

Goal of this chapter

- Present intuitive understanding of device operation
- Introduction of basic device equations
- Introduction of models for manual analysis
- Introduction of models for SPICE simulation
- Analysis of secondary and deep-sub-micron effects
- Future trends

Outline

- Semiconductor Physics
- The diode
 - Depletion, I-V relations, capacitance,
- The MOS transistor
 - First glance, threshold, I-V relations, models
 - Dynamic behavior (capacitances), resistances,
- Process variations

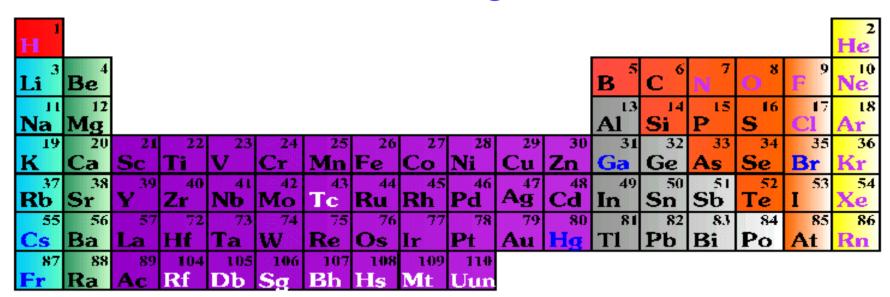
Course Material for Devices

Chapter 3

P = primair, I = Illustratie, O = overslaan

С	3.1	Introduction	74
Р	3.2-3.2.1	A first glance at the diode	74 – 77
Р	3.2.2	Static Behavior	77 – 80
0	3.2.3	Dynamic, or Transient, Behavior	80 – 83 (1)
0	3.2.4	Secondary Effects	84 – 85
0	3.2.5	Spice Diode Model	85 – 87
P	3.3 – 3.3.2	The MOS(FET) Transistor	87 – 99
0		Subthreshold Conduction	99 – 101
P		Models for Manual Analysis	101 – 106
0	3.3.2	Dynamic Behavior, etc.	106 – 113 (1)
P		Junction Capacitances	110 – 111
0	3.3.3	Some Secondary Effects	114 – 117
0	3.3.4	Spice Model for the MOS Transistor	117 – 120
0	3.4	A word on process variations	120 – 122
	3.5	Perspective: Technology Scaling	122 – 128
Р	3.6	Summary	128 – 129

(1) Vervangend studiemateriaal voor dynamisch gedrag in syllabus


Modeling

- An abstraction of (the properties) of something to help understanding and predicting its behavior
- **Domain Specific:** weather, climate, economy, stock market, ...
- Different models for something to answer different questions
- Black-Box modeling vs. Physically Based

After Einstein: a model should be as simple as possible, but not simpler

- All electrical behavior is determined by underlying physics
- This course is not about the physics
- But some small amount of background information helps built intuition
- Intuition is what an engineer/designer needs most
- Also see S&G Chapter 2.

Periodic System

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	$\mathbf{B}\mathbf{k}$	Cf	Es	\mathbf{Fm}	Md	No	Lr

Legend

http://www.chemicool.com/

Periodic System

	B 5	C 6	N 7	0
	Al 13	Si	P 15	S
30	31	32	33	
n	Ga	Ge	As	S
48	49	50	51	
d	In	Sn	Sb	Ť
80	81	82	83	
g	TI	Pb	Bi	P

Name	Symbol	#	Valence
Silicon	Si	14	4
Boron	В	5	3
Phosphor	Р	15	5
Arsenic	As	33	5
Germanium	Ge	32	4

See also Tipler (BKV) 38.5

- Intrinsic Si
- Ideal crystal structure
- Valence 4
- almost no free carriers
- almost no conduction

$$[n] = [p] = n_i = 1.5.10^{10}/cm^3$$

at 300 K for silicon

- doping with valence 5 atoms (Phosphor, Arsenic) introduces "loose electrons"
- electron donor
- conductivity depends on doping level

$$n.p = n_i^2$$
 (in equilibrium)

- doping with valence 5 atoms (Phosphor, Arsenic) introduces "loose electrons"
- electron donor
- conductivity depends on doping level

- doping with valence 3 atoms (Boron) introduces "loose holes"
- electron acceptors
- hole conductivity lower than electron conductivity

Si in equilibrium : $n.p = n_i^2 = 2.25 \times 10^{20}$ at 300K Intrinsic Si : $n = p = n_i$

$$N_D >> N_A$$

Electron donors: As, P n-type Si

$$n \approx N_D, p = n_i^2/n$$

Electrons: majority carriers

Holes: minority carriers

Resistive material Conductivity depends on N_D

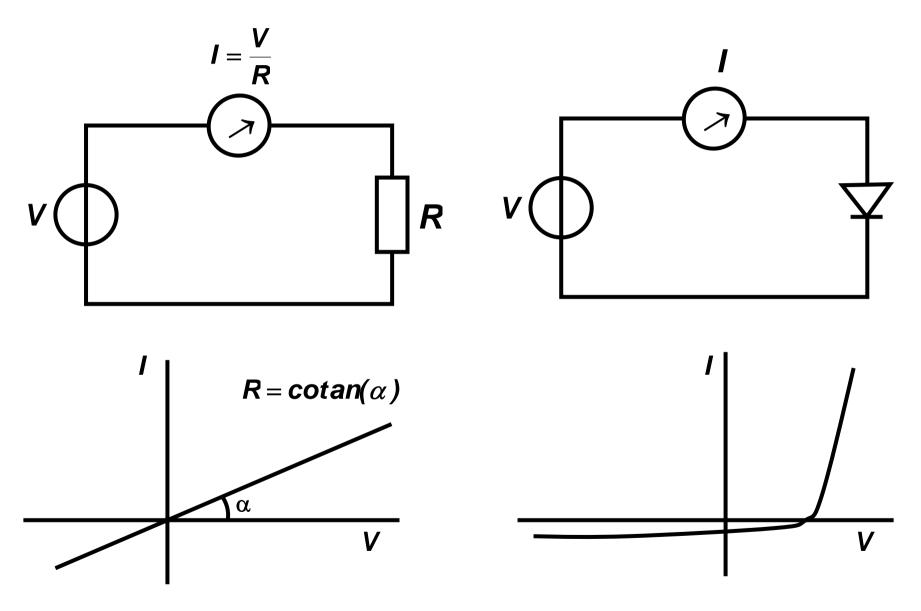
$$N_A >> N_D$$

Electron acceptors: B p-type Si

$$p \approx N_A$$
, $n = n_i^2/p$

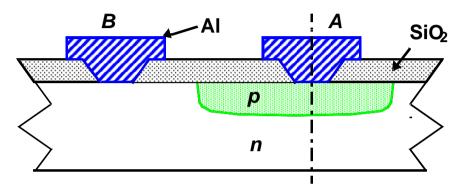
Holes: majority carriers

Electrons: minority carriers

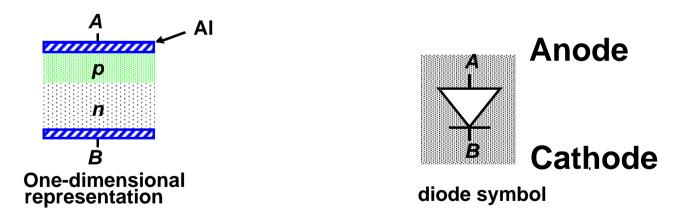

Hole conductivity lower

than electron conductivity

The diode


■ Depletion, I-V relations, capacitance,

The diode: non-linear resistance



The Diode

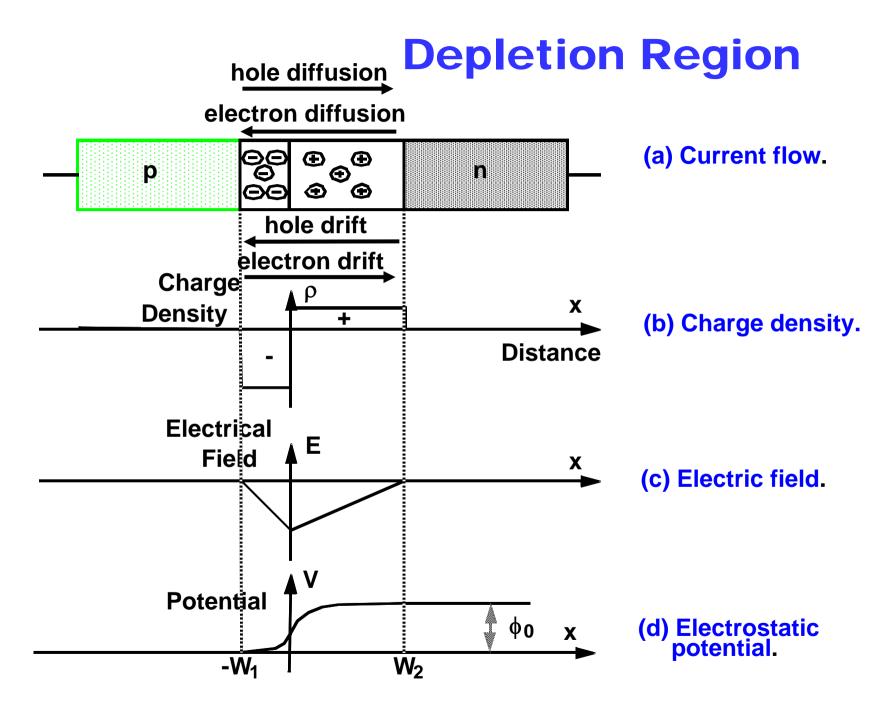
See also Tipler (BKV) 38.6

Cross-section of *pn*-junction in an IC process

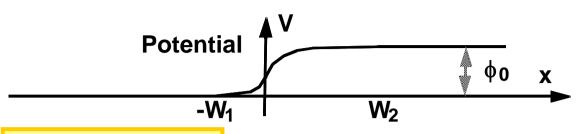
Diode is abundant as MOS source/drain

Ideal Diode, Abrupt pn junction Intuitive Description

p-Si n-Si


Electron diffusion

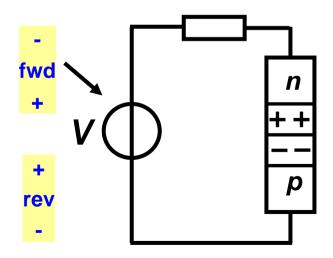
p - + n


Hole drift

Electron drift

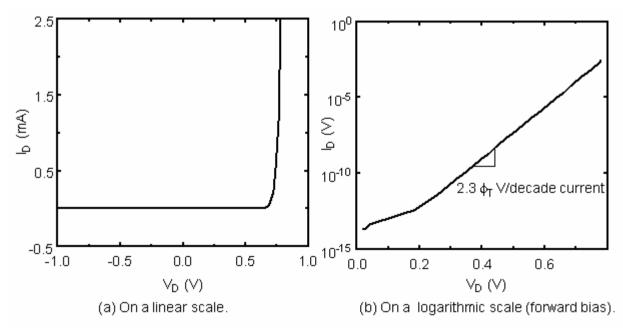
Join n-Si with p-Si **Concentration gradient of** free carriers **Diffusion current** Space charge (depletion) region **Electric field Drift current opposite to** diffusion equilibrium

Conduction


Typical N_A , N_D : $10^{15} \dots 10^{17}/\text{cm}^3$, ϕ_{θ} around 0.6 V

Built-in Potential

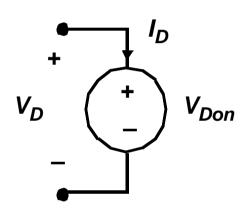
$$\phi_0 = \phi_T \ln \left[\frac{N_A N_D}{n_i^2} \right]$$


Thermal voltage

$$\phi_T = \frac{kT}{q} = 26mV$$
 at $300K$

- By applying an external voltage, width of depletion region can be changed
- Forward: becomes smaller and smaller, finally conduction
- Reverse: becomes wider and widerno conduction

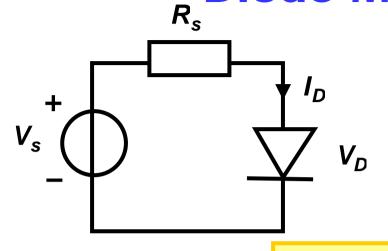
Diode Current


$$I_D = I_S \Big(\mathbf{e}^{V_D/\phi_T} - \mathbf{1} \Big)$$

- \blacksquare I_S : Saturation current
- Proportional to diode area
- Depends on doping levels, and widths of neutral regions
- Usually determined empirically

Models for Manual Analysis

$$I_D = I_S \left(e^{V_D/\phi_T} - 1 \right)$$


$$V_D = V_S \left(e^{V_D/\phi_T} - 1 \right)$$

(a) Ideal diode model

(b) First-order diode model

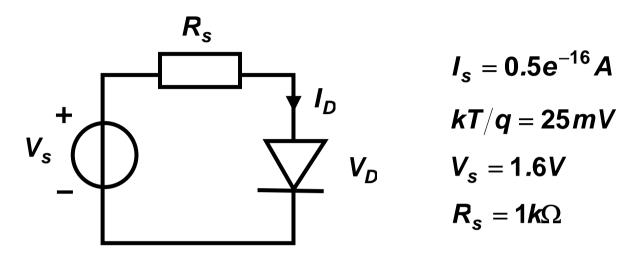
Diode Model Example

Determine I_D

$$I_D = I_s(e^{V_D/\phi_T} - 1)$$
 (diode model)

$$V_s - R_s I_D = V_D$$
 (Kirchof)

$$V_S - R_S I_S (e^{V_D I \phi_T} - 1) = V_D$$

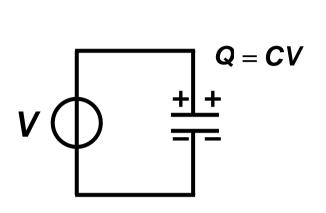

Picard Iteration

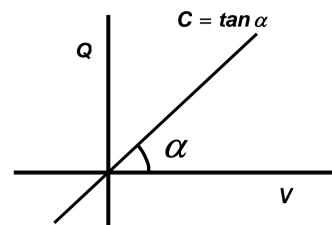
$$I_s = 0.5e^{-16}A$$
 $kT/q = 25mV$
 $V_s = 1.6V$
 $R_s = 1k\Omega$

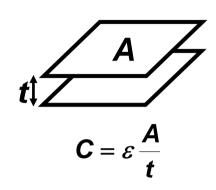
Start:
$$V_D = 1.0 V$$

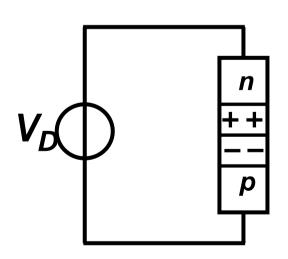
 $\Rightarrow I_D = (V_S - V_D)/R_S = 0.600 \text{ mA}$
 $\Rightarrow V_D = \phi_T (1 + In(I_D/I_S)) = 0.663 V$
 $\Rightarrow I_D = = 0.937 \text{ mA}$
 $\Rightarrow V_D = = 0.674 V$
 $\Rightarrow I_D = = 0.926 \text{ mA}$
 $\Rightarrow V_D = = 0.674 V$

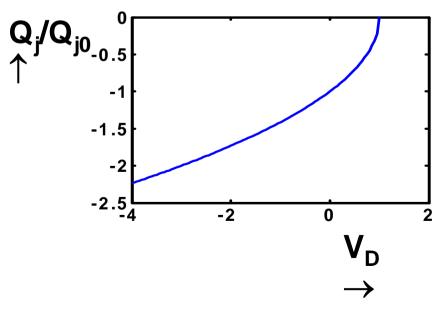
Diode Model Example


First order solution


$$V_D = 0.6V \Rightarrow I_D = 1 \, mA \quad \text{error} = 8 \%$$

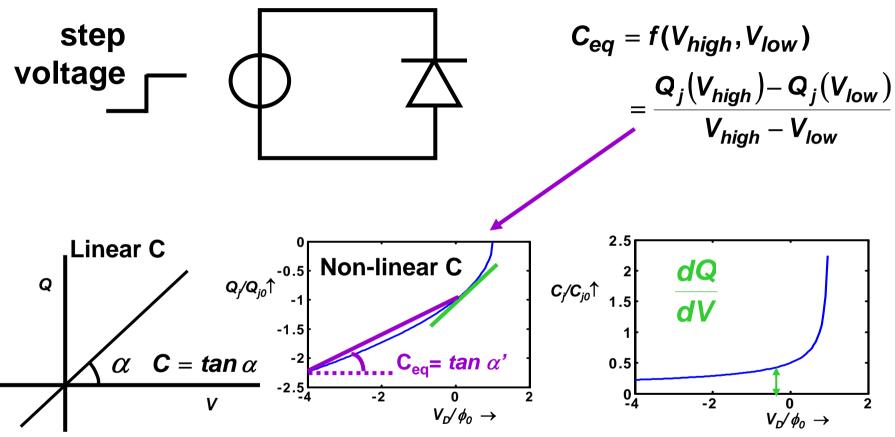

Now, take $V_s = 10.6V$ $R_s = 10K\Omega$


The error will be


Capacitance

Linearized Large-Signal Diode Capacitances

Summary:


- Diode capacitances highly nec
- Difficult with manual calculation
- We are ultimately interested in amount of ge being stored on (or removed from) capacitor
 - Since it takes time for this to happen, this determines the final switching speed of the circuit: more charge means more time!
- Linear capacitance: $\triangle Q = C \triangle V$: easy to work with
- Small-signal capacitance: dQ = CdV: for analog appl.
- Non-linear capacitance: $\Delta Q = f(V_{low}, V_{high})$

Work with C_{eq} for standardized voltage swings

See the

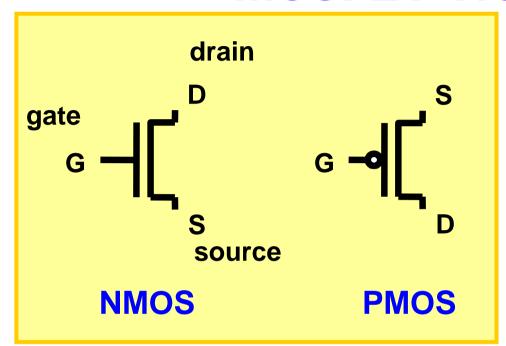
syllabus!

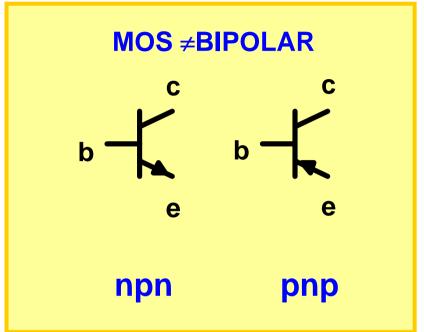
Large Signal Equivalent Diode Capacitance

Linearized, large signal, depends on swing

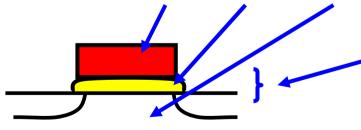
Linearized, small signal, depends on bias

For analog applications


The MOS Transistor

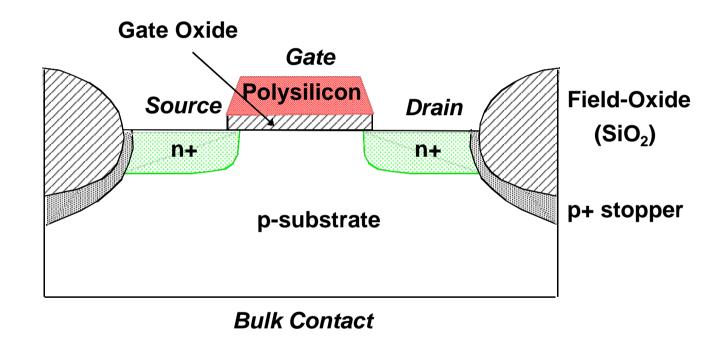

- First glance, threshold, I-V relations, models
- Dynamic behavior (capacitances), resistances, more Second-Order effects, models

The MOS Transistor – compared to Storey


- no J-Fet
- Also other operating regions compared to saturation region (linear, velocity saturation)
- Include more effects (channel length modulation)
- Short-channel devices (bad for some analog circuits, good for (most) digital circuits)
- We will develop understanding of basic device equations

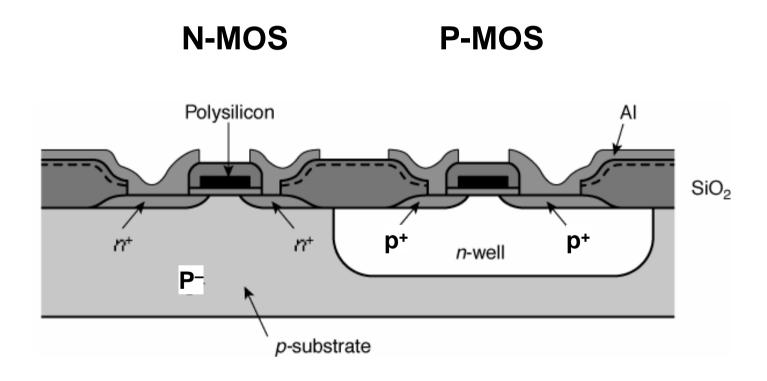
MOSFET Transistors

MOSFET = "Metal"-Oxide-Semiconductor Field-Effect Transistor

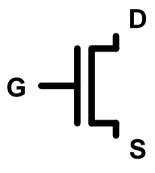


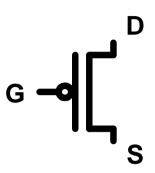
Cross-sectional view of MOSFET

Gate (terminal of MOSFET)

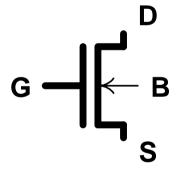

≠
Logic gate

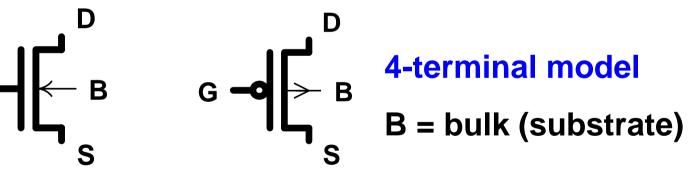
The MOS Transistor




CROSS-SECTION of NMOS Transistor

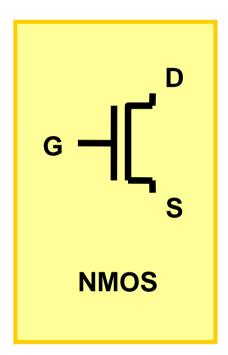
Cross-Section of CMOS Technology

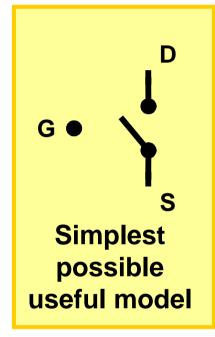

MOS Transistors



3-terminal model

bulk assumed to be connected to appropriate supply

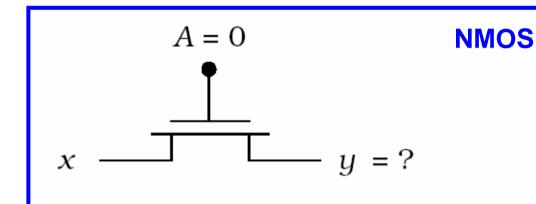




NMOS

PMOS

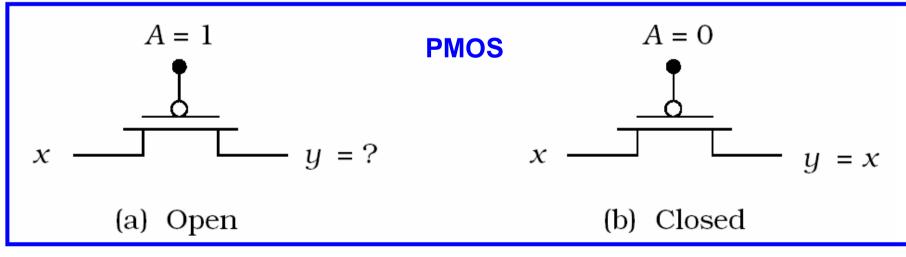
MOS Transistor Switch Level Models

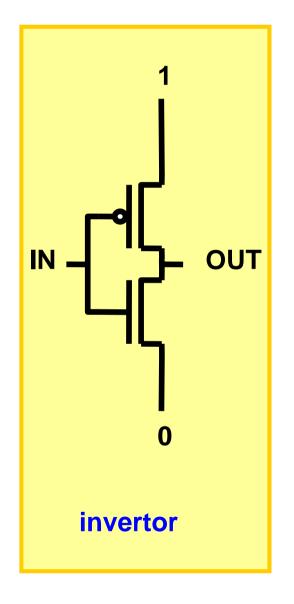

Position of switch depends on gate voltage					
V _G	NMOS	PMOS			
hi	closed	open			
lo	open	closed			

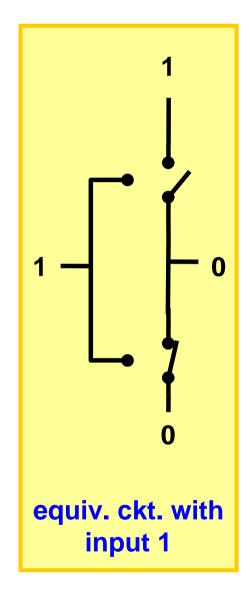
- Connection between source and drain depends on gate voltage, current can flow from source to drain and vice versa if closed
- No static current flows into gate terminal

