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Blind and Semi-Blind Equalization for Generalized
Space-Time Block Codes
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Abstract—This paper presents a general framework for eralizations thereof. Examples of methods that exploit STBCs
space-time codes (STCs) that encompasses a number of recentlyor blind and semi-blind channel estimation include [8], [9] and
proposed STC schemes as special cases. The STCs considered aso the work of [10]-[13] which combine the use of STBCs

block codes that employ arbitrary redundant linear precoding of . . .
a given data sequence together with embedded training symbols, if with redundant linear precoders. Algorithms have also been pre-

any. The redundancy introduced by the linear precoding imposes Sented for “modulation-induced” block coding in [14]-[17] and
structure on the received data that under certain conditions can for circulant codes in [18].
be exploited for blind or semi-blind estimation of the transmitted In this paper, two different approaches are presented in
sequence, a linear receiver that recovers the sequence, or both Si'which the structure of a certain class of STCs is exploited
multaneously. Algorithms based on this observation are developed . - L L
for the single-user flat-fading case and then extended to handle e!ther for _b“n(_j (semi-blind) equ_allzatlon of the channel or for
multiple users, frequency-selective fading, as well as situations direct estimation of the transmitted data sequence. The codes
where the channel is rank deficient, or there are fewer receive considered employ generalized redundant linear precoders;
than transmit antennas. in other words, different linearly transformed versions of the
Index Terms—Array signal processing, communication chan- same desired data sequence are broadcast from each of the
nels, diversity methods, equalizers, fading channels, MIMO transmit antennas. This framework is general enough to include

systems, multipath channels. the STBCs of [5]-[7] as well as the specific codes used in
[10]-[23] as special cases. Codes that fit within the framework
I. INTRODUCTION are referred to herein ageneralizedspace-time block codes

) ) (GSTBCs). In the noiseless case, it is shown how the GSTBC
T HE advantages of using multiple antennas at both & ,cture can be exploited to construct a set of channel-indepen-
1 transmit and receive ends of a wireless communicatioggnt jinear equations whose solution simultaneously yields the
link have recently been noted [1], [2]. A number of space-timgansmitted data sequence and a vector containing all possible
codes (STCs) have been proposed that exploit the potential fetq torcing receivers. While the details of the algorithms are
increased Fhroughput and'dlversny that such systems offer. ':E?ésented for the single-user flat-fading case, extensions to
most algorithms, these gains can only be realized when that fiations involving frequency-selective fading and multiple
multiple-input multiple-output (MIMO) channel separating thg,sers are discussed, along with modifications of the algorithm
transmitter and receiver has been identified. While training dar‘é’quired when there are more transmit than receive antennas or
can be used to estimate the channel, this approach consufAg&S:-hannel is rank deficient.
precious bandwidth and reduces throughput. One approach tqpe next section describes the general single-user flat-fading

overcoming this difficulty is the use of differential STCs [3]gata model considered and presents the GSTBC framework.
[4], although such techniques incur a 3-dB penalty in SNR.  gpecific examples of recently proposed codes that fit within the
~ The large body of previous research on blind multiuser, My, mework are included. The proposed blind and semi-blind al-
tichannel estimation and equalization is applicable to the 'V”M@orithms are derived in Section IlI, and the various extensions
problem since the data broadcast from different transmit aiyentioned above are discussed in Section IV. Section V de-
tennas can be thought of as data from different users. Howegfihes the results from a number of simulation examples that il-

only recently have techniques appeared that exploit the stryi¢sirate the performance of the algorithms in various situations.
ture built into space-time encoded signals. Many of these tech-

niques have focused on the special structure of the so-called Il. DATA MODEL

space-time block coddSTBCs) described in [5]-[7], or gen- ] ) )
To begin, assume a single-user transmit array Viitly 1 el-

ements, a receive array wiff > 1 elements, and a flat-fading
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noise-free counterpaX = HS . For now, it will be assumed single-channel block transmission schemes [25]-[27] and mul-

thatM > K and thafH is full rank, but these assumptions willtichannel systems as well [11]-[13], [22], [28].

be relaxed in Section 1V, as will the restriction to the single-user As mentioned above, codes that obey the model described

and flat-fading cases. by (3)—(8) will be referred to ageneralizedspace-time block
Letthe N x 1 vectorsy, = [s;(0) - - - sp(N — 1)]¥ represent codes (GSTBCs). The GSTBC framework is very general and

the symbol sequence transmitted from antehrand define  encompasses many types of popular STCs. Some of these in-

rea|(s};) N real(sy,) clude the following (all linear precoders are shown for the case
Lmag(sﬂ)} o [imag(sk)} N O){ :Th STBC of isfies (3) with
so that theK vectorss;, form the columns ofS. We assume Nll I]E\?a?n%e L:The K = 2 STBC of [5] satisfies (3) wit
that embedded within ead are contributions from a set of =~ =~ ~'“ R
N, unknown, information-bearing symbalks together perhaps U — I @ (JI) 0
with contributions from some known training dataas well. In ' 0 Iy
particular, we assume ] e Ty ol 0 ©
Sk = Upd + ty, k=1....K 3) 2= 0 IN/2®J

where wherel,, indicates ar x « identity matrix, and

.| realu) ;| real(ty) I= [0 1} J= [ 0 1} . (10)

"= {imag(u)} b = {imag(tk) “) 10 -1 0

_ ) ~ Similar transformations exist for the STBCs with larger values
andl, is a real-valued2N' x 2N, linear precoder. The ratio of i described in [6], [7].
0 < N/N, < K yields the rate of the code or the average 2) Example 2: The codes described in [10], [12], and [13]
number of symbols transmitted per symbol period. In most agompine the structure of th& = 2 STBC together with the
plications, the training and unknown data symbols are trangse of twoