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Wideband Spectrum Sensing From Compressed
Measurements Using Spectral Prior Information
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Abstract—Wideband spectrum sensing (WSS) encompasses a
collection of techniques intended to estimate or to decide over
the occupancy parameters of a wide frequency band. However,
broad bands require expensive acquisition systems, thus moti-
vating the use of compressive schemes. In this context, previous
works in compressive WSS have already realized that great
compression rates can be achieved if only second-order statistics
are of interest in spectrum sensing. In this paper, we go a step
further by exploiting spectral prior information that is typically
available in practice in order to reduce the sampling rate even
more. The signal model assumes that the acquisition is done by
means of an analog-to-information converter (A2I). The input
signal is the linear combination of a number of signals whose
second-order statistics are known and the goal is to estimate/de-
cide over the coefficients of this combination. The problem is thus
a particular instance of the well-known structured covariance
estimation problem. Unfortunately, the algorithms used in this
area are extremely complex for inexpensive spectrum sensors
so that alternative techniques need to be devised. Exploiting the
fact that the basis matrices are Toeplitz, we use the asymptotic
theory of circulant matrices to propose a dimensionality reduction
technique that simplifies existing structured covariance estimation
algorithms, achieving a similar performance at a much lower
computational cost.

Index Terms—Analog-to-information converters, compressed
sensing, covariance matching, wideband spectrum sensing.

I. INTRODUCTION

S PECTRUM sensing [1] encompasses a collection of proce-
dures intended to determine the occupancy state of a par-

ticular frequency band, and it is of critical importance in certain
applications such as those employing dynamic spectrum access
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(DSA) [2] (sometimes known as cognitive radio [3]).When sev-
eral channels need to be scanned, a simple approach is to apply
a conventional narrowband spectrum sensing procedure inde-
pendently on a channel by channel basis. However, certain par-
ticularities arise from considering multiple channels at the same
time, these being the subject of study of the so-called wideband
spectrum sensing (WSS).
Previous wideband schemes include [4], where the

throughput is maximized with an interference constraint
on the primary network. The drawback though is that noise
power knowledge is assumed, which makes the scheme sensi-
tive to the noise uncertainty problem [5]. This problem is solved
in [6], where this parameter is estimated using idle channels.
However, in practice we may not guarantee the existence of
such channels. This difficulty is overcome in [7] by assuming
that the power spectral density (PSD) of the individual channels
is known up to a scaling factor. Unfortunately, this scheme
requires acquiring the wideband signal at the Nyquist rate,
which drastically limits the maximum sensed bandwidth.
The sampling rate clearly represents a bottleneck for WSS.

This observation has led to the concept of compressive WSS
(see [8] and the references therein), where the sensing is done
based on samples taken below the Nyquist rate. However, most
schemes employ lossless compression, i.e., they aim to exactly
reconstruct the original signal, so that assumptions about spar-
sity in the frequency domain are required. An alternative view
that implements lossy compression stems from the observation
that only the second-order statistics of the received signal are
of interest, not the time-domain waveform itself [9], [10]. As a
convenient byproduct, sparsity is typically not needed anymore.
This standpoint is also used in [11], [12], where the signal is ac-
quired in the spatial domain to estimate the direction of arrival
(DoA), and in [13], where a distributed scheme to estimate the
power spectrum from lossy observations is proposed.
The scheme in [9] provides a general spectrum estimation

method based on compressed measurements, where the spec-
trum of the uncompressed signal is retrieved by inverting the
linear relationship between the input and the output of the ac-
quisition system. Interestingly, this setting allows two impor-
tant refinements on the grounds that certain prior information
about the power spectrum of the individual transmissions is
typically available in practice. First, this information allows a
more detailed interpretation than the raw spectral estimate of
[9], enabling us to obtain the occupancy parameters more di-
rectly: we are only interested in estimating the power of each
channel. Second, it suggests that drastic reductions in the sam-
pling rates can be achieved since only a few parameters need to
be estimated.
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Typical prior information available about the signals being
transmitted at a particular frequency band is often very detailed
since many transmission systems today obey public standards.
Among them we can mention, for example, the case of WiFi,
Bluetooth, cellular telephony, digital television, etc., where the
transmitted waveforms are strongly determined by the standard.
This information, together with the specifications dictated by
spectrum regulatory bodies, determine spectral masks, carrier
frequencies, bandwidths, etc. Thus, it is reasonable to assume
that the PSD of the individual transmissions is known up to a
scaling factor. Consider, for instance, the case of a linear modu-
lation such as QAM,where the PSD is determined by the roll-off
factor of the square root raised cosine pulse and the bandwidth,
which are typically known in practice. Another example is given
by multi-carrier modulations, where the PSD can be inferred
from the number of active carriers, the positions and power
of the pilots, etc., which are also standardized in many trans-
mission systems. Moreover, in those scenarios where different
transmissions have disjoint frequency supports, we expect any
reasonable sensing algorithm to tolerate moderate modeling er-
rors in the PSD.
In the considered model, a frequency band of large band-

width is acquired by means of an analog to information con-
verter (A2I) [14]–[16], which provides linear measurements of
the analog input signal at rates below the Nyquist rate. This
signal is assumed to be the sum of a certain number of com-
ponent signals whose second-order moments are known up to a
scaling factor, one of them will typically be noise/interference.
The goal is to estimate the power of these components based
on the compressed observations provided by the A2I. These es-
timates may be used afterwards by some opportunistic node to
decide over the occupancy of a channel in order to identify trans-
mission opportunities, or they may be used by some device re-
sponsible for monitoring the correct usage of the spectrum.
In order to define estimation criteria, we start by assuming

that the signal is Gaussian distributed, which is motivated in
communication scenarios for several reasons: first, the Gaussian
distribution is the distribution that achieves the capacity of an
additive white Gaussian noise channel, so that many high-rate
transmission signals are designed to follow an approximately
Gaussian distribution. Second, multi-carrier communications,
which are widespread nowadays, are approximately Gaussian
distributed since they are generated as linear combinations of
many independent (or nearly independent) subcarriers. Third,
it is a working assumption very common in signal processing
and statistics since it leads to tractable models and since many
methods designed for Gaussian distributions also work even
when there exist considerable departures from Gaussianity [17].
Using this assumption, we find that the algorithms for clas-

sical structured covariance estimation may be applied. How-
ever, the complexity of these algorithms limits their applica-
bility to real-world scenarios, where the spectrum sensors are
typically low-end devices that must minimize the sensing and
processing time, both for properly exploiting the transmission
opportunities and for saving battery [1], [2]. A dimensionality
reduction technique is therefore presented in Section II based on
two key observations: first, the input signals are assumed sta-
tionary so that their covariance matrices are redundant. Second,

