

Course Material for Interconnect Chapter 4, 2nd ed. P = primair, I = Illustratie, O = overslaan

Ρ	4.1	Introduction	136
Ρ	4.2	A First Glance	136 –138
Ρ	4.3	Interconnect Parameters	138 – e.v.
0		So far we have (onder example 4.2)	147 – 148
0	4.3.3	Inductance	148 – 150
Ρ	4.4	Electrical Wire Models	150 – 156
I	4.4.4	Distributed rc line – hiervoor is vervangende	156 – 159
		stof	(1)
0	4.4.5	The transmission line	159 – e.v.
0	4.5	Spice wire models	170 – 171
	4.5.3	Perspective: a look into the future	171 – 174

Replacement voor Distributed RC line: Elmore Delay

Interconnect

- Wires are not ideal interconnections
- They may have non-negligible capacitance, resistance, inductance
- These are called wire parasitics
- Can dominate performance of chip
- Must be accounted for during design
- Using approximate models
- Detailed post-layout verification also necessary

Wires

Interconnect Hierarchy

Cross-section of IBM 0.13 μ process

Example Interconnect Hierarchy for typical 0.25µ process (Layer Stack)

45 nm Interconnect Technology

8 interconnect layers in 45 nm technology [Ingerly – iitc – 2008]

TUD/EE ET1205 D2 0910 - © NvdM

Outline

Capacitance

Area/perimeter model, coupling

Resistance

Sheet resistance

Interconnect delay

Delay metrics, rc delay, Elmore delay

Capacitance

Area/perimeter model, coupling

Wake Up! Models ahead!

Observed and Modeled Average Annual Temperature

Observed 1961-1990 Average

The observed temperature averages for 1961-1990 are similar to the temperatures simulated by the Canadian and Hadley models for the same time period. These are the two primary models used to develop climate change scenarios for this Assessment.

<u>ТОD/ЕЕ ЕТ 1205 D2_0910 - © NVd</u>M

10.F

	Merriam-Webster Online Dictionary	
	6 entries found for model. To select an entry, click on it.	
	model[1,noun]Gomodel[2,verb]model[3,adjective]animal modelrole modelVatson-Crick model	
	Main Entry: ¹ mod·el (1) Pronunciation: 'mä-d ^{&} 1 Function: <i>noun</i>	
	Etymology: Middle French <i>modelle</i> , from Old Italian <i>modello</i> , from (assumed) Vulgar Latin <i>modellus</i> , from Latin <i>modulus</i> small measure, from <i>modus</i> 1 <i>obsolete</i> : a set of plans for a building	
	 2 dialect British : COPY, IMAGE 3 : structural design 4 : a usually miniature representation of something; also : a 	
	 pattern of something to be made 5 : an example for imitation or emulation 6 : a person or thing that serves as a pattern for an artist; especially : one who poses for an artist 	
	 7: ARCHETYPE 8: an organism whose appearance a mimic imitates 9: one who is employed to display clothes or other merchandise : MANNEOUN 	
las an atom	i that cannot be uncerty observe	u
12 : a syste	m of postulates, data, and inferen	nces presented as a
mathematic	cal description of an entity or stat	te of affairs

12 · VEDSION

Modeling

- An abstraction of (the properties) of something to help understanding and predicting its behavior
- Domain Specific: weather, climate, economy, stock market, ...
- Different models for something to answer different questions
- Black-Box modeling vs. Physically Based

After Einstein:

<a model> should be as simple as possible, but not simpler

Wire Capacitance - Parallel Plate

Wire Capacitance – Area/Perimeter Model

- Ca was calculated with modified wire width
- Formula inapplicable for irregular interconnects (nonconstant width)

More practical approximation

Area / Perimeter Capacitance Model

Question: How to derive C_a, C_p ?

How accurate is this model?

Derivation of C_a, C_p

- 2D (cross-section) numerical computation (or measurement)
- C₁: total wire capacitance per unit length

$$C_a = \varepsilon_0 \varepsilon_r / h$$
$$C_p = \frac{1}{2} (C_l - C_a \times w)$$

- C_p depends on t, h → determined by technology, layer
- C_p would depend slightly on w (see previous graph), this dependence is often ignored in practice

Area / Perimeter Capacitance

- **C_{p} dominates for many wires**
- **C** $_{p}$ may not be neglected
- A constant value for C_p is usually a good approximation
- **C**_p is sometimes called C_f (fringe capacitance)

Interconnect Capacitance Design data

See Table 4.2 (or inside backside cover)

Example: M1 over Field vs. M1 over Active (hypothetical)

Capacitance Date (Table 4.2)

INTERCONNECT MODELS

Wire area and fringe capacitances (for 0.25 µm CMOS process)

Rows represent the top plate of the capacitor, and columns represent the bottom plate. The area capacitances are expressed in $aF/\mu m^2$, while the fringe capacitances (given in the shaded rows) are in $aF/\mu m$.

