

Goal of this chapter

- Present intuitive understanding of device operation
- Introduction of basic device equations
- Introduction of models for manual analysis
- Introduction of models for SPICE simulation
- Analysis of secondary and deep-sub-micron effects
- Future trends

Outline

- Semiconductor Physics
- The diode
 - Depletion, I-V relations, capacitance,
- The MOS transistor
 - First glance, threshold, I-V relations, models
 - Dynamic behavior (capacitances), resistances,
- Process variations

Course Material for Devices

Chapter 3

P = primair, I = Illustratie, O = overslaan

С	3.1	Introduction	74
Ρ	3.2-3.2.1	A first glance at the diode	74 – 77
Ρ	3.2.2	Static Behavior	77 – 80
0	3.2.3	Dynamic, or Transient, Behavior	80 - 83 (1)
0	3.2.4	Secondary Effects	84 – 85
0	3.2.5	Spice Diode Model	85 – 87
Ρ	3.3 – 3.3.2	The MOS(FET) Transistor	87 – 99
0		Subthreshold Conduction	99 – 101
Ρ		Models for Manual Analysis	101 – 106
0	3.3.2	Dynamic Behavior, etc.	106 – 113 (1)
Ρ		Junction Capacitances	110 – 111
0	3.3.3	Some Secondary Effects	114 – 117
0	3.3.4	Spice Model for the MOS Transistor	117 – 120
0	3.4	A word on process variations	120 – 122
	3.5	Perspective: Technology Scaling	122 – 128
Ρ	3.6	Summary	128 – 129

(1) Vervangend studiemateriaal voor dynamisch gedrag in syllabus

Modeling

- An abstraction of (the properties) of something to help understanding and predicting its behavior
- Domain Specific: weather, climate, economy, stock market, ...
- Different models for something to answer different questions
- Black-Box modeling vs. Physically Based

After Einstein: a model should be as simple as possible, but not simpler

- All electrical behavior is determined by underlying physics
- This course is not about the physics
- But some small amount of background information helps built intuition
- Intuition is what an engineer/designer needs most

Periodic System

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	\mathbf{Pm}	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

http://www.chemicool.com/

Periodic System

Name	Symbol	#	Valence
Silicon	Si	14	4
Boron	В	5	3
Phosphor	Р	15	5
Arsenic	As	33	5
Germanium	Ge	32	4

- Intrinsic Si
- Ideal crystal structure
- Valence 4
- almost no free carriers
- almost no conduction

$$[n] = [p] = n_i = 1,5.10^{10}/cm^3$$

at 300 K for silicon

See also Tipler (BKV) 38.5

- doping with valence 5 atoms (Phosphor, Arsenic) introduces "loose electrons"
- electron donor
- conductivity depends on doping level

 $n.p = n_i^2$ (in equilibrium)

- doping with valence 5 atoms (Phosphor, Arsenic) introduces "loose electrons"
- electron donor
- conductivity depends on doping level

- doping with valence 3 atoms (Boron) introduces "loose holes"
- electron acceptors
- hole conductivity lower than electron conductivity

Si in equilibrium : $n.p = n_i^2 = 2.25 \times 10^{20}$ at 300K Intrinsic Si : $n = p = n_i$

 $N_{\Delta} >> N_{D}$ $N_D >> N_\Delta$ **Electron donors: As, P Electron acceptors: B** n-type Si p-type Si $n \approx N_{\rm D}, p = n_i^2/n$ $p \approx N_{\Delta}, n = n_i^2/p$ **Electrons: majority carriers Holes: majority carriers Holes: minority carriers Electrons: minority carriers Resistive material** Hole conductivity lower than electron conductivity **Conductivity depends** on N_D

The diodeDepletion, I-V relations, capacitance,

The diode: non-linear resistance

TUD/EE ET1205 D2 0910 - © NvdM

- By applying an external voltage, width of depletion region can be changed
- Forward: becomes smaller and smaller, finally conduction
- Reverse: becomes wider and wider => no conduction

Diode Current

- I_S: Saturation current
- Proportional to diode area
- Depends on doping levels,
 - and widths of neutral regions
- Usually determined empirically

