
ASYNCHRONOUS DISTRIBUTED EDGE-VARIANT GRAPH FILTERS

Mario Coutino, Geert Leus

Delft University of Technology
Delft, The Netherlands

ABSTRACT

As the size of the sensor network grows, synchronization starts to
become the main bottleneck for distributed computing. As a result,
efforts in several areas have been focused on the convergence analy-
sis of asynchronous computational methods. In this work, we aim to
cross-pollinate distributed graph filters with results in parallel com-
puting to provide guarantees for asynchronous graph filtering. To
alleviate the possible reduction of convergence speed due to asyn-
chronous updates, we also show how a slight modification to the
graph filter recursion, through operator splitting, can be performed
to obtain faster convergence. Finally, through numerical experiments
the performance of the discussed methods is illustrated.

Index Terms— asynchronous filtering, distributed signal pro-
cessing, edge-variant graph filters, graph filters, graph signal pro-
cessing.

1. INTRODUCTION

In recent years, graph filters (GFs) [1] have become the workhorse
for processing data living on irregular domains, e.g., social net-
works [2], biological structures [3], etc. Extending fundamental
notions of signal processing, graph signal processing [4] leverages
such graph structures to perform filtering [5], estimation [6, 7] and
detection [8, 9] tasks.

In order to improve scalability, the locality of such graph filters
is exploited. That is, graph filters, in their finite impulse response
(FIR) [10] and infinite impulse response (IIR) [11] variants, can be
implemented distributively in order to reduce the computational cost
incurred by centralized operations. Furthermore, recent advances in
graph filters [12] have shown that by an appropriate selection of edge
weights, constrained edge-variant (CEV) GFs are able to achieve a
significant reduction in communication costs, i.e., local exchanges,
while maintaining the distributed implementation.

Several works have been devoted to implementing and design-
ing graph filters [1, 5, 11, 13], but all of them assume synchroniza-
tion. This assumption presents a real challenge as most practical dis-
tributed systems are not synchronous. Hence, asynchronous meth-
ods are of the utmost importance for overcoming the lack of syn-
chronization of (practical) distributed systems.

Extensive research has been carried out within the realm of asyn-
chronous methods [14–18]. Results from distributed computation
have shown, both analytically and experimentally, that asynchronous

The authors are with the faculty of Electrical Engineering, Mathemat-
ics and Computer Science, Delft University of Technology, 2826 CD Delft,
The Netherlands. This research is supported in part by the ASPIRE project
(project 14926 within the STW OTP programme), financed by the Nether-
lands Organization for Scientific Research (NWO). Mario Coutino is par-
tially supported by CONACYT.

methods, for linear problems, can be faster than synchronous meth-
ods, and that for certain problems, they converge even when its syn-
chronous counterpart does not [19].

In this paper, we provide conditions and analytical guarantees
for the convergence of a family of asynchronous distributed CEV
GFs. Differently from other works, we provide both strong and weak
guarantees for the convergence in the asynchronous regime without
invoking diagonal dominance or its relation with inexact multiplica-
tive block relaxation [19]. We introduce our results through lemmas
with sufficient conditions that facilitate the selection of filter coeffi-
cients during the design stage. In addition, our results hold for both
exact and inexact, i.e., in a noisy setting, update regimes.

2. LINEAR OPERATORS AS GRAPH FILTERS

Let us consider the following linear system

Ay = x ∈ RN , (1)

and its solution ysol = A−1x. Such systems arise in many kind
of network processes and physical problems such as convection-
diffusion systems [20], partial differential equations on graphs [21]
or network inference problems [22].

In many instances, the solution is computed iteratively using the
following recurrence relation [23]

yl+1 = yl + (x−Ayl), (2)

for some initial vector y0 (typically the zero vector). For this recur-
rence, under certain conditions on the matrix A [23], we can guar-
antee that

lim
l→∞

yl = A−1x = ysol. (3)

This iterative procedure is performed to alleviate the cost of per-
forming the matrix (pseudo)inversion, to leverage the parallelizable
matrix structure or to satisfy communication constraints.

