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Blind and Semi-Blind Equalization for Generalized
Space-Time Block Codes

A. Lee Swindlehurst, Senior Member, IEEE,and Geert Leus

Abstract—This paper presents a general framework for
space-time codes (STCs) that encompasses a number of recently
proposed STC schemes as special cases. The STCs considered are
block codes that employ arbitrary redundant linear precoding of
a given data sequence together with embedded training symbols, if
any. The redundancy introduced by the linear precoding imposes
structure on the received data that under certain conditions can
be exploited for blind or semi-blind estimation of the transmitted
sequence, a linear receiver that recovers the sequence, or both si-
multaneously. Algorithms based on this observation are developed
for the single-user flat-fading case and then extended to handle
multiple users, frequency-selective fading, as well as situations
where the channel is rank deficient, or there are fewer receive
than transmit antennas.

Index Terms—Array signal processing, communication chan-
nels, diversity methods, equalizers, fading channels, MIMO
systems, multipath channels.

I. INTRODUCTION

T HE advantages of using multiple antennas at both the
transmit and receive ends of a wireless communications

link have recently been noted [1], [2]. A number of space-time
codes (STCs) have been proposed that exploit the potential for
increased throughput and diversity that such systems offer. For
most algorithms, these gains can only be realized when that the
multiple-input multiple-output (MIMO) channel separating the
transmitter and receiver has been identified. While training data
can be used to estimate the channel, this approach consumes
precious bandwidth and reduces throughput. One approach to
overcoming this difficulty is the use of differential STCs [3],
[4], although such techniques incur a 3-dB penalty in SNR.

The large body of previous research on blind multiuser, mul-
tichannel estimation and equalization is applicable to the MIMO
problem since the data broadcast from different transmit an-
tennas can be thought of as data from different users. However,
only recently have techniques appeared that exploit the struc-
ture built into space-time encoded signals. Many of these tech-
niques have focused on the special structure of the so-called
space-time block codes(STBCs) described in [5]–[7], or gen-
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eralizations thereof. Examples of methods that exploit STBCs
for blind and semi-blind channel estimation include [8], [9] and
also the work of [10]–[13] which combine the use of STBCs
with redundant linear precoders. Algorithms have also been pre-
sented for “modulation-induced” block coding in [14]–[17] and
for circulant codes in [18].

In this paper, two different approaches are presented in
which the structure of a certain class of STCs is exploited
either for blind (semi-blind) equalization of the channel or for
direct estimation of the transmitted data sequence. The codes
considered employ generalized redundant linear precoders;
in other words, different linearly transformed versions of the
same desired data sequence are broadcast from each of the
transmit antennas. This framework is general enough to include
the STBCs of [5]–[7] as well as the specific codes used in
[10]–[23] as special cases. Codes that fit within the framework
are referred to herein asgeneralizedspace-time block codes
(GSTBCs). In the noiseless case, it is shown how the GSTBC
structure can be exploited to construct a set of channel-indepen-
dent linear equations whose solution simultaneously yields the
transmitted data sequence and a vector containing all possible
zero-forcing receivers. While the details of the algorithms are
presented for the single-user flat-fading case, extensions to
situations involving frequency-selective fading and multiple
users are discussed, along with modifications of the algorithm
required when there are more transmit than receive antennas or
the channel is rank deficient.

The next section describes the general single-user flat-fading
data model considered and presents the GSTBC framework.
Specific examples of recently proposed codes that fit within the
framework are included. The proposed blind and semi-blind al-
gorithms are derived in Section III, and the various extensions
mentioned above are discussed in Section IV. Section V de-
scribes the results from a number of simulation examples that il-
lustrate the performance of the algorithms in various situations.

II. DATA MODEL

To begin, assume a single-user transmit array with el-
ements, a receive array with elements, and a flat-fading
channel. If the receive array is sampled once per symbol over
consecutive symbol periods, the following model results:

(1)

where is the matrix of received data, is the
channel matrix, is the additive noise and interference, and
is the matrix containing the transmitted symbols. The
subscript on is used to explicitly indicate the number of rows
in the matrix. The symbol is used to differentiate from its
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noise-free counterpart . For now, it will be assumed
that and that is full rank, but these assumptions will
be relaxed in Section IV, as will the restriction to the single-user
and flat-fading cases.