most information in practical signals is concentrated on the first
few lags of the autocorrelation. In Section III, we review and
modify some well-known structured covariance estimation al-
gorithms to work in our setting, and we exploit this dimension-
ality reduction technique to propose efficient approximations
that achieve a similar performance at a much lower computa-
tional cost. Later, the Gaussian assumption is released and a
couple of algorithms are proposed for non-Gaussian signals. In
this context, asymptotic considerations lead to an efficient al-
gorithm that has been recently proposed in the context of array
processing [18]. After discussing these algorithms for estima-
tion in the time domain in Section III; we explore estimation in
the frequency domain in Section IV. Finally, we asses the es-
timation and detection performance in Section V and highlight
the main conclusions in Section VI.
Notation: Throughout, denotes the Kronecker product,

the Euclidean norm, the Frobenius norm, the determi-
nant, the trace, the expectation and the iden-
tity matrix. The superscripts and represent, respectively,
the conjugate transpose and the pseudo-inverse matrices. The
notation vec means column-wise vectorization, and is
a diagonal matrix with the components of along its main di-
agonal. Finally, we denote as the -th element of the
matrix and the -th component of the vector .

II. WIDEBAND SPECTRAL ESTIMATION AND DETECTION

In this section, we formulate the spectrum sensing problem,
which can be formalized as an estimation/detection problem.
First, the observation model is presented. Next, we introduce the
maximum likelihood (ML) framework and the dimensionality
reduction techniques that are used in the following sections.

A. Observation Model

Suppose that a sensor receives a signal that is a linear
combination with unknown coefficients of Gaussian compo-
nent signals , which may be present
or not, i.e., , where some of the ’s may
be zero. For concreteness, we assume that these signals are nor-
malized such that , so that the non-negative
coefficients actually represent the power of each component.
Estimating and deciding over these unknown coefficients is
the goal of the statistical procedures developed in the rest of the
paper. In a typical scenario, the signal will correspond to
the waveform being transmitted by the -th user operating in the
band. We also reserve one or more signals to model noise
and interference.
The conversion to the digital domain is carried out by an

A2I that produces the outputs
, with representing the discrete time index. Since no loss
of information is incurred by sampling a signal at the Nyquist
rate, a common abstraction when dealing with A2Is is to re-
place the analog input signal by its Nyquist-sampled ver-
sion and to assume that the outputs are the result
of some linear manipulation of these input samples. Extending
this idea to the components it is possible to write

, where and are



6234 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 24, DECEMBER 15, 2013

the corresponding sampled sequences at a period lower than
the Nyquist period.1

The input samples are arranged in groups of
, each one giving rise to one sample at every output
. Specifically, we have that , where

is the measurement vector corresponding to
the -th output sequence and

. By stacking these outputs
in the vector it is pos-
sible to write the more compact form , where

is the sampling matrix. Further, if
we arrange all observations together, we can form the vector2

, with the obser-
vation time, and write , where and

.
The input signals are assumed to be wide-sense sta-

tionary random processes, independent of each other, with zero
mean and known autocorrelation function

. The Fourier transform of the autocorrelation se-
quence is assumed to exist and it is the PSD of the process

. The statistics can be arranged as the elements of
the Hermitian Toeplitz covariance matrices ,
where . The set of matrices

is assumed -linearly independent,
in the sense that no two different linear combinations of these
matrices taking real coefficients can result in the same matrix,
i.e.,

(1)

The vector containing the received signal, now written as
, will have a covariance matrix given by

since was assumed independent of (and
thus uncorrelated with) for . Clearly, is Hermitian
Toeplitz since is stationary. For convenience we also consider
its decomposition into blocks:

...
...

. . .
...

where the blocks are given by .
A similar decomposition applied over results in blocks

where

The covariance matrix of is clearly

(2)

1Note that this sampling process is a virtual process that does not actually take
place; it is only introduced here to simplify the presentation of the A2I. Further
note that the considered samples and could
similarly be modeled by means of more realistic (virtual) samplers applied to
the analog signals.
2Throughout it will be assumed that is an integer multiple of .

where . Note that expression (2) decomposes
in terms of the covariance matrices of the compressed do-

main basis . These matrices are sim-
ilarly decomposed in blocks and

, in this case of size . Although these blocks
are not Toeplitz, the matrices and are block-wise Toeplitz,
which means that the processes and are jointly
stationary.

B. Estimation and Detection

As mentioned in Section I, we start by considering that the
amplitude of the signals involved is zero-mean Gaussian dis-
tributed. The statistical characterization of the observations is
thus completely determined by the second-order statistics intro-
duced in the previous section. The probability density function
(PDF) of the observations can be written as:

(3)

where is the vector of unknown param-
eters. Although also depends on this vector, we dismiss the
notation in favor of clarity, but this dependence should be
kept in mind throughout.
The ML estimate [19] of given is the maximizer

of the PDF in (3) seen as a likelihood function, that is,
, where the feasible set for is the

non-negative orthant, i.e., . This optimiza-
tion problem has been widely analyzed and, up to now, no
analytical solution is known. It is therefore necessary to deal
with numerical methods capable of maximizing (3), which will
be the subject of Sections III and IV.
We are also interested in testing for the presence of the signals
, which naturally leads to an involved multiple hypothesis

test with hypotheses. Since in applications like DSA we are
typically interested in some particular signal, say , a more
reasonable option is to perform a binary hypothesis test based
on this signal only. This is also motivated by simplicity and be-
cause the binary hypothesis testing framework is a more mature
and developed field in statistics thanmultiple hypothesis testing.
Without any loss of generality, we can assume that , so that
the problem can be formally stated as that of deciding between
the following two hypotheses:

The presence of the unknown parameters
, means that no test will exist, in general, that is optimal in
the Neyman-Pearson sense [20]. A sensible option arising from
ML criteria is to make the decision based on the generalized
likelihood ratio (GLR) statistic , which leads to the GLR
test (GLRT) [17], [20], [21]:

(4)

Here, is some predefined threshold, set to satisfy certain prob-
ability of detection/false alarm requirements. The notation in (4)
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means that we decide that is true for high values of and
otherwise.
The GLR statistic is defined as follows:

(5)
where the vectors and denote, respectively, the ML es-
timates of under hypotheses and . In particular,
is the maximizer of (3) subject to3 and ,

, whereas is the maximizer of (3) subject to
and , . For concreteness, but

without loss of generality, we only discuss the estimation of
subject to the constraints that all are non-negative. Note that
both the estimation of and can be formulated as partic-
ular instances of this problem: in the first case, it is easy to see
that can be obtained in this way just by removing from
. In the second case, it is readily seen that both problems are
equivalent since the likelihood function is continuous in so
that using the constraint amounts to using the constraint

.

