strength (same PU/PD)
- Compare sum of gate areas in (a) and (b). Note: area ~ width

Avoid Large Fan-In

C of PUN linear in \mathbf{N}
 R of PDN linear in \mathbf{N}

Delay \propto RC quadratic in N

Empirical

Delay $=\mathrm{a}_{1} \mathrm{FI}+\mathrm{a}_{2} \mathrm{Fl}^{2}+\mathrm{a}_{3} \mathrm{FO}$

- Sizing can make R independent of N , at the (huge) cost of size
■ Consider case of NOR your self

Data-Dependent Timing

You should be able to identify the transistor paths that charge or discharge C_{L}, and calculate resulting RC delay model, including effects of wires and fan-out

Data-dependent VTC: 2nd order effects

■ Charge at 'int'

- Body effect in M_{2}

■ Short-circuit currents

$\}$| $\square \begin{array}{l}\text { Don't need to be able to work } \\ \text { with these effects }\end{array}$ |
| :--- |
| $\begin{array}{l}\text { But remember: there is more } \\ \text { going on than shown by our } \\ \text { simple, } 1^{\text {st }} \text { order model }\end{array}$ |

Data-dependent Timing (2).

Input Data Pattern	Delay (pS)
$A=B=\mathbf{0} \rightarrow \mathbf{1}$	69
$A=\mathbf{1}, \boldsymbol{B}=\mathbf{0} \rightarrow \mathbf{1}$	62
$A=\mathbf{0 \rightarrow 1 , B = 1}$	50
$A=B=1 \rightarrow \mathbf{0}$	35
$A=\mathbf{1}, \boldsymbol{B}=\mathbf{1} \rightarrow \mathbf{0}$	76
$\mathbf{A}=\mathbf{1} \rightarrow \mathbf{0}, \boldsymbol{B}=\mathbf{1}$	$\mathbf{5 7}$

Ratioed logic

Pass transistor logic

Pseudo NMOS Ratioed Logic

© Reduced area
() Reduced capacitances
© Increased $\mathrm{V}_{\text {oL }}$
© Reduced noise margins
© Static dissipation

Ratioed Logic V_{OL} Computation.

$I_{D n}$ (linear) $=I_{D p}$ (saturation)
Exercise: verify these assumptions/steps
$k_{n}\left(\left(V_{D D}-V_{T n}\right) V_{O L}-\frac{K_{2}^{2} L}{2}\right)=k_{p}\left(\left(-V_{D D}-V_{T p}\right) V_{D S A T}-\frac{V_{D}^{2} / A T}{2 \}\right)$
Ignore quadratic terms (they are relatively small)
$k_{n}\left(\overline{V_{D D}}<\nabla_{T n}\right) V_{O L} \approx k_{p}\left(-\nabla_{D D}-\forall_{T p}\right) N_{D S A T}$
Ignore, because approximately equal

$$
\left.V_{O L} \approx \frac{k_{p}}{k_{n}}\left|V_{D S A T}\right| \approx \frac{\mu_{p} W_{p}}{\mu_{n} W_{n}} V_{D S A T} \right\rvert\,
$$

Pass-transistor and Pass-gate circuits

Pass Transistor Logic

Save area, capacitances
\square Need complementary inputs (extra inverters)

But remember:

	NMOS vs. PMOS, pull-down vs. pull-up
$\S 6.2 .3$	■ PMOS is better pull-up \square NMOS is better pull-down

Pass Transistor Logic

■ Save area, capacitances
■ Need complementary inputs (might mean extra inverters)
■ Reduced V_{OH}, noise margins

B

$■ \boldsymbol{V}_{\mathbf{O H}}=\boldsymbol{V}_{\mathrm{DD}}-\left(\boldsymbol{V}_{\text {Tno }}+\gamma\left(\left(\sqrt{\mathbf{2} \phi_{f} \mid+\boldsymbol{V}_{\mathbf{O H}}}\right)-\sqrt{\mathbf{2} \phi_{f}}\right)\right)$
■ Static dissipation in subsequent static inverter/buffer

■ Disadvantages (and advantages) may be reduced by complementary pass gates (NMOS + PMOS parallel)

Exercise: Why is there static dissipation in next conventional gate?

Pass Gates

■ Remedy: use an N-MOS and a P-MOS in parallel

■ Pass gates eliminate some of the disadvantages of simple pass-transistors
■ But also some of the advantages
■ Design remains a trade-off!
Pass-gate a.k.a. Transmission-gate

Exercise

■ Discuss what happens when you connect the output of a single pass-transistor (not a pass-gate) to the input of another pass-transistor stage (i.e. the gate of another pass-transistor). Why should you never use such a circuit?

Pass Transistor Logic.

■ Most typical use: for multiplexing, or path selecting
■ Assume in circuit below it is required to either connect A or B to Y, under control by S
■ $\mathrm{Y}=\mathrm{AS}+\mathrm{BS}$ ' (S' is easier notation for S-bar = S-inverse = $\overline{\mathbf{S}}$)

- $Y=((A S)$ ' (BS)')' allows realization with 3 NAND-2 and 1 INV: 14 transistors
■ Pass gate needs only 6 (or 8, when including restoring inverter at output) transistors

S

Summary

■ Conventional Static CMOS basic principles
■ Complementary static CMOS
■ Complex Logic Gates
■ VTC, Delay and Sizing

- Ratioed logic
\square Pass transistor logic

