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Module 1: Devices
Diodes,; MOS transistors, models
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Goal of this chapter

B Present intuitive understanding of device operation
m Introduction of basic device equations

H Introduction of models for manual analysis

H Introduction of models for SPICE simulation

B Analysis of secondary and deep-sub-micron effects
M Future trends
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Outline

B Semiconductor Physics
B The diode
m Depletion, |-V relations, capacitance,
B The MOS transistor
B First glance, threshold, I-V relations, models
B Dynamic behavior (capacitances), resistances,
B Process variations
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Course Material for Devices

Chapter 3

P = primair, | = lllustratie, O = overslaan
C |31 Introduction 74
P |3.2-32.1 Afirst glance at the diode 74-77
P |322 Static Behavior 77 -80
0 |3.23 Dynamic, or Transient, Behavior 80-83(1)
0 [3.24 Secondary Effects 84 -85
0O [3.25 Spice Diode Model 85-87
P 133-332 The MOS(FET) Transistor 87-99
o Subthreshold Conduction 99-101
P Models for Manual Analysis 101 - 106
0O [332 Dynamic Behavior, etc. 106 -113 (1)
P Junction Capacitances 110-111
0 [3.33 Some Secondary Effects 114 -117
O [3.34 Spice Model for the MOS Transistor 117 - 120
O [34 A word on process variations 120-122
I |35 Perspective: Technology Scaling 122 -128
P 136 Summary 128-129

(1) Vervangend studiemateriaal voor dynamisch gedrag in syllabus
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Modeling
B An abstraction of (the properties) of something to
help understanding and predicting its behavior

B Domain Specific: weather, climate, economy,
stock market, ...

m Different models for something to answer
different questions

B Black-Box modeling vs. Physically Based

Semiconductor Physics

B All electrical behavior is determined by
underlying physics
B This course is not about the physics

B But some small amount of background
information helps built intuition

B Intuition is what an engineer/designer needs

most
B After Einstein: la model should be as
simple as possible, but not
simpler
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Periodic System

Lt Solid Cs Liquid Ar G B Synthetic
Alkali metals [l Alkali earth mesals [l Transition metals Fare earth metals
Other metals Noble gaves B Halogens B Other nonmetals

http://www.chemicool.com/
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Periodic System

Name Symbol # Vi
Silicon Si 14
Boron B 5
Phosphor P 15
Arsenic As 33
Germanium Ge 32
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Semiconductor Physics

See also Tipler (BKV) 38.5
O-0-@

o
B [ntrinsic Si B doping with valence 5
® Ideal crystal structure atoms (Phosphor,
H Valence 4
[ ]
[ ]

Arsenic) introduces
almost no free carriers

"loose electrons”
. B electron donor
almost no conduction

B conductivity depends

[n]= [p]= n, :],5.1010/cm3 on doping level

Y i
at 300 K for silicon n.p =n? (in equilibrium)
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Semiconductor Physics
—— ——
. @ O 0 @ O

|"
. Q..

B doping with valence 5 B doping with valence 3

atoms (Phosphor,
Arsenic) introduces

atoms (Boron)
introduces "loose

"loose electrons” holes"
B electron donor B electron acceptors
B conductivity depends B hole conductivity lower

than electron
conductivity

on doping level
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Semiconductor Physics

Siin equilibrium :n.p = n? =2.25x10%° at 300K

Intrinsic Si :n =p =n;

Np >>Nj Na >>Np

Electron donors: As, P
n-type Si

Electron acceptors: B
p-type Si

PNy, n=n?/p

Holes: majority carriers

n=Np, p=n?/n
Electrons: majority carriers
Holes: minority carriers

Resistive material

Conductivity depends
on Np

Electrons: minority carriers

Hole conductivity lower
than electron conductivity
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The diode
B Depletion, I-V relations, capacitance,
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The diode: non-linear resistance

v
R

O = VO

| |
R =cotan(a)
o
J—
\Y \Y
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The Diode

