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(a) (b)

Figure: (a) Distributed sensor network. (b) Array of radio telescopes.

Sparse sampler design for spatial filtering
in large-scale setup required
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Budgeted Sparse Sensing

Why?

– possibly many non-informative measurements
– reduces processing overhead
– economical or physical constraints
– sensors might incur different operation costs, e.g., energy requirements

How?

– convex optimization: through selection vector w ∈ {0, 1}M
[Joshi-Boyd-09]1, [Chepuri-Leus-16]2

– submodular optimization: greedy methods and heuristics
[Krause-Guestrin-07]3,[Ranieri-Chebira-Vetterli-14]4

Cross-pollination possible?

1
S. Joshi, and S. Boyd. “Sensor selection via convex optimization.” TSP 2009

2
S.P. Chepuri, and G. Leus, “Sparse Sensing for Statistical Inference,” Foundations and Trends in Sig. Proc. 2016

3
A. Krause, and C. Guestrin, “Near-optimal observation selection using submodular functions,” AAAI 2007

4
J. Ranieri, et al., “Near-optimal sensor placement for linear inverse problems,” TSP 2014
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Prior Art

Convex Methods
– Emura, S., “`1-constrained MVDR-based selection of nonidentical

directivities in microphone array.”, ICASSP 2015

`1 regularization for filter coefficients

– Zhang, J., et al., “Microphone Subset Selection for MVDR Beamformer
Based Noise Reduction.”, arXiv preprint arXiv:1705.08255 (2017),

model-driven and data-driven by SDP formulations

Greedy Methods
– A. Bertrand and M. Moonen, “Efficient sensor subset selection and link

failure response for linear mmse signal estimation in wireless sensor
networks.”, EUSIPCO 2010

based on MSE cost for speech signal estimation

– J. Szurley, et al., “Energy aware greedy subset selection for speech
enhancement in wireless acoustic sensor networks.”, EUSIPCO 2012

based on SNR gain for speech enhancement
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Submodularity

Notation

finite ground set V ∈ {1, . . . ,M} -available sensors

set function f : 2V → R -performance metric

selection variable w ∈ {0, 1}M -selected vectors

arbitrary subset - chosen sensor set

S = {m|wm = 1,m ∈ V}

Submodular set function (diminishing return property)

A set function is submodular if ∀ S ⊆ T ⊂ V, s ∈ V \ T it holds that

f (S ∪ {s})− f (S) ≥ f (T ∪ {s})− f (T )

.
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Submodularity

Main Results

Dual aspects [Lovász-83]5

Near-optimal maximization
[Nemhauser-Wolsey-Fisher-78]6

Exact unconstrained
minimization [Fujishige-Isotani-11]7

5
L. Lovász, “Submodular functions and convexity,” 1983.

6
Nemhauser, G. L., et al., “An analysis of approximations for maximizing submodular set functions”, 1978

7
Fujishige, S., et al., “A submodular function minimization algorithm based on the minimum-norm base.”, 2011
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The MVDR Beamformer Problem

Array Data Model
x = a(θ)s + n ∈ CM

– a(θ) ∈ CM – array steering vector

– n ∼ CN (0,Rn) – noise + interference

– s ∼ CN (0, σ2
s ) – signal of interest

– θ – direction of arrival

MVDR Beamformer

Optimization problem

minimize
z∈CM

zHRxz

subject to zHa(θ) = 1

Optimal Solution

z∗ =
R−1
n a(θ)

aH(θ)R−1
n a(θ)

where Rx = σ2
s a(θ)a(θ)H + Rn ∈ CM×M .

alternative: sparse beamformers [Nguyen-et.al-09]8 [Emura-15]9

8
Nguyen, N., et al., “Sparse beamforming for active underwater electrolocation.” ICASSP 2009

9
Emura, S., “`1-constrained MVDR-based selection of nonidentical directivities in microphone array.”, ICASSP 2015
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Sensor Selection for MVDR

Modular Constrained MVDR Beamformer

maximize
S

f (S)

subject to B(S) ≤ β, |S| = K

f (S) := aS(θ)R−1
n,SaS(θ) (output SNR)

B(S) =
∑
i∈S

bi , (modular set function)

bi is the cost related to the ith sensor in S.
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Sensor Selection for MVDR

Design Problem

Cost function: Output SNR

f (w) = aH(θ)[S−1 − S−1(S−1 + a−1diag(w))−1S−1]a(θ),

where Rn = S + aI .

