Diodes, MOS transistors, models

Goal of this chapter

\square Present intuitive understanding of device operation
■ Introduction of basic device equations
■ Introduction of models for manual analysis

- Introduction of models for SPICE simulation
\square Analysis of secondary and deep-sub-micron effects
■ Future trends

Outline

■ Semiconductor Physics

- The diode

■ Depletion, I-V relations, capacitance,
■ The MOS transistor
First glance, threshold, I-V relations, models
■ Dynamic behavior (capacitances), resistances,
■ Process variations

Course Material for Devices

Chapter 3

$\mathbf{P}=$ primair, $\mathrm{I}=$ Illustratie, $\mathrm{O}=$ overslaan

C	3.1	Introduction	74
P	$3.2-3.2 .1$	A first glance at the diode	$74-77$
P	3.2 .2	Static Behavior	$77-80$
O	3.2 .3	Dynamic, or Transient, Behavior	$80-83(1)$
O	3.2 .4	Secondary Effects	$84-85$
O	3.2 .5	Spice Diode Model	$85-87$
P	$3.3-3.3 .2$	The MOS(FET) Transistor	$87-99$
O		Subthreshold Conduction	$99-101$
P		Models for Manual Analysis	$101-106$
O	3.3 .2	Dynamic Behavior, etc.	$106-113(1)$
P		Junction Capacitances	$110-111$
O	3.3 .3	Some Secondary Effects	$114-117$
O	3.3 .4	Spice Model for the MOS Transistor	$117-120$
O	3.4	A word on process variations	$120-122$
I	3.5	Perspective: Technology Scaling	$122-128$
P	3.6	Summary	$128-129$

(1) Vervangend studiemateriaal voor dynamisch gedrag in syllabus

Modeling

- An abstraction of (the properties) of something to help understanding and predicting its behavior
■ Domain Specific: weather, climate, economy, stock market, ...
- Different models for something to answer different questions
■ Black-Box modeling vs. Physically Based

■ After Einstein: a model should be as simple as possible, but not simpler

Semiconductor Physics

■ All electrical behavior is determined by underlying physics
■ This course is not about the physics

- But some small amount of background information helps built intuition
- Intuition is what an engineer/designer needs most

Periodic System

Ce		ld		S	Eı	Gd	$\mathbf{T b}$	Dy	Ho	$\mathbf{E r}$			Lu
								98	99	100	101	102	103
		U											

Legend

Li Solid	Cs Liquid	Ar Gas	N0.0 Synthetic
Alkali metals	Alkali earth metals	Transition metals	Rare earth metals
Other metals	Noble gases	Halogens	Other nonmetals

http://www.chemicool.com/

Periodic System

Semiconductor Physics

- Intrinsic Si
- Ideal crystal structure
- Valence 4
- almost no free carriers
- almost no conduction
$[n]=[p]=n_{i}=1,5 \cdot 10^{10} / \mathrm{cm}^{3}$
at 300 K for silicon

See also Tipler (BKV) 38.5

- doping with valence 5 atoms (Phosphor, Arsenic) introduces "loose electrons"
- electron donor
- conductivity depends on doping level
$n . p=n_{i}^{2}($ in equilibrium $)$

Semiconductor Physics

- doping with valence 5 atoms (Phosphor, Arsenic) introduces "loose electrons"
- electron donor
- conductivity depends on doping level

- doping with valence 3 atoms (Boron) introduces "loose holes"
- electron acceptors
- hole conductivity lower than electron conductivity

Semiconductor Physics

Si in equilibrium : $n . p=n_{i}^{2}=2.25 \times 10^{20}$ at 300 K Intrinsic Si: $\boldsymbol{n}=\boldsymbol{p}=\boldsymbol{n}_{\boldsymbol{i}}$

$$
N_{D} \gg N_{A}
$$

Electron donors: As, P
n-type $\mathbf{S i}$
$n \approx N_{D}, p=n_{i}^{2} / n$
Electrons: majority carriers
Holes: minority carriers
Resistive material
Conductivity depends on N_{D}

$$
N_{A} \gg N_{D}
$$

Electron acceptors: B p-type Si
$p \approx N_{A}, n=n_{i}^{2} / p$
Holes: majority carriers
Electrons: minority carriers
Hole conductivity lower than electron conductivity