In many network inference problems such as Tikhonov interpo-
lation [22], A has a structure that can be expressed by local matrices.
That is, the linear operator A can be represented through local op-
erations. To illustrate this scenario, we consider the following filter
operation ysol = A−1x = Hx, where H is a so-called CEV GF,
i.e.,

H = (I −
K∑

k=1

ΦkS
k−1)−1, (4)

with S ∈ RN×N the so-called graph shift operator [4], i.e., the
matrix representation of the network (graph), and Φk ∈ RN×N an
edge-weighting matrix which shares the support with S +I (both S
and Φk can be implemented distributively).

In some problems though, A does not exhibit parallelizable fea-
tures over the communication graph of the distributed system. To

deal with this, a way to fully distribute the operations (and meet the
communication constraints) is to approximate the system matrix in-
verse by a cascade of two CEV GFs, one with the form of (4) and
the other with its inverse form. More specifically, we then compute
the (approximate) solution of the system true local operations as

ysol = A−1x = HBHAx, (5)

where HA has the form of the CEV GF (4) and HB has the inverse
form of (4). Notice that this structure can be viewed as the output of
an autoregressive moving average (ARMA) CEV GF [1], matching
the traditional ARMA GF definition if the matrices HA and HB

commute.
In this work, we provide guarantees for ensuring the conver-

gence of iterative methods of the form (2) when there is lack of
synchronization between the processing units (nodes) for structured
linear systems as (5). To do so, we first build lemmas around the
asynchronous application of the GF HA, and then, we consider the
subsequent application of HB.

3. NODE UPDATE MODEL

First, let us consider y∗ as the output of the filter operation

y∗ = HAx, (6)

or equivalently, as the solution of the linear system

(I −
K∑

k=1

ΦkS
k−1)y∗ = x. (7)

Using the structure of HA and its relation to the solution of a
linear system [cf. (7)], we can substitute the equivalent system ma-
trix in the recurrence relation (2) and obtain

yl+1 = x +
K∑

k=1

ΦkS
k−1yl

= x + Byl,
(8)

From (8), we observe that convergence is guaranteed when the it-
eration matrix, i.e., B, has a spectral radius, ρ(B), strictly smaller
than one. This result can be obtained by observing that the error
el = y∗ − yl at the lth iteration is given by

el+1 = Bel. (9)

Hence, the error is guaranteed to vanish (asymptotically) when
ρ(B) < 1.

In the recurrence expression (8), we observe that a graph filter of
order K is required to update the current solution. This implies that
a set of K communication rounds are required before recursion (8)
can be updated. Hence, this model might not be suitable when dis-
ruptions in the communication among nodes occur. A possible way
to deal with such a problem is to endow the nodes with memory as in
the case of linear recursive sequences [24] where based on the char-
acteristic polynomial of the recurrence, it is possible to generate the
sequence using the so-called companion matrix [25] and the previ-
ous values in the series. Following this idea, we can consider that
each diffusion step is stored and is available for transmission. More
formally, by defining the kth shift of the recurrence vector as

y
(k)
l = Sy

(k−1)
l , (10)

and stacking the vectors {y(k)
l }

K−1
k=0 in the column vector ȳl ∈

RNK , we can write an extended recurrence equation as follows

ȳl+1 =

x
0
...
0

 +

Φ1 Φ2 · · · ΦK

S 0
. . .

...
S 0

 ȳl

= x̄ + B̄ȳl,

(11)

for some initial vector ȳ0 (typically the zero vector). Here, the first
N elements of ȳl+1 and ȳl are the vectors yl+1 and yl [cf. (8)],
respectively.