Models for Manual Analysis

(a) Ideal diode model

(b) First-order diode model

TUD/EE ET1205 D2 0910 - © NvdM

Diode Model Example

 $I_{s} = 0.5e^{-16}A$ kT/q = 25mV $V_{s} = 1.6V$ $R_{s} = 1k\Omega$

First order solution

$$V_D = 0.6V \implies I_D = 1 \, mA \quad \text{error} = 8 \%$$

Now, take $V_s = 10.6V$ $R_s = 10K\Omega$ The error will be

Capacitance

TUD/EE ET1205 D2 0910 - © NvdM

Relevance of Capacitance

- Capacitance: amount of stored charge depends on applied voltage
- Changing voltages (switching!) implies change of charge.
- Change of stored charge requires current
- Amount of current is limited
- (Dis)Charging takes time
- This is the main reason for 'limited' speed of IC's
- Speeding up requires improving ratio of current to amount of charge needed -> miniaturization helps!

Linearized Large-Signal Diode Capacitances

Summary:

- Diode capacitances highly n
- Difficult with manual calculation
- We are ultimately interested in amount of geoling stored on (or removed from) capacitor
 - Since it takes time for this to happen, this determines the final switching speed of the circuit: more charge means more time!
- **Linear capacitance:** $\Delta Q = C \Delta V$: easy to work with
- Small-signal capacitance: dQ = CdV: for analog appl.
- **Non-linear capacitance:** $\Delta Q = f(V_{low}, V_{high})$

Work with C_{eq} for standardized voltage swings

See the

syllabus!

The MOS Transistor

- First glance, threshold, I-V relations, models
- Dynamic behavior (capacitances), resistances, more Second-Order effects, models

The MOS Field Effect Transistor – compared to Storey (Storey § 17.3-17.5)

- MOSFET transistor is not a JFET
- Other operating regions compared to saturation region (linear, velocity saturation) also important
- Include more effects (channel length modulation)
- Short-channel devices
 - bad for some analog circuits,
 - good for (most) digital circuits
- We will develop understanding of basic device equations

MOSFET Transistors

MOSFET = "Metal"-Oxide-Semiconductor Field-Effect Transistor Gate (terminal of MOSFET) ≠ Logic gate

The MOS Transistor

Bulk Contact

CROSS-SECTION of NMOS Transistor

Cross-Section of CMOS Technology

N-MOS P-MOS

MOS Transistors

3-terminal model

bulk assumed to be connected to appropriate supply

MOS Transistor Switch Level Models

Connection between source and drain depends on gate voltage, current can flow from source to drain and vice versa if closed
No static current flows into gate terminal

CMOS Inverter Operation Principle

From Logic to Voltages

TUD/EE ET1205 D2 0910 - © NvdM

19 April 2010

1 devices 35

From Logic to Voltages

Source and Drain Terminals

pFET Threshold Voltage

Excercise

 V_{DD}

 V_{Tn}

 $\hat{1}$ to V_{DD} Drain

 V_{SGp}

Gate

 V_A

Drain ↓ to ground TUD/EE ET1205 D2 0910 - © NvdM

Source

Mp

 V_{DD}

MOS Transistor Treshold Voltage

Treshold voltage V_T: point at which transistor turns on

Position of switch depends on gate voltage (relative to source)					
V _{G S}	NMOS	PMOS			
V _{GS} >V _T	closed	open			
V _{GS} <v<sub>T</v<sub>	open	closed			

Is this all there is?