C. Complexity of the Exact ML Solution

It can be easily seen that the complexity of obtaining the exact
ML solution is prohibitive to a conventional sensor even in cases
where the size of the compressed data record is of the
order of a few hundreds. This is due to the fact that
is also the size of the matrices involved and typical algorithms
need to evaluate their inverses and determinants at each itera-
tion. Moreover, certain numerical instabilities are expected in
these algorithms, requiring many checks that slow down the ex-
ecution even more. To see that, let us look at the problem from
an alternative perspective.
Observe that expression (3) can also be written in terms of

the sample covariance matrix (SCM) as

(6)

The problem is to find a matrix maximizing the metric in (6),
which is a measure of fit between and . This matrix has
to be sought in the feasible set, which is the intersection of the
subspace of matrices spanned by with
non-negative coordinates and the cone of positive definite ma-
trices. Note that this condition is necessary in order to evaluate
(6), since if we allow semi-definite matrices the determinant
may vanish and the inverse may not exist. A conventional itera-
tive algorithm will move across the feasible set ensuring that the
iterate stays far enough from the boundary of the cone (i.e., the
set of singular positive semi-definite matrices) since otherwise
the algorithm will be unstable. This goal is particularly ham-
pered by the fact that is exactly on that border: note that
this matrix has one positive eigenvalue with multiplicity 1 and
a null eigenvalue with multiplicity .

3In this paper, we assume that all matrices in are positive definite, so that
is positive definite if , .

D. Dimensionality Reduction

As opposed to many statistical problems where the number of
samples increases the cost of the solution linearly, here a higher
amount of samples increases the dimension of the problem,
forcing us to work with larger matrices, whose determinants
and inverses are more difficult to compute and ill-conditioned.
Moreover, the problem described in the previous section would
still be present. Intuition suggests attempting to approximate
the ML solution by replacing the raw SCM with a modified
version satisfying two properties:
• Fixed dimension: the size of the modified SCM does not
increase with the number of samples. It is kept low enough
in order to guarantee easy evaluation of the likelihood
function.

• Non-singular: the modified SCM should be full rank
whenever the number of samples is high enough. This
would overcome the problem described in the previous
section.

Moreover, observe that the raw covariance matrix does not
even have the block structure of , which also suggests looking
for an SCM of that particular form. The asymptotic theory of
Toeplitz matrices will give us some clue about how to accom-
plish this search.
1) Averaging the SCM: As we know [22], given a sequence

of Toeplitz covariance matrices satisfying the as-
sumption that the Fourier transform of the associated correla-
tion sequences4 exists, it is possible to find a sequence of
circulant matrices which is asymptotically equivalent.
The concept of asymptotic equivalence means that the products

and will converge to the same value
provided that is a sequence of matrices bounded in some
norm. The sequences of determinants and will also
have the same limit as long as these matrices are non-singular.
Since these are the only operations we are going to perform with
these matrices, we will allow ourselves to say that the sequence
of matrices is asymptotically circulant or, for a finite ,
approximately circulant. Likewise, since any circulant matrix
can be diagonalized by the vectors in the Fourier basis, we can
also say that these are, asymptotically (or approximately), the
eigenvectors of .
With this in mind, we may say that, as becomes

larger, is approximately block circulant and, consequently,
it will remain approximately the same after a circular rotation
of the block-rows and block-columns. More formally, this can
be expressed as , where denotes the matrix
performing a block-row circular rotation of the -th order, i.e.,

where circularly shifts the columns of the
identity matrix positions to the bottom. This enables us
to approximate the density of the observations as

4The correlation sequence associated with the Toeplitz matrix is made up
of the coefficients in the first row and column of set in the proper order.
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where we have made use of the fact that the squared determinant
is one. Noting that

for all shows that can ac-
tually be approximated as

where we have defined the averaged SCM as
. In other words, we have that

(7)

This means that5 averaging along the modular block-diag-
onals of the SCM has a small influence on the likelihood
function. However, in our case is not block-circulant but
block-Toeplitz, so that we may prefer to simply average along
the actual diagonals, i.e., to take

...
...

. . .
...

(8)

where and is a constant de-

pending on . If , then is actually composed of the
traditional biased estimates [23] of the autocorrelation/crosscor-
relation of the processes . On the other hand, if we set

, then we are using the unbiased estimate, which
may be more justified in the general case since then also
represents the length of the -th block-diagonal of , i.e., the
number of terms averaged. As we know [24], the use of either
one of these estimates will guarantee that is a consistent
estimator for for a fixed as we take . Note that
the simpler estimate lacks this property. In virtue of the
interpretation of Section II-C, consistency means that this mod-
ification of the SCM becomes closer, as increases, to the fea-
sible set where must be sought, and intuition suggests that this
is numerically convenient. Moreover, the averaged SCM has
the further advantage of presenting the same block structure as
the true covariance matrix .
2) Cropping the Covariance Matrix: Now that the av-

eraging has been motivated by arguing that the likelihood
function should not be considerably affected after this proce-
dure, it seems reasonable to consider reducing the dimension of
the problem by exploiting the redundancy present in both the
covariance matrix and the SCM.
Two observations apply: first, due to the block-Toeplitz struc-

ture of the covariance and averaged SCM, a large part of the co-
efficients is replicated several times. Note that this redundancy

5Note that we have unintentionally derived the exact ML estimate of if the
matrices in were block-circulant.

Fig. 1. Comparison between the true ML solution and that incorporating av-
eraging and cropping (ACML). , , Gaussian
A2I, , , .

is reduced as we move further away from the main diagonal.
Second, the coefficients of that are closer to the diagonal
have a lower estimation variance and, consequently, are more
reliable. If has the block structure in (8), these remarks sug-
gest truncating both the covariance matrix and the SCM, dis-
regarding the blocks and for high , for example re-
taining only the blocks corresponding to lags not greater than ,
i.e., we only keep the blocks of the modi-
fied SCM in (8). This parameter was already used in [9], [25],
[26] where, like here, it is regarded as a design parameter. Ob-
serve that after applying this selection, the matrices and
have dimension . For example, the av-
eraged and cropped SCM is given by

...
...

. . .
...

(9)

There are further arguments supporting averaging and crop-
ping, but the ultimate reason we may take into account is per-
formance. In Fig. 1, we compare the estimation mean squared
error (MSE) of the PSD obtained by the true ML solution (full
red line) with the MSE of the scheme incorporating averaging
and cropping (dashed black line). The signal is composed
of six bandpass signals with non-overlapping spectra of power
[4,9,4,9,4,9], and white noise of power 1. Gaussian compression
is carried out from samples to samples. More
details about these computations can be found in Section V.
We observe that a value of is enough to preserve most
second-order information. From that point on, the MSE of the
ML and the one based on using the modified SCM is roughly
the same.
3) Properties of the Averaged and Cropped SCM: In the al-

gorithms presented in the subsequent sections, a couple of prop-
erties of the modified SCM will be required. In particular, in
some cases it is required to be positive semi-definite since a
matrix square root must be computed. In other cases, the in-
verse must exist or the determinant must be different from zero.
These properties are affected by the selection of the design pa-
rameters , , and . The following theorem, whose proof
can be found in Appendix A, summarizes which combinations
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of these parameters result in positive semi-definite matrices or
invertible matrices.
Theorem 1: Under a continuous probability model for such

as that in (7), let be given by (9). Then, we have the following:
1) If the values of correspond to the biased estimator of
the autocorrelation, then is positive semi-definite.

