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Figure : (a) Distributed sensor network. (b) Seismic imaging.
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Figure : (a) Distributed sensor network. (b) Seismic imaging.

Design sparse samplers for event detection.
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Sparse Sampler Design

o Why?

S. Joshi, and S. Boyd. “Sensor selection via convex optimization.” TSP 2009
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Sparse Sampler Design
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— possibly many non-informative measurements
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Sparse Sampler Design

o Why?
— possibly many non-informative measurements
— reduces processing overhead
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Sparse Sampler Design

o Why?
— possibly many non-informative measurements
— reduces processing overhead
— economical or physical constraints

e How?

— convex optimization: through selection vector w € {0,1}
[Joshi-Boyd-09]?, [Chepuri-Leus-16]2
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Sparse Sampler Design

o Why?
— possibly many non-informative measurements
— reduces processing overhead
— economical or physical constraints
e How?
— convex optimization: through selection vector w € {0,1}
[Joshi-Boyd-09]?, [Chepuri-Leus-16]2

— submodular optimization: greedy methods and heuristics
[Krause-Guestrin-07]3,[Ranieri-Chebira-Vetterli-14]*
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o Sampler Design for Detection

e Simple Hypothesis Test

o Design criteria based on distances between distributions.
[Bajovi¢-1115, [Chepuri-Leus-16]°,[Coutino-Chepuri-Leus-17]7
o Compressed Detectors (random samplers)
[Davenport-10]8
e Composite Hypothesis Test

o Compressed Subspace Detector (random samplers)
[Wang-08]°

Our Focus: Deterministic Samplers

5D. Bajovic, et al., “Sensor selection for event detection in wireless sensor networks”, TSP 2011
6S.P. Chepuri and G. Leus., “Sparse Sensing for Distributed Detection”. TSP 2016

M. Coutino, et al., “Near-Optimal Sparse Sensing for Gaussian Detection with Correlated Observations,” Submitted to
TSP 2017

M. Davenport, et al., “Signal processing with compressive measurements”. STPS 2010 1’-‘U Delf [

Z.Wang et al., “Subspace compressive detection for sparse signals”./CASSP 2008.
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Matched Subspace Detector (MSD)

o Signal Data Model
Consider the received signal
y:x+v+n€RM

where

signal of interest :+ x = HO, with H € RVXP, (1)
interference : v =S¢, with S € RV*Q, (2)

and

0 cRP; ¢ R n~ N(0,0%)
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Matched Subspace Detector (MSD)

o Signal Data Model
Consider the received signal
y:x+v+n€RM

where

signal of interest :+ x = HO, with H € RVXP, (1)
interference : v =S¢, with S € RV*Q, (2)

and

0 cRP; ¢ R n~ N(0,0%)

The matrix [H S] is considered to be full column rank, with P+ Q < N. 1"‘U Delft e
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Matched Subspace Detector (MSD)

o Hypothesis Test
Check: Is x € span(H) in y?

Ho : y ~ N(S¢,02|)

. o (3)
Hl : yNN(S¢+H0,0' |)
16]]3 > 0forH;,i =1,2; unknown; o>
Difficulty: Both @ and ¢ are unknown.
Available knowledge: Both H and S are considered known.
3
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Sparse Sensing for MSD

o Sparse Acquisition'?

Only ACVY={L2,... N} of data is observed
= Pay (4)

where |A| = K, and &4 € {0, 1}K*N,

10This is different from other works which employ random matrices, e.g., Z.Wang et al., “Subspace TU Delft y;;m;;'
compressive detection for sparse signals”. ICASSP 2008.
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Sparse Sensing for MSD

o Sparse Acquisition'?

Only ACV={12... N} of data is observed
= Pay (4)

where |A| = K, and &4 € {0, 1}K*N,
How to design A (of given cardinality) for best MSD performance?