- You don't believe that (CMOS) life can be so simple, do you?
- Think of some of the things that you would expect to be non-idealities of CMOS as a switch
- Discuss with your neighbor
- Share with us
- Since we want to design CMOS circuits, we need a deeper understanding of CMOS circuits
- Next slide shows where we are going

MOS Models for Manual Analysis

determined by circuit V_{DS}, V_{GS}, V_{SB}

determined by technology $k, \lambda, V_{DSAT}, V_{TO}, \gamma, \phi_F$

$$\begin{split} \textbf{MOS model for manual analysis} \\ I_D &= k \Big(V_{GT} V_{MIN} - 0.5 V_{MIN}^2 \Big) \Big(1 + \lambda V_{DS} \Big) & \text{for } V_{GT} \geq 0 \\ &= 0 & \text{for } V_{GT} \leq 0 \\ V_{MIN} &= MIN(V_{DS}, V_{GT}, V_{DSAT} \Big) \end{split}$$

$$V_{GT} = V_{GS} - V_T$$
, $V_T = V_{T0} + \gamma \left(\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|} \right)$

nMOS Transistor Operation

TUD/EE ET1205 D2 0910 - © NvdM

MOSFET gate as capacitor

- Gate capacitance helps determine charge in channel which forms inversion region.
- **Basic structure of gate is** parallel-plate capacitor: $C_{ox} = \varepsilon_{ox} / t_{ox}$ $\varepsilon_{ox} = \varepsilon_0 \varepsilon_r$ $\epsilon_{n} = 8.85 \times 10^{-12} \text{ F/m}$ gate $\varepsilon_r = 3.9 \text{ (SiO}_2\text{)}$ + $\int \mathbf{t}_{ox}$ SiO₂ Vg substrate Note: [F] vs. [F/m²]

$$\mathbf{I}_{\mathsf{D}}(\mathbf{V}_{\mathsf{GS}}, \mathbf{V}_{\mathsf{DS}}, \mathbf{V}_{\mathsf{BS}})$$

Different operation regions

- Different behavior for each region:
 - off

- saturation
- velocity saturation

Current-Voltage Relations

MOS transistor and its bias conditions

$$Q_{i}(x) = -C_{ox}\left[V_{GS} - V(x) - V_{T}\right] \text{ Inversion Charge}$$

$$I_{D} = -\mu_{n} \frac{dV}{dx} Q_{i}(x)W \qquad I_{D} \text{ Drain Current} \\ \mu_{n} \text{ mobility (n-Si)}$$

$$I_{D}L = \mu_{n}C_{ox}W\left[(V_{GS} - V_{T})V - \frac{1}{2}V^{2}\right]_{0}^{V_{DS}} \qquad \int_{U}^{V_{GS}} \frac{V_{GS}}{\int_{U}^{U}} \frac{V_{GS}}{\int_{$$

Process Gain and Device Gain

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

I-V Relation

This formula only valid in restitive regime. This corresponds to the region to the left of the $V_{DS}=V_{GS}-V_T$ curve. There is another regime called 'saturation'. See following slides.

I-V Relation

The curve is given by

$$\frac{dI_D}{dV_{DS}} = k \Big[(V_{GS} - V_T) - V_{DS} \Big] = 0 \Rightarrow V_{DS} = V_{GS} - V_T$$

The value $V_{DS} = V_{GS} - V_T$ is special: it is the boundary between resistive regime and saturation regime (pinch-off)

Transistor in Saturation

I-V in saturation

Current does not increase when $V_{DS} > V_{GS} - V_T$

$$I_{DSAT} = I_D \begin{vmatrix} V_{DS} = V_{GS} - V_T \\ V_{DS} = V_{GS} - V_T \end{vmatrix}$$

Saturation current
$$I_{DSAT} = k \Big[(V_{GS} - V_T)(V_{GS} - V_T) - \frac{1}{2}(V_{GS} - V_T)^2 \Big]$$
$$= \frac{1}{2} k (V_{GS} - V_T)^2$$

I-V Relation

Output Impedance

Definition:

$$Z_{out} = \frac{dV_{ds}}{dI_d}$$

$$I_D = \frac{1}{2} k (V_{GS} - V_T)^2$$

What is the output impedance?

Is this plausible?

What is happening?

Channel Length Modulation

Velocity Saturation (1)

1. Still model not complete: need to include effects of **limited carrier velocity**

Velocity Saturation (2)

Onset of velocity saturation can be translated into a critical voltage V_{DS} : V_{DSAT} . This value depends on *L*.

$$I_{DSAT} = I_D (V_{DS} = V_{DSAT})$$
$$= k \left[(V_{GS} - V_T) V_{DSAT} - \frac{1}{2} V_{DSAT}^2 \right]$$

Velocity Saturation

V_{DSAT}

3

1.5

0.375

0.27

. . .