	Field	Active	Poly	All	Al2	Al3	Al4
Poly	88	←bott	om				
	54	€fring	e			1 Yald	
Al1	30	41	57	←bott	om		
	40	47	54	←frin	ge	112-200	
Al2	13	15	17	36			
	25	27	29	45		内认为的	

Coupling Capacitances

Coupling Capacitances (2).

•
$$C_T = C_{1g} + C_{12} = C_{2g} + C_{12}$$
 fairly constant

- Use that as first order model
- Interconnect capacitance design data (e.g. Table 4.3)
- In practice: many pages of very many numbers
- Or: field solvers

Resistance

Sheet resistance

Wire Resistance

- Proportional to I
- Inversely proportional to w and t (cross-sectional area)
- Proportional to ρ: specific resistance, material property [Ωm]
- R = ρl/wt
- Aluminum: ρ = 2.7x10⁻⁸ Ωm
 Copper: ρ = 1.7x10⁻⁸ Ωm

TUD/EE ET1205 D2 0910 - © NvdM

Sheet Resistance

- R = ρl/wt
- **t**, ρ constant for layer, technology
- R = R I/w
- R : sheet resistance [Ω/] resistance of a square piece of interconnect other symbol: R_s
- Interconnect resistance design data e.g. Table 4.5 (or inside back-cover)

Interconnect Resistance

- Assume $R_{\Box} = 40 \Omega$
- Estimate the resistance between A and B in the wire below.

Engineering is about making controlled approximations to something that is too complicated to compute exactly, while ensuring that the approximate answer still leads to a working (functional, safe, ...) system

Exercise.

An interconnect line is made from a material that has a resistivity of $\rho = 4 \ \mu\Omega$ -cm. The interconnect is 1200 Å thick, where 1 Angstrom (Å) is 10⁻¹⁰ m. The line has a width of 0.6 μ m.

- a) Calculate the sheet resistance R_{\Box} of the line.
- **b)** Find the line resistance for a line that is 125 μ m long.

Interconnect delay

Delay metrics, rc delay, Elmore delay

Delay

- Model driver as linearized Thevenin source V, R_s, assume step input
- Model load as C_L
- Wire is an RC network (two-port)

Wire Capacitance

$$(C_w + C_L)\frac{dV_{out}}{dt} + \frac{V_{out} - V_{in}}{R_s} = 0$$

$$V_{out} = V_{in} - \tau \frac{dV_{out}}{dt}$$
 $\tau = R_s(C_w + C_L)$

$$V_{out} = (1 - e^{-t/\tau}) V_{in}$$

Wire Resistance

Now, assume wire capacitance and resistance

$$\tau = (\boldsymbol{R}_{s} + \boldsymbol{R}_{w})(\boldsymbol{C}_{w} + \boldsymbol{C}_{L})$$

Is this a good model?

R and C are distributed along the wire

Uniform RC Line

TUD/EE ET1205 D2 0910 - © NvdM

Equivalent Time Constant

- Multiple time-constants
- Need for one "equivalent" number
- Offered by Elmore Delay T_D

$$T_D = R_s C_w / 2 + (R_s + R_w) (C_w / 2 + C_L)$$

How to compute Elmore Delay?

Effective "one number" model for delay

Equivalent Time Constant

Shared Path Resistance

- Define: R_{ii} = Resistance from node i to input
- Example: $R_{11} = R_1$ $R_{22} = R_1 + R_2$ $R_{33} = R_1 + R_2 + R_3$
- Define: R_{ik} = Shared path resistance to input for node i and k

$$R_{12} = R_1 \quad R_{13} = R_1 \quad R_{23} =$$

Elmore Delay for Distributed RC Lines

Theorem: For Elmore Delay calculations, each uniform distributed RC section is equivalent to a symmetric π-model

Canonical Driver-Line-Load

$$T_{D_1} = R_s \frac{cl}{2} + (R_s + rl) \left(C_L + \frac{cl}{2} \right)$$
$$= R_s (cl + C_L) + rlC_L + \frac{1}{2} rcl^2$$

Delay quadratic in line length

Shared Path Resistance for Tree Structures

Elmore Delay for Tree Structures.

Exercise: Compute $T_{D1}, T_{D2}, T_{D3}, T_{D4}$

- **Replace RC lines by** π -sections
- Given observation node i, then only resistances along the path from input to node i can possibly count
- Make others zero
- Compute as if RC ladder

Summary

Capacitance

Area/perimeter model, coupling

Resistance

Sheet resistance

Interconnect delay

Delay metrics, rc delay, Elmore delay