10This is different from other works which employ random matrices, e.g., Z.Wang et al., “Subspace TU Delft y;;m;;'
compressive detection for sparse signals”. ICASSP 2008.
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Sparse Sampler Design for MSD

o Generalized log-likelihood ratio test (GLRT)

GRLT of MSD:1!

Tpl 1

y PsEusPgy
L(y) ~ o o (5)

y"Ps (I — Ens)Pgy
where

Ps= 1-5(S7s)!sT, (6)
Eus = H(H'PSH) 'HTPS. (7)
TUDelft %y

11L. Scharf, and B. Friedlander. “Matched subspace detectors.” IEEE Trans. on Signal Proc. 1994



Sparse Sampler Design for MSD

o F-Distribution of the GRLT for MSD

Q-P Fz 5_p(0) under Ho
——L(y): Q=P 5 ; (8)
P Fp@_p()\ (0)) under Hj
1
noncentrality parameter : \2(8) = —20THTP§H0, (9)
o

Uniform most power (UMP) invariant test is achieved by fixing a 7
for the GLRT.



Sparse Sampler Design for MSD

o Error Probabilities of the GRLT for MSD

false alarm : P, = 1-P[Fp 5 p(0) <n]; (10)
detection probabilities : Py= 1-— P[F,—;v(-\)_,s()\z(e)) <. (11)

Design Metric: Pq is a monotone function of A%(8).
maximizing A%(@) — maximizes the power of the test.

noncentrality parameter depends on the unknown parameter 6



Sparse Sampler Design for MSD

Data under Hy and AC YV

ya = P4[HO+S¢+n]

12
= H40 +S4¢p+nycRK, (12)
o Worst-case (Max-Min) Design (Concave cost!?)
maximize Amin(GA4), 13
Agi(,|A|=ZK min(G.4) (13)
where, by using the definition (6), the matrix G_4 is given by
Gy = Hl‘— [IK — SA(SZ‘-SA)_ls_};] H4. (14)
(Efficient solution through interior-point methods).
3
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Sparse Sampler Design for MSD

o Log-det Design (Concave cost!3)

maximize Indet(Gy4). 15
maximize (Ga) (15)
(Efficient solution through interior-point methods).
o Log-det Design (Submodular cost!?)

imize Indet(My). 16
maimize (M) (16)

where - -
S'14S S'I4H

—
HT1,S HTI4H =0, (17)

and det(M4) = det(ST14S) det(G 4).
(Near-optimal solution through greedy algorithm).

3 »
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Numerical Results

Array signal processing example (1)

0.9

Settings: 0

— half wavelength linear array with o7
M = 15 elements.

>

2

— Angles of interest
& = {-30°,0°,50°}

— H=Ta(¢1),a(¢2),a(¢3)],
¢; € ®,fori ={1,2,3} e
— Interferer matrix T e

S = [a(—70°) a(30°)]
— noise and signal power, 02 =1,
01> = 1, respectively.
— ULA steering vector a(¢). 14U Delft &
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Numerical Results

Array signal processing example (2)

output SMF

Beam Pattern
e
=

3+ Exhaustive Search
“ECVX logDet
0.2
2F —6— submodular logD et

—+—Worst Case

Random samplers

5 6 7 8 9 10 1" 12 13 14 15 -70 -30 0 30 50

Number of M easurements [K ] Anglel°]

e
TUDelft &y

14/16



Conclusions

We introduced sparse sampler design for matched subspace detectors.

The noncentrality parameter of the GRLT is used for obtaining a
design metric.
o As the noncentrality parameter depends on unknown parameters, we
introduced two alternative designs:

o max-min criterion — > Anin{G4}.

o log-det criterion — > Inlog{G4}.

@ Samplers, for the proposed criteria, are shown to be found efficiently
by the convex and submodular machinery.
o OQutlook

o Can we extend sparse sampler design for other composite hypothesis
test problems?

o Is it possible to devise convex/submodular metrics for multiple
hypothesis test?



Thank you!

Questions?
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