2) If the values of correspond to the biased estimator of
the autocorrelation, we have that

with probability one.
3) If the values of correspond to the unbiased estimator
of the autocorrelation, we have that

with probability one.
The hypothesis in this theorem assumes that is distributed

according to a continuous non-degenerate probability distribu-
tion, in the sense that no set of zero Lebesgue measure can have
a non-null probability6 (see e.g. [27]). In our case, this condition
will hold provided that the covariance matrix is full rank. The
reason for such an assumption is that we can take advantage of
the fact that and are then linearly independent with
probability 1 if .
The first part of the theorem guarantees that is positive

semi-definite in case that the biased estimate is used, but the
same cannot be said when we use the unbiased estimate, whose
eigenvalues can be either positive or negative. Intuitively, this is
because the coefficients far from themain diagonal can take very
high values since the averaging needed for their computation is
performed over just a few samples.
From the second part of Theorem 1 we conclude that
has to be greater than or equal to in order to impose

that is invertible in the biased case. In other words, the invert-
ibility of imposes the following inequality over the number
of samples required:

(10)

On the other hand, when the unbiased estimator is used, the third
part of Theorem 1 says that the number of samples must be
greater than or equal to the product . Interestingly, this rela-
tion does not depend on , which can be adjusted with complete
freedom. Moreover, it is readily seen that the minimum re-
quired for to be full rank is much lower, in general, for the
unbiased estimator, thus motivating its use.
Finally, note that there is a further restriction on the values

these design parameters can take on. In particular, the estima-
tion problem must allow a solution, i.e., the coefficients must
remain identifiable [24] after the A2I. This topic requires exten-
sive analysis since it depends on the specific architecture of the
acquisition system. For the case of periodic non-uniform sam-
pling, this analysis can be found in [28]. Further results in this
context will be the object of subsequent publications.

6In this case, it is usually said that the distribution of is absolutely contin-
uous with respect to Lebesgue measure.

III. ESTIMATION IN THE TIME DOMAIN

As we saw in Section II-B, the detection problem reduces
to computing two vector estimates, one under each hypothesis.
The result of this computation is directly plugged into (5), where
no simplification is possible since the estimates are computed
numerically. For this reason, we only discuss estimation in this
section as well as in Section IV, leaving the analysis of the de-
tection problem to Section V. We first assume Gaussianity and
discuss in detail how to approximate the ML estimate either in a
constrained or unconstrained way. Based on the same ideas, we
next discuss estimators that can work even in the non-Gaussian
case.

A. The True ML Estimate

In order to find the ML estimate of one must maximize
(3) with respect to given the observation or, equivalently,
minimize the negative of the log-likelihood function:

(11)

where . This minimization must be carried out by
taking into account the constraints .
In order to minimize (11), one must resort to numerical

methods such as LIKES (likelihood-based estimation of sparse
parameters). LIKES is an algorithm proposed in [29] for rank-1
SCMs in the context of sparse-parameter estimation and sub-
sequently extended to the full-rank case in [30]. In both cases
the basis covariance matrices are assumed rank-1, but a
simple extension to the general case is possible as discussed
next. We next briefly summarize the derivation of LIKES, with
application to our problem.
The algorithm is based on the minimization-majorization

(MM) principle, which locally majorizes the cost by a convex
function at each iteration and minimizes this function to obtain
the next estimate. Suppose that the current iterate is given by
. Since the first term in (11) is concave whereas the second
one is convex, it suffices to majorize the first one by its tangent
plane at :

(12)

where the parameters using the under-bar notation are those
associated with . Therefore the cost in (11) can be majorized as

(13)

so that we must solve the program

(14)

at every iteration, where the notation means that the ele-
ments of are non-negative. The cost function in (14) is actually
the SPICE cost function if we make , as we
will see in Section III-D. LIKES is an algorithm that iteratively
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uses SPICE to refine its current estimate. At every iteration, the
weight vector is computed and SPICE ex-
ecuted. The algorithm is summarized below:

Algorithm

Initialize

while stopping_criterion == FALSE do
•
•
•

end while

Unfortunately, both the matrix inversion needed for the com-
putation of and the execution of SPICE are considerably slow
operations for observation vectors of moderate sizes. Fol-
lowing the guidelines in Section II, we propose to replace the

SCM in (11) by its averaged and cropped
version , which is just . It is understood
that the matrices and to be used must be cropped accord-
ingly so that their dimensions are also .
The algorithm described in the previous paragraph will be re-

ferred to as simplified-LIKES (SLIKES). Although the result of
executing this algorithm is an approximation of the ML esti-
mate, the computational time can be reduced meaningfully de-
pending on the value of . It can be shown that the expressions
for SLIKES are the same as those presented earlier if we replace

by and by , where is

an matrix such that .

Unfortunately, the fact that the square root must exist re-
quires to be positive semi-definite. This means that, according
to what was explained in Section II-D-3, the unbiased estimate
of the auto-correlation cannot be used to construct a modified
SCM. Since using the biased estimate is expected to increase
the bias of the estimation algorithm for finite data records, a
problem that naturally arises is that of devising an algorithm
that can use the unbiased estimate and is still ML-based. The
next section provides such an algorithm based on the idea of re-
laxing the positivity constraints . It will also be seen that
the resulting algorithm requires fewer samples to operate.