See also Tipler (BKV) 38.6

Cross-section of pn -junction in an IC process

A A

p

n
erzzzzzzZZZZA

B

One-dimensional .
representation diodesymbol

Diode is abundant as MOS source/drain
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Ideal Diode, Abrupt pn junction
Intuitive Description

Depletion Region

holediffusion
—-

electron diffusion

-+ Egses (M-
Concentration gradient of - I©d f l
- - free carriers ole drift
charg;leclmn drift
. . P
A X »
olediftusion Diffusion current Density - : (b) Charge density
Electron diffusion «=—— Space charge - Distance
+ A q —
n.n (depletlon) eI Electrical E
Hole drift <=— L. Fiekd X o
— Electron drift Electric field (c) Electric field.
Drift current opposite to
. ; v
diffusion potentlal
. ; ®o x (d) Electrostatic
equilibrium =t " potential.
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Conduction Diode Current
v Typical Na, Np: 21 I
Pmem%— 10%5 ... 10%7/cm3,
: %o x goaround 0.6 V ) :
Wi T W2 z

Built-in Potential

bo=tr In[—”“'ﬁ“’]

Thermal voltage

é =KL =26mV at 300K
n; q

H By applying an external voltage,
width of depletion region can be
changed

B Forward: becomes smaller and
smaller, finally conduction

B Reverse: becomes wider and wider
=>no conduction
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Ip =1sle¥0/# -1)

B |g: Saturation current

B Proportional to diode area

B Depends on doping levels,
and widths of neutral regions

B Usually determined empirically
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Models for Manual Analysis Diode Model Example
Rs Determine Iy and Vp
. . Ib =1s("2 /T _1) (diode model)
Vo v, Vp = ¢r (L+In(ip/1s))
I = |S[e A _1J I A Vo vp -V -Relp (Kirchof)
* * Vp =Vs —Rgls (€VD /9T — 1)
Vo Vo Voon Iteration
- - Iy =0.5e7°A start: Vp =1.0V
KT/q =25mV =1p =(Vs -Vp)/Rs  =0.600 mA
(a) Ideal diode model (b) First-order diode model Ve =16V =Vp =¢r(L+In(lp/1s))=0.663V
Ro=lka =lp= =0.937 mA
=>Vp = =0.674V
=lp= =0.926 mA
=>Vp = =0.674V
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Diode Model Example Capacitance

Rq C=tana
I, =0.5e %A Q
I Q=cv
W KT/q =25mV o+ R
s Vo Ve=1l6V \4 C) = a C=¢
R, = kO _—I v

First order solution

Vp =06V =Ip=1mA error=8%

2 0

Now, take V; =10.6V Rg =10K42
Vo

The error will be I:l
-
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Linearized Large-Signal Diode

Relevance of Capacitance :
Capacitances

Summary:
B Capacitance: amount of stored charge depends B Diode capacitances highly ne=" See the
on applied voltage
op 9 m Difficult with manual calculatior syllabus!

B Changing voltages (switching!) implies change of
charge.

B Change of stored charge requires current

B Amount of current is limited

B We are ultimately interested in amcunt. ‘ch. ge being
stored on (or removed from) capacitor
B Since it takes time for this to happen, this
determines the final switching speed of the circuit:

m (Dis)Charging takes time more charge means more time!
B This is the main reason for ‘limited’ speed of IC’s B Linear capacitance: AQ = CAV: easy to work with
B Small-signal capacitance: dQ = CdV: for analog appl.
B Speeding up requires improving ratio of current B Non-linear capacitance: AQ = f(Vigw, Vhign)
to amount of charge needed -> miniaturization
helps! Work with C, for standardized voltage swings
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Large Signal Equivalent Diode
Capacitance
step Ceq =f (VhighViow) The MOS Transistor
voltage . .
9 C) _ Qi Mhign )=Q; Viow) B First glance, threshold, I-V relations,
Vhigh =Viow models
B Dynamic behavior (capacitances),
Linear C - 2 resistances, more Second-Order effects,
Q Qe Non-linear © et daQ models
4 gy
o C=tana 3 ...Ceq=tan & 0.5
v o N Vp/ota 50 * 2 vD/opa >
Linearized, large signal,  Linearized, small signal
depends on swing depends on bias
For analog applications
TUD/EE ET1205 D2 0910 - © NvdM 19 April 2010 1devices 25 TUD/EE ET1205 D2 0910 - © NvdM 19 April 2010 1devices 26