Let the vector represent
the symbol sequence transmitted from antenna, and define

real
imag

real
imag

(2)

so that the vectors form the columns of . We assume
that embedded within each are contributions from a set of

unknown, information-bearing symbols, together perhaps
with contributions from some known training dataas well. In
particular, we assume

(3)

where

real
imag

real
imag

(4)

and is a real-valued, linear precoder. The ratio
yields the rate of the code or the average

number of symbols transmitted per symbol period. In most ap-
plications, the training and unknown data symbols are trans-
mitted at different time instants, in which case, the rows of
will be zero when the elements of are not, and vice versa.
However, the formulation given in (3) is general enough to ac-
commodate schemes where the training and unknown data sym-
bols are mixed and transmitted simultaneously [24].

The data, precoders, and training are assumed to have been
chosen so that is full rank but, at this point, are otherwise
arbitrary. The algorithms presented in the next section will re-
quire the following three additional conditions.

•
• The following matrix is full rank

... (5)

• span when , where

... (6)

While splitting the data into real and imaginary parts as above
provides the most general STC framework, it is often convenient
to use a more compact notation involving complex quantities
when the transformation matrix has the following form:

real imag
imag real

(7)

for some complex matrix . In this case, (3) may be
rewritten as

(8)

Both the models (3) and (8) allow each transmit antenna to
use different training data and different transformations of the
unknown data spread over different time instants. The use of
linear (affine) precoders like (8) have been proposed for both

single-channel block transmission schemes [25]–[27] and mul-
tichannel systems as well [11]–[13], [22], [28].

As mentioned above, codes that obey the model described
by (3)–(8) will be referred to asgeneralizedspace-time block
codes (GSTBCs). The GSTBC framework is very general and
encompasses many types of popular STCs. Some of these in-
clude the following (all linear precoders are shown for the case
where ).

1) Example 1: The STBC of [5] satisfies (3) with
and

(9)

where indicates an identity matrix, and

(10)

Similar transformations exist for the STBCs with larger values
of described in [6], [7].

2) Example 2: The codes described in [10], [12], and [13]
combine the structure of the STBC together with the
use of two “sub-precoders” and , where

. When cast in the framework of (3), this method results
in the following two linear precoders

real imag
real imag

imag real
imag real

(11)

(12)

where is defined in (10).
3) Example 3: The so-calledlinear dispersion(LD) codes

of [23] satisfy (3) as well. For these codes

(13)

where and are real scalars, and are com-
plex matrices. The LD coding scheme is equivalent to (3) with
the following choice for :

real imag
imag real

where

and denotes theth column of the associated matrix (as in
Matlab notation). A similar though slightly less general coding
framework was also considered in [21].

4) Example 4: In [19] and [22], unitary constellation-ro-
tating precoders are used that satisfy (8) with

where is and unitary, and is a diagonal matrix
whose diagonal elements are formed from theth row of
another unitary matrix.
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5) Example 5: For the code described in [18], is circu-
lant and Hankel; therefore, (8) applies with and

6) Example 6: For the modulation-induced code of [14] and
[16], is and chosen to be diagonal. The method
of [17] is similar, except it mixes several independent symbol
streams together with different coding matrices for each signal
and each transmit antenna (i.e., is a sum of the type of
single-user signal matrices employed by [14] and [16]).

7) Example 7: A method related to Example 6 is the full-rate
( ) code of [15], which employs a different periodic
diagonal precoder for the unique data sequence broadcast from
each transmit antenna. The corresponding linear precoders for
this approach are given by the matrices

where is and diagonal, and is the period of
the modulating code.

8) Example 8: A number of researchers have proposed
beamforming-based MIMO systems in which one or more
independent waveforms are broadcast using different (often or-
thogonal) transmit beamformers. In this approach, ,
where the columns of the matrix represent the
beamformer weights used to transmit thesignals that make
up the rows of the matrix . If we let represent the

th row of , then for this method

...

which corresponds to a rate code (i.e., is ).
While the STCs mentioned above were not originally for-

mulated with training data in mind, the presence of such data
is easily accommodated by the GSTBC model for all of these
codes.