Despite that (11) provides a recurrence equation for the node
variables, (11) does not directly reveal the locality of the operations.
To show this, let us stack yl row-wise in the K ×N matrix Yl, i.e.,

Yl := [y
(0)
l , . . . ,y

(K−1)
l]T , (12)

so that we can interpret the nth column of Yl as the nth node variable
related to the lth iteration. Then, (11) can be rewritten as

Yl+1 =

[
xT

0

]
+

 K∑
k=1

[YlΦ
T
k]k,:

YlS
T

 , (13)

which shows that the nth node variable can be updated solely by
combining the node variables of the neighbors of node n. As a
result, by a mere exchange of local variables among neighboring
nodes, convergence of (11) can be achieved in a distributed fashion.
To simplify the further discussion, we will only work with (11) from
now on and keep in mind that we can always distribute it follow-
ing (13).

From the recurrence relation in (11), we note that the condi-
tion for convergence is now ρ(B̄) < 1. Despite the fact that this
condition on the spectrum of the iteration matrix guarantees the con-
vergence of (11), we can derive a weaker sufficient condition for
convergence, involving the matrices that comprise B̄. The follow-
ing lemma provides such a guarantee.

Lemma 1. Consider the recurrence equation

ȳl+1 = x̄ + B̄ȳl,

where x̄ and B̄ are defined as in (11). Then, for matrices S and
{Φk}Kk=1 such that

ρ ≤ 1, γ := a
1− ρK

1− ρ < 1,

where ρ := ‖S‖ and a := maxk∈{1,...,K} ‖Φk‖, as l → ∞, the
recurrence converges and the first N elements of ȳl converge to y∗

in the induced operator ‖ ‖-norm chosen for ρ and a.

Proof. See Appendix1.

This guarantee provides a certificate of convergence, in any
norm, as long as the conditions are met. Conditions on norms other
than the spectral norm are usually computationally easier to guaran-
tee (and check). This leads to simpler optimization problems, i.e.,
we could avoid to solve a semidefinite program (due to the spectral
norm) during the graph filter design stage.

1Appendix available in the extended version: http://cas.et.tudelft.nl/
˜mariocoutino/

As we explained before, (11) requires the exchange of informa-
tion from neighbors. In most instances, these exchanges are inexact.
That is, errors in the communication between nodes corrupt the in-
formation transmitted in the network. Hence, the updates are not
performed correctly. In the following lemma, we show weak suf-
ficient conditions for the ε-approximate convergence of the iterates
towards the optimal solution in the noisy setting.

Lemma 2. Consider the noisy recurrence equation

ȳin
l+1 = x̄ + B̄ȳl

in + vl,

where x̄ and B̄ are defined as in (11) and vl is a perturbation from
the true update due to communication or fixed-precision errors sat-
isfying

‖vl‖ ≤ β, ∀ l ∈ N.

Then, for S and {Φk}Kk=1 meeting the conditions of Lemma 1, as
l → ∞, the first N elements of ȳl

in eventually lie within a ‖ ‖-ball
centered at y∗ of radius

ε =
β

1− γ ,

with γ defined in Lemma 1.

Proof. See Appendix.

From this result, we observe that if there is noise during the
transmission, i.e., inexact updates, we gravitate around the desired
output. Although, in general, this result might look discouraging,
we show that if the perturbation is structured, as in the case of noise-
less asynchronous updates, the recurrence asymptotically converges
to the desired output.

4. ASYNCHRONOUS UPDATES

So far we have only considered synchronous updates. To model
asynchronous updates, we can recast the simple recurrence (11) into
its asynchronous version

ȳa
l+1 = [Dlx̄ + DlB̄ȳl

a] + [(I −Dl)ȳl
a], (14)

where the first term corresponds to the updated entries, and the sec-
ond term denotes the entries that remain unchanged. In (14), I is the
KN ×KN identity matrix and

Dl := diag(wl) ∈ {0, 1}KN×KN .

Here, diag(·) constructs a diagonal matrix using its argument,
wl = [(w

(0)
l)T , . . . , (w

(K−1)
l)T]T , where w

(k)
l is an N -binary

vector with [w
(k)
l]i = 1 if the ith entry of y(k)

l is updated or zero
otherwise. Notice that no further structure is enforced on Dl. This
setting encompasses cases where not all memory entries are updated
within a node, i.e., asynchronous updates within nodes.