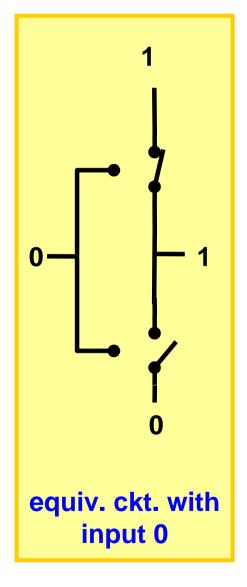
Mos Switch Model (2)

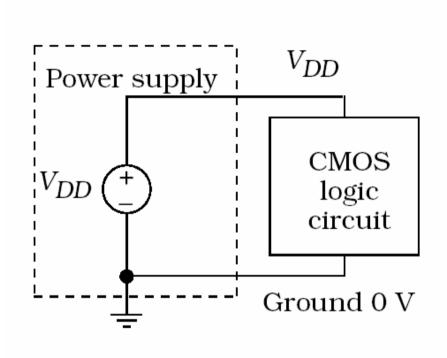
Position of switch depends on gate voltage


V_G NMOS PMOS
hi closed open
lo open closed

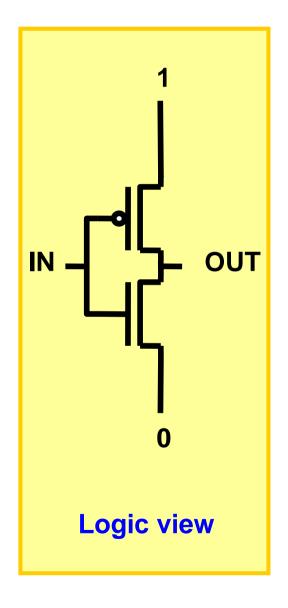

A = 1 y = x

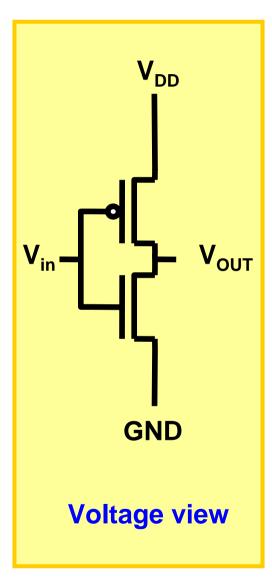

(a) Open


(b) Closed


CMOS Inverter Operation Principle

From Logic to Voltages

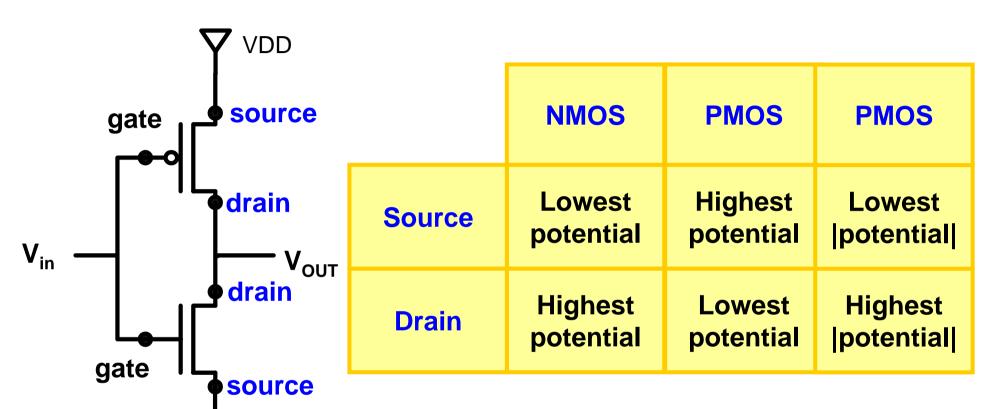

(a) Power supply connection


(b) Logic definitions

Ideal logic 0 corresponds to $V_x = 0V$ *Ideal* logic 1 corresponds to $V_x = V_{DD}$

Not all actual voltages in circuit necessarily correspond to ideal logic levels, see figure (b) above

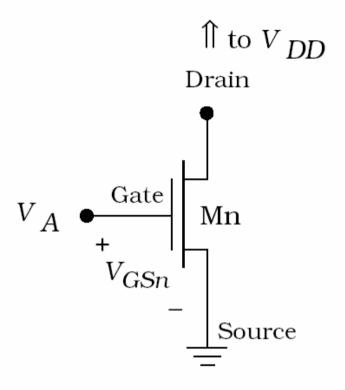
From Logic to Voltages



Note:

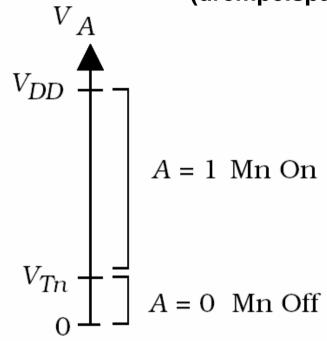
- GND = GROUND = 0V
- Sometimes also called V_{ss}
- V_{DD} is highest voltage level in circuit
- V_{DD} value depends on technology, has been reduced from 5V to 1V and lower over the years
- All voltages V_x in ckt: $0 \le V_x \le V_{DD}$

Source and Drain Terminals


Note 1: Polarities of PMOS voltage reversed when compared to NMOS

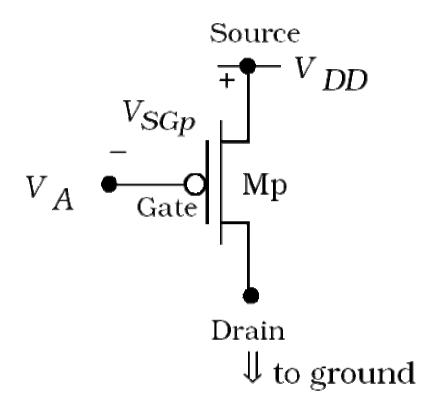
Note 2: MOS transistor is completely symmetrical! Can interchange source and drain, without any effect. Source/drain is only a naming convention.

VSS


nFET Threshold Voltage

(drempelspanning)

(a) Gate-source voltage


 $\begin{array}{l} \textbf{nFET} \ \textbf{is off when} \ \textbf{V}_{\textbf{GSn}} \leq \textbf{V}_{\textbf{Tn}} \\ \textbf{nFET is on when} \ \textbf{V}_{\textbf{GSn}} > \textbf{V}_{\textbf{Tn}} \\ \end{array}$

(b) Logic translation

$$V_{Tn} \sim 0.5 \dots 0.7V$$

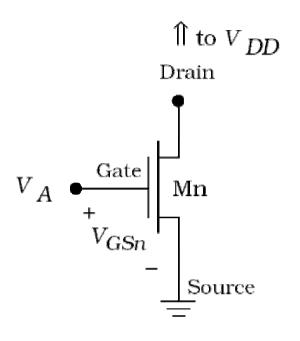
pFET Threshold Voltage

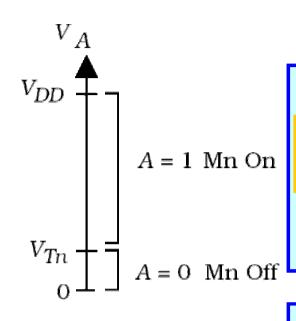
$$V_{Tp} \sim -0.5 ... -0.7V$$
 (negative!)

Often most useful

nFET is off when $V_{GSn} \le V_{Tn}$ nFET is on when $V_{GSn} > V_{Tn}$

pFET and nFET behave complementary

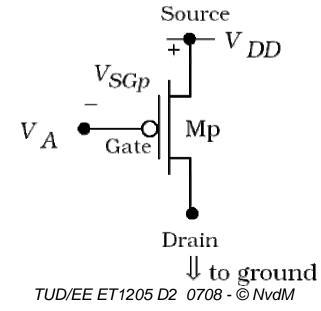

Equivalent conditions


pFET is off when $V_{GSp} \ge V_{Tp}$ **pFET** is on when $V_{GSp} < V_{Tp}$

pFET is off when $-V_{GSp} \le -V_{Tp}$ **pFET** is on when $-V_{GSp} > -V_{Tp}$

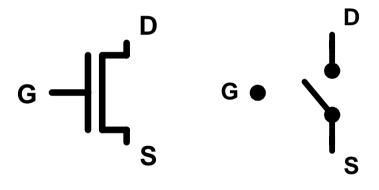
pFET is off when $|V_{GSp}| \le |V_{Tp}|$ **pFET** is on when $|V_{GSp}| > |V_{Tp}|$

Excercise


transistor on the left using

nFET is off when $V_{GSn} \le V_{Tn}$ nFET is on when $V_{GSn} > V_{Tn}$

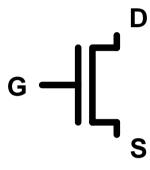
corresponds to diagram on right

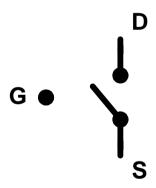

Draw same diagram for PMOS using

pFET is off when $-V_{GSp} \le -V_{Tp}$ **pFET** is on when $-V_{GSp} > -V_{Tp}$

MOS Transistor Treshold Voltage

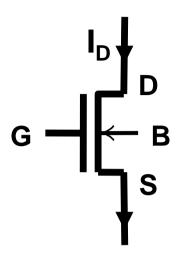
Treshold voltage V_T: point at which transistor turns on


Position of switch depends on gate voltage (relative to source)


V_{GS} NMOS PMOS

V_{GS}>V_T closed open

V_{GS}<V_T open closed


Is this all there is?