MOSFET Transistors

drain MOS #BIPOLAR

The MOS Field Effect Transistor — compared to D S c c
Storey (Storey § 17.3-17.5) gate

® MOSFET transistor is not a JFET G —I G '4 b { b {

B Other operating regions compared to saturation s D e e

region (linear, velocity saturation) also important SOUTGE
B Include more effects (channel length modulation)

) NMOS PMOS npn pnp

B Short-channel devices

- bad for some analog circuits,

- good for (most) digital circuits MOSFET = “Metal” -Oxide-Semiconductor Field-Effect Transistor
B We will develop understanding of basic device

equations

} Gate (terminal of MOSFET)
#*
Cross-sectional view of MOSFET Logic gate
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The MOS Transistor Cross-Section of CMOS Technology

N-MOS P-MOS
Gate Oxide

Polysilicon

Field-Oxide
(Si0)

7
%
%
%
%
%
i

B
p-substrate @ p+ stopper

A
Bulk Contact prsubstrate

CROSS-SECTIONof NMOS Transistor
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MOS Transistors
3-terminal model

D
G G bulk assumed to be
connected to
S

appropriate supply

D D
4-terminal model
G B G B
B = bulk (substrate)
S S
NMOS PMOS
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MQOS Transistor
Switch Level Models

Position of switch depends on
gate voltage

i l
G —|E Ge \ Ve NMOS PMOS
S

D

s hi closed open
Simplest lo open closed
NMOS possible
useful model

m Connection between source and drain
depends on gate voltage, current can flow
from source to drain and vice versa if closed

m No static current flows into gate terminal
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Position of switch depends on

Mos Switch Model (2)  #evt=e

Vo NMOS  PMOS
hi closed open
lo open closed

A=0 NMOS A=1

e — T Lo x—T1 L -4
(a) Open (b) Closed
A=1 PMOS A=0
v —J  C— =2 v —1 L — oy
{a) Open (b) Closed
TUD/EE ET1205 D2 0910 - © NvdM 19 April 2010 1devices 33

CMOS Inverter Operation Principle

IN out 1 0 0 1
0 0 0
invertor equiv. ckt. with equiv. ckt. with
input 1 input 0
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From Logic to Voltages

Vv

Voo Voo <«— Ideal logic 1

Power supply

Logic 1 voltages

Vbp logic

cireuit Undefined

i
CMOS

' Logic 0 voltages
"""""" Ground OV
= 0 <«— ldeal logic 0

(a) Power supply connection (b} Logic definitions
Ideal logic O corresponds to V, =0V
Ideal logic 1 corresponds to V, =Vpp

Not all actual voltages in circuit necessarily

correspond to ideal logic levels, see figure (b) above
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From Logic to Voltages

Note:
® GND = GROUND = 0V

m Sometimes also
called Vsg

1 Voo

m Vppis highest

IN ouT Vin Vour voltage level in
circuit

m Vpp value depends
on technology, has
been reduced from
5V to 1V and lower
over the years

0 GND

I . m All voltages V, in ckt:
Logic view Voltage view 0<V,<Vop
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Source and Drain Terminals

NFET Threshold Voltage

(drempelspanning)