B. Unconstrained ML Estimation

Since in (11) is twice differentiable, relaxing the con-
straint enables us to find a minimum just by setting the
gradient equal to zero. This idea is exploited in the current sec-
tion to derive a simple approximation of the ML estimate.
By noting that , it is possible to write the deriva-

tive of with respect to as

(15)

Due to the regularity of this function, the gradient vanishes when
a minimum of is attained, that is, the right hand side of (15)
should be zero for all . After some algebraic manipulations, this
condition can be rewritten as

(16)

To the best of our knowledge, no analytical solution has been
found yet for this non-linear system of equations. In fact, even
for the simpler case where thematrices are Toeplitz, onemust
resort to numerical computations [31]. An example of an algo-
rithm to solve (16) is the inverse iteration algorithm (IIA) pro-
posed in [32], but, similarly to LIKES, the complexity is high,
especially for large . Moreover, the numerical stability is low,
and intense efforts must be made in order to stay in the positive
definite region (recall the discussion at the end of Section II-C).
Observe that the condition in (16) can be rewritten as

(17)

A possibility to refine an estimate is to take and
compute so that

(18)

This expression can be rewritten as , where

(19)

(20)

for . The IIA algorithm from [32] iteratively
uses this system of equations to refine the previous estimate .
The updating rule does not take directly the solution
since it can be out of the feasible region. Contrarily, the new
iterate is taken to be , where and is a factor
that simultaneously ensures that is in the feasible region
of the unconstrained problem7 and the cost function is smaller
than that for .
Although this algorithm converges to a local minimum, it is

seen from (19) that the matrix must be
inverted at each iteration and its determinant must be evalu-
ated. This may be prohibitive even for moderate values of
so that a sensible approximation is to substitute by the av-
eraged and cropped version . The resulting algorithm will be
thus referred to as the simplified IIA (SIIA) and, depending on
the value of chosen, may achieve considerable reductions in
the computational cost. The resulting algorithm is summarized
as Algorithm 2:

Algorithm 2

Initialize

while stopping_criterion == FALSE do
•
•
•
•
•
• Choose as explained above
•

end while

7Note that in the unconstrained problem it is necessary to check that is
positive definite. That was not the case in the constrained case since the positive
definiteness of is guaranteed by the fact that and the fact that the
matrices in are positive definite.
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As an initialization we propose to approximate
in (17), so that the initial value for can be chosen as the solu-
tion of the following linear system of equations:

(21)

or, equivalently

Finally note that, since this algorithm is designed to solve the
unconstrainedML problem, we shall not expect that all the com-
ponents of the resulting are non-negative. A discussion on the
implications of this fact is deferred to Section III-E. Note as well
that even though the SIIA can be several times faster than the
IIA, the computations involved can still be too burdensome in
some applications. The next section provides two simpler algo-
rithms relying on a least squares approximation.

C. Least Squares Estimation

We note that the condition in (16) can be rewritten as

which would immediately hold if one had . This
suggests approximating somehow, for example in the
least squares sense, i.e., we may try finding the vector that
minimizes the Frobenius distance . However, the ap-
proximation makes little sense in our case since

is rank one. Thus, it is not surprising that better re-
sults are obtained, in general, when we consider the averaged
and cropped version of the SCM which, apart from being of
higher rank, presents the same block structure as . This clearly
improves the consistency of the approximation and allows to
consider only one representative from each block-diagonal. By
defining

...

...

...

...

where accounts for the number of times the -th
block is present in or , the problem ofminimizing
can be stated as a least squares program:

(22)

where . Considering the blocks
along with their Hermitian versions naturally imposes
that . Although this makes sense in theory, a more effi-
cient choice when computing this solution is to separately con-
sider real and imaginary parts.

For simplicity and efficiency, we may think of solving (22)
without enforcing positivity on the ’s. In that case, the solu-
tion is given by , where WLS stands for weighted
least squares.8 The modifier weighted stems from the scaling
factors . Note that what this algorithm actually does is just
to project the modified SCM onto the space spanned by the
basis matrices in . On the other hand, if the constraints
are taken into account, the resulting algorithm is termed con-
strained WLS (CWLS).
Finally note that the approximation suggested in this section

is equally well motivated even if the underlying distribution is
not Gaussian: we may argue that taking is reasonable
whenever is a consistent estimator for .

D. Estimation Using SPICE

SPICE is a collection of algorithms for sparse parameter es-
timation which have in common that they all formulate the es-
timation problem as a program of the form

(23)

where is either a matrix with the same dimensions as or a
column vector and is a vector with the same dimension
as . The program (23) is then solved as a second-order cone
program (SOCP) or in an fixed-point fashion. It is derived in
[18], [29], [30], [33], [34] under different conditions, showing
that the problem is convex since it can be reformulated as either
a SOCP or a semi-definite program (SDP). Although, to the best
of our knowledge, the core SPICE iteration that solves (23) for
the case where the basis matrices have a rank greater than one
has not been derived in the literature, the extension is simple and
it is summarized as Algorithm 3:

Algorithm 3

Initialize

while stopping_criterion == FALSE do
•

• ,
• ,
• ,

end while

Note that Algorithm 3 contains the operations to execute in
the instruction of Algorithm 1 labeled as SPICE_ITERATION.
In the case of LIKES we take whereas in the case of

SLIKES is set to . In the remainder of this section we
apply SPICE to our problem, first considering the raw SCM

and next the averaged and cropped version . The
first algorithm will be simply referred to as SPICE whereas the
second one will be termed simplified SPICE (SSPICE).
In [18], [33], the so-called extended invariance principle [35]

is invoked to simplify the problem of structured covariance
estimation, achieving an estimate that asymptotically matches

8It was shown by simulations that, in most cases, WLS works better than the
pure LS, which is the result of taking . We omit the discussion of this
algorithm due to space limitations.
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the ML solution. It is also seen to work in the non-Gaussian
case [29]. This estimate is the minimizer of the following
criterion [33]

(24)

with , for the case where the observations are com-
posed of exactly one realization , or [18]

(25)

for the case where several realizations are available so that is
a full-rank SCM. In this second case, we will use the averaged
and cropped in place of since only one single realization is
available in our problem.
1) Standard SPICE: The criterion in expression (24) can be

expanded as

(26)

so that the problem is to compute

(27)

Clearly, (27) is a particular case of (23) where and
and it can be solved using Algorithm 3.

2) Simplified SPICE: We propose in this section to use
SPICE over an averaged and cropped SCM . In this case,
we prefer the criterion in (25) since its statistical motivation
is stronger than that of the criterion in (24) (see [18]). Using
simple algebra, it can be seen that the minimization of (25),
with replaced by , can be rewritten as the problem

(28)

This is clearly a particular case of (23) with and

so that it can be efficiently solved using Algorithm
3. We will refer to this estimator as simplified SPICE (SSPICE).
Although (standard) SPICE is an efficient method in the con-

text of array processing and spectral analysis for line-spectrum/
direction of arrival estimation [18], [29], [30], [34], the need to
invert an matrix at each iteration makes its
application to spectrum sensing difficult since practical condi-
tions involve low signal-to-noise ratios and, consequently, long
observation times. For this reason, the size of , and therefore
the size of , may be prohibitively high for SPICE. For con-
creteness, and since we have observed in our experiments that
the rank-1 criterion in (24) does not lead to a good estimation
performance in the context of compressive WSS, we will only
consider SSPICE in the rest of the paper. Note that this fact
agrees with the statement given in [33] that (24) does not pro-
vide good estimates of the coefficients .