The diode
■ Depletion, I-V relations, capacitance,

The diode: non-linear resistance

The Diode

Cross-section of $p n$-junction in an IC process

One-dimensional representation

diode symbol

Diode is abundant as MOS source/drain

Ideal Diode, Abrupt pn junction Intuitive Description

Join n-Si with p-Si
Concentration gradient of free carriers

Diffusion current
Space charge (depletion) region

Electric field
Drift current opposite to diffusion
equilibrium

Conduction

Typical $\mathrm{N}_{\mathrm{A}}, \mathrm{N}_{\mathrm{D}}$: $10^{15} \ldots 10^{17} / \mathrm{cm}^{3}$, ϕ_{0} around 0.6 V

Built-in Potential

$$
\phi_{0}=\phi_{T} \operatorname{In}\left[\frac{N_{A} N_{D}}{n_{i}^{2}}\right]
$$

$$
\begin{gathered}
\text { Thermal voltage } \\
\phi_{T}=\frac{k T}{q}=26 m V \text { at } 300 \mathrm{~K}
\end{gathered}
$$

Diode Current

■ I_{S} : Saturation current
■ Proportional to diode area

- Depends on doping levels, and widths of neutral regions
■ Usually determined empirically

Models for Manual Analysis

(a) Ideal diode model

(b) First-order diode model

Diode Model Example

$$
\begin{aligned}
& I_{s}=0.5 e^{-16} A \\
& k T / q=25 m V \\
& V_{s}=1.6 \mathrm{~V} \\
& R_{s}=1 k \Omega
\end{aligned}
$$

First order solution

$$
v_{D}=0.6 \mathrm{~V} \quad \Rightarrow I_{D}=1 \mathrm{~mA} \quad \text { error }=8 \%
$$

Now, take $V_{s}=10.6 \mathrm{~V} \quad R_{s}=10 \mathrm{~K} \Omega$
The error will be

Capacitance

TUD/EE ET1205 D2 0910-© NvdM

Relevance of Capacitance

■ Capacitance: amount of stored charge depends on applied voltage
■ Changing voltages (switching!) implies change of charge.

- Change of stored charge requires current
- Amount of current is limited
- (Dis)Charging takes time

■ This is the main reason for 'limited' speed of IC's

■ Speeding up requires improving ratio of current to amount of charge needed -> miniaturization helps!

Linearized Large-Signal Diode Capacitances

Summary:

- Diode capacitances highly ne
- Difficult with manual calculatio-
- We are ultimately interested in amcunt ci.ge wing stored on (or removed from) capacitor
- Since it takes time for this to happen, this determines the final switching speed of the circuit: more charge means more time!
- Linear capacitance: $\Delta \mathrm{Q}=\mathrm{C} \Delta \mathrm{V}$: easy to work with
- Small-signal capacitance: dQ = CdV: for analog appl.
- Non-linear capacitance: $\Delta Q=f\left(V_{\text {low }}, V_{\text {high }}\right)$

Work with C_{eq} for standardized voltage swings

Large Signal Equivalent Diode Capacitance

For analog applications

The MOS Transistor

■ First glance, threshold, I-V relations, models
■ Dynamic behavior (capacitances), resistances, more Second-Order effects, models

The MOS Field Effect Transistor - compared to Storey (Storey § 17.3-17.5)
\square MOSFET transistor is not a JFET
■ Other operating regions compared to saturation region (linear, velocity saturation) also important

- Include more effects (channel length modulation)
- Short-channel devices
- bad for some analog circuits,
- good for (most) digital circuits
- We will develop understanding of basic device equations

MOSFET Transistors

MOSFET = "Metal"-Oxide-Semiconductor Field-Effect Transistor

Cross-sectional view of MOSFET

The MOS Transistor

CROSS-SECTION of NMOS Transistor

Cross-Section of CMOS Technology

N-MOS P-MOS

MOS Transistors

4-terminal model $B=$ bulk (substrate)

PMOS

MOS Transistor Switch Level Models

Position of switch depends on		
gate voltage		
V_{G}		
hi		
lo		
lo		

■ Connection between source and drain depends on gate voltage, current can flow from source to drain and vice versa if closed
■ No static current flows into gate terminal

Mos Switch Model (2)