ﬂ to V' Do \".-\
Drain )
Voo
gate NMOS PMOS
. Gale A=1 MnOn
Lowest Highest Va Mn
Source R )
potential potential
in . '
Highest | Lowest - Vn :| A=0 Mn Off
; ighes owes Source A=0 Mn
Rraiy potential potential = o
gate (a) Gate-source voltage (b} Logic translation
Note 1: Polarities of PMOS voltage reversed
when compared to NMOS NFET is off when Vgg, < V. -
Note 2: MOS transistor is completely = S T Vssn>VTn Vig= 0 o QY
symmetrical! Can interchange source and drain, Gsn =~ ¥Tn
without any effect. Source/drain is only a naming
convention.
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PFET Threshold Voltage Excercise
Source NFET is off when Vag, < Vrn Twvpy Va
. Dirain
+ VDD HAS S O WD YoV Vbp transistor on the left using
Vi
SGp pFET and nFET behave NFET is off when Vag, <V,
v - M complementary A=IMaOL [ Ceris on when Vg, > Vo
A Gate b

PFET is off when Vg, 2 Vg
Drain PFET is on when Vggp < Vrp

Uio ground

corresponds to diagram

Vin on right
Source ° :| A=0 Mo OIl
Draw same diagram for
Seurce PMOS using
1 Voo

PFET is off when —Vgg, <-V7, Vsgp PFET is off when —Vgg, € —Vy,
- pFET is on when *VGSp >*VTp _ PFET is on when —Vgg, > -Vq,
Vrp~=0.5 ... -0.7V (negative!) Va o—c{ Mp
£ Gate
PFET is off when [Vgsp| < [Vl
Often most useful PFET is on when [Vggpl > [V,
\\ Drain
Lo ground
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) Is this all there is?
MOS Transistor Treshold Voltage
Treshold voltage Vy: point at which transistor turns on D B You don’t believe that (CMOS) life can
G be so simple, do you?
B Think of some of the things that you
S would expect to be non-idealities of
D h
b l Position of switch depends on b CMOS as a_SW'tCh _
G _| Ge gate voltage (relative to source) l B Discuss with your neighbor
\T Ves NMOS  PMOS Ge ® Share with us _
S s B Since we want to design CMOS
Ves>Vr  closed open s circuits, we need a deeper
Ves<Vr  open closed understanding of CMOS circuits
B Next slide shows where we are going
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MOS Models for Manual Analysis NMOS Transistor Operation
Io determined by circuit

b VosVesVss . =

_| s determined by technology Depletion epletion

K, 4, Vpsar V1o 7 #F

Substrate (P)

MOS model for manual analysis

Ip = k{VerVam = 0.5Van L+ AVps)  for Vgr 20

=0 for Vgr <0
Vmin = MIN(Vps Vet Vosat)

Var =Vos —Vr,  Vr =Vro +7{,- 26 +Vsg] - 24])

TUD/EE ET1205 D2 0910 - © NvdM
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MOSFET gate as capacitor 15(Vss: Vps, Vis)
B Gate capacitance helps determine charge in channel which ]
forms in?,ersion regi(ﬁ,_ g MOS model for manual analysis
® Basic structure of gate is Ip = k(VGTVMIN - 0.5V Xl“'ﬂvos) for Vgr 20
parallel-plate capacitor: Cox = €ox / tox 5 for Vgr <0
Vamin =MIN VetV
Sox = 80 & MIN (VDS GT DSAT)
I g =8.85x102F/m ) - )
. m Different operation regions
i g =39 (SiOy) . ) Lo
; t m Different behavior for each region:
w [ so i
Vg m off
substrate M resistive <«—— NEXT
Note: [F] vs. [F/m?] B saturation
H velocity saturation
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: I-V In Resistive Region
Current-Voltage Relations g

Qi(x)=-Cox[Vos -V (x)-V;] Inversion Charge

D=—#Fn %Qi(x)w Ip Drain Current
4, mobility (n-Si)
L
fi v]dv
0
p-substrate 1,2 Vos
IpL = s, CoxW |:(VGS —Vr V-2V ]
Y 2 b
MOS transistor and its bias conditions Ip = I‘ncox va[(VGS -Vr )‘/DS _%VE?S]
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Process Gain and Device Gain