E. General Considerations

In this section, we have proposed several algorithms that rely
on the averaged and cropped SCM. This idea potentially enables
a huge computational cost reduction at the expense of obtaining
an approximation of the ML solution in some cases, or an ap-
proximation of an asymptotic criterion such as the SPICE cost
in other cases. Fortunately, as we will see in Section V, the per-
formance degradation is small. On the other hand, the compu-
tational load of the approximated algorithms may be several or-
ders of magnitude below that of the exact algorithms depending
on the choice for .
If the algorithms that provide unconstrained estimates are

used, i.e. SIIA andWLS, some of the elements of the estimated
may be negative. In those cases, we may set the negative entries
equal to zero in order to reconstruct the spectrum or compute
the GLR statistic.
Finally, note that among all the algorithms employing the av-

eraged and cropped SCM, some of them impose certain require-
ments over this matrix, namely SLIKES, SIIA and SSPICE. In
particular, it can be easily seen that SLIKES requires the SCM
to be positive semi-definite, whereas SIIA and SSPICE need it
to be invertible and positive definite, respectively.
1) SCM Selection: According to what was discussed above

and in Section II-D-3, we may establish a simple guideline to
select a proper averaging method for the computation of . The
maindecision criteriondependsonwhethernegativeeigenvalues
are allowed or not. In particular, if is required to be positive
definite or positive semi-definite, then the traditional unbiased
estimate of the autocorrelation cannot be used since it does not
guarantee that all the eigenvaluesof arenon-negative.A simple
alternative is toemploy thebiasedestimateof theautocorrelation,
which, according to Theorem 1, guarantees that all the eigen-
values of are non-negative. The disadvantage of this method
is, however, that the bias of the estimate will be, in general, in-
creased. A different alternative is to apply the unbiased estimate
but set the negative eigenvalues equal to zero.Unfortunately, this
methodhas the disadvantageof reducing the rankof and cannot
beused in thosealgorithms requiring theSCMtobenon-singular.
2) Parameter Selection: The use of the algorithms above

and, in general, any algorithm that uses a modified SCM re-
quires a choice of the parameters , , and . We next
provide a set of guidelines about how to accomplish that choice:
• and are hardware-related parameters that affect the
acquisition stage. Since the influence of these parameters
strongly determines the cost of the A2I, here we may con-
sider them as given. For a more in-depth discussion on this
topic see [28].

• is a parameter that mainly affects the acquisition time,
but does not meaningfully affect the complexity of the al-
gorithm since its only influence is in the computation of
. In typical spectrum sensing applications, the acquisi-
tion time is determined by the target performance of the
sensing algorithm; for example when both the probability
of detection and false alarm are specified in a detection
problem. In other situations, the goal may be to minimize
the sensing time so that may be chosen equal to its min-
imum given by the requirements of the algorithm used. For
example, if needs to be full-rank, this minimum value is
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for the biased estimate and for the
unbiased estimate, as seen in Section II-D-3.

• Although the choice of strongly determines the compu-
tational time of the algorithm used since the matrices to be
manipulated are of size , the perfor-
mance is not meaningfully affected for reasonable values
of since in typical spectrum sensing applications most
relevant second-order information is concentrated around
the main diagonal of the covariance matrices (see discus-
sion about Fig. 1).
There is a lower bound imposed by the linear independence
of the matrices in and (see expression (1)) which, of
course, depends on . On the other hand, an upper bound
may be imposed by the requirements of Section II-D-3 if
is given, depending on the algorithm used. According

to our experience, good values for are those that make
the product a few times higher than . In any case, the
best choice for will depend on the matrices in and it is
the subject of future work (see also [28]).

3) Convergence and Consistency: From an optimization
point of view, all algorithms described above enjoy interesting
convergence properties. For instance, LIKES guarantees con-
vergence to a local minimum of the negative log-likelihood
function since the cost is always decreased at each itera-
tion [29]. A similar argument establishes local convergence for
SLIKES. This property is also satisfied by the IIA, where each
iteration provides an improving direction [32] and the stepsize
should be selected so that the cost is decreased. Moreover, since
the arguments in [32] assume a general positive definite SCM,
it is clear that they remain valid if the modified SCM is used,
thus showing local convergence for SIIA.
Regarding non-ML algorithms, WLS is a convex cost whose

optimal point can be expressed in closed form, whereas CWLS
is a convex cost which can beminimized using any conventional
convex solver, so that both algorithms are globally convergent.
The SPICE cost is also convex and the global convergence of the
alternating algorithm is established in [33]. Global convergence
for SSPICE follows from the arguments in [18].
In order to consider asymptotic statistical performance, let us

assume, for simplicity, that . In that case and according to
the arguments in [19], the ML-based algorithms LIKES and IIA
are expected to be asymptotically efficient and unbiased. Since
the Cramér-Rao bound (CRB) is decreasing with the number of
samples (See Section V for more information) this in turn means
that these ML algorithms will be consistent [24].
Regarding the algorithms employing the modified SCM, that

is, SLIKES, SIIA, WLS, CWLS and SSPICE, consistency fol-
lows from a different argument: the fact that the modified SCM
is a consistent estimator for the corresponding part of the true
covariance matrix means that will converge in probability9 to
. Intuitively, consistency follows by noting that all the criteria
of these algorithms are minimized by making provided
that is in the feasible set, i.e., provided that is in the span
of with non-negative coefficients, but becomes closer and
closer to this region as . A more rigorous proof of this
effect is out of the scope of this paper.

9Formally, this means that for all as ,
where denotes some norm, e.g., the Frobenius norm.

IV. ESTIMATION IN THE FREQUENCY DOMAIN

It is interesting to see that the same reasoning used in [7] to
motivate the use of least squares in the frequency domain also
applies here just by replacing scalars by blocks. Indeed, expres-
sion (16) can be easily written in terms of PSDs by exploiting
the asymptotic properties of Toeplitz covariance matrices that
were already used in Section II-D-1. The idea is to diagonalize
the cross-covariance matrices associated with the processes that
are jointly stationary.
In order not to overload the notation, let us apply the super-

position principle to compute the asymptotic approximation of
. First consider that all the entries in the vector are set to zero
except for the one corresponding to the -th signal component

. Later we just need to add together the contributions for
all values of to get the desired covariance.

If denotes the cross-covariance matrix of
and , then it is easy to see that under our observation
model

which is Toeplitz. This enables us to approximate

, where is a diagonal matrix containing
the cross-PSD of the processes and when only

is present at the input; and is the unitary IDFT matrix.
The covariance of the observations can now be composed by

noting that , where is a
matrix with a one in the position and zeros elsewhere,
so that can be approximated as

, where is a block diagonal
matrix containing the cross PSDs:

...
...

. . .

