MODULE 5

COMBINATIONAL LOGIC

Course Material for Combinational

Extra: Slides about how to implement a static combinational gate with NMOS/PMOS transistors, given the Boolean function

Р	6.1	Introduction	236		
Р	6.2	Static CMOS Design	236 – 237		
Р	6.2.1	Complementary CMOS	237 – 242		
I		Propagation Delay of Complementary CMOS gates	242 – 249		
I		Design Techniques for large fan-in	249 – 251		
0	Optimizing performance in combinational networks				
0		257 – 263			
P 6.2.2 Ratioed Logic			263 – 267		
I		267 – 268			
Р	6.2.3	Pass-transistor basics	269 – 270		
I		Example 6.10	271 – 272		
0		Diversen	272 – 277		
Р		Solution 3: Transmission gate logic			
I		Rest of § 6.2.3			
I	6.3	Dynamic CMOS Design			
I	6.3.1	Dynamic Logic: Basic Principles	284 – 286		
I	6.3.2	Speed and Power Dissipation of Dynamic Logic	287 – 290		
I	6.3.3	Signal Integrity Issues in Dynamic Design	290 – 295		
0	6.3.4	Cascading Dynamic Gates	295 – 303		
0	6.4	Perspectives	303 – 306		
Р	6.5	Summary	306 – 307		

Combinational Logic - Outline

- Conventional Static CMOS basic principles
- Complementary static CMOS
 - Complex Logic Gates
 - VTC, Delay and Sizing
- Ratioed logic
- Pass transistor logic
- Dynamic CMOS gates → only illustration

Complementary Static CMOS Basic Principles

Combinational vs. Sequential Logic

(a) Combinational

Output = $f(\ln)$

(b) Sequential

Output = f (In, History)

Reminder

DeMorgan Transformations

$$\overline{A+B}=\overline{A}.\overline{B}$$

$$\overline{A.B} = \overline{A} + \overline{B}$$

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input

is high

PMOS Transistors in Series/Parallel Connection

PMOS switch closes when switch control input is low

$$Y = X$$
 if ...

2-Input Nand

2-Input Nand

$$Y = \overline{A \ AND \ B}$$

2-input Nand/Nor

NMOS vs. PMOS, pull-down vs. pull-up

- PMOS is better pull-up
- NMOS is better pull-down

Bad Idea

Exercise: Determine logic function

Determine V_{out} for $V_{in} = V_{DD}$ and $V_{in} = V_{SS}$

Why is this a bad circuit?

CMOS Gate is Inverting.

Assume full-swing inputs (high = V_{DD} , low = V_{SS})

Highest output voltage of NMOS is

$$V_{GS} - V_{Tn} = V_{DD} - V_{Tn}$$

- An 1 on NMOS gate can produce a strong 0 at the drain, but not a strong 1
- Lowest output voltage of PMOS is

$$V_{DD} + V_{GS} - V_{Tp} = |V_{Tp}|$$

(with V_{GS} , $V_{Tp} < 0$ for PMOS)

- An 0 on PMOS gate can produce a strong 1 at the drain, but not a strong 0
- Need NMOS for pull-down, PMOS for pull-up

A 1 at input can pull-down, 0 at input can pull-up

A 1 can produce a 0, a 0 can produce a 1

Inverting behavior

For a non-inverting Complementary CMOS Gate, you can only use 2 inverting gates

Complementary static CMOS

- **Complex Logic Gates**
- VTC, Delay and Sizing

Complementary Static CMOS

- Conduction of PDN and PUN must be mutually exclusive (Why?)
- Pull-up network (PUN) and pull-down network (PDN) are dual

Mutual Exclusive PDN and PUN

For all Complementary Static CMOS Gates, either the PUN or the PDN is conducting, but never both.

Complementary Static CMOS (2)

- Conduction of PUN and PDN must be mutually exclusive
- PUN is dual (complement) network of PDN series ⇔ parallel nmos ⇔ pmos
- Complementary gate is inverting
- No static power dissipation
- Need 2N transistors for N-input gate

Implementation of Combinational Logic

How van we construct an arbitrary combinational logic network in general, using NMOS and PMOS transistors (using Complementary static CMOS)?

Example:
$$Y = (A + BC)D$$

Remember: only inverting gates available

Implementation of Combinational Logic

- Example: Y = (A + BC)D
- Remember: only inverting gates available
- Logic depth: number of gates in longest path ⇒ DELAY

transistors logic depth

Q: Can this be improved?

Improved Gate Level Implementation

Using DeMorgan $A + BC = \overline{A.BC}$

Q: Can this be further improved?

Complex CMOS Logic Gates

- Restriction to basic NAND, NOR etc. not necessary
- Easy to synthesize complex gates

How to Synthesize Complex Gates

$$Y = \overline{(A + BC)D}$$

- Operator with branches for operands
- As a series-parallel network

	PDN	PUN
AND	Series	Parallel
OR	Parallel	Series

Complex Gate Synthesis Example

And-Or-Invert Gate

And-Or-Invert Example

From a Truth-Table: take 0-outputs

A	В	С	Υ	A - al B - al C - al
0	0	0	1	^ -9 [⁸ - 9 [⁶ - 9 [
0	0	1	1	
0	1	0	1	
0	1	1	$0 \longrightarrow \overline{A}BC$	
1	0	0	1	<u> </u>
1	0	1	$0 \longrightarrow A\overline{B}C$	Bd ■
1	1	0	1	⊼⊣Ґ ∧⊣Ґ
1	1	1	1	"\ <u>"</u>

$$\overline{Y} = \overline{A}BC + A\overline{B}C$$

A, B to be created with extra inverters (or by restructuring previous circuits)