- You don't believe that (CMOS) life can be so simple, do you?
- Discuss some of the things that you would expect to be non-idealities of CMOS as a switch
- Since we want to design CMOS circuits, we need a deeper understanding of CMOS circuits
- Next slide shows where we are going

MOS Models for Manual Analysis

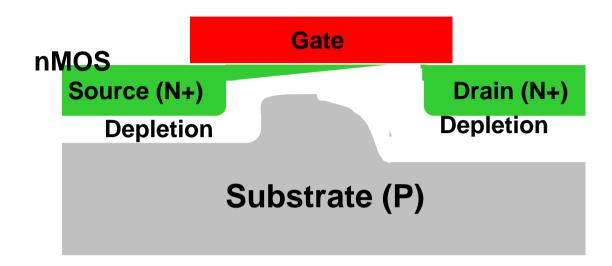
determined by circuit

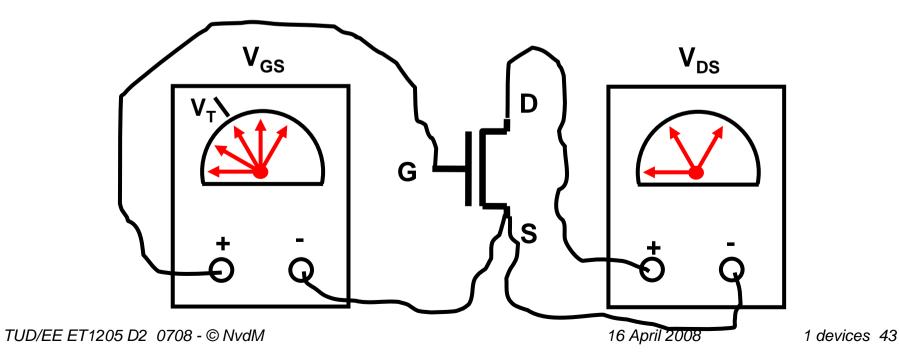
 V_{DS}, V_{GS}, V_{SB}

determined by technology

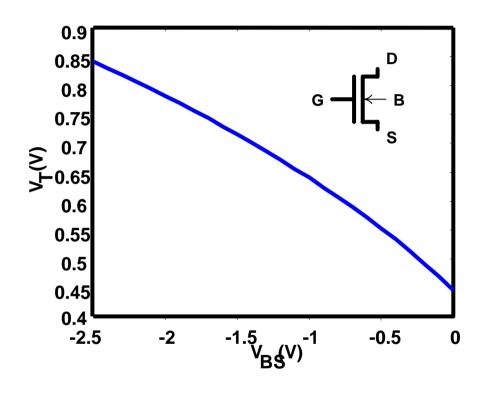
k, λ , V_{DSAT} , V_{TO} , γ , ϕ_F

MOS model for manual analysis

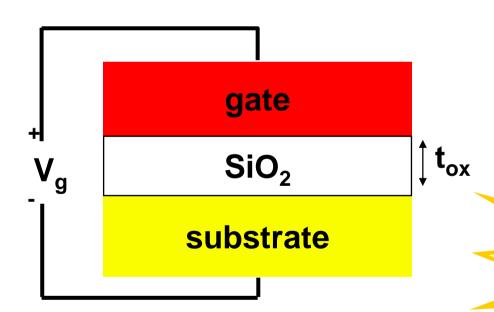

$$I_D = k \left(V_{GT} V_{MIN} - 0.5 V_{MIN}^2 \right) \left(1 + \lambda V_{DS} \right) \qquad \text{for } V_{GT} \ge 0$$


$$= 0 \qquad \qquad \text{for } V_{GT} \le 0$$

$$V_{MIN} = MIN(V_{DS}, V_{GT}, V_{DSAT})$$


$$V_{GT} = V_{GS} - V_{T}, \qquad V_{T} = V_{T0} + \gamma \left(\sqrt{|-2\phi_{F} + V_{SB}|} - \sqrt{|-2\phi_{F}|} \right)$$

nMOS Transistor Operation

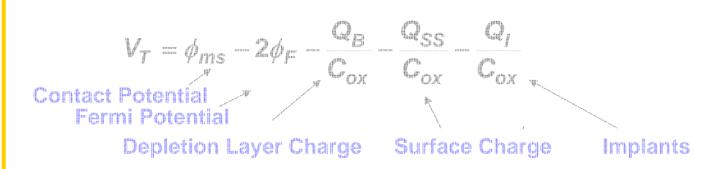

Body Effect

- V_T is not constant
- Depends on V_S vs V_B
- Our wish is to understand & predict behavior of CMOS devices
- We will start with V_T

MOSFET gate as capacitor

- Gate capacitance helps determine charge in channel which forms inversion region.
- Basic structure of gate is parallel-plate capacitor:

$$C_{ox} = \varepsilon_{ox} / t_{ox}$$


$$\varepsilon_{ox} = \varepsilon_{0} \varepsilon_{r}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$$

$$\varepsilon_r = 3.9 \text{ (SiO}_2)$$

Note: [F] vs. [F/m²]

The Threshold Voltage

With

Body Effect Coefficient

Forget all this

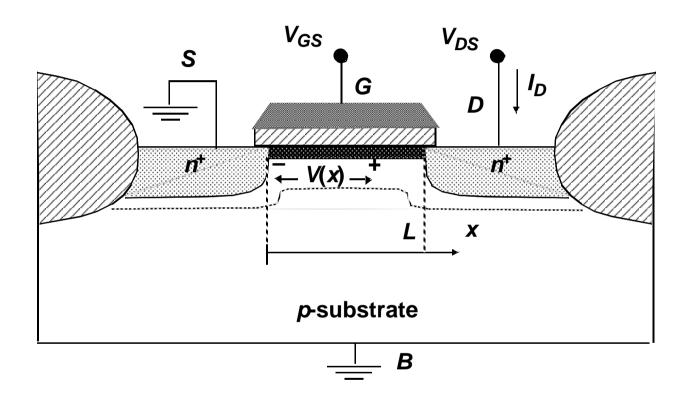
$$V_T = V_{T0} + \gamma (\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|})$$
 But be able to use this

$$V_{10} = \phi_{rrs} - 2\phi_{r} - \frac{Q_{20}}{C_{ox}} \cdot \frac{Q_{55}}{C_{ox}} \cdot \frac{Q_{1}}{C_{ox}}$$

and this

$I_D(V_{GS}, V_{DS}, V_{BS})$

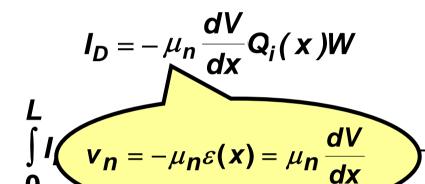
MOS model for manual analysis


$$I_D = k \left(V_{GT}V_{MIN} - 0.5V_{MIN}^2\right) \left(1 + \lambda V_{DS}\right)$$
 for $V_{GT} \ge 0$
 $= 0$ for $V_{GT} \le 0$
 $V_{MIN} = MIN(V_{DS}, V_{GT}, V_{DSAT})$

- Different operation regions
- Different behavior for each region:
 - off
 - resistive

- saturation
- velocity saturation

Current-Voltage Relations



MOS transistor and its bias conditions

$$C_{\text{ox}} = \frac{\varepsilon_{\text{ox}}}{t_{\text{ox}}}$$

In Resistive Region

$$Q_i(x) = -C_{ox}[V_{GS} - V(x) - V_T]$$
 Inversion Charge

ID Drain Current μ_n mobility (n-Si)

V dV

$$I_D L = \mu_n C_{ox} W \left[(V_{GS} - V_T) V - \frac{1}{2} V^2 \right]_0^{V_{DS}}$$