Ip =HnCox |:(VGS =V Vps —*VDS:|

' £
K, = gty Cox = gt 0 Process transconductance
tox parameter

k =k, Wf Gain factor of device

Ip = k[(\/GS =Vy Mps — 7VDS:| (resistive regime)

H Note 1: we use k, many others B, but k =

B Note 2: resistive regime a.k.a. triode regime
region

A
Mml\

TUD/EE ET1205 D2 0910 - © NvdM 19 April 2010

I-V Relation

This and similar Vos= Vor ¥y V=25V

graphs to follow [ L4=10pm,
are from the book | Resistive Saturation | E W=15um
Ver=20V ||
5-3
,
d

V=10V

L] as 1 s 2 8
Vag V)
Ip = k[(\/GS =Vq Vps — 5VDS:| (resistive regime)

This formula only valid in restitive regime. This corresponds to the
region to the left of the Vps=Vgs-Vy curve. There is another regime called
‘saturation’. See following slides.
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I-V Relation

Vo= Vry V=25V

This curve is where Ip curves
Saturation begin to run flat: I, does not

20V anymore depend on Vpg

[(\/Gs =Vr Mps — VDS:|

The curve is given by

dl
dVD = k[(VGS _VT)_VDS]= 0=>Vpg =Vgs =Vr
DS

The value Vps= VsV is special: it is the boundary between
resistive regime and saturation regime (pinch-off)

TUD/EE ET1205 D2 0910 - © NvdM 19 April 2010 1 devices 51

Transistor in Saturation

Vbs> VGs- V1

i,

TUD/EE ET1205 D2 0910 - © NvdM 19 April 2010 1 devices 52

I-V in saturation

Vps < VesVri
1
Ip = k|:(VGS -Vr Vps _EVSS:I

Saturation: Vpg > Vgg-Vr

Current does not increase when Vpg> Vgg - Vy

Ipsat =lp|, _ Saturation current
ps =Ves —V1

1
IpsaT = k|:(VGS -Vr)Ves _VT)_E(VGS =Vr )2]

1
=§k(VGS _VT)2

TUD/EE ET1205 D2 0910 - © NvdM 19 April 2010 1 devices 53

I-V Relation

Fog= VorVr Fg=25V

s L,=10um, W=15um

Resistive Saturation Ié 4
Ves=20V || B
iy 3
E ;3
B
2 g 2
' 1
(] as 1 s 2 8
Vos ™) Dn 25
1.2 L Vet
Ip = k[(\/GS =Vy Vps _EVDS] (resistive regime)
1 )
=§k(VGS —vr P (saturation)
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Output Impedance

dV,
Definition: Zout =—398

Ves _| vi, dlg

1
Ip =§k(VGS _VT)2

What is the output impedance?

Is this plausible?

What is happening?
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Channel Length Modulation

Vbs>\6s V&

= Empirical Model for

Effective Channel Length

Lest

T 1+ AVps
1,-W
Ipsat =5k *(VGS -Vr )2

27" Ly
1-W

=5 Kn T(VGS -Vr )2(1"' AVps)
1

=5 k(Vas —Vr )2(1"' AVps)
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Velocity Saturation (1)

1. Still model not complete: need to include effects of
limited carrier velocity

2. Carrier velocity (ideal model):
Linear with field

3. Reality

[ Vga= 107

constant velocity

dv
Vi =_.”n¢(x)=.una

4. Simple v, Model:
Vi = for £< &

= Hpbe =Vsar fOr &=&

vn(cnysec)

onstant mobility (slope)=p
&, Critical Field Esat=1.5 E(V/um)
Vsq Saturation Velocity (E=¢)
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Velocity Saturation (2)

Onset of velocity saturation can be translated into a
critical voltage Vpg: Vpsar- This value depends on L.