Finally, considering all contributions for
yields

(29)

where . If we now substitute this in (16) we obtain
the ML condition in the frequency domain:

(30)

Here, we have defined which
is the sample estimate of the PSD. If the raw estimate

is used, then , where is
the vector with the DFT of the observations, is a generalized
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periodogram. To see this, note that we can decompose as

where

Solving the equations in (30) is conceptually the same as
solving (16), although one of these conditions can be numeri-
cally more convenient than the other depending on the partic-
ular scenario. The IIA algorithm can be extended easily to the
frequency domain. However, if we are not willing to accept the
computational cost of finding the exact ML solution, or if the
Gaussian assumption cannot be applied, we can follow the same
guidelines as in Section III-C by rewriting (30) as

(31)

which leads us to consider making and close in the LS
sense or, in other words, minimizing the metric .
Since is block diagonal, this simplifies just to minimizing

, where represents the -th block on
the diagonal of .
This particular view of the problem is especially attractive for

interpretations in terms of guard bands, like those in [7]. It can
also be seen that the frequency criterion is equivalent to the LS
methods in the time domain: just note that the Frobenius norm is
invariant to unitary transformations so that the metric
is also

which, in turn, equals . Although the algorithms de-
veloped for the time domain in Section III could also be ex-
tended to the frequency domain, we do not consider them since
the complexity is expected higher with respect to the time do-
main, and the performance is expected slightly worse due to the
asymptotic approximation used in (29).

V. SIMULATIONS

In virtue of the discussion of Section III-E-3, it is expected
that the algorithms presented in the previous sections perform
asymptotically well. In particular, all the estimation algorithms
are consistent [24] as . Unfortunately, a performance
assessment when takes finite values is not so immediate, es-
pecially for detection, where an analytical evaluation seems to
be a formidable task. For this reason, we resort to Monte Carlo
(MC) simulation in this section.
All the proposed algorithms use an averaged version of the

SCM except for LIKES and IIA, which are sometimes presented
for the sake of comparison. In particular, SLIKES and SSPICE
are implemented here based on the biased SCM whereas the
rest of the algorithms (SIIA, WLS and CWLS) operate on the
unbiased estimate. Cropping is also implemented for these algo-
rithms unless the parameter takes on the maximum admissible
value, i.e., that satisfying .

Fig. 2. PSD estimates for (from left to right) six QAM signals and sevenOFDM
signals. Note that many curves overlap since their estimates are close to each
other. , Gaussian A2I, , , .

The A2Is used are of two kinds. The first one is generated by
drawing an independent zero-mean complex Gaussian random
variable with variance for each of the components
of . This procedure is repeated at every MC iteration in order
to average over this family of sampling matrices, thus making
our results independent of the particular choice of the matrix.
The A2I of the second kind is a multi-coset A2I with associated
matrix

(32)

Observe that summing all rows results in a minimal sparse ruler
of length , which is important for identifiability reasons
[9], [28].
The general setting is depicted in Fig. 2, where the true PSD

is shown along with the reconstructed PSD, which corresponds
to the frequency domain version of the covariance estimate

, with the outputs of the algorithms. In this case we
illustrate the use of these algorithms in a realistic scenario. The
sensed band contains six 4-QAM signals, seven OFDM signals
and white noise. The power of the signals is given by

, , whereas the noise power
is set to . Regarding the modulation parameters, a root
raised cosine pulse with a roll-off factor of 0.3 is used in the
QAM signal. The OFDM signal uses 512 subcarriers, although
the last and the first 50 are set to zero in order to ease the design
of the interpolation filter. Each subcarrier is also modulated by
a 4-QAM constellation and a cyclic prefix with length 1/4 of the
symbol period is used.We observe that although the distribution
of these signals is not exactly Gaussian (especially in the case
of the QAM signals) all the schemes are still able to estimate
the power of each channel with acceptable accuracy.
However, in order not to confine ourselves to specific modu-

lations, in the remaining simulations we generate the signals
by passing white Gaussian noise of power through an

energy-normalized prototype FIR filter with 31 coefficients and
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Fig. 3. Comparison of the estimation performance of the different algorithms
presented in the paper. , Gaussian A2I, , ,

, .

passband bandwidth rad/samp, except when many chan-
nels need to be considered, where the order is increased and the
bandwidth reduced to avoid frequency overlap.10 Every signal
is then frequency shifted according to equally spaced carrier fre-
quencies. The last signal is in all cases white Gaussian
noise.

A. Estimation Performance

The first experiment of this section illustrates the fact that the
proposed algorithms are consistent, in the sense that the esti-
mates of converge to the true values as becomes larger. In
Fig. 3, the MSE is represented vs. along with the CRB, which
is obtained from combining the bound for in [23], [36] with
a linear transformation to obtain the bound in the PSD domain.
See [19, Sec. 3.8] for more details about how to accomplish this
computation. Note that is constrained to satisfy , which
means that the bound to be used is actually the constrained CRB.
However, it is shown in [37] that this bound coincides with the
unconstrained CRB at those points where . For simplicity,
in this experiment we only consider points satisfying this con-
dition. The MSE is measured by summing the squares of the
point-by-point difference between the reconstructed PSD and
the theoretical one. The result is normalized by the number of
points considered so that the MSE is measured in squared units
of power per radian.
We also show in this figure, for comparison purposes, the PSD

MSE of the constrained and unconstrained ML estimators ob-
tained with the LIKES and IIA algorithms. Note that SSPICE
is not defined for the leftmost point since is too small for
the biased SCM to be non-singular. We observe that SIIA and
SLIKES achieve an estimation performance which is almost
identical to the performance of IIA or LIKES, yet with a much
lower computational complexity. The advantage of using a con-
strained estimate is also noticed.
The influence of the compression ratio on the MSE is inves-

tigated in Fig. 4. Since is set to a fixed value, it is clear that a
worse performance must be expected whenever is smaller
since fewer samples are processed, that is, the MSE is always
decreasing in . Interestingly, it is actually observed that

10Note that the scheme is still able to work even if there is overlap.

Fig. 4. A large portion of the samples can be discarded without a meaningful
performance loss. , Gaussian A2I, , ,

.

Fig. 5. Influence of the number of channels in the estimation performance.
for and . , Gaussian A2I,
, , , .

only a small performance loss is entailed even when the sam-
pling rate is considerably decreased. Although both SLIKES
and SSPICE were omitted for simplicity, a similar behavior can
be expected for these algorithms.
To close this section, we analyze in Fig. 5 the influence of

the number of channels in the estimation MSE. The variance
vector is set to . As intuition predicts, the
MSE increases with since the number of parameters increases
for a fixed number of observations [19].

B. Detection Performance

Now we compare the algorithms presented above in the de-
tection setting. The interest here is to decide over the first com-
ponent . According to what was explained in Section II-B,
after estimating under both hypotheses, the results are sub-
stituted in (5) and is compared against a threshold . If
any algorithm returns a negative , it is set to zero in order to
evaluate (5) since otherwise may not be positive definite. The
results are not averaged over a family of matrices since the dis-
tribution of under is required to remain the same from
one MC iteration to another in order to adjust the threshold .
We thus fix the sampling matrix to that in (32).
A simple receiver operating characteristic (ROC) [20], i.e.,

the representation of the probability of detection vs. the
probability of false alarm , is shown in Fig. 6, where we
can observe that the probability of detection of LIKES, SLIKES,
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Fig. 6. ROC comparing the algorithms of this paper. ,
Multi-Coset A2I, , .

Fig. 7. Influence of the number of channels on the detection performance.
, , and for . ,

Multi-Coset A2I, , .

SIIA and SSPICE is roughly the same. On the other hand, the
LS criterion is seen not to result in good detection rules. In par-
ticular, we observe that the ROC curves corresponding to WLS
and CWLS are not even concave, meaning that their perfor-
mance can be improved by using randomized versions of these
tests [21].
Finally, a comparison of the detection power for fixed false

alarm rate is presented vs. the number of channels in
Fig. 7. The LS detectors are omitted in favor of clarity since their
detection performance was not seen to be good in the previous
figure. It is observed that the influence of in is not as
important as in the MSE: only small variations are noticed. It
is also seen that this influence is more important if we increase
the parameter in SSPICE.

VI. CONCLUSIONS

The problem of wideband spectrum sensing with prior infor-
mation was formulated for the case when a frequency band is
observed through an A2I. For Gaussian signals, ML estima-
tion was seen to result in computational intensive solutions,
which motivated us to find low-complexity approximations. For
non-Gaussian signals, the same principles were used to find al-
ternative estimation rules. All of them stem from considering
an averaged and cropped version of the SCM which is closely
connected to the standard estimates of the autocorrelation for
ergodic processes.
The proposed algorithms (SLIKES, SIIA, WLS, CWLS and

SSPICE), some of which are based on adapting existing algo-

rithms to operate over the modified SCM, are consistent in the
number of samples and trade performance for complexity. They
may be classified as constrained and unconstrained estimation
procedures, the first ones yielding the best performance at the
expense of a higher computational complexity. For finite data
records, a comparison was carried out by means of Monte Carlo
simulations, revealing interesting properties such as the fact that
extremely low compression rates can be achieved.

APPENDIX A
PROOF OF THEOREM 1

For convenience, let us define ,
and . Since

the columns of are drawn from a continuous (non-degen-
erate) probabilistic model, they are linearly independent with
probability one so that we have in that
case.
Let us also consider the group of circular

rotation matrices , where is defined as the -th circular
shift of the columns of the identity matrix to the left. Except for
the dimensions, the definition of here is the same as that in
Section II-D-1. Note that and .
With this notation, it is possible to rewrite in a more

convenient form as , with . This
means that can in turn be written as , where

and

...
...

. . .
...

(33)

Interestingly, is also , where

...
...

. . .
...

(34)

and where is a block diagonal
matrix with the blocks on its diagonal.
In the biased case, we can go a step further by factoring
as where

denotes the vector of all ones. Then, it is possible to
write by defining .
Noting that is positive semi-definite since concludes
the proof of the first part.
The same factorization also shows that [38, Chap. 2]

Since has the special form of

...

it is possible to compute the rank by counting the number of lin-
early independent columns. If , where
is the number of rows, we obtain columns from the non-null
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columns of and one extra column for each with
. Therefore there are

independent columns. If , the number of inde-
pendent columns is also . Consequently, we have es-
tablished that , which concludes
the proof of the second part.
Proving the third part is a little more involved since the fac-

torization of the biased estimate does not apply to its unbiased
counterpart. We start by considering the case and then
move to the case .
Since all entries in are different from zero with probability

one, there exists an invertible matrix of elementary row
operations such that

or, alternatively, , with

(35)

The block diagonal matrix is clearly invertible
and, consequently,

(36)

where . The third equality is shown in
Appendix B, whereas the forth one is a consequence of the
fact that is invertible. In order to prove the third part of the
theorem, we note that in the unbiased case in (34) is full
rank [38, Chap. 2], i.e., . Consequently,

, which is exactly its
dimension so that is also invertible. As a result,

This concludes the proof for the case . In particular,
for we have that is maximum rank. Thus, for
it is easy to see that the rank of will also be maximum

with probability one, since the resulting matrix is obtained by
adding further random contributions to the averaged SCM that
only considers the first vectors.

APPENDIX B
PROOF OF EXPRESSION (36)

The purpose of this section is to show that

(37)

Although in Appendix A we made use of this expression from
left to right, in this section we will proceed from right to left.
This approach follows from noting that left-multiplying by
amounts to a row selection where we take the first rows of

every block of rows. The rows that are not selected are
set to zero but, as far as rank is concerned, this is equivalent to

removing those rows. Right multiplying by performs the
analogous operation with the columns. Although the rank of

can be less than or equal to the rank of , we will see that
once we have left-multiplied by , the right multiplication by

entails no further rank reduction.
In other words, we must show that the columns of

that sets to zero in are linearly dependent on the
columns that are not set to zero. To do so, we must examine the
structure of . From (33) we observe that is a sparse matrix
since the matrices have exactly one non-null element in
each row and column. As it is seen next, to establish (37) it
suffices to analyze the position of the non-null elements of .
To simplify the explanation, let us define as a matrix which
is zero where is zero and one where is different from zero.
Let and let , denote

the -th column of . We define
as the set with the positions of the non-null elements

of . It is easy to see that all the columns of are present in
the first block-column since the rest of the block-columns are
just cyclic shifts of the first one. In particular we have that, for

,

(38)

where and means remainder of integer division
by . Clearly, each one of these sets has elements, those
being

(39)

for . It is not surprising that the elements
in are the same as those in the subscripts of (38) since is
symmetric.
Now denote as , the
-th column in . As discussed above, the left multiplication
by this matrix amounts to setting to zero the rows of whose
indices are not present in the set (see (35))

In other words, only the rows with indices in are respected.
Thus, if denotes the set of non-null indices in , it is clear
that and also that the same relationship in (38)
still holds if we replace by , i.e.,

(40)

This expression allows us to arrange the columns of in
equivalence classes. We say that the column is in the class
if is contained in the set

(41)

for . Note that for
and that columns in class are linearly independent from

those in class . Also, if denotes the number of elements
in the set , then a collection of or fewer columns of class
is necessarily independent, since the coefficients of the non-

null entries in are taken from the matrix . Conversely, a
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collection of more than elements of class is necessarily
a dependent set of vectors.
With these observations in mind it is clear that the right-mul-

tiplication of by is not going to change the rank pro-
vided that this column selection respects at least elements
of class , for all . The number of elements surviving in class
is clearly given by . However, as we observe from (39)
and (41), so that , which
is exactly the minimum number of elements needed from each
class.
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