Using the asynchronous update model (14), in the following
lemma, we provide sufficient guarantees for the convergence of
the recurrence using properties of the structured perturbation corre-
sponding to the asynchronous update model.

Lemma 3. Let each node update its local variable using the asyn-
chronous recurrence (14). Further, let x̄ and B̄ be defined as
in (11) and let the sequence matrices Dl be sufficiently exciting,
i.e.,

∑∞
l [Dl]i,i � 0∀ i. Then, for S and {Φk}Kk=1 meeting the

conditions of Lemma 1, (ȳa
l)(0) converges to y∗ as l→∞.

Proof. See Appendix.

In Lemma 3, the condition on the sequence Dl enforces a suffi-
cient exchange of information over the network. That is, all the en-
tries are sufficiently seen, i.e., updated, throughout the recurrences.

After these results, we are ready to prove the main theorem with
respect to the behavior of asynchronous constrained edge-variant
graph filters.

Theorem 1. Let a network perform the filtering operation

ysol = Hx = HBHAx,

where HA is a filter of order K of the form (4) and HB is a filter of
order P of the inverse form of (4). Then, if the involved matrices S
and {Φk}Kk=1 in the graph filter HA and the sequence of matrices
Dl satisfy the conditions of Lemma 3, the asynchronous implemen-
tation of H converges to ysol.

Proof. We can apply HA and use the results of Lemma 3 to show
that the filtering operation converges to the desired output. Further,
as each node is endowed with memory, as long as they can commu-
nicate with their neighbors, they can locally compute the output of
HB when the filter order, P , of HB is lower than or equal to K. In
the case that P > K, we simply increase the memory of HA and
set the corresponding matrices Φk to zero.

Corollary 1. The exchange of exact updates for inexact updates, as
defined in Lemma 2, in the HA filter operation defined in Theorem 1
forces the sequence, as l → ∞, to eventually lie within a ‖ ‖-ball
centered at ysol of radius

εHB = ‖HB‖
β

1− γ .

The result from Theorem 1 provides an interesting insight with
respect to the cascade application of general asynchronous graph fil-
ters. That is, in the case of classical graph filters, where any pair
of GFs commute, this result implies that any ARMA GF can be im-
plemented asynchronously. However, for a more general family of
graph filters, e.g., node-variant [13] or edge-variant [1], the ordering
of the MA and AR of the GF is critical.

4.1. Classical Graph Filter Asynchronous Case

Here, we particularize our results to the case of the simplest GF:
the classical GF. To do so, we replace each Φk by αkS in (11) and
obtain the following relation

ȳl+1 = x̄ + (CT
q ⊗ S)ȳl, (15)

where

Cq =

φ1 1 0 · · · 0
φ2 0 1 · · · 0
...

...
...

. . . 0
φK−1 0 0 · · · 1
φK 0 0 · · · 0

 (16)

is the companion matrix (with mirrored rows and columns w.r.t the
standard definition) of the polynomial q defined as

q(t) = tK −
K∑
i=1

φit
K−i. (17)

(a) (b)

Fig. 1: Convergence rate for different ARMA1 implementations. (a) Jacobi updates
with M = 4diag(H−1). (b) Jacobi updates with M = 2.5diag(H−1). Here,
diag(·) denotes the diagonal part of the matrix argument and the number in the legend
corresponds to the number of coordinated nodes.

Using (15), we can state that the recursion converges if

ρ(Cq)ρ(S) < 1. (18)

For a normalized shift, i.e., ρ(S) = 1, the condition reduces to
ρ(Cq) < 1. Therefore, by noticing that the eigenvalues of Cq are
the same as the roots of q(t), we can perform stable filter design
for the recursion (15) by enforcing constraints on the roots of q(t).
Notice that if (18) is satisfied, all the results from the lemmas follow.

In the following section, we present a series of numerical exper-
iments demonstrating the behavior of the asynchronous edge-variant
graph filters. In addition, operator splitting is discussed to comple-
ment the discussion on distributed GFs.