Velocity saturation parameters L Vpsar
Lv
VpsaT =Lg =52 2 <
Hn 1 15
. 0.25 0.375
voltage velocity

0.18 0.27
First order, empirical model
Ipsat = ID(VDS =VDSAT)

= k[(VGS —Vr Vpsat —%VSSAT] Velocity Saturation
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Ip as a function of Vg

Ip as a function of Vg

x10" -

Vos= Vor ¥y V=25V ] Vas=25V |
+ L =10um ,La=0.25pm
Hesistive Saturation 8
at g i
V=20V || B 3
E41
B
! g 5
i=4
.
L] as 1 15 H s |
Ve l:'I'l a5 1 15 2 25 [} 05 1 15 2 25
Long channel device w/o Short channel device with Long channel device w/o Short channel device with
velocity saturation velocity saturation 1 velocity saturation velocity saturation
1 2
= == - 2
W =1.5L Ip =5 k(Ves -Vr) Ib = k[Ves =V WpsaT —05vZeat
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Overview Body Effect
1,2 resistiveregime
k[(VGS -Vr Vos _EVDS} base equation .
0089 - B V:is not constant
5|
o }k(v vy when Vpg > Vgg-Vy: saturation 08 s _|E s B Depends on Vgvs Vg
b 2 Ves replace Vps by Vgs-Vrin base equation 0075 s ® Our wishis to
7 .
Fosq understand & predict
1,2 when Vs > Vet velocity saturation 0.6 i
k[(\/es -Vr Mosat _EVDSAT] ) ) o8 behavior of CMOS
replaceVpsby Vpsur in base equation devices
05
0.4 ® We will start with V;
: . 0
Ip =1p(1+ AVpg ) Channel Length Modulation 25 2 1 -1 05 0
4Y)
Smallest of Vg, Vs-Vr, Vpsar determines operating region
| |—> Velocity saturation
Saturation
Resistive
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MOSFET gate as capacitor

B Gate capacitance helps determine charge in channel which
forms inversion region.

B Basic structure of gate is

arallel-plate capacitor: -
P P s Cox = €ox / tox

The Threshold Voltage

— Sox = €0 8&
g =8.85x 10"2F/m
& g =3.9 (Si0y) Forget all this s
N -
. Vi =Vro +7(|-26: +Vsal =[-26:]) gyt be avle to use this
substrate
Note: [F] vs. [F/m?]
—
and this
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MOS Models for Manual Analysis MOS Model Comparison
. . Channellength modulation
Region Specific Models added to resitive region, in order
} to enforce continuity ”..o- = Many more far more
Ip =k Vps — 0.5V Resistive region
D (VGT LS DS) By advanced models do
Iy =k (VarVer —0.5vE ) Saturation : exist (BSIM4 ~ 20k lines of C)
' . ) m Are only suited for
Ip=k V| -0.5Vv2 Velocity Saturation ' . .
D (VGT BRI DSAT) Y z computer simulation
Ip = Ip L+ 2Vps) ChannelllengthiModulation o B The SPICE simulator is
§ . the ‘good old’
Comprehensive model workhorse of the
2 h
Ip = kVerVaun = 0.5V 1+ 4Vos)  for Vgr 20 et — industry
-0 for Vgr <0 Vs ™ m Reliable, but low speed
Solid line: simple model
Vmin = MIN(Vps VeT Vpsat) ) . .
Vor =Vas Vi, Vp =Vro +7JF 20 +Vea| -F26¢]) Dotted line: SPICE simulation
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NMOS vs. PMOS

28 E] ER El o5
Voa®

NMOS vs. PMOS (2)

160 o

10 | Blectrons 7=30K 1E+7 —

— 2 _ /

™ £ 3
g i H
g & 2 16
E =% H <
- B &,
£ * [Hoes é H <

0 @

g £ 300K
0 1B+
———
e P T T T TR PRt ) 1572 1643 1+ 16+

Doping concentration (cm”) Electric field (Viem)