Position of switch depends on gate voltage

V_{G}	NMOS	PMOS
hi	closed	open
lo	open	closed

CMOS Inverter Operation Principle

From Logic to Voltages

(a) Power supply connection

(b) Logic definitions

Ideal logic 0 corresponds to $\mathrm{V}_{\mathrm{x}}=0 \mathrm{~V}$ Ideal logic 1 corresponds to $\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{DD}}$

Not all actual voltages in circuit necessarily correspond to ideal logic levels, see figure (b) above

From Logic to Voltages

Note:

- GND = GROUND $=0 V$
- Sometimes also called $\mathrm{V}_{\text {ss }}$
- $V_{D D}$ is highest voltage level in circuit
- V_{DD} value depends on technology, has been reduced from 5 V to 1 V and lower over the years
- All voltages V_{x} in ckt : $0 \leq \mathrm{V}_{\mathrm{x}} \leq \mathrm{V}_{\mathrm{DD}}$

Source and Drain Terminals

nFET Threshold Voltage

(drempelspanning)

(a) Gate-source voltage
nFET is off when $\mathrm{V}_{\mathrm{GSn}} \leq \mathrm{V}_{\text {Tn }}$ $n F E T$ is on when $V_{G S n}>V_{T n}$

(b) Logic translation

$$
V_{T n} \sim 0.5 \ldots 0.7 \mathrm{~V}
$$

pFET Threshold Voltage

Excercise

TUD/EE ET1205 D2 0910-© NvdM
\Downarrow to ground
Drain -

Draw same diagram for PMOS using
pFET is off when $-\mathrm{V}_{\text {GSp }} \leq-\mathrm{V}_{\mathrm{Tp}}$ pFET is on when $-\mathrm{V}_{\mathrm{GSp}}>-\mathrm{V}_{\mathrm{Tp}}$

MOS Transistor Treshold Voltage

Treshold voltage V_{T} : point at which transistor turns on

Position of switch depends on		
gate voltage (relative to source)		
V_{GS}	NMOS	PMOS
$\mathrm{V}_{G S}>\mathrm{V}_{\mathrm{T}}$	closed	open
$\mathrm{V}_{G S}<\mathrm{V}_{\mathrm{T}}$	open	closed

Is this all there is?

MOS Models for Manual Analysis

determined by circuit

$$
V_{D S}, V_{G S}, V_{S B}
$$

determined by technology

$k, \lambda, V_{D S A T}, V_{T O}, \gamma, \phi_{F}$

MOS model for manual analysis

$$
\begin{aligned}
I_{D} & =k\left(V_{G T} V_{M I N}-0.5 V_{M I N}^{2}\right)\left(1+\lambda V_{D S}\right) & & \text { for } V_{G T} \geq 0 \\
& =0 & & \text { for } V_{G T} \leq 0 \\
V_{M I N} & =M I N\left(V_{D S}, V_{G T}, V_{D S A T}\right) & &
\end{aligned}
$$

$$
\boldsymbol{V}_{\boldsymbol{G} \boldsymbol{T}}=\boldsymbol{V}_{\mathbf{G S}}-\boldsymbol{V}_{\boldsymbol{T}}, \quad \boldsymbol{V}_{\boldsymbol{T}}=\boldsymbol{V}_{\boldsymbol{T} \mathbf{O}}+\gamma\left(\sqrt{\left|-\mathbf{2} \phi_{\boldsymbol{F}}+\boldsymbol{V}_{\boldsymbol{S B}}\right|}-\sqrt{\left|-\mathbf{2} \phi_{\boldsymbol{F}}\right|}\right)
$$

nMOS Transistor Operation

Substrate (P)

MOSFET gate as capacitor

- Gate capacitance helps determine charge in channel which forms inversion region.
- Basic structure of gate is parallel-plate capacitor:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{ox}} & =\varepsilon_{\mathrm{ox}} / \mathrm{t}_{\mathrm{ox}} \\
\varepsilon_{\mathrm{ox}} & =\varepsilon_{0} \varepsilon_{\mathrm{r}} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
\varepsilon_{\mathrm{r}} & =3.9\left(\mathrm{SiO}_{2}\right)
\end{aligned}
$$

$\mathrm{I}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{GS}}, \mathrm{V}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{BS}}\right)$

MOS model for manual analysis

$$
\begin{array}{lr}
I_{D}=k\left(v_{G T} v_{M I N}-0.5 v_{M I N}^{2}\right)\left(1+\lambda v_{D S}\right) & \text { for } v_{G T} \geq 0 \\
\underbrace{}_{v_{M I N}=\operatorname{MIN}\left(v_{D S}, v_{G T}, v_{D S A T}\right)} & \text { for } v_{G T} \leq 0
\end{array}
$$