5. NUMERICAL SIMULATION

In this section, we illustrate the convergence results for general graph
filters and briefly discuss the splitting of the system to provide an
improvement in convergence speed. In literature [23], recurrence
equations like (2) are sometimes referred to as splitting methods.
The term comes from the fact that (2) can be rewritten as

yl+1 = (I −M−1A)yl + M−1x, (19)

where A = M −N . Notice that in this case, the iteration matrix
B is given by M−1N . Hence, the (asymptotic) convergence rate is
now controlled by ρ(M−1N) instead of ρ(I −A).

Typical choices for M−1 are the diagonal part and the lower
triangular part of A. The former and the latter choices lead to the
so-called Jacobi and Gauss-Seidel methods, respectively. While it
is well-known that Gauss-Seidel exhibits better convergence prop-
erties, the Jacobi method is, in general, the only one that can be
efficiently implemented in a distributed fashion, i.e., the inversion
of a diagonal matrix is easy to distribute. In the following example,
we show a comparison between the classical implementation and the
Jacobi implementation for different numbers of random coordinate
nodes, i.e., nodes that update at the same time. Here, we consider
that the underlying graph is a community graph withN = 256 nodes
(generated using the GSPToolbox [26]) and we assume a classical
ARMA1 [11]

A = 1/ϕ(I − ψS)→H = ϕ(I − ψS)−1, (20)

with ϕ = 1 and ψ = 1/(ρ(S) + ε). In this case, ρ(I −H) =
0.9903. In Fig. 1, we show a comparison between two different
splittings and the algorithm without splitting. We can see how the Ja-
cobi implementation converges faster than the implementation with-
out splitting, while maintaining its distributed nature. In addition, by

0 200 400 600 800 1000
10-15

10-10

10-5

100 Sync (Ext)

Async : =0.1

Async (Ext) =0.3

Async (Ext) =0.5

Async (Ext) =0.7

Async (Ext) =0.9
JSync (Simple)

JAsync (Simple) = 0.1
NSync (Simple)

(a)

0 200 400 600 800 1000
10-15

10-10

10-5

100
Sync (Ext)

Async : =0.1

Async (Ext) =0.3

Async (Ext) =0.5

Async (Ext) =0.7

Async (Ext) =0.9
JSync (Simple)

(b)

Fig. 2: (a) Results for the time-varying Poisson equation. (b) Results for the ARMA
graph filter. A community graph with N = 64 nodes has been used for the simulations.

a proper selection, i.e., optimizing ρ(M−1N), we observe that the
convergence speed can be increased. In this example, it is shown that
the asynchronous implementation always converges independently
of the number of nodes that are updated at each iteration as long as
there is sufficient communication among the network.

In our analysis, we have provided guarantees for the behavior of
asynchronous GFs for general norms. However, we want to remark
that despite the fact that global properties, such as bounded spectral
norm, provide guarantees for asymptotic convergence, they do not
guarantee monotonic convergence to the true solution, i.e., to the
desired filtered signal. Hence, if ρ(B) < 1, then the recurrence
converges, but the error at each iteration is not strictly decreasing.

In the following, we show this behavior for two different in-
stances. First, we consider a Poisson equation with weighted feed-
back, i.e.,

∂xxy = f → Ly = g + Dy, (21)

where g is a constant field, L the discretized Laplacian, D a diag-
onal matrix with weights and H = L −D with ρ(H) = 1.6812.
Second, we consider an ARMA GF, i.e.,

H = HBHA = [Σ1
l=0φlS

l][Σ3
k=1ΦkS

k−1]−1, (22)

with ρ(HB) = 2.048. For these experiments, a community graph
of N = 64 nodes has been considered.

