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Course Material for Interconnect
Chapter 4, 2nd ed.

P = primair, | = lllustratie, O = overslaan

Pl4.1 Introduction 136

P 4.2 A First Glance 136 —138
P 4.3 Interconnect Parameters 138 — e.v.
O So far we have .... (onder example 4.2) 147 — 148
O 14.3.3 Inductance 148 — 150
Pl4.4 Electrical Wire Models 150 — 156
| 14.4.4 Distributed rc line — hiervoor is vervangende 156 — 159

stof (1)

O (4.45 The transmission line 159 — e.v.
O 4.5 Spice wire models 170 - 171
| 14.5.3 Perspective: alook into the future 171 —-174

Replacement voor Distributed RC line: EImore Delay
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Interconnect

L

Wires are not ideal interconnections

They may have non-negligible capacitance,
resistance, inductance

These are called wire parasitics

Can dominate performance of chip

Must be accounted for during design

Using approximate models

Detailed post-layout verification also necessary
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Interconnect Hierarchy

M6

Global

M4

intermodule

M3

i
r-:' oooooOoo M2
T|T | !' Intercell

—— ooooooao Ml
CE poly Intracell
substrate
Cross-section of IBM 0.13 p Example Interconnect Hierarchy for
process typical 0.25u process (Layer Stack)
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45 nm Interconnect Technology

8 interconnect layers in 45 nm technology
[Ingerly —iitc — 2008]
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Outline

B Capacitance
Area/perimeter model, coupling
B Resistance
Sheet resistance
B Interconnect delay
Delay metrics, rc delay, EImore delay
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Capacitance
B Area/perimeter model, coupling
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Wake Up! Models ahead!

Annual production for US (48) and FSU with

Hubbert & Gauss models
—Grandfather Energy Report - hitpoimawhodoes home att netfeneroyfenetgy htm
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Observed and Modeled
Average Annual Temperature
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The observed temperature averages for 1961-1990 are simi-
lar to the temperatures simulated by the Canadian and
Hadley models for the same time period. These are the two
primary models used to develop climate change scenarios
for this Assessment.
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Merriam-Webster Online Dictionary

6 entries found for model.
To select an entry, click on it.

model[1,noun] IGO‘
model[2,verb]
model[3,adjective]

animal mcdel

role madel

Watson-Crick model

Main Entry: "mod-el ©

Pronunciation; 'wa-d&1

Function: noun

Ltymology: Middle French modelle, from Old Italian
modello, from (assumed) Vulgar Latin modellus, from Latin
madulus small measure, from maodus

1 absolete 1 a set of plans for a building

2 dialect British : COPY, IMAGE

3 : structural design <a home on the model of an old
farmhouse>

4 : a usually miniature representation of something; also : a
pattern of something to be made

5 : an example for imitation or emulation

6 : a person or thing that serves as a pattern for an artist;
especially : one who poses for an artist

7 : ARCHETYPE

8 : an organism whose appearance a mimic imitates

9 : onc who is employed to display clothes or other

merchandise + MANNEDITIIN
\(.-l-k) Ll LLLU11L} LLICLL “wOllllINVJL U 1l UUI.«IJ VUJOWL ¥V WU

12 : a system of postulates, data, and inferences presented as a
mathematical description of an entity or state of affairs

12 o YV/I'TDOTANNT

v oRaviTmirly
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Modeling

B An abstraction of (the properties) of something to help
understanding and predicting its behavior

B Domain Specific: weather, climate, economy, stock market,

B Different models for something to answer different
guestions

B Black-Box modeling vs. Physically Based

After Einstein:

<a model> should be
as simple as possible,
but not simpler
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Wire Capacitance - Parallel Plate

e
dL/L/V7 T I

—>
W
>
wire
C W
1 V= eon
h I C
T go= 8.85 pF/m

substrate (Si) g, = 3.9 (SiO2)
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Wire Capacitance - Fringing Fields

W
—
A, w=W-=
Cpp ‘ l

c c Lo 27Ed _l_ngi
wire = “fringe =
957 7PP Tlogltgi H)  taj

B Works reasonably well in practice

B Not directly applicable for interconnects
with varying widths
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Wire Capacitance -
Area/Perimeter Model

B Cawas calculated with modified wire width

B Formulainapplicable for irregular interconnects (non-
constant width)

B More practical approximation

C=AxC, +PxC, units alternative
A =Area m? um?
C, =Area capacitance F/m? aF / um?
P =Perimeter m Hm
C, =Perimeter capacitance F/m aF / um
1u § | | C=DXC3+DXCP
< 104 >
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Area / Perimeter Capacitance
Model

‘ I_\j C =|:|x C, +|:|xcp

B Question: How to derive C,,C, ?