Convex Problem [Chepuri-Leus-16]10

minimize
w,t

t

subject to
wTb ≤ β, ‖w‖1 = K ,
w ∈ [0, 1]M×1[

S−1 + a−1diag(w) S−1a(θ)
aH(θ)S−1 t

]
� 0,

10
S.P. Chepuri, and G. Leus, “Sparse Sensing for Statistical Inference,” Foundations and Trends in Sig. Proc. 2016
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Sensor Selection for MVDR

Design Problem

Submodular Problem [this work]

maximize
S

ln det(MS)

subject to B(S) ≤ β, |S| = K

where

MS =

[
S−1 + a−1IS S−1a(θ)
aH(θ)S−1 aH(θ)S−1a(θ)

]
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Sensor Selection for MVDR

Proposed Submodular Design

f (S) =


0 S = ∅

ln det

[
S−1 + a−1IS S−1a(θ)

aH(θ)S−1 aH(θ)S−1a(θ)

]
otherwise

The proposed cost set function is [this work]

– monotone and normalized
– submodular in S,

therefore → near-optimal optimization through greedy heuristics.

Moreover,

– it has a recursive description that allows linear-time optimization and
does not require inversion of S [Coutino-Chepuri-Leus-17].

– establish a link with state-of-the-art convex methods.
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Sensor Selection for MVDR

Proposed Submodular Design

with uniform cost, i.e,
β = K , bi = bj ∀ i , j [Nemhauser,

et al.-78]

f (Suc) ≥ (1− 1/e)f (Sopt)

for non-uniform
costs [Leskovec-07]11

max{f(Suc),f (Sdc)} ≥
1

2
(1− 1/e)f (Sopt)

Algorithm 1: Cost-Benefit Greedy.

Result: A : |A| = K
1 initialization A = ∅, k = 0;
2 while k < K and B(A) < β do

3 a∗ = arg max
a∈V

f (A∪{a})−f (A)
ba

;

4 if B(A ∪ {a∗}) ≤ β then
5 A = A ∪ {a∗};
6 k = k + 1;

7 end
8 V = V \ a∗;
9 end

– Sdc -cost benefit solution
– Suc -uniform cost solution → a∗ = arg max

a∈V
f (A ∪ {a})− f (A)

:
11

Leskovec, J., et al. “Cost-effective outbreak detection in networks.” SIGKDD, 2007. 12 / 16



Numerical Results

Array signal processing example (1)

Settings:

– half wavelength linear array with
M = 20 elements.

– bi ∼ U [0, 1] ∀ i
– β = 0.8

∑
i∈V

bi

– DoA of interest θ = −20o

– interferer at θi = −10o

– white Gaussian noise at −10dB
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Numerical Results

Array signal processing example (2)
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Figure: Output SNR for the different methods
with M = 50.
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Figure: Beam pattern when K = 21 sensors
are selected out of M = 50.
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Conclusions

Using similar techniques as in convex relaxations, it is possible to find
submodular surrogates for optimizing complex cost set functions.

The submodular machinery allows the application of a greedy
heuristic, of linear complexity, for finding near-optimal solutions.

The proposed greedy approach provides performance comparable to
the one based on convex relaxation at a significantly reduced
complexity.

Outlook

Can we systematically find submodular relaxations for different set
functions as in the convex cases?
Are there stronger theoretical guarantees for the submodular surrogate
functions?
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Thank you!

Questions?
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