As described in the next section, the structure induced in the
data by (3)–(8) leads to a set of linear equations that can be
solved for and all possible zero-forcing receivers simultane-
ously. Algorithms for estimating and these equalizers in the
presence of noise are then presented. It is important to note that
although the algorithms described below are very flexible and
can be applied to a large number of different space-time codes,
certain codes may admit simpler solutions that take advantage
of additional structure that is not assumed here.

III. GSTBC EQUALIZATION AND SEQUENCEESTIMATION

Assume for the moment that and that the linear
precoders and the transmitted symbols have been chosen so that

is full rank. To describe the proposed algorithms, consider
an SVD of the rank noiseless matrix

(14)

where is , is , is , and denotes
the complex conjugate transpose. If is full rank, there exists
a full-rank matrix that satisfies

(15)

where denotes conjugation.
Let denote the zero-forcing receiver that recovers theth

transmitted signal from

(16)

Rewriting this equation in terms of real and imaginary parts
yields

(17)

where

real imag
imag real

(18)

and is defined similarly to . From (3), will also satisfy

(19)

Stacking all of these equations together leads to the following
general set of 2 real-valued linear equations:

(20)

where

... (21)

and are defined in (5) and (6). If (7) holds, then com-
plex-valued linear equations result:

(22)

where and result from stacking and , as
in (21). While we will use the general formulation of (20)
throughout the remainder of the algorithm derivations in this
section, note that analogous solutions for the complex case of
(22) can be derived in an identical fashion.

Equation (20) can be rewritten as

(23)

which, if solvable, would yield the unknown data sequence and
all zero-forcing receivers simultaneously. This observation
forms the basis for the algorithms presented in what follows.
Before presenting them, we discuss the identifiability ofand

from (23). Note that in some instances, it may not be necessary
to form (23) using all of the equations from (19), due to the
redundancy introduced by the space-time code. The dimension
of (23) could be reduced by choosing a subset of
equations from (19), provided that the identifiability conditions
described later are met. While such an approach would, in gen-
eral, be suboptimal, it does allow for an easy tradeoff between
performance and computational load.
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A. Identifiability

There are several conditions necessary for (23) to have a
unique solution. The requirement that there be at least as many
equations as unknowns leads to

(C1)

which is typically not difficult to satisfy. As an example, for
rate-one codes where , is sufficient for all
values of . In the general case, (C1) is equivalent to

which implies that blind estimation via (23) is impossible for
full-rate codes (although near-full-rate transmission is possible
when ).

Since ( ) is full rank by construction, a necessary con-
dition for eliminating trivial or ambiguous solutions to (23) is
that

(C2) rank

which can be guaranteed by proper code design. Additional
requirements for identifiability depend on whether the blind
( ) or semi-blind ( ) case is considered.

1) Blind Case: When , a “unique” solution to (23) can
be obtained provided that

(C3) dim null

The uniqueness of the solution is to within the scalar ambiguity
common to all blind estimators. Condition (C3) is equivalent to

dim span span (24)

where

and the pseudo-inverse is partitioned into blocks of size
:

From (2), (17), and (18), we have

span span (25)

where is defined in (10), so that

span span

(26)

Assuming that the elements of are drawn from a finite-al-
phabet and that is not too large, (C3) can be established
offline by testing (24) using (26) and all possible realizations
of the transmitted sequence.