How accurate Is this model?

TUD/EE ET1205 D2 0910 - © NvdM 3 interconnect 15



Derivation of C,,C,

C T 150
[aF/um]
100}
50}
O » »
N 5 0] 1 2 3

A
FEN
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Derivation of C,.C,

B 2D (cross-section) numerical computation
(or measurement)

mC, : total wire capacitance per unit length
BC, A =¢g¢ /h
1

B C,depends ont, h =» determined by
technology, layer

B C,would depend slightly on w (see
previous graph), this dependence is often

Ignored in practice
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Area / Perimeter Capacitance

/ c 4 150
A isoo am [@F1 %0 Ca
Cp 50| — ch
’X 1150 nm e m———
—> W [y]

B C,dominates for many wires

®m C, may not be neglected

B A constant value for Cis usually a good approximation
B C,is sometimes called C; (fringe capacitance)
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Interconnect Capacitance Design data

B See Table 4.2 (or inside backside cover)

B Example: M1 over Field vs. M1 over Active (hypothetical)

M1 M1
T
E
55 Field oxide
M1 over Active M1 over Field Unit
C, =41 C, =30 aF / um?
C, =47 Cp =40 aF /um
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Capacitance Date (Table 4.2)

INTERCONNECT MODELS

Wire area and fringe capacitances (for 0.25 pum CMOS process)
Rows represent the top plate of the capacitor, and columns represent the bottom
plate. The area capacitances are expressed in aF/um?, while the fringe capaci-
tances (given in the shaded rows) are in aF/um.

Field Active Poly All Al2 Al3 Al
Poly 8 |<bottom

4 |&fringe
an | 30 a 57 '_éboﬁtfém S

40 47 e | &fringe | S8
AL2 13 15 17 36 | - |

25 27 29 45 I 3‘
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Coupling Capacitances

fringing

parallel
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Coupling Capacitances (2).

S

1 —H— 2
"C J-(-:Zg

Cig Cog

—_ S

Cr=Cyy + Cp = Cyy + Cy, fairly constant

Use that as first order model

Interconnect capacitance design data (e.g. Table 4.3)
In practice: many pages of very many numbers

Or: field solvers
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Resistance
B Sheet resistance
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Wire Resistance

W

B Inversely proportional to w and t (cross-sectional area)

B Proportional to p: specific resistance, material property
[©2m]

B R =pl/wt

B Aluminum: p = 2.7x10% Qm
Copper: p=1.7x108 Qm
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Sheet Resistance

R = pl/wt

t, p constant for layer, technology
R = Ryl/w

R : sheet resistance [Q/[]]

resistance of a square piece of interconnect
other symbol: Ry

B Interconnect resistance design data e.g. Table 4.5 (or
iInside back-cover)
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Interconnect Resistance

B Assume Rp=40Q
B Estimate the resistance between A and B in the wire below.

wibal LT L] s Rag ~ 6 X 40 = 240 O
<< >
5
1¢c|_|_|_|_|_|_|_DEDIZ
<< >« >
7 8

Rep = 11 x 40 = 440 Q

Engineering is about making controlled approximations to
something that is too complicated to compute exactly, while
ensuring that the approximate answer still leads to a working

(functional, safe, ...) system
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Exercise.