I_D as a function of V_{DS}

Long channel device w/o velocity saturation

Short channel device with velocity saturation

Overview

$$I_{D}^{'} = \begin{cases} k \Big[(V_{GS} - V_{T})V_{DS} - \frac{1}{2}V_{DS}^{2} \Big] & \text{resistive regime} \\ \text{base equation} \\ \text{when } V_{DS} > V_{GS} - V_{T} \text{: saturation} \\ \text{replace } V_{DS} \text{ by } V_{GS} - V_{T} \text{: n base equation} \\ k \Big[(V_{GS} - V_{T})V_{DSAT} - \frac{1}{2}V_{DSAT}^{2} \Big] & \text{when } V_{DS} > V_{DSAT} \text{: velocity saturation} \\ \text{replace } V_{DS} \text{ by } V_{DSAT} \text{: n base equation} \end{cases}$$

 $I_{D} = I'_{D} (1 + \lambda V_{DS})$ Channel Length Modulation

Body Effect

- V_T is not constant
- Depends on V_S vs V_B
- Our wish is to understand & predict behavior of CMOS devices
- We will start with V_T

MOSFET gate as capacitor

- Gate capacitance helps determine charge in channel which forms inversion region.
- **Basic structure of gate is** parallel-plate capacitor: $C_{ox} = \varepsilon_{ox} / t_{ox}$ $\varepsilon_{ox} = \varepsilon_0 \varepsilon_r$ $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$ gate $\varepsilon_r = 3.9 \text{ (SiO}_2\text{)}$ + $\int \mathbf{t}_{ox}$ SiO₂ Vg substrate Note: [F] vs. [F/m²]

The Threshold Voltage

TUD/EE ET1205 D2 0910 - © NvdM

MOS Models for Manual Analysis

Region Specific Models $I'_{D} = k \Big(V_{GT} V_{DS} - 0.5 V_{DS}^{2} \Big)$ $I'_{D} = k \Big(V_{GT} V_{GT} - 0.5 V_{GT}^{2} \Big)$ $I'_{D} = k \Big(V_{GT} V_{DSAT} - 0.5 V_{DSAT}^{2} \Big)$ $I_{D} = I'_{D} (1 + \lambda V_{DS})$ Channel length modulation added to resitive region, in order to enforce continuity

Resistive region

Saturation

Velocity Saturation

Channel Length Modulation

 $\begin{array}{ll} \textbf{Comprehensive model} \\ \textbf{I}_{D} = \textbf{k} \Big(\textbf{V}_{GT} \textbf{V}_{MIN} - \textbf{0.5} \textbf{V}_{MIN}^{2} \Big) \Big(\textbf{1} + \lambda \textbf{V}_{DS} \Big) & \text{for } \textbf{V}_{GT} \ge \textbf{0} \\ = \textbf{0} & \text{for } \textbf{V}_{GT} \le \textbf{0} \end{array}$

$$V_{MIN} = MIN(V_{DS}, V_{GT}, V_{DSAT})$$

$$V_{GT} = V_{GS} - V_T, \quad V_T = V_{T0} + \gamma \left(\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|} \right)$$

MOS Model Comparison

Many more far more advanced models do exist (BSIM4 ~ 20k lines of C) Are only suited for

computer simulation

The SPICE simulator is the 'good old' workhorse of the industry

Reliable, but low speed

Solid line: simple model

Dotted line: SPICE simulation

NMOS vs. PMOS

 $\blacksquare \mathsf{PMOS}\left(\mathsf{V}_{\mathsf{DS}},\,\mathsf{V}_{\mathsf{GS}},\,\mathsf{I}_{\mathsf{D}},\,\mathsf{V}_{\mathsf{T}}\right) < 0$

Can calculate as if NMOS using absolute values
 PMOS device not as strong as NMOS

NMOS vs. PMOS (2)

	$V_{T0}(V)$	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	$\lambda (V^{-1})$
NMOS	0.43	0.4	0.63	115 × 10 ⁻⁶	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