- Different operation regions
- Different behavior for each region:
\square off
- resistive

- saturation

■ velocity saturation

Current-Voltage Relations

MOS transistor and its bias conditions

$Q_{i}(x)=-C_{o x}\left[V_{G S}-V(x)-V_{T}\right] \quad$ Inversion Charge

Process Gain and Device Gain

$$
\begin{aligned}
& I_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right] \\
& \boldsymbol{k}_{\boldsymbol{n}}^{\prime}=\mu_{\boldsymbol{n}} \boldsymbol{C}_{o x}=\mu_{\boldsymbol{n}} \frac{\varepsilon_{o x}}{\boldsymbol{t}_{o x}} \quad \begin{array}{l}
\text { Process transconductance } \\
\text { parameter }
\end{array} \\
& k=k_{n}^{\prime} \frac{W}{L} \quad \text { Gain factor of device } \\
& I_{D}=k\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right] \quad \text { (resistive regime) } \\
& \text { - Note 1: we use } \boldsymbol{k} \text {, many others } \beta \text {, but } \boldsymbol{k}=\beta \\
& \text { ■ Note 2: resistive regime a.k.a. triode regime }
\end{aligned}
$$

I-V Relation

This and similar graphs to follow are from the book

$$
I_{D}=k\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right]^{V_{D S}(M)} \text { (resistive regime) }
$$

This formula only valid in restitive regime. This corresponds to the region to the left of the $V_{D S}=V_{G S}-V_{T}$ curve. There is another regime called 'saturation'. See following slides.

I-V Relation

$$
I_{D}=k\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right]
$$

The curve is given by

$$
\frac{d I_{D}}{d V_{D S}}=k\left[\left(V_{G S}-V_{T}\right)-V_{D S}\right]=0 \Rightarrow V_{D S}=V_{G S}-V_{T}
$$

The value $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$ is special: it is the boundary between resistive regime and saturation regime (pinch-off)

Transistor in Saturation

I-V in saturation

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}: \\
& \quad I_{D}=k\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right]
\end{aligned}
$$

Saturation: $\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$
Current does not increase when $V_{D S}>V_{G S}-V_{T}$

$$
\begin{aligned}
I_{D S A T} & =I_{D} V_{D S}=V_{G S}-V_{T} \quad \text { Saturation current } \\
I_{D S A T} & =k\left[\left(V_{G S}-V_{T}\right)\left(V_{G S}-V_{T}\right)-\frac{1}{2}\left(V_{G S}-V_{T}\right)^{2}\right] \\
& =\frac{1}{2} k\left(V_{G S}-V_{T}\right)^{2}
\end{aligned}
$$

I-V Relation

Output Impedance

$$
\begin{aligned}
& v_{G S}+\overbrace{v_{D S}}^{\mathrm{I}_{\mathrm{D}}} \text { Definition: } \quad Z_{o u t}=\frac{d V_{d s}}{d I_{d}} \\
& I_{D}=\frac{1}{2} k\left(V_{G S}-V_{T}\right)^{2}
\end{aligned}
$$

What is the output impedance?
Is this plausible?
What is happening?

Channel Length Modulation

Empirical Model for

 Effective Channel Length$$
L_{\text {eff }}=\frac{L}{1+\lambda V_{D S}}
$$

$$
\begin{aligned}
I_{D S A T} & =\frac{1}{2} k_{n}^{\prime} \frac{W}{L_{\text {eff }}}\left(V_{G S}-V_{T}\right)^{2} \\
& =\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& =\frac{1}{2} k\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)
\end{aligned}
$$

Velocity Saturation (1)

1. Still model not complete: need to include effects of limited carrier velocity
2. Carrier velocity (ideal model): Linear with field

$$
v_{\boldsymbol{n}}=-\mu_{\boldsymbol{n}} \xi(x)=\mu_{\boldsymbol{n}} \frac{d V}{d x}
$$

4. Simple $\mathrm{v}_{\text {sat }}$ Model:

$$
\begin{aligned}
\boldsymbol{v}_{\boldsymbol{n}}= & \mu_{\boldsymbol{n}} \boldsymbol{\xi} & & \text { for } \boldsymbol{\xi} \leq \boldsymbol{\xi}_{\boldsymbol{c}} \\
& =\mu_{n} \xi_{c}=v_{\text {sat }} & & \text { for } \xi \geq \xi_{c}
\end{aligned}
$$

$\xi_{c} \quad$ Critical Field
$v_{\text {sat }}$ Saturation Velocity

Velocity Saturation (2)

Onset of velocity saturation can be translated into a critical voltage $V_{D S}$: $V_{D S A T}$. This value depends on L.