In Fig. 2a and 2b, we can observe that in both cases, the asyn-
chronous versions of the GFs converge to the true solution. In addi-
tion, we notice that for certain values of τ , i.e, fraction of coordinate
nodes, the convergence is faster than the synchronous version, i.e.,
τ = 1. This behavior has been seen before in the parallel computing
literature, where it is argued that this is due to the shrinkage of the it-
eration matrix at every step. That is, under certain circumstances, us-
ing the interlacing theorem, one can show that the eigenvalues of the
asynchronous system are smaller than the ones of the synchronous
system. Finally, we want to remark that there is indeed a loss in con-
vergence speed with respect to the global updating scheme [c.f. (8)].
This is seen in the fast convergence of the dotted lines in the figures.
Those lines represent the Jacobi (J) and classical (N) updates in their
synchronous and asynchronous versions.

6. CONCLUSION

In this work, we presented general guarantees for the convergence of
an asynchronous implementation of a cascade of edge-variant graph
filters. Differently from other approaches, we use weaker conditions,
more amenable for filter design, to provide convergence guarantees
in both exact and inexact settings. The latter encompasses cases
where there is miscommunication between nodes, errors within in-
formation packages or noisy communication channels. Through nu-
merical simulations, we demonstrated the predicted convergent be-
havior of asynchronous edge-variant graph filters.

7. REFERENCES

[1] Mario Coutino, Elvin Isufi, and Geert Leus, “Advances in distributed
graph filtering,” arXiv preprint arXiv:1808.03004, 2018.

[2] Eric D Kolaczyk, Statistical analysis of network data: methods and
models, Springer Science & Business Media, 2009.

[3] Olaf Sporns, Networks of the Brain, MIT press, 2010.

[4] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega,
and Pierre Vandergheynst, “The emerging field of signal processing
on graphs: Extending high-dimensional data analysis to networks and
other irregular domains,” IEEE Sig. Proc. Mag., vol. 30, no. 3, pp.
83–98, 2013.

[5] David I Shuman, Pierre Vandergheynst, Daniel Kressner, and Pascal
Frossard, “Distributed signal processing via chebyshev polynomial ap-
proximation,” IEEE Transactions on Signal and Information Process-
ing over Networks, 2018.

[6] Sunil K Narang, Akshay Gadde, and Antonio Ortega, “Signal process-
ing techniques for interpolation in graph structured data,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP). IEEE, 2013, pp.
5445–5449.

[7] Santiago Segarra, Antonio G Marques, Geert Leus, and Alejandro
Ribeiro, “Reconstruction of graph signals through percolation from
seeding nodes,” IEEE Trans. Signal Process, vol. 64, no. 16, pp. 4363–
4378, 2016.

[8] Andreas Loukas, Marco Zuniga, Ioannis Protonotarios, and Jie Gao,
“How to identify global trends from local decisions? event region de-
tection on mobile networks,” in INFOCOM, 2014 Proceedings IEEE.
IEEE, 2014, pp. 1177–1185.

[9] Chenhui Hu, Jorge Sepulcre, Keith A Johnson, Georges E Fakhri,
Yue M Lu, and Quanzheng Li, “Matched signal detection on graphs:
Theory and application to brain imaging data classification,” NeuroIm-
age, vol. 125, pp. 587–600, 2016.

[10] Elvin Isufi, Geert Leus, and Paolo Banelli, “2-dimensional finite im-
pulse response graph-temporal filters,” in Sig. and Inf. Proc. (Global-
SIP), 2016 IEEE Global Conference on. IEEE, 2016, pp. 405–409.

[11] Elvin Isufi, Andreas Loukas, Andrea Simonetto, and Geert Leus, “Au-
toregressive moving average graph filtering,” IEEE Trans. Signal Pro-
cess, vol. 65, no. 2, pp. 274–288, 2017.

[12] Mario Coutino, Elvin Isufi, and Geert Leus, “Distributed edge-variant
graph filters,” in IEEE 7th Int. Workshop Comp. Adv. in Multi-Sensor
Adap. Proc.(CAMSAP). IEEE, 2017.

[13] Santiago Segarra, Antonio Marques, and Alejandro Ribeiro, “Optimal
graph-filter design and applications to distributed linear network oper-
ators,” IEEE Trans. Signal Process, 2017.