Alternative Saturation Expression

Saturation if

$$V_{DS} > V_{GS} - V_{T}$$

1/ . 1/

- Show that
- Proof:

$$V_{DS} > V_{GS} - V_T \Leftrightarrow V_{GD} < V_T$$

$$V_{DS} > V_{GS} - V_T$$

$$\Leftrightarrow V_D - V_S > V_G - V_S - V_T$$

$$\Leftrightarrow V_D > V_G - V_T$$

$$\Leftrightarrow V_G - V_T < V_D$$

$$\Leftrightarrow V_G - V_D < V_T$$

$$\Leftrightarrow V_G - V_D < V_T$$

$$\Leftrightarrow V_{GD} < V_T$$

17 ... 17

. \ /

Physically this relates to famount of inversion' at drain side If inversion at drain side disappears: pinch-off

This is an alternative expression for the saturation region
 Can be handy

MOS Device Symmetry

- MOS transistors are symmetrical
- Strong inversion at source if V_{GS} > V_T
 Strong inversion at drain if V_{GD} > V_T
- You should check the I-V relations when interchanging drain and source
- Identification of source drain only by convention

	NMOS	PMOS	General
Source	V _{SS} -side	V _{DD} -side	Strongest inversion
Drain	V _{DD} -side	V _{SS} -side	Weakest inversion

 V_{SS} : low supply voltage, V_{DD} = high supply voltage

Improved MOS Transistor Switch Level Model

Position of switch depends on gate to source voltage

V _{GS}	NMOS	PMOS
hi	closed	open
Ιο	open	closed

More detailed model may include R_{on}

- R_{on} is highly non-linear
- Make linear approximation R_{eq}
- Model with (linear) R_{eq} less detailed then previous equation based model, but often useful for first estimates of behavior

Switch Model Ron

(a) Schematic

(b) trajectory traversed on ID-VDS curve.

$$R_{eq} = \frac{1}{2} \left[\frac{V_{DD}}{I_{DSAT} (1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT} (1 + \lambda V_{DD}/2)} \right]$$

$$\frac{1}{1 + \lambda V_{DD}} \approx 1 - \lambda V_{DD} + O(\lambda^2 V_{dd}^2) \qquad 2.3\% \text{ error with}$$

$$\lambda = 0.06 \text{ V}^{-1}, V_{DD} = 2.5 \text{ V}$$

$$R_{eq} \approx \frac{1}{2} \frac{V_{DD}}{I_{DSAT}} \left[\left(1 - \lambda V_{DD} + \frac{1}{2} (1 - \lambda V_{DD}/2) \right) \right]$$

$$= \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left[1 - \frac{5}{6} \lambda V_{DD} \right] \qquad \text{Theory!}$$

TUD/EE ET1205 D2 0910 - © NvdM
MOS Transistor Switch Level Model (Empirical).

s R_{eq}: Practice!

R _{eq} \ V _{dd} (V)	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31

The MOS Transistor Summary

The MOS Transistor Summary ctd.

- Need to analyze speed, power, noise etc of MOS circuits
- Simple switch-level model not sufficient
- Study exact operation to derive more precise IV relations

$$\begin{split} I_D &= k \Big(V_{GT} V_{MIN} - 0.5 V_{MIN}^2 \Big) \Big(1 + \lambda V_{DS} \Big) & \text{for } V_{GT} \ge 0 \\ &= 0 & \text{for } V_{GT} \le 0 \end{split}$$

$$V_{MIN} = MIN(V_{DS}, V_{GT}, V_{DSAT})$$

$$V_{GT} = V_{GS} - V_{T}, \qquad V_{T} = V_{T0} + \gamma \left(\sqrt{|-2\phi_{F} + V_{SB}|} - \sqrt{|-2\phi_{F}|} \right)$$

Summary

- Semiconductor Physics
- The diode
 - Depletion, I-V relations, capacitance, secondary effects, models
- The MOS transistor
 - First glance, threshold, I-V relations, models
 - Dynamic behavior (capacitances), resistances, more Second-Order effects, models