Velocity saturation parameters
$v_{D S A T}=L \xi_{C}=\frac{L v_{\text {sat }}}{\mu_{n}}$

voltage

$$
\begin{aligned}
I_{D S A T} & =I_{D}\left(V_{D S}=V_{D S A T}\right) \\
& =k\left[\left(V_{G S}-V_{T}\right) V_{D S A T}-\frac{1}{2} V_{D S A T}^{2}\right]
\end{aligned}
$$

Velocity Saturation

I_{D} as a function of $V_{D S}$

Long channel device w/o velocity saturation

Short channel device with velocity saturation
$W=1.5 L$

I_{D} as a function of $V_{G S}$

Short channel device with velocity saturation

$$
I_{D}=\frac{1}{2} k\left(V_{G S}-V_{T}\right)^{2}
$$

Overview

$$
\begin{aligned}
& I_{D}^{\prime}= \begin{cases}k\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right] & \begin{array}{ll}
\text { resistive regime } \\
\text { base equation }
\end{array} \\
\frac{1}{2} k\left(V_{G S}-V_{T}\right)^{2} & \begin{array}{l}
\text { when } V_{D S}>V_{G S}-V_{T} \text { : saturation } \\
k\left[\left(V_{G S}-V_{T}\right) V_{D S A T}-\frac{1}{2} V_{D S A T}^{2}\right] \\
\text { replace } V_{D S} \text { by } V_{G S}-V_{T} \text { in base equation } \\
\text { when } V_{D S}>V_{D S A T} \text { velocity saturation } \\
\text { replace } V_{D S} \text { by } V_{D S A T} \text { in base equation }
\end{array}\end{cases} \\
& I_{D}=I_{D}^{\prime}\left(1+\lambda V_{D S}\right) \quad \text { Channel Length Modulation } \\
& \text { Smallest of } V_{D S}, V_{G S}-V_{T}, V_{D S A T} \text { determines operating region } \\
& \text { L } u \longrightarrow \begin{array}{l}
\text { Velocity saturation } \\
\\
\text { Saturation } \\
\text { Resistive }
\end{array}
\end{aligned}
$$

Body Effect

- V_{T} is not constant
- Depends on V_{S} vs V_{B}
\square Our wish is to understand \& predict behavior of CMOS devices
\square We will start with V_{T}

MOSFET gate as capacitor

- Gate capacitance helps determine charge in channel which forms inversion region.
- Basic structure of gate is parallel-plate capacitor:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{ox}} & =\varepsilon_{\mathrm{ox}} / \mathrm{t}_{\mathrm{ox}} \\
\varepsilon_{\mathrm{ox}} & =\varepsilon_{0} \varepsilon_{\mathrm{r}} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
\varepsilon_{\mathrm{r}} & =3.9\left(\mathrm{SiO}_{2}\right)
\end{aligned}
$$

The Threshold Voltage

$$
\begin{align*}
& \qquad V_{T}=\phi_{m s}-2 \phi_{F}-\frac{Q_{B}}{C_{O X}}-\frac{Q_{S S}}{C_{O X}}-\frac{Q_{1}}{C_{O X}} \\
& \begin{array}{c}
\text { Contact Potential } \\
\text { Fermi Potential } \\
\text { Depletion Layer Charge }
\end{array} \\
& \qquad \begin{array}{lll}
Q_{B}=\gamma\left(\sqrt{1-2 \phi_{F}+V_{S B}}\right) & \text { with } & \gamma=\frac{\sqrt{2 q \varepsilon_{S I} N_{A}}}{C_{o x}} \\
\text { Forget all this } & \uparrow & \text { Body Effect Coefficient }
\end{array}
\end{align*}
$$

$$
V_{T}=V_{T 0}+\gamma\left(\sqrt{\left|-2 \phi_{F}+V_{S B}\right|}-\sqrt{\left|-2 \phi_{F}\right|}\right) \quad \text { But be able to use this }
$$