[14] Dimitri P Bertsekas, “Distributed asynchronous computation of fixed
points,” Mathematical Programming, vol. 27, no. 1, pp. 107–120, 1983.

[15] Daniel Chazan and Willard Miranker, “Chaotic relaxation,” Linear
algebra and its applications, vol. 2, no. 2, pp. 199–222, 1969.

[16] Andreas Frommer and Daniel B Szyld, “On asynchronous iterations,”
Journal of computational and applied mathematics, vol. 123, no. 1-2,
pp. 201–216, 2000.

[17] Jacques Mohcine Bahi, Sylvain Contassot-Vivier, and Raphael Cou-
turier, Parallel iterative algorithms: from sequential to grid computing,
Chapman and Hall/CRC, 2007.

[18] Oguzhan Teke and PP Vaidyanathan, “The asynchronous power iter-
ation: A graph signal perspective,” in 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 4059–4063.

[19] Edmond Chow, “Convergence models and surprising results for the
asynchronous jacobi method,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2018, pp. 940–949.

[20] CT Kelley, “Iterative methods for linear and nonlinear equations,”
Frontiers in applied mathematics, vol. 16, pp. 575–601, 1995.

[21] Aizik Isaakovich Vol’pert, “Differential equations on graphs,” Mathe-
matics of the USSR-Sbornik, vol. 17, no. 4, pp. 571, 1972.

[22] Elvin Isufi, Andreas Loukas, and Geert Leus, “Autoregressive mov-
ing average graph filters a stable distributed implementation,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2017.

[23] Yousef Saad, Iterative methods for sparse linear systems, vol. 82, siam,
2003.

[24] Alfred Brousseau, Linear Recursion and Fibonacci Sequences, Fi-
bonacci Assoc., 1971.

[25] Richard Bellman, Introduction to matrix analysis, vol. 19, Siam, 1997.

[26] Nathanaël Perraudin, Johan Paratte, David Shuman, Lionel Martin,
Vassilis Kalofolias, Pierre Vandergheynst, and David K. Hammond,
“GSPBOX: A toolbox for signal processing on graphs,” ArXiv e-prints,
Aug. 2014.

8. APPENDIX

8.1. Proof Lemma 1

Let us consider the first block of the recurrences, i.e.

ȳ
(0)
l+1 = x +

K∑
k=1

Φkȳ
(k−1)
l

= x +

K∑
k=1

ΦkS
k−1ȳ

(0)
l−k+1.

As (I −
K∑

k=1

ΦkS
k−1) is not singular, i.e, there exists a solution y∗

for the system, we have that

y∗ = x +

K∑
k=1

ΦkS
k−1y∗.

Then, by subtracting both expressions we obtain

(ȳ
(0)
l+1 − y∗) =

K∑
k=1

ΦkS
k−1(ȳ

(0)
l−k+1 − y∗),

from where we can bound the norm of the error at each iteration as

‖(ȳ(0)
l+1 − y∗)‖ = ‖

K∑
k=1

ΦkS
k−1(ȳ

(0)
l−k+1 − y∗)‖∗

≤
K∑

k=1

‖ΦkS
k−1(ȳ

(0)
l−k+1 − y∗)‖

≤
K∑

k=1

‖ΦkS
k−1‖‖ȳ(0)

l−k+1 − y∗‖

≤ αl

K∑
k=1

ρk−1‖Φk‖

≤ αl

K∑
k=1

ρk−1a

= αla

(
1− ρK

1− ρ

)
,

where we have defined αl := max0≤k<l ‖ȳ(0)
l−k+1−y∗‖. Choosing

a as given in the lemma, provides

‖(ȳ(0)
l+1 − y∗)‖ ≤ γαl,

where γ < 1. By recursive application of the inequality, we obtain

‖(ȳ(0)
l+1 − y∗)‖ ≤ γl+1α0, (23)

which clearly vanishes for l→∞ and any α0.
As the first block converges as long as the conditions of the

lemma are satisfied, the convergence of the rest of the block follows
directly, e.g.,

lim
l→∞

ȳ
(1)
l+1 = lim

l→∞
Sȳ

(0)
l = Sy∗.