And-Or-Invert Improvement

$$Y = \overline{ABC} + A\overline{BC}$$
12 transistors

$$Y = (\overline{AB} + A\overline{B})C$$

10 transistors

2-level logic minimization: see Brown (CS1), Ch. 4

CMOS Complex Gate Sizing

- Function of gate independent of transistor sizes: ratioless
- But current-drive capability depends on transistor sizes
- Worst-case currentdrive depends on number of transistors in series

CMOS Complex Gate Sizing

Assume all transistor lengths are equal Find (W/L)_i such that PDN has strength of W/L=2

$$(W/L)_B = (W/L)_C = (W/L)_D = 6$$

 $(W/L)_A = 4$

- 1. For all possible single pull-down paths:
 - a. Let L_{sum} be the sum of lengths of all transistors in path,
 - b. Compute W to give the desired drive strength to a transistor of this length L_{sum}
- 2. For all transistors:
 - a. Set W to be the maximum found among all the paths of which the transistor is part
- Repeat this procedure for PUN, using W_p for PUN transistor of inverter.

Gate Sizing

- W/L ratios
- what are the W/L of 2-input NAND for same drive strength?

0-th order calculation

Exercise

Exercise:

- Perform gate sizing of (a) for nominal drive strength equal to that of min size inverter, assume PU/PD = 3
- Determine PUN of (b)
- Perform gate sizing of (b) for same drive strength (same PU/PD)
- Compare sum of gate areas in (a) and (b). Note: area ~ width

Avoid Large Fan-In

C of PUN linear in N

R of PDN linear in N

Delay ∞ **RC** quadratic in N

Empirical

Delay = $a_1FI + a_2FI^2 + a_3FO$

- Sizing can make R independent of N, at the (huge) cost of size
- Consider case of NOR your self

Data-Dependent Timing

You should be able to identify the transistor paths that charge or discharge C₁, and calculate resulting RC delay model, including effects of wires and fan-out

One input goes low

Two inputs go low, parallel connection

Data-dependent VTC: 2nd order effects

with these effects

- Charge at 'int'
- Body effect in M₂
- **Short-circuit currents**

But remember: there is more

going on than shown by our

simple, 1st order model

Data-dependent Timing (2).

Input Data Pattern	Delay (pS)
<i>A</i> = <i>B</i> = 0→1	69
A = 1, B= 0→1	62
A= 0→1, B = 1	50
<i>A=B</i> =1→0	35
<i>A</i> =1, <i>B</i> = 1→0	76
<i>A</i> = 1→0, <i>B</i> = 1	57

Ratioed logic Pass transistor logic

Pseudo NMOS Ratioed Logic

- © Reduced area
- **©** Reduced capacitances
- ⊗ Increased V_{OL}
- **®** Reduced noise margins
- **Static dissipation**

Ratioed Logic V_{OL} Computation.

 I_{Dn} (linear) = I_{Dp} (saturation) assumptions/steps

Exercise: verify these assumptions/steps

$$k_n \left((V_{DD} - V_{Tn}) V_{OL} - \frac{V_{OL}^2}{2} \right) = k_p \left((-V_{DD} - V_{Tp}) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right)$$

Ignore quadratic terms (they are relatively small)

$$k_n(V_{DD} V_{Tn})V_{OL} \approx k_p(-V_{DD} V_{Tp})V_{DSAT}$$

Ignore, because approximately equal

$$V_{OL} \approx \frac{k_p}{k_n} |V_{DSAT}| \approx \frac{\mu_p W_p}{\mu_n W_n} |V_{DSAT}|$$

Pass-transistor and Pass-gate circuits

Pass Transistor Logic

- Save area, capacitances
- Need complementary inputs (extra inverters)

But remember:

Pass Transistor Logic

- **■** Save area, capacitances
- Need complementary inputs (might mean extra inverters)

■ Reduced V_{OH}, noise margins 0 —

$$V_{OH} = V_{DD} - \left(V_{Tno} + \gamma \left(\left(\sqrt{|2\phi_f| + V_{OH}} \right) - \sqrt{|2\phi_f|} \right) \right)$$

- Static dissipation in subsequent static inverter/buffer
- Disadvantages (and advantages) may be reduced by complementary pass gates (NMOS + PMOS parallel)

Exercise: Why is there static dissipation in

next conventional gate?

Pass Gates

Remedy: use an N-MOS and a P-MOS in parallel

- Pass gates eliminate some of the disadvantages of simple pass-transistors
- But also some of the advantages
- Design remains a trade-off!

Pass-gate a.k.a. Transmission-gate

Exercise

■ Discuss what happens when you connect the output of a single pass-transistor (not a pass-gate) to the input of another pass-transistor stage (i.e. the gate of another pass-transistor). Why should you never use such a circuit?

Pass Transistor Logic.

- Most typical use: for multiplexing, or path selecting
- Assume in circuit below it is required to either connect A or B to Y, under control by S
- Y = AS + BS' (S' is easier notation for S-bar = S-inverse = \overline{S})
- Y = ((AS)' (BS)')' allows realization with 3 NAND-2 and 1 INV: 14 transistors
- Pass gate needs only 6 (or 8, when including restoring inverter at output) transistors

Summary

- Conventional Static CMOS basic principles
- Complementary static CMOS
 - Complex Logic Gates
 - VTC, Delay and Sizing
- Ratioed logic
- Pass transistor logic