MOS Models for Manual Analysis

Region Specific Models

$$
\begin{aligned}
I_{D}^{\prime} & =k\left(V_{G T} V_{D S}-0.5 V_{D S}^{2}\right) \\
I_{D}^{\prime} & =k\left(V_{G T} V_{G T}-0.5 V_{G T}^{2}\right) \\
I_{D} & =k\left(V_{G T} V_{D S A T}-0.5 V_{D S A T}^{2}\right) \\
I_{D} & =I_{D}^{\prime}\left(1+\lambda V_{D S}\right)
\end{aligned}
$$ added to resitive region, in order to enforce continuity

Resistive region
Saturation
Velocity Saturation
Channel Length Modulation

Comprehensive model

$$
\begin{aligned}
I_{D} & =k\left(V_{G T} V_{M I N}-0.5 V_{M I N}^{2}\right)\left(1+\lambda V_{D S}\right) & & \text { for } V_{G T} \geq 0 \\
& =0 & & \text { for } V_{G T} \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& V_{M I N}=\operatorname{MIN}\left(V_{D S}, V_{G T}, V_{D S A T}\right) \\
& V_{G T}=V_{G S}-V_{T}, \quad V_{T}=V_{T 0}+\gamma\left(\sqrt{\mid-\mathbf{2} \phi_{F}+\boldsymbol{V}_{S B}}-\sqrt{\left|-\mathbf{2} \phi_{\boldsymbol{F}}\right|}\right)
\end{aligned}
$$

MOS Model Comparison

Solid line: simple model
Dotted line: SPICE simulation

- Many more far more advanced models do exist (BSIM4 ~ 20k lines of C)
■ Are only suited for computer simulation
\square The SPICE simulator is the 'good old' workhorse of the industry
Reliable, but low speed

NMOS vs. PMOS

$\square \operatorname{PMOS}\left(\mathrm{V}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}, \mathrm{V}_{\mathrm{T}}\right)<0$
■ Can calculate as if NMOS using absolute values
$■$ PMOS device not as strong as NMOS

NMOS vs. PMOS (2)

Zero-field mobility (bulk!)

Velocity vs. Field

$$
\begin{array}{ll}
\mu_{\boldsymbol{p}}<\mu_{\boldsymbol{n}} & \Rightarrow \quad \boldsymbol{k}_{\boldsymbol{p}}^{\prime}<\boldsymbol{k}_{\boldsymbol{n}}^{\prime} \\
\boldsymbol{v}_{\boldsymbol{s a t}_{\boldsymbol{p}}} \approx \boldsymbol{v}_{\boldsymbol{s a t}_{\boldsymbol{n}}} & \Rightarrow \quad \boldsymbol{V}_{\boldsymbol{D S A} \boldsymbol{T}_{\boldsymbol{p}}}|>| V_{\boldsymbol{D S A}} \boldsymbol{D}_{\boldsymbol{n}}
\end{array}
$$

	$\boldsymbol{V}_{\boldsymbol{n} \boldsymbol{\prime}}(\mathbf{V})$	$\gamma\left(\mathbf{V}^{\mathbf{0 . 5}}\right)$	$\boldsymbol{V}_{\boldsymbol{D S A T}}(\mathbf{V})$	$\boldsymbol{k}^{\prime}\left(\mathbf{A} / \mathbf{V}^{\mathbf{2}}\right)$	$\lambda\left(\mathbf{V}^{-\mathbf{1}}\right)$
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

Alternative Saturation Expression

- Saturation if $\quad V_{D S}>V_{G S}-V_{T}$

■ Show that

$$
V_{D S}>V_{G S^{-}} V_{T} \Leftrightarrow V_{G D}<V_{T}
$$

- Proof:

$$
\begin{aligned}
& V_{D S}>V_{G S}-V_{T} \\
& \Leftrightarrow V_{D}-V_{S}>V_{G}-V_{S}-V_{T} \\
& \Leftrightarrow V_{D}>V_{G}-V_{T} \\
& \Leftrightarrow V_{G}-V_{T}<V_{D} \\
& \Leftrightarrow V_{G}-V_{D}<V_{T}
\end{aligned} \begin{aligned}
& \text { Physically this relates to } \\
& \text { 'amount of inversion' at } \\
& \text { drain side } \\
& \text { If inversion at drain side } \\
& \text { disappears: pinch-off }
\end{aligned}
$$