An interconnect line is made from a material that has a resistivity
of p =4 pQ-cm. The interconnect is 1200 A thick, where 1
Angstrom (A) is 10-2°m. The line has a width of 0.6 pm.

a) Calculate the sheet resistance Ry of the line.
b) Find the line resistance for a line that is 125 um long.
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Interconnect delay
B Delay metrics, rc delay, EImore delay
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delay from here to here Rs —] 1
<€ > —

i[>°_r Gi[>°___v () C,

B Model driver as linearized Thevenin source V, R, assume
step input

B Model load as C;

B Wireis an RC network (two-port)
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Wire Capacitance

R, v
1 .
[ j_ out ' Assume wire
—() c c behaves purely
— T Tw T L capacitive
=0 Vin
dv Vo, =V
C +C out + out In -0
(G + ) Tt a T
dVv
Vout =Vin -7 dfiut r=R,(C, +C,)

Vout= (1_e_t/T )Vi n
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Wire Resistance

o B fa N
vD TC 0,

Now, assume wire capacitance and resistance

- T:(Rs +RW)(CW +CL)

M [s this agood model?

B R and C are distributed along the wire
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Uniform RC Line

3

TUD/EE ET1205 D2 0910 - © NvdM

El_

T*
=

—C,/2N C, /2N~

= C, /2
T

ImMN — o

[Always] use

first

model

order

R

W

=1
T C,/2 T C,/2
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RC Delay (Uniform RC Line)
R

—— 1+
VC) T CL

R Ry .
]  — Basic t-model
— of wire
V <> —_—C,J/2 —C,=2 C,

m t?
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Equivalent Time Constant

Vv <> ——c,J2 =—=C,2 ==C,

B Multiple time-constants
B Need for one “equivalent” number
B Offered by EImore Delay T,

Tp =RsCy /2+(Rs +Ry Gy /2+C )

B Effective “one number” model for delay

TUD/EE ET1205 D2 0910 - © NvdM

How to
compute
Elmore
Delay?
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Equivalent Time Constant

R, Ry,
Ty, = —_—Cc,J/2 =—=C,2 —=C,
Tp =RsCy /2+(Rs +Ry Gy /2+CL)
R
( . S
T = —_—cC,/2
TD — 2 < RS RW
T, & ——C,J2 —=C,
.
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Shared Path Resistance

Rl RZ R3
— 22— 9 — ©

D

B Define: R;; = Resistance from node i to input

W Example: R;; =R; Ry =R;+R, Ry =R;+R; +R;

B Define: R, = Shared path resistance to input for node |
and k

- Ro=Ry  Riz=R stz‘ ‘
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Elmore Delay for RC ladders
R R o R

<> ——C, =——=GC, ——C,
. N
B Define: Ty, = 3R, C, Elmore Delay
k=1 :
o We will use
Tp1=R11C1 +R12C2 + Ry13C3 = 0.69 x T as
=R1C1 +R1Co + R1C3 approximation of
Tp, = R31Cy +R3C5 +R33C;5 = wire delay (tsoy)

= R1C1+(R1+R2)C2 +(R1+R2 +R3)C3

ITD2 —

TUD/EE ET1205 D2 0910 - © NvdM 3 interconnect 37



Elmore Delay for Distributed RC Lines

—— [3—
v(D T C

Symbol o Symmetric Ry
— 1 n-model

1
_‘_CW T C,/2 T C,/2

B Theorem: For EImore Delay calculations, each
uniform distributed RC section Is equivalent
to a symmetric t-model
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Canonical Driver-Line-Load

R rl R, rl

1T+ LT O
1 1

vi(D - _‘_CL vi(D _‘_2 =G+

mT, =RS%+(RS +r|)(CL +%j

=R, (cl +C_)+rIC, +%rc|2

B Delay quadratic in line length
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Shared Path Resistance for Tree
Structures

In order to compute Elmore R,

Delay at node 3: I:I @

Exercise (for node 4):.
Compute R,q, Rys, Rys Rys

Vin() Ry? R,

R..? R.+ R Off-path

32 1772 resistances
Ry?  RiFR,+ R, don’t count
Rss? R+ Ry
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Elmore Delay for Tree Structures.

B Replace RC lines by n-sections
== ™ Given observation node i, then only

—l resistances along the path from
CE: T Input to node | can possibly count
N B Make others zero
Exercise: Compute _
Tow Toz Toar Tos B Compute as if RC ladder
Tp3?
Ry R @ Rs B
1 [ 7
—C, +C4 Cs

C
Vin<> — 72 5 +C, — Py
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Summary

B Capacitance
Area/perimeter model, coupling
B Resistance
Sheet resistance
B Interconnect delay
Delay metrics, rc delay, EImore delay
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