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Curaçao, Dutch Antilles

1 / 16
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Figure : (a) Distributed sensor network. (b) Seismic imaging.
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Sparse Sampler Design

Why?

– possibly many non-informative measurements
– reduces processing overhead
– economical or physical constraints

How?

– convex optimization: through selection vector w ∈ {0, 1}M
[Joshi-Boyd-09]1, [Chepuri-Leus-16]2

– submodular optimization: greedy methods and heuristics
[Krause-Guestrin-07]3,[Ranieri-Chebira-Vetterli-14]4

1
S. Joshi, and S. Boyd. “Sensor selection via convex optimization.” TSP 2009

2
S.P. Chepuri, and G. Leus, “Sparse Sensing for Statistical Inference,” Foundations and Trends in Sig. Proc. 2016

3
A. Krause, and C. Guestrin, “Near-optimal observation selection using submodular functions,” AAAI 2007

4
J. Ranieri, et al., “Near-optimal sensor placement for linear inverse problems,” TSP 2014
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Prior Art

Sampler Design for Detection

Simple Hypothesis Test

Design criteria based on distances between distributions.

[Bajović-11]5, [Chepuri-Leus-16]6,[Coutino-Chepuri-Leus-17]7

Compressed Detectors (random samplers)

[Davenport-10]8

Composite Hypothesis Test

Compressed Subspace Detector (random samplers)

[Wang-08]9

Our Focus: Deterministic Samplers

5
D. Bajovic, et al., “Sensor selection for event detection in wireless sensor networks”, TSP 2011

6
S.P. Chepuri and G. Leus., “Sparse Sensing for Distributed Detection”. TSP 2016

7
M. Coutino, et al., “Near-Optimal Sparse Sensing for Gaussian Detection with Correlated Observations,” Submitted to

TSP 2017
8

M. Davenport, et al., “Signal processing with compressive measurements”. STPS 2010
9

Z.Wang et al.,“Subspace compressive detection for sparse signals”.ICASSP 2008.
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Matched Subspace Detector (MSD)

Signal Data Model

Consider the received signal

y = x + v + n ∈ RN ,

where

signal of interest : x = Hθ, with H ∈ RN×P , (1)

interference : v = Sφ, with S ∈ RN×Q , (2)

and

θ ∈ RP ; φ ∈ RQ ; n ∼ N (0, σ2I)

The matrix [H S] is considered to be full column rank, with P + Q ≤ N.
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Matched Subspace Detector (MSD)

Hypothesis Test

Check: Is x ∈ span(H) in y?

H0 : y ∼ N (Sφ, σ2I)

H1 : y ∼ N (Sφ + Hθ, σ2I)
. (3)

‖θ‖2
2 > 0 forHi , i = 1, 2; unknown;σ2

Difficulty: Both θ and φ are unknown.

Available knowledge: Both H and S are considered known.
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Sparse Sensing for MSD

Sparse Acquisition10

Only subset A ⊆ V = {1, 2, . . . ,N} of data is observed

yA = ΦAy (4)

=

where |A| = K , and ΦA ∈ {0, 1}K×N .

How to design A (of given cardinality) for best MSD performance?

10
This is different from other works which employ random matrices, e.g., Z.Wang et al., “Subspace

compressive detection for sparse signals”. ICASSP 2008.
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Sparse Sampler Design for MSD

Generalized log-likelihood ratio test (GLRT)

GRLT of MSD:11

L(y) ∼ yTP⊥S EHSP⊥S y

yTP⊥S (I− EHS)P⊥S y
. (5)

where

P⊥S = I− S(STS)−1ST , (6)

EHS = H(HTP⊥S H)−1HTP⊥S . (7)

11
L. Scharf, and B. Friedlander. “Matched subspace detectors.” IEEE Trans. on Signal Proc. 1994
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Sparse Sampler Design for MSD

F-Distribution of the GRLT for MSD

Q̄ − P̄

P̄
L(y) :

{
FP̄,Q̄−P̄(0) under H0

FP̄,Q̄−P̄(λ2(θ)) under H1

, (8)

noncentrality parameter : λ2(θ) =
1

σ2
θTHTP⊥S Hθ, (9)

Uniform most power (UMP) invariant test is achieved by fixing a η
for the GLRT.
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Sparse Sampler Design for MSD

Error Probabilities of the GRLT for MSD

false alarm : Pfa = 1− P[FP̄,Q̄−P̄(0) ≤ η]; (10)

detection probabilities : Pd = 1− P[FP̄,Q̄−P̄(λ2(θ)) ≤ η]. (11)

Design Metric: Pd is a monotone function of λ2(θ).

maximizing λ2(θ) → maximizes the power of the test.

noncentrality parameter depends on the unknown parameter θ

10 / 16



Sparse Sampler Design for MSD

Data under H1 and A ⊆ V

yA = ΦA
[
Hθ + Sφ + n

]
= HAθ + SAφ + nA ∈ RK .

(12)

Worst-case (Max-Min) Design (Concave cost12)

maximize
A⊆V,|A|=K

λmin(GA), (13)

where, by using the definition (6), the matrix GA is given by

GA := HT
A
[
IK − SA(ST

ASA)−1ST
A
]
HA. (14)

(Efficient solution through interior-point methods).

12
M. Coutino, et al. “Sparse sensing for composite matched subspace detection”. CAMSAP 2017
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Sparse Sampler Design for MSD

Log-det Design (Concave cost13)

maximize
A⊆V,|A|=K

ln det(GA). (15)

(Efficient solution through interior-point methods).

Log-det Design (Submodular cost13)

maximize
A⊂V,|A|=K

ln det(MA). (16)

where

MA :=

[
ST IAS ST IAH
HT IAS HT IAH

]
� 0, (17)

and det(MA) = det(ST IAS) det(GA).
(Near-optimal solution through greedy algorithm).

13
M. Coutino, et al. “Sparse sensing for composite matched subspace detection”. CAMSAP 2017
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Numerical Results

Array signal processing example (1)

Settings:

– half wavelength linear array with
M = 15 elements.

– Angles of interest
Φ = {−30o , 0o , 50o}

– H = [a(φ1), a(φ2), a(φ3)],
φi ∈ Φ, for i = {1, 2, 3}

– Interferer matrix
S = [a(−70o) a(30o)]

– noise and signal power, σ2 = 1,
‖θ‖2 = 1, respectively.

– ULA steering vector a(φ).
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Numerical Results

Array signal processing example (2)
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Conclusions

We introduced sparse sampler design for matched subspace detectors.

The noncentrality parameter of the GRLT is used for obtaining a
design metric.

As the noncentrality parameter depends on unknown parameters, we
introduced two alternative designs:

max-min criterion − > λmin{GA}.
log-det criterion − > ln log{GA}.

Samplers, for the proposed criteria, are shown to be found efficiently
by the convex and submodular machinery.

Outlook

Can we extend sparse sampler design for other composite hypothesis
test problems?
Is it possible to devise convex/submodular metrics for multiple
hypothesis test?
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Thank you!

Questions?
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