■ This is an alternative expression for the saturation region

- Can be handy

MOS Device Symmetry

- MOS transistors are symmetrical
- Strong inversion at source if $\left.\mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{T}}\right\}$ Independent!
\square Strong inversion at drain if $\mathrm{V}_{\mathrm{GD}}>\mathrm{V}_{\mathrm{T}}$
■ You should check the I-V relations when interchanging drain and source
- Identification of source drain only by convention
- Determined by circuit-environment

	NMOS	PMOS	General
Source	V_{SS}-side	V_{DD}-side	Strongest inversion
Drain	V_{DD}-side	V_{SS}-side	Weakest inversion

V_{SS} : low supply voltage, $\mathrm{V}_{\mathrm{DD}}=$ high supply voltage

Improved MOS Transistor Switch Level Model

Position of switch depends on gate to source voltage

$\mathrm{V}_{\text {GS }}$	NMOS	PMOS
hi	closed	open
lo	open	closed

More detailed model may include $R_{\text {on }}$

- $R_{\text {on }}$ is highly non-linear
- Make linear approximation $R_{\text {eq }}$
- Model with (linear) $\mathrm{R}_{\text {eq }}$ less detailed then previous equation based model, but often useful for first estimates of behavior

Switch Model $\mathrm{R}_{\text {on }}$

(a) Schematic

(b) trajectory traversed on ID-VDS curve.

$$
\left.\begin{array}{rl}
R_{\text {eq }}= & \frac{1}{2}\left[\frac{V_{D D}}{I_{D S A T}\left(1+\lambda V_{D D}\right)}+\frac{V_{D D} / 2}{I_{D S A T}\left(1+\lambda V_{D D} / 2\right)}\right.
\end{array}\right] \begin{array}{ll}
\frac{1}{1+\lambda V_{D D}} \approx 1-\lambda V_{D D}+O\left(\lambda^{2} V d d^{2}\right) & \begin{array}{l}
2.3 \% \text { error with } \\
\lambda=0.06 \mathrm{~V}^{-1}, V_{D D}=2.5 V
\end{array} \\
R_{\text {eq }} & \approx \frac{1}{2} \frac{V_{D D}}{I_{D S A T}}\left[\left(1-\lambda V_{D D}+\frac{1}{2}\left(1-\lambda V_{D D} / 2\right)\right)\right] \\
=\frac{3}{4} \frac{V_{D D}}{I_{D S A T}}\left[1-\frac{5}{6} \lambda V_{D D}\right] \quad \text { Theory! }
\end{array}
$$

MOS Transistor
 Switch Level Model (Empirical).

Position of switch depends on gate to source voltage

$\mathrm{V}_{\text {GS }}$	NMOS	PMOS
hi	closed	open
lo	open	closed

s $\quad R_{\text {eq }}:$ Practice!

R_{eq} I $\mathrm{V}_{\text {dd }}(\mathrm{V})$	1	1.5	2	2.5
NMOS $(\mathrm{k} \Omega)$	35	19	15	13
PMOS $(\mathrm{k} \Omega)$	115	55	38	31

The MOS Transistor Summary

The MOS Transistor Summary ctd.

\square Need to analyze speed, power, noise etc of MOS circuits
$■$ Simple switch-level model not sufficient
■ Study exact operation to derive more precise IV relations

$$
\begin{aligned}
I_{D} & =k\left(V_{G T} V_{M I N}-0.5 V_{M I N}^{2}\right)\left(1+\lambda V_{D S}\right) & & \text { for } V_{G T} \geq 0 \\
& =0 & & \text { for } V_{G T} \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& V_{M I N}=\operatorname{MIN}\left(V_{D S}, V_{G T}, V_{D S A T}\right) \\
& V_{G T}=V_{G S}-V_{T}, \quad V_{T}=V_{T 0}+\gamma\left(\sqrt{\left|-2 \phi_{F}+V_{S B}\right|}-\sqrt{\mid-\mathbf{2} \phi_{F}}\right)
\end{aligned}
$$

Summary

■ Semiconductor Physics
■ The diode
■ Depletion, I-V relations, capacitance, secondary effects, models
■ The MOS transistor
■ First glance, threshold, I-V relations, models
■ Dynamic behavior (capacitances), resistances, more Second-Order effects, models