8.2. Proof Lemma 2

As (13) is equivalent to (11), inexact updates in (13) can be expressed
as inexact updates in the global system. Therefore, without loss of
generality, we can build the proof for the global system as provided
in the lemma.

Considering the inexact recurrence relation, and assuming that
the exact system has a solution y∗, the following inequality holds

‖((ȳin
l+1)(0) − y∗)‖ ≤ ‖

K∑
k=1

ΦkS
k−1((ȳin

l−k+1)(0) − y∗) + v
(0)
l ‖

Using Lemma 1, expanding the recursion and recalling the definition
of B [cf. (8)], we obtain

‖((ȳin
l+1)(0) − y∗)‖ ≤ γl+1α0 +

l∑
i=0

‖Bi‖‖v(0)
l−1‖

≤ γl+1α0 +
l∑

i=1

ωiβ

= γl+1α0 + β
1− ωl+1

1− ω ,

whereω := ‖B‖, γ := a(1−ρK/1−ρ) ≤ 1 andα0 := ‖ȳ(0)
0 −y∗‖

as defined in Lemma 1. Taking the limit of the previous expression,
we can obtain the asymptotic bound

lim
l→∞

‖((ȳin
l+1)(0) − y∗)‖ ≤ β

1− ω

≤ β

1− γ .

Finally, as γ is an upper bound of ω (see Lemma 1), the inequality
follows.

8.3. Proof Lemma 3

To show this result, we show that under the conditions of the lemma,
the norm of the perturbation is subject to a non-expansive operation.

So, we first make use of the inexact update recurrence formula-
tion to rewrite the update equation as

ȳa
l+1 = x̄ + B̄ȳa

l + nl,

where

nl := (Dl − I)(x̄ + B̄ȳa
l − ȳa

l).

Using the results of Lemmas 1 and 2, we can construct the ex-
pression (assuming y∗ exists)

‖(ȳa
l+1)(0) − y∗‖ ≤ γl+1α0 +

l∑
i=0

‖Bi‖‖n(0)
l−i‖.

At this point, it is clear that the first term vanishes. However, to
show that the sequence converges to y∗, we need to show that the
second term vanishes as well for increasing l.

To show this, first let us define

rl := x + (B̄ − I)ȳa
l

= x + (B̄ − I)(x + B̄ȳa
l−1 + nl−1)

= B̄rl−1 + (B̄ − I)nl−1.

Using the definition for nl, we can rewrite rl as

rl = B̄rl−1 + (B̄ − I)(Dl − I)rl−1

= ((B̄ − I)Dl + I)rl−1

=

l∏
i=0

((B̄ − I)Di + I)r0.

Now, let us split B̄ into two matrices, {B̄+, B̄−}, containing
its positive and negative parts of the spectrum, respectively. Consid-
ering this partition, we can rewrite the expression for rl as

rl =

l∏
i=0

((B̄+ − I)Di + I + B̄−Di)r0.

From this expression, and the fact that ρ(B̄) < 1, we note the
following

eigs{B̄+ − I} ∈ [−1, 0)

eigs{I + B̄−Di} ∈ (0, 1].

Hence,

ρ((B̄ − I)Di + I) ≤ 1,

which leads to a non-expansive operation over the residual and in
turns leads to a non-expansive operation over the perturbation, nl,
i.e.,

nl = (Dl − I)rl

= (Dl − I)

l∏
i=0

Mir0,

where Mi = (B̄ − I)Di + I and implies

‖nl‖ ≤ ‖(Dl − I)‖
l∏

i=0

‖Mi‖‖r0‖.

with ρ(Mi) ≤ 1. Hence, for l → ∞ and a sufficiently exciting
sequence i.e., all entries are sufficiently updated due to the lemma
condition, the perturbation contracts, thus vanishes.

