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Motivation

Static Field Estimation

Wind turbine farm noise1

Open video

1
Fast Boundary Element Method (FastBEM) for Solving Large-Scale Engineering Problems, www.fastbem.com
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Motivation

Static Field Estimation

How to select the subset of measurements to provide the best possible
reconstruction performance?
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Motivation

Static Field Estimation

Using information of the topographical relief of the terrain, field signal
properties and/or network topology.
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Kernel-based Signal Reconstruction

Prior information

k(xi , x) : kernel function
Kernels leverage structural information to propagate non-linear relations

through linear ones.
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Kernel-based Signal Reconstruction

Sampling of a static field

Field function:
f (x) :M 7→ R

Field measurements:
y = f + n ∈ RN

The static field, f (x), is assumed to belong to a reproducing kernel Hilbert
space (RKHS), H, defined by a kernel map k :M×M 7→ R.
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Kernel-based Signal Reconstruction

Reproducing kernel Hilbert space (RKHS)

H =

{
f : f (x) =

∞∑
i=1

αik(xi , x), αi ∈ R
}

where k :M×M→ R is a symmetric kernel map satisfying
supx ,yk(x , y) <∞.
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Kernel-based Signal Reconstruction

Sparse Sampler Design

Field measurements:

yS = ΦSf + ΦSn

= fS + nS ∈ R|S|

Problem: Given model statistics and a kernel map, find the best subset of
sensors S, |S| = K , that provides the best reconstruction of f (x)
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Sensor Selection for Sparse Sensing

Why?

– possibly many non-informative measurements
– reduces processing overhead
– economical or physical constraints
– sensors might incur different operation costs, e.g., energy requirements

How?

– convex optimization: through selection vector w ∈ {0, 1}M
[Joshi-Boyd-09]2, [Chepuri-Leus-16]3

– submodular optimization: greedy methods and heuristics
[Krause-Guestrin-07]4,[Ranieri-Chebira-Vetterli-14]5

In this work, both approaches are considered...
and results of kernel methods leveraged...

2
S. Joshi, and S. Boyd. “Sensor selection via convex optimization.” TSP 2009

3
S.P. Chepuri, and G. Leus, “Sparse Sensing for Statistical Inference,” Foundations and Trends in Sig. Proc. 2016

4
A. Krause, and C. Guestrin, “Near-optimal observation selection using submodular functions,” AAAI 2007

5
J. Ranieri, et al., “Near-optimal sensor placement for linear inverse problems,” TSP 2014
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Kernel-based Signal Reconstruction

Estimate of the continuous function f (x):

f̂ = arg min
f ∈H

1

K

∑
xi∈S
L(y(xi ), f (xi )) + µΩ(‖f ‖H), (1)

where L(·, ·) is a loss function and Ω(·) a smoothness term in H, µ the
regularization parameter and S is the finite sampling set.

The representer theorem6 provides the solution for (1) by the following
series:

f̂ (x) =
∑
xi∈S

αik(xi , x). (2)

In this talk, we focus on kernel ridge regression for estimating f (x)...

6
B. Sch olkopf, et al., “A generalized representer theorem” in Comp. Learn. Theory, Springer,

pp. 416-426, 2001.
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Kernel-based Signal Reconstruction

Kernel Ridge Regression (KRR)

f̂ = arg min
f ∈H

1

K

∑
xi∈S

(y(xi )− f (xi ))2 + µ‖f ‖2
H. (3)

Here, L(x , y) = (x − y)2 and Ω(·) = (·)2.

Using the representer theorem solution, the following relations hold

fS = KSα, ‖f ‖2
H = αTKSα, (4)

Here,
α = [α1, . . . , αK ]T ∈ RK is the vector with the expansion coefficients
[KS ]ij = k(xi , xj), xi , xj ∈ S, is the (i , j)th entry of the kernel matrix.
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Kernel-based Signal Reconstruction

Signal Reconstruction Optimization Problem (KRR)

α̂S = arg min
α∈RK

1

K
‖e‖2 + µαTKSα

subject to e = yS −KSα
(5)

Optimal solution
α̂S = [KS + γIK ]−1yS .

Residuals
e(xj ,S) = y(xj)− kT

S,jα̂S ,

where [kS,j ]i = k(xi , xj), xi ∈ S, γ = µK , and IK is the K × K identity
matrix.

How to use this expression for designing sparse samplers?
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Sensor Selection for Kernel-based Reconstruction

Design Problem

Cost function: Mean Squared error

MSEM(S) =

∫
x∈M

|e(x ,S)|2dx ≈
∑
xj∈V
|e(xj ,S)|2

for V ⊆M, |V| 6=∞.

Convex Problem (SDP) [details in this paper]

minimize
Z ,w∈[0,1]N

tr
{
Z
}

subject to 1Tw = K ,

MT/2P−1(w)M1/2 � Z

where M = K−1E[yyT ]K−1 and

P(w) = K−2 + γ−1K−1diag(w) + γ−1diag(w)K−1 + γ−2diag(w).
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Sensor Selection for Kernel-based Reconstruction

Design Problem

Cost function: Stable Regressors Selection

minimize
S⊂M,|S|=K

q(Cov{α̂S})

Submodular Problem (Greedy) [details in this paper]

minimize
S⊂M,|S|=K

ln det{CS}
2 ln det{KS + µK IK}

where CS = E[ySyT
S ] and

[KS ]ij = k(xi , xj), xi , xj ∈ S,

is the (i , j)th entry of the kernel matrix.
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Numerical Results

Static field example (0)
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Wave field

2-D field estimation

Rectangular domain of 10× 10m

Source located at coordinates
(x , y) = (5,−4.5)

Noise covariance
Σ = Toeplitz{1, ρ, . . . , ρN−1}.
Gaussian radial basis kernel with
σ = 0.8.
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Numerical Results

Static field example (1)
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(a) Ground truth
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(b) All sensors (N = 97)
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(c) Convex solution
(K = 67)
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(d) Greedy solution
(K = 67)
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Numerical Results

Static field example (2)

Comparison of the proposed methods. Shaded gray area shows performance of random
samplers. (a) Reconstruction error. (b) MSE(w).
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Conclusions

Sampling metrics for kernel-based signal reconstruction were
proposed.

Sparse samplers, based on the presented metrics, can be designed
efficiently through the convex and submodular machinery.

The proposed greedy approach provides a tractable alternative for
large scale problems without high degradation in performance.

Outlook

Test of sampling strategies with real data and appropriate kernel
functions, e.g., harmonics functions for acoustic field reconstruction.
Extend results to other kernels methods for statistical inference, e.g.,
kernel-based detection.
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Thank you!

Questions?
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