

Design Challenge

■ System Complexity

Dealing with the sheer size of the system

- > 10⁸ components (transistors)
- Compare boeing 747-400: 6x10⁶ components
- >> 10 km of interconnect
- Compare boeing 747-400: 274 km wiring, 8 km tubing

■ Silicon Complexity

Dealing with circuit and physical aspects

- Features < 0.0000001 m = 100nm
- Actually far from ideal behavior
 More like building spaghetti bridges then steel bridges
- Lots of unwanted parasitics
- Manufacturing tolerances, ...

[http://www.boeing.com/commercial/747family/pf/pf_facts.html]

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

More System Complexity Concepts

- High-level architecture design
 - processors, busses, caches, cache sizes, instruction sets, IP blocks, ...
- System on chip design
- Cycle-accurate simulation
- Network-on-chip, protocols,

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09

7

Course Contents

- System Complexity (Size of the system)
 - This course does not deal with this aspect of VLSI design
 - But it can't overlook this issue either many of the real issues relate to the interplay of system and silicon complexity
- Silicon Complexity (circuit and physical)
 - This course will focus on these aspects
 - Goal is to enable design of large systems

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09

Contents (2)

- How to realize the full potential of advanced manufacturing technologies in realizing digital circuits and systems
- Show how circuit-level techniques help improve the overall design properties
- Show how properties from physical design create opportunities (and limitations)

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-0

0

Digital Electronics

- Electronics
 - Behavior of electronic circuits from an electrical perspective
 - Not from an algorithmic perspective
- Digital
 - Not opamps, but logic gates (etc.)

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09

Digital vs Analog

- Fundamentally, all circuits are analog, they are just 'overdriven' to achieve digital behavior
- 'Digital' is just an abstraction
 - Way of looking at circuits and signals
- Understanding range of validity of digital abstraction is essential
- Deep-submicron evokes many unwanted 'analog' effects:
 - Crosstalk, delay, overshoot, reflection, supply noise, substrate noise, ...

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09

11

Scaling

- All features become smaller and smaller
- Smaller means faster but also less ideal
- Deep-submicron design becomes more like building spaghetti bridges then steel bridges

paris.thover.com/photos/2569.jpg www.jhu.edu/virtlab/image/MVC-007X.jpg) 3-Feb-09

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

Why 'Electronic' insight for VLSI

- Someone needs to design and implement libraries
- Creating a model of a (standard) cell and modules requires deep understanding
- Library-based design and standard abstractions partially avoided for very high performance designs
- Deep scaling defeats many standard practices and abstractions
 - New design issues arise
- Troubleshooting requires in-depth knowledge of all issues involved

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09

Prerequisites

- Circuit Theory
 - Resistor, capacitor, voltage, current, kirchoff laws, power, ...
- Digital circuits
 - Boolean logic, logic gates, flip-flops, statemachines, clocking, ...
- Part 1 of the Rabaey book is helpful
 - MOS devices, technology, ...
 - Summary in first lectures

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09

15

Instructor

Instructor Dr. ir. N.P. (Nick) van der Meijs (HB 17.300)

№ 86258 ■ nick@cas.et.tudelft.nl

TA Qin Tang (HB 17.140) Q.Tang@tudelft.nl

available: 15:30-17:30 Tuesday and Friday

Secretary Laura Bruns (HB 17.230)

☎ 81372 ■ Ibruns@cas.et.tudelft.nl

Section Circuits and Systems

http://ens.ewi.tudelft.nl/

Department Midrodie de de de la company de l

http://me.its.tudelft.nl

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09

Course Material

Book:

Jan M. Rabaey - Digital Integrated Circuits, A Design Perspective, 2nd ed, Prentice Hall, 2003 (via ETV)

Web site:

http://cas.et.tudelft.nl/~nick/courses/digic

Bi-directional link with blackboard

Announcements, etc.

Blackboard Discussion Forum (!)

Syllabus:

website

Slides / Presentation Material:

Website - published after lecture

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09

17

Agenda

- Lectures on Monday 3rd + 4th, and Wednesday 7th + 8th, room D
- Handout/web exercises, to be discussed during lecture
- Lab exercises / Design project
 - Competition: bonus points to be gained for best designs
 - Includes report and presentation
 - Cadence design system
 - Details will follow
- Written exam April 2
- Mark determined for 50% by exam, 50% by design project

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09

Reading

- Next Lecture Chapter 2
- For today's lecture Chapter 3
- Background Chapter 1

TUD/EE ET4293 - Dig. IC - 0809 - © NvdM - 0 About

3-Feb-09