For any choice of , there exist “bad” sequencesthat will
violate (C3). As an example, when , choosing to
satisfy the generalized eigenvalue relationship

for any indices or will result in a nullspace of
at least dimension two in (C3). Such a situation has not been
observed in our extensive simulations for most of the example
codes described in Section II; therefore, we postulate that the set

of “bad” sequences for these codes is one of measure zero. How-
ever, one important situation where (C3) does not hold for any
is for the rate-one STBC schemes of [5]–[7]. The problem is due
to a fundamental ambiguity associated with blind processing of
these codes. In particular, note that for the STBC,
has exactly the same structure asfor any of the form

Thus, it is impossible for any blind equalizer to distinguish be-
tween and using only the STBC structure.
The ambiguity can be resolved by the insertion of pilot sym-
bols in the data or by appropriately modifying the structure of
the STBC. For example, in the approach of [11] and [13] (see
Example 2 of Section II), a different linear precoder is used for
even and odd symbols. Note that for STBCs with rates lower
than one (e.g., such as the one considered in the simulation ex-
amples of [9]), there is no ambiguity other than the unknown
scaling common to all blind algorithms.

2) Semi-Blind Case:The presence of training data can often
establish the identifiability of the model without considering the
influence of the unknown data. For example, if each transmit
antenna broadcasts at least training symbols at sample
times free from the influence of and if is full rank,
then can be solved for explicitly, and is clearly identifiable.
While this is perhaps the most common situation, identifiability
is possible under much weaker conditions. In the general case,
the following condition similar to (C3) must hold when
for the existence of a unique solution to (23):

(C4) dim null

Clearly, (C4) requires

(27)

as well as

(28)

which, due to (25), is equivalent to stating that

span

(29)

for at least one . In the previous expressions,
.

Equation (27) will be satisfied when the influence of the
training and the unknown data sequence are temporally dis-
joint. For example, if the first samples transmitted from each
antenna are training, then for each

real
...

real

imag
...

imag

(30)
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for some matrices , , where denotes
the th training symbol from antenna, and indicates a

matrix of zeros. In such a case, span , which
implies (27).

B. Least-Squares Algorithms

Under the assumption of an identifiable model, the following
least-squares problem can be solved for estimates ofand in
the presence of noise:

(31)

The solution to (31) can be found in several different, although
equivalent ways.

1) Blind Case:

a) Solve for and simultaneously from the right singular
vector of [ ] with smallest singular value.

b) Set

... (32)

where is found from the right singular vector of

... (33)

with smallest singular value.
c) Set

(34)

where is found from the right singular vector of

(35)

with smallest singular value.
2) Semi-Blind Case:

a) Solve for and simultaneously using

(36)

b) Solve for in terms of

...
... (37)

(38)

c) Solve for in terms of

(39)

(40)

While mathematically equivalent, one of the three approaches
for each case may have a slight numerical or computational ad-
vantage over the others, depending on the values of, , and

.

C. Data Direct Methods

From (14) and (16), we see that

(41)

which leads to an equation analogous to (17)

(42)

where
real imag
imag real

(43)

real
imag

(44)

(45)

Stacking all equations like (43) yields

(46)

where

...

Equation (46) is equivalent to (23), except thatis now replaced
by . Instead of solving (23), we could therefore solve (46) di-
rectly for and . This would alleviate the computation of an
SVD of and, hence, reduce the computational complexity.
Note that in contrast to the zero-forcing equalizer, which
has no degrees of freedom, the zero-forcing equalizerhas

degrees of freedom (the dimension of the right null
space of ). Hence, when solving (46), should be pre-
vented from lying in the right null space of .

In the blind case, we need to solve (46) under a specific
constraint in order to avoid the trivial solution. This constraint
should be chosen such that cannot lie in the right null space
of . Putting a unit constraint on or [cf.
the blind methods (a) and (c)] clearly does not prevent this and
generally leads to poor performance. On the other hand, a unit
norm constraint on [cf. the blind method (b)] does prevent

from lying in the right null space of . However, the
blind method related to this constraint requires the computation
of , which has complexity comparable to the computation of
the SVD of . Another appropriate constraint is the unit output
energy constraint [29], i.e., . The algorithm
corresponding to this constraint can be shown to be equivalent
to blind method (c), where is replaced by the ma-
trix obtained by computing the decomposition of :

.
In the semi-blind case, there is no problem since the nonzero

training sequence span prevents from lying in the
right null space of and methods similar to the semi-blind
methods (a)–(c) can be applied.