Zero-field mobility (bulk!) Velocity vs. Field

Hp < Hn = kp< k;1
B PMOS (Vps, Vas: I, V1) <0 P N
Vsat, ®Vsat, = ’VDSATP‘>’VDSATH‘ &
B Can calculate as if NMOS using absolute values .
Vi (V) vty Vaser V1 | (VY v
H NMOS 041 04 063 S x 10 006
B PMOS device not as strong as NMOS e — = - — e
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Alternative Saturation Expression MOS Device Symmetry
- ) )
® Saturation if VDS>VGS—VF MOStran_mstors_are symmetrlcal_
B Strong inversion at source if Vgg > V¢
. . . . Independent!
® Show that Vps>Ves—\r ©\Vep<\r B Strong inversion at drain  if Vgp > V5
m Proof: Vs> Ves—Vr ® You should_ check_the I-V relations when
interchanging drain and source
S\Vp-Vs>Vg-Vs-Vr . N . .
Vo>V Vr | |dentification of source drain only by convention
S\p>\g- ) - .
b6 . . n Determined by circuit-environment
Physically this relates to
NV <\p . B o
amount of inversion’ at NMOS PMOS General
drain side
S\e-Vo<\r If inversion at drain side Source  Vgg-side Vpp-side Strongest inversion
S\Vop<\Wr disappears: pinch-off
Drain Vpp-side Vss-side Weakest inversion
B Thisis an alternative expression for the saturation region
B Can be handy .
Vgg: low supply voltage, Vpp = high supply voltage
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Improved MOS Transistor
Switch Level Model

Position of switch depends on

Ge gate to source voltage
Ves NMOS PMOS
hi closed open
closed
Ron
Ge

B R, is highly non-linear
Make linear approximation Req

lD
\Ts
D
lo open
li] More detailed model may include
S

® Model with (linear) Req less detailed then
previous equation based model, but often

8 Voo f, 5 Theory!
useful for first estimates of behavior = A ipenr |16 Vo0 y:
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Switch Model R,

Vps : Voo = Voo /2)

L }

(a) Schematic

I

Vo2
i) trajectory rraversed on ID-VDS curve,

Voo

R. = 1 Vop + Vpp /2

e 2| lpsat (1+ 1VDD) IpsaT (1+ AVpp /2)
#gl_ﬂvw +O(,12Vud2) 2.3% error with
1+ Vop 2=0.06 V1,Vpp =2.5V

Req ~2-Yoo (1-AVDD +1(1-AVDD/2))
2iosa 2
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MOS Transistor
Switch Level Model (Empirical).

° Position of switch depends on
gate to source voltage

L Ves NMOS PMOS
Ron = W Req
hi closed open

w lo open closed

s Req: Practice!

The MOS Transistor Summary

Gate Oxide

Gate
V2 s i A
W Sou, icon . in /), Field-Oxide
O { (50
W A

p-substrate (= Bulk Contact) 1] p+ stopper

Cross-sectional View

Req\ Vaa (V) 1 15 2 25 .
NMOS (kQ) 35 | 19 15 13 Schematic symbols, Switch closed if Vgs > Vr
very often w/o bulk
PMOS (kQ) 15 | 55 38 31 con);act Simplest possible equiv. ckt.
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The MOS Transistor Summary ctd.

B Need to analyze speed, power, noise etc of MOS circuits
B Simple switch-level model not sufficient
B Study exact operation to derive more precise IV relations

Depletion Depletion

Substrate (P)

Io =kVerVaun 0.5V J1+AVps)  for Ver 20
=0 for Vgr <0

Vi =MIN(Vps Vor Vosar)
Vor =Ves —Vo, Wr =VT0+7(\/‘_2¢F +VSB“«/_2¢F‘)
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Summary

B Semiconductor Physics
B The diode
m Depletion, |-V relations, capacitance,
secondary effects, models
B The MOS transistor
m First glance, threshold, I-V relations, models
B Dynamic behavior (capacitances), resistances,
more Second-Order effects, models
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