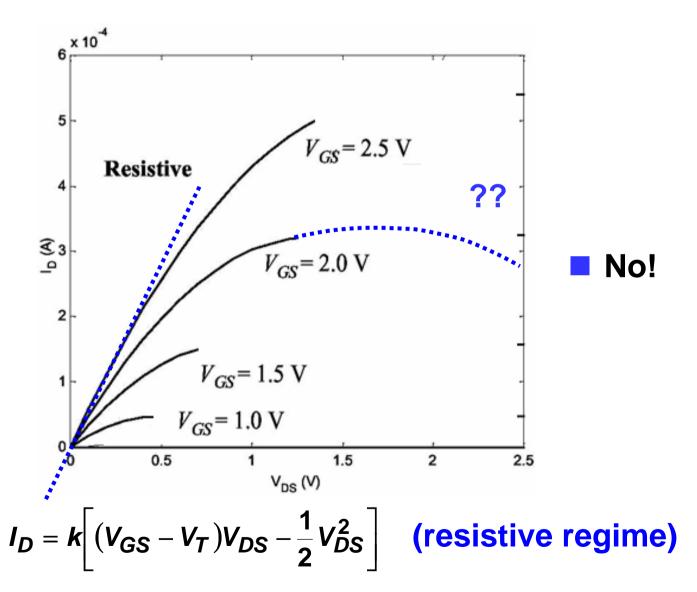
$$\begin{array}{c|c}
S & & V_{DS} \\
\hline
G & & D \\
\hline
- V(X) \rightarrow^{+} & & IT
\end{array}$$

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

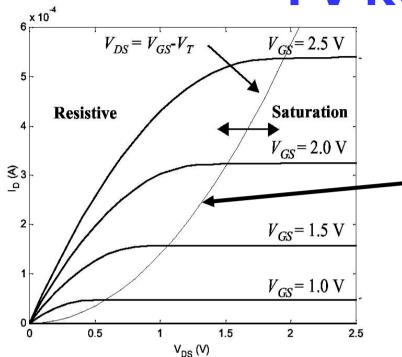
Process Gain and Device Gain

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$\mathbf{k}_{n}' = \mu_{n} \mathbf{C}_{ox} = \mu_{n} \frac{\mathcal{E}_{ox}}{\mathbf{t}_{ox}}$$


$$k = k'_n \frac{W}{L}$$

Process transconductance parameter

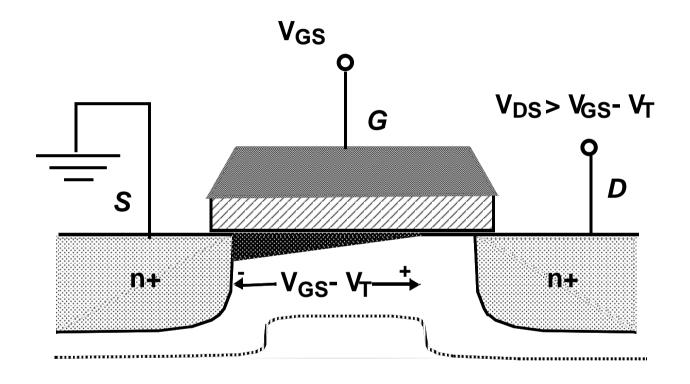

Gain factor of device

$$I_D = k \left[(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2 \right]$$
 (resistive/linear/ohmic regime)

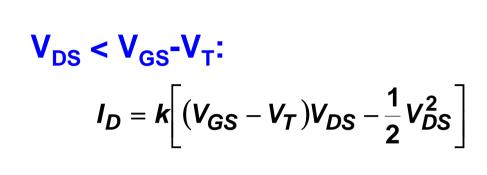
I-V Relation

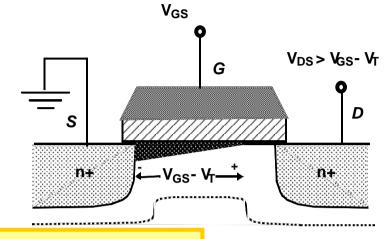
I-V Relation

This curve is where I_D curves begin to run flat: I_D does not anymore depend on V_{DS}


$$I_D = k \left[\left(V_{GS} - V_T \right) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

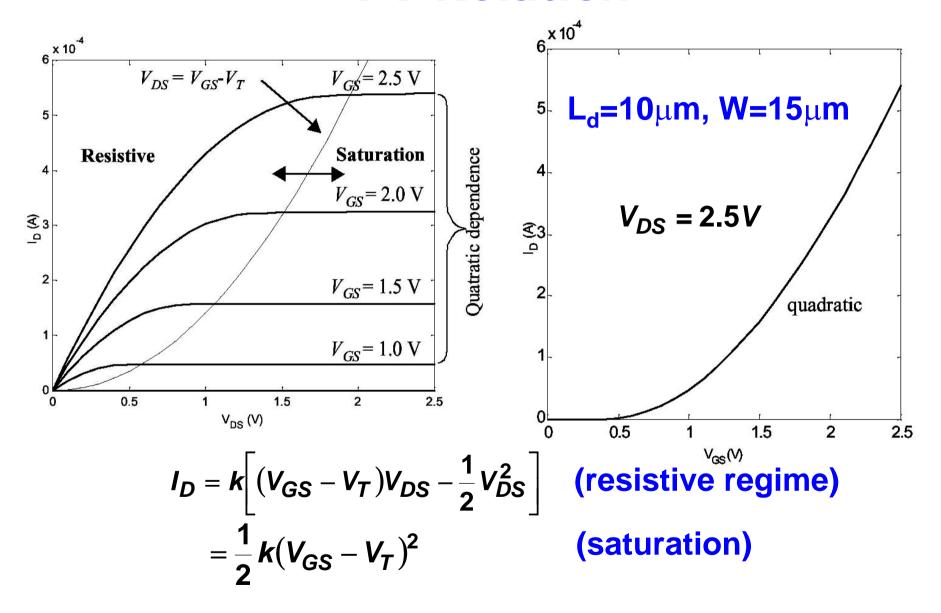
The curve is given by


$$\frac{dI_D}{dV_{DS}} = k \left[(V_{GS} - V_T) - V_{DS} \right] = 0 \Rightarrow V_{DS} = V_{GS} - V_T$$

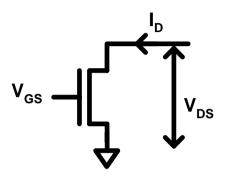

The value $V_{DS} = V_{GS}-V_{T}$ is special: it is the boundary between resistive regime and saturation regime (pinch-off)

Transistor in Saturation

I-V in saturation


Saturation: $V_{DS} > V_{GS} - V_{T}$

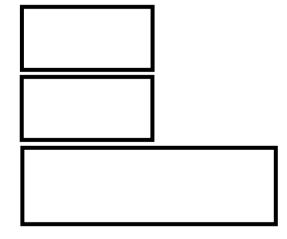
Current does not increase when $V_{DS} > V_{GS} - V_{T}$


$$I_{DSAT} = I_{D} \Big|_{V_{DS} = V_{GS} - V_{T}}$$
Saturation current
$$I_{DSAT} = k \Big[(V_{GS} - V_{T})(V_{GS} - V_{T}) - \frac{1}{2}(V_{GS} - V_{T})^{2} \Big]$$

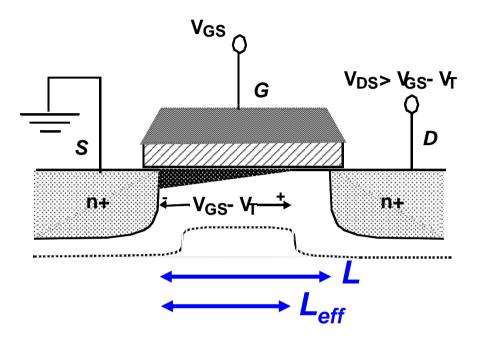
$$= \frac{1}{2} k (V_{GS} - V_{T})^{2}$$

I-V Relation

Output Impedance


Definition:
$$Z_{out} = \frac{dV_{ds}}{dI_{d}}$$

$$I_D = \frac{1}{2} k (V_{GS} - V_T)^2$$


What is the output impedance?

Is this plausible?

What is happening?

Channel Length Modulation

Empirical Model for Effective Channel Length

$$L_{eff} = \frac{L}{1 + \lambda V_{DS}}$$

$$I_{DSAT} = \frac{1}{2} k'_{n} \frac{W}{L_{eff}} (V_{GS} - V_{T})^{2}$$

$$= \frac{1}{2} k'_{n} \frac{W}{L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

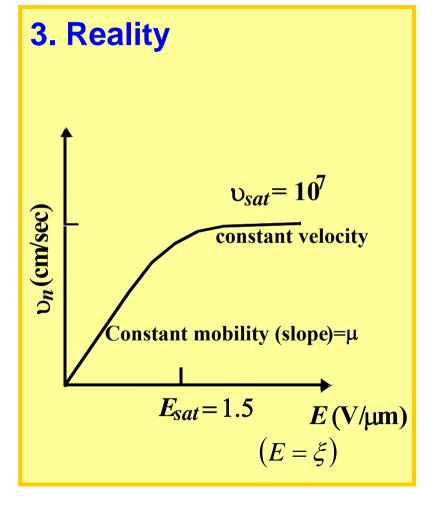
$$= \frac{1}{2} k (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

Velocity Saturation (1)

1. Still model not complete: need to include effects of limited carrier velocity

2. Carrier velocity (ideal model): Linear with field

$$\mathbf{v}_{n} = -\mu_{n}\xi(\mathbf{x}) = \mu_{n}\frac{dV}{d\mathbf{x}}$$


4. Simple v_{sat} Model:

$$\mathbf{v_n} = \mu_n \boldsymbol{\xi}$$
 for $\boldsymbol{\xi} \leq \boldsymbol{\xi_c}$

$$= \mu_n \boldsymbol{\xi_c} = v_{sat} \quad \text{for } \boldsymbol{\xi} \geq \boldsymbol{\xi_c}$$

 ξ_c Critical Field

V_{sat} Saturation Velocity

Velocity Saturation (2)

Onset of velocity saturation can be translated into a critical voltage V_{DS} : V_{DSAT} . This value depends on L.

Velocity saturation parameters

$$V_{DSAT} = L\xi_{c} = \frac{Lv_{sat}}{\mu_{n}}$$
voltage velocity

L	V _{DSAT}
2	3
1	1.5
0.25	0.375
0.18	0.27
	•••

First order, empirical model

$$I_{DSAT} = I_D(V_{DS} = V_{DSAT})$$

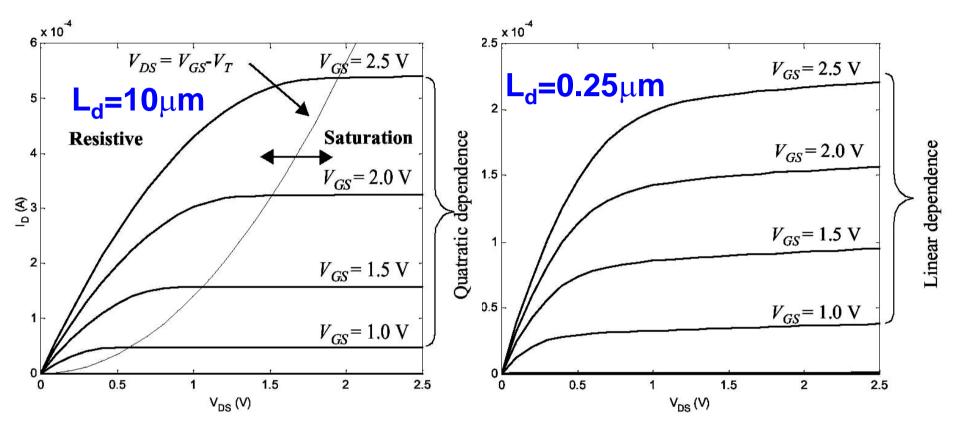
$$= k \left[(V_{GS} - V_T)V_{DSAT} - \frac{1}{2}V_{DSAT}^2 \right] \qquad \text{Velocity Saturation}$$

Overview

$$I_D = k \left[(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2 \right]$$

resistive regime base equation

$$=\frac{1}{2}k(V_{GS}-V_{T})^{2}$$

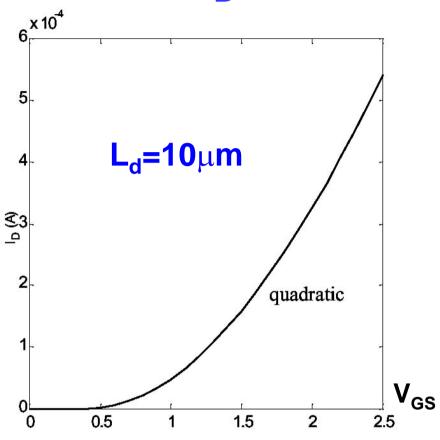

saturation:
$$V_{DS} \rightarrow V_{GS}-V_{T}$$

$$= k \left[(V_{GS} - V_T) V_{DSAT} - \frac{1}{2} V_{DSAT}^2 \right] \quad \text{velocity sat: } V_{DS} \rightarrow V_{DSAT}$$

$$I_D = I_D' (1 + \lambda V_{DS})$$

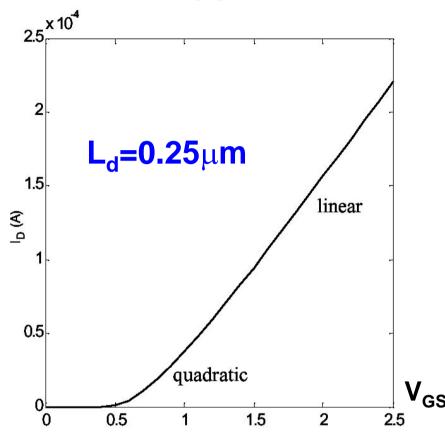
Channel Length Modulation

I_D as a function of V_{DS}



Long channel device w/o velocity saturation

Short channel device with velocity saturation


$$W = 1.5L$$

I_D as a function of V_{GS}

Long channel device w/o velocity saturation

$$I_D = \frac{1}{2} k (V_{GS} - V_T)^2$$

Short channel device with velocity saturation

$$I_D = k \left[(V_{GS} - V_T) V_{DSAT} - 0.5 V_{DSAT}^2 \right]$$

MOS Models for Manual Analysis

Region Specific Models

$$I_D^{'}=kig(V_{GT}V_{DS}-0.5V_{DS}^2ig)$$

$$oldsymbol{I_D} = oldsymbol{k} ig(oldsymbol{V_{GT}}oldsymbol{V_{GT}} - oldsymbol{0.5}oldsymbol{V_{GT}^2}ig)$$

$$\dot{I_D} = k \left(V_{GT} V_{DSAT} - 0.5 V_{DSAT}^2 \right)$$

$$I_D = I_D' (1 + \lambda V_{DS})$$

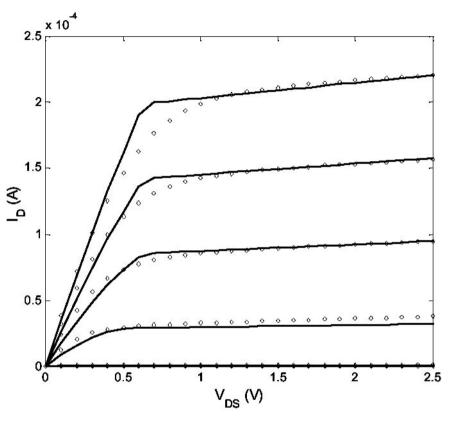
Channel length modulation added to resitive region, in order to enforce continuity

Resistive region

Saturation

Velocity Saturation

Channel Length Modulation

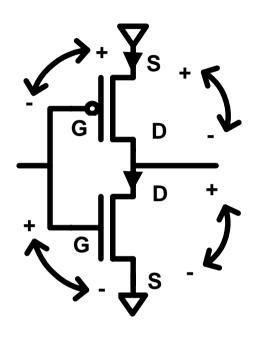

Comprehensive model

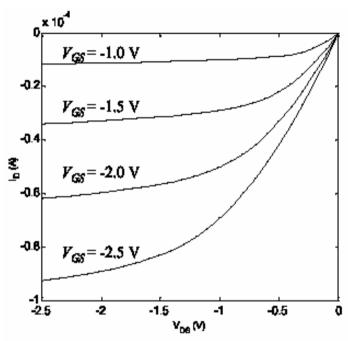
$$I_D = k \left(V_{GT} V_{MIN} - 0.5 V_{MIN}^2 \right) \left(1 + \lambda V_{DS} \right) \qquad \text{for } V_{GT} \ge 0$$

$$= 0 \qquad \qquad \text{for } V_{GT} \le 0$$

$$egin{aligned} V_{MIN} &= MIN(V_{DS}, V_{GT}, V_{DSAT}) \ V_{GT} &= V_{GS} - V_{T}, \qquad V_{T} &= V_{T0} + \gamma \left(\sqrt{\left|-2\phi_F + V_{SB}\right|} - \sqrt{\left|-2\phi_F\right|}
ight) \end{aligned}$$

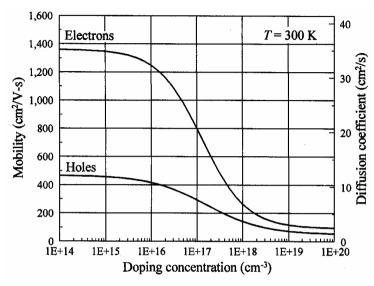
MOS Model Comparison

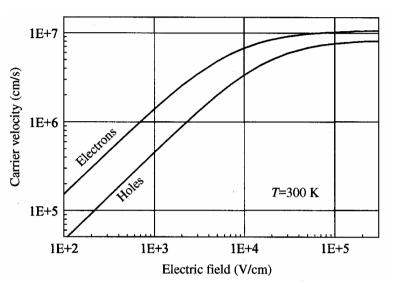



- Many more far more advanced models do exist (BSIM4 ~ 20k lines of C)
- Are only suited for computer simulation
- The SPICE simulator is the 'good old' workhorse of the industry
- Reliable, but low speed

Solid line: simple model

Dotted line: SPICE simulation


NMOS vs. PMOS



- \blacksquare PMOS (V_{DS} , V_{GS} , I_{D} , V_{T}) < 0
- Can calculate as if NMOS using absolute values
- PMOS device not as strong as NMOS

NMOS vs. PMOS (2)

Zero-field mobility (bulk!)

Velocity vs. Field

$$\mu_{p} < \mu_{n}$$
 \Rightarrow $k'_{p} < k'_{n}$
 $v_{sat_{p}} \approx v_{sat_{n}}$ \Rightarrow $|V_{DSAT_{p}}| > |V_{DSAT_{n}}|$

	V_{T0} (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115×10 ⁻⁶	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

Alternative Saturation Expression

Saturation if
$$V_{DS} > V_{GS} - V_T$$

Show that
$$V_{DS} > V_{GS} - V_T \Leftrightarrow V_{GD} < V_T$$

Proof:
$$V_{DS} > V_{GS} - V_T$$

$$\Leftrightarrow V_D - V_S > V_G - V_S - V_T$$

$$\Leftrightarrow V_D > V_G - V_T$$

$$\Leftrightarrow$$
 $V_G - V_T < V_D$

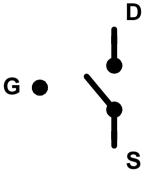
$$\Leftrightarrow V_G - V_D < V_T$$

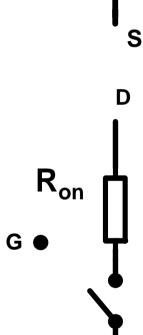
$$\Leftrightarrow V_{GD} < V_T$$

Physically this relates to 'amount of inversion' at drain side

If inversion at drain side disappears: pinch-off

- This is an alternative expression for the saturation region
- Can be handy


MOS Device Symmetry


- MOS transistors are symmetrical
- Strong inversion at source if V_{GS} > V_T
 Strong inversion at drain if V_{GD} > V_T
- You should check the I-V relations when interchanging drain and source
- Identification of source drain only by convention
- **Determined by circuit-environment**

	NMOS	PMOS	General
Source	V _{ss} -side	V _{DD} -side	Strongest inversion
Drain	V _{DD} -side	V _{ss} -side	Weakest inversion

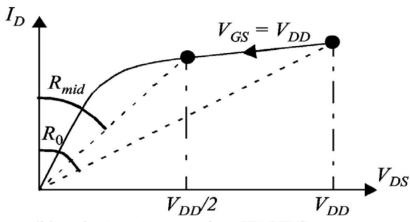
 V_{SS} : low supply voltage, V_{DD} = high supply voltage

Improved MOS Transistor Switch Level Model

Position of switch depends on gate to source voltage

V _{GS}	NMOS	PMOS
hi	closed	open
lo	open	closed

More detailed model may include


- R_{on} is highly non-linear
- Make linear approximation R_{eq}
- Model with (linear) R_{eq} less detailed then previous equation based model, but often useful for first estimates of behavior

Switch Model Ron

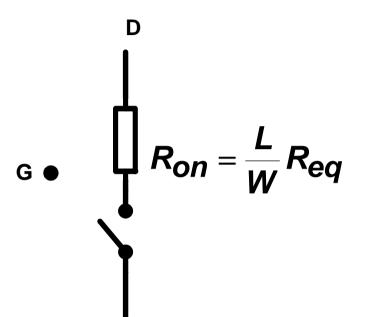
$$V_{DS}: (V_{DD} \rightarrow V_{DD}/2)$$

$$V_{DD} \downarrow I_{D}$$

(a) Schematic

(b) trajectory traversed on ID-VDS curve.

$$R_{eq} = \frac{1}{2} \left[\frac{V_{DD}}{I_{DSAT} \left(1 + \lambda V_{DD} \right)} + \frac{V_{DD}/2}{I_{DSAT} \left(1 + \lambda V_{DD}/2 \right)} \right]$$

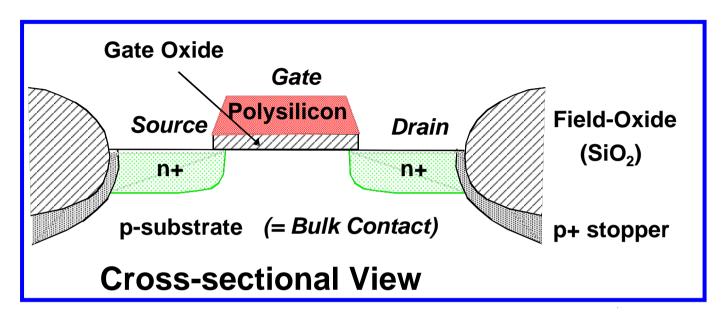

$$\frac{1}{1 + \lambda V_{DD}} \approx 1 - \lambda V_{DD} + O(\lambda^2 V_{dd}^2)$$
 2.3% error with
$$\lambda = 0.06 \text{ V}^{-1}, V_{DD} = 2.5 \text{ V}$$

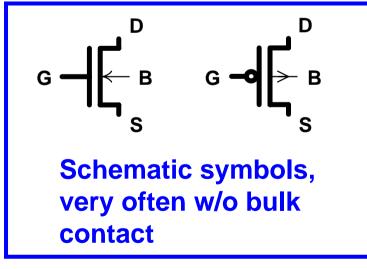
$$R_{eq} \approx \frac{1}{2} \frac{V_{DD}}{I_{DSAT}} \left(1 - \lambda V_{DD} + \frac{1}{2} (1 - \lambda V_{DD} / 2) \right)$$

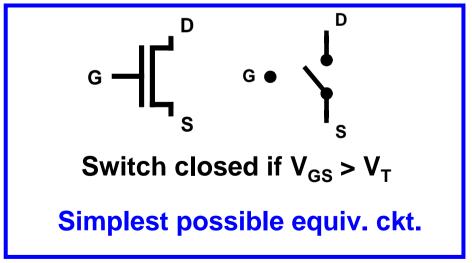
$$= \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left[1 - \frac{5}{6} \lambda V_{DD} \right]$$

Theory!

MOS Transistor Switch Level Model (Empirical).

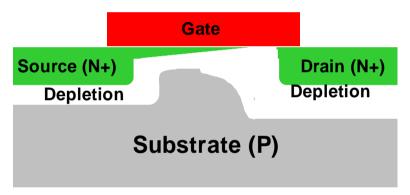

Position of switch depends on gate to source voltage


V _{GS}	NMOS	PMOS
hi	closed	open
lo	open	closed


R_{eq}: Practice!

R _{eq} \ V _{dd} (V)	1	1.5	2	2.5
NMOS ($k\Omega$)	35	19	15	13
PMOS (kΩ)	115	55	38	31

The MOS Transistor Summary



The MOS Transistor Summary ctd.

- Need to analyze speed, power, noise etc of MOS circuits
- Simple switch-level model not sufficient
- Study exact operation to derive more precise IV relations

$$I_D = k \left(V_{GT}V_{MIN} - 0.5V_{MIN}^2\right)\left(1 + \lambda V_{DS}\right)$$
 for $V_{GT} \ge 0$
= 0 for $V_{GT} \le 0$

$$egin{aligned} V_{MIN} &= MIN(V_{DS}, V_{GT}, V_{DSAT}) \ V_{GT} &= V_{GS} - V_{T}, \qquad V_{T} &= V_{T0} + \gamma \Big(\sqrt{\left|-2\phi_F + V_{SB}
ight|} - \sqrt{\left|-2\phi_F
ight|} \Big) \end{aligned}$$

Summary

- Semiconductor Physics
- The diode
 - Depletion, I-V relations, capacitance, secondary effects, models
- The MOS transistor
 - First glance, threshold, I-V relations, models
 - Dynamic behavior (capacitances), resistances, more Second-Order effects, models