D. Processing Subsequent Data Blocks

An important implementational issue is the redundancy of
solving for both and rather than just directly. One ad-
vantage of estimating the receiver weightsor along with

is that the weights can be used to process subsequent data
blocks with minimal additional computation, provided that the
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channel is stationary. The first block of data would be used to
find an estimate of by either direct estimation using the re-
sults of Section III-C or by transforming the subspace-based es-
timate using (45). Estimates of the transmitted datafor
subsequent blocks of data are then found using the weights
obtained from the first block

(47)

E. Processing Real Symbols

When the transmitted symbols are purely real, it is stan-
dard in multichannel problems to split the data into real and
imaginary parts as

real

imag

real
imag

real
imag

Working with instead of effectively doubles the number of
available receive channels and allows replacement of the condi-
tion with . Note that in this case, the simpli-
fied model of (8) should be used in describing the transmitted
data.

IV. EXTENSIONS OF THEALGORITHM

This section considers extensions of the above algorithms to
cases involving multiple users, more transmit than receive an-
tennas, a rank-deficient channel, or frequency-selective fading.
In most cases, the approach taken is to modify the resulting data
models so that they are isomorphic to the basic case considered
in Section II. Once this is done, the algorithms of Section III-B
can more or less be directly applied.

A. Multiple Users

If symbol-synchronous users are present, then (1) becomes

(48)

where

...

and where , , and represent, respectively, the trans-
mitted signals, channel, and number of transmit antennas for
the th user. Assume that each user employs space-time coding
in the form of (3), where represents the
matrix containing all precoders for useras in (5) and with

, representing, respectively, the data sequence
and training data vectors. Note that data obeying (48)
could also be generated by a single user whose transmit antennas
are divided into groups, with each group transmitting a dif-
ferent data sequence. Such an approach could be used to trade
off diversity for throughput.

When , two separate situations must be considered
for the case of blind estimation (if , methods similar to
those described in Section IV-B must be used).

• Users with unique STCs: Data from users that employ
unique linear precoders can typically be recovered
with no modification to the algorithms described previ-
ously. The term “unique” here denotes that thesignals
transmitted by user should not be able to be generated
using any of the linear precoders from other users with

or more transmit antennas. A necessary condition for
this to hold is that for all , where

must be full column rank for all permutation
matrices (each row of has a single one and zeroes
elsewhere).

• Users with nonunique STCs. If, say, users share the
same set of precoders, then (23) formed from will
have a nullspace of dimension. This nullspace will be
spanned by the unknown information sequences of the

users: . Additional information about the
signals would be required to separate the individual user’s
symbol sequences in a second step, using, for example,
the assumption of constant modulus [30] or finite alphabet
signals [31].

If each user transmits linearly independent training data, then
the semi-blind approach of Section III-B can be used directly,
whether or not the users’ codes are unique. This is done by
simply rewriting (36) so that it is specific to user:

(49)

B. More Transmit Than Receive Antennas

In certain cases, a slight modification to the data will allow
the algorithms of Sections III-B and C to be applied in situations
where . In particular, assume that (7) holds and that

for and some square ( )
full-rank matrix . This constraint is satisfied by the circulant
code of [18]. It can easily be implemented with the diagonal
precoders of [14] and [16] and it trivially applies to all codes in
the form of (7) with and . It does not hold for
orthogonal, full-diversity STBCs like the Alamouti code and its
derivatives. Under these assumptions, , and in the
single-user case

(50)

(51)

(52)

where is an vector of zeros. Since

a stacking operation leads to

(53)

where is a block Sylvester matrix iden-
tical in form to those obtained in single-input multiple-output
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blind equalization problems (e.g., see [32]). Thus, the same data
model is obtained as before, except the row dimension (number
of effective receive antennas) has been doubled, whereas the
column dimension (number of effective transmit antennas) has
increased by only one. Stacking times and adding the ef-
fects of noise leads to

def
...

(54)

where is formed identically to . The new “channel” ma-
trix is guaranteed to be full rank as long asis and will
have at least as many rows as columns, provided that

The single-user algorithms of Section III-B can then be directly
applied to rather than . A larger value of is typically
required in cases involving multiple users. Note that in general,
the stacking operation will lead to a noise term that is nei-
ther temporally nor spatially white, even if was. This can be
accounted for, however, by prewhitening in both space and time.

C. Rank-Deficient Channels

If the channel is rank deficient, i.e., rank
, then in the noiseless case, rank . If the

SVD of in (14) is partitioned so that contains the first
right singular vectors, then (15) still holds, except that

will be . The transpose of (15) will then be equivalent
to a noiseless version of the original model (1) for a case with
more transmit than receive antennas (i.e., is fat), and the
approach of Section IV-B can be used. Instead of (54), the
algorithms are applied to the matrix

def
...

(55)

where is chosen to satisfy

D. Frequency-Selective Fading

In general, the technique presented here requires .
This requirement can be relaxed for certain types of codes (e.g.,
see [18] for an example) but not in the general case. Assume the
MIMO channel can be represented as an-tap FIR filter

where each matrix tap is . Let represent
the matrix containing the symbols broadcast from the

transmit antennas at symbol times ,
where the value of will be specified below. Then, the
matrix of received data at timecan be represented as

...

(56)

(57)

As before, the subscript on indicates that the matrix
contains rows. Since it is likely that , several
delayed versions of can be stacked to create a low-rank
model

def ... (58)

where is an block Sylvester matrix
defined as in Section IV-B, and

... (59)

The stacking factor is chosen so that is tall, which requires

(60)

As with standard blind equalization problems, a low-rank model
results because the intersection of the rowspace of successive
delayed versions of the data and has
dimension .

The key observation here is that (58) is essentially identical
to (1), except that the temporal diversity of the channel and the
data stacking have spread the STC structure over time
shifts. To be more precise, let , and assume
that the first encoded data sample in occurs at time. In
other words, contains and samples
from the previous and next -sample blocks of transmitted data,
respectively. Let be the zero-forcing equalizer associated
with the th row of , and let be the set of indices
shown in the equation at the bottom of the page. Then

(61)

where denotes the matrix formed from using only
the rows in . The algorithms of Section III-B can be directly
applied to estimate and , except that instead of having
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2 equations with unknowns as in (23), there
are now equations with
unknowns

...

...

...

...
... (62)

The extra equations provided by the channel’s temporal diver-
sity relax identifiability condition (C1) to be

.

V. SIMULATION EXAMPLES

The first example considers a case with one user,
receive antennas, transmit antennas, a block of
transmitted data symbols, and a variable numberof training
symbols ( ). Two different space-time coding
strategies were implemented: 1) the circulant code of [18] and
2) the Alamouti code [5]. Unit-amplitude QPSK symbols were
generated for both the training and unknown data, and the
elements of the channel and noise matrices were zero-mean,
circular complex Gaussian random variables, with variances
chosen to achieve the desired SNR. In the plots shown for
this and other examples, the SNR is defined by , where

and are the variances of the elements of and ,
respectively. In each trial, a new random, , , and
are generated and used to create observations for both of the
above codes side-by-side. The training data was always placed
at the beginning of each block of data, as in (30). Both the
subspace-based semi-blind algorithm of Section III-B and
the direct-data semi-blind approach of Section III-C [corre-
sponding to (46)] were implemented. In addition, when ,
the training data was also used by itself to estimate the channel

and, in turn, a set of zero-forcing equalizers. Estimates of
were then obtained by substituting these equalizers into the

following equation, which was derived using notation similar
to that in (41)–(47):

where vec and vec is the column stacking op-
erator.

Fig. 1 shows the symbol error rate (SER) achieved by the
semi-blind algorithms presented in this paper, together with
the performance obtained using training alone. The notation
“ ” and “ ” in the legend indicates, respectively,
whether the subspace or direct-data algorithm was used. The
subspace algorithm achieves an SER that is about 10–50%
lower than that of the direct-data approach for both codes with
better relative performance at higher SNRs. The algorithms

Fig. 1. Semi-blind symbol error rate versus training intervalT for Alamouti
and circulant space-time coding schemes.

perform better for the circulant code than for the Alamouti
code, especially when the number of training symbols is small,
since in the limit where , the structure of the Alamouti
code is not identifiable. However, the structure of the code still
provides some information, as evidenced by the fact that an
SER is achieved that is 1.5–4 times smaller than when using
the training data alone.

The second example involves two users, each with two
transmit antennas and a variable number of receive antennas.
The noise, data, and training symbols were generated as above
with and (hence, ), and both users
employed the same zero-padded diagonal linear precoders
defined by

where is a 40 40 diagonal matrix with nonzero entries
drawn at random from the unit circle. The signals from the two
users can still be separated in this case since each transmitted
linearly independent training data. Subspace-based stimates of

were obtained both with unstacked data and with data stacked
once ( ), as described in Section IV-B. The SER results
are plotted in Fig. 2 versus SNR. No result is shown for
and since a low-rank model is not available in this case.
While is not required for , stacking provides a
significant performance advantage; stacking once has roughly
the same effect as adding a receive antenna, resulting in an
order of magnitude improvement in SER.

In the final example, a single user with two antennas transmits
over an tap frequency-selective fading channel using a di-
agonal linear precoder with and , where is
a 40 40 diagonal matrix with nonzero entries drawn at random
from the unit circle. Data was collected by an element
receive array and stacked times to create a 9 43 data
matrix , with a signal subspace of dimension eight. The 32
matrix taps had elements of equal average power and were gen-
erated as in the previous two examples. No training data was as-
sumed to be present; therefore,was estimated using the blind
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Fig. 2. Semi-blind symbol error rate versus SNR for diagonal linear precoding
and variousM andP .

subspace algorithm of Section III-B and the blind data-direct al-
gorithm (with output normalization) of Section III-C applied to
the model in (62). Equation (62) exploits all of the STC structure
due to the temporal diversity added by stacking and the memory
of the channel. However, is identifiable using far fewer equa-
tions. To examine the tradeoff between computation and perfor-
mance that results from taking only a subset of the equations
represented by (62), four different estimates ofwere obtained
using both and . The first estimate was calculated from the
right singular vector of with the smallest
singular value. This estimate only makes use of the structure
present in the first samples of the data block (those that
correspond to delay zero) and ignores the information present
due to the temporal diversity. The second estimate was calcu-
lated in the same way using the matrix

and, thus, uses not only the zero-delay structure of samples 1–40
but that of the first delay present at samples 2–41 as well. The
final two estimates build on these by exploiting delays 0–2 and
0–3, respectively. Figs. 3 and 4 plot, respectively, the mean and
standard deviation of the angle (in degrees) between each of
these four estimates and the trueas a function of SNR for both
the subspace and direct-data algorithms. The angle between
and an estimate is defined to be

At low SNR, there is a large improvement associated with
using all of the available temporal diversity, but this advantage
decreases as the SNR increases. Exploiting the information
from an additional delayed block of data provides about a 3-dB
performance gain, except when going from delays 0–2 to 0–3,
where the gain is only about 1 dB.

Fig. 3. Mean blind decoding performance versus SNR for diagonal linear
precoding in a frequency selective fading channel.

Fig. 4. Blind decoding standard deviations versus SNR for diagonal linear
precoding in a frequency-selective fading channel.

VI. CONCLUSIONS

A general framework for space-time block coding has been
presented and shown to include a number of recently proposed
codes or code families as special cases. All codes within this
framework employ linear precoders (or affine precoding when
training data is present) and were referred to as generalized
space-time block codes (GSTBCs). In the noiseless case, the re-
dundant structure of GSTBCs allows for construction of a set of
channel-independent linear equations whose solution, if it ex-
ists, simultaneously yields the transmitted data sequence and
a vector containing all possible zero-forcing receivers. Condi-
tions under which a unique solution exists were discussed, and
least-squares blind and semi-blind algorithms were proposed for
finding estimates with noisy data. While the algorithms were
presented for the single-user flat-fading case, where the channel
is full rank and there are more receive than transmit antennas,
extensions to scenarios involving multiple users, more transmit
than receive antennas, rank-deficient channels, and frequency-
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selective fading were presented. Several simulation studies were
used to illustrate the performance of both the basic algorithm
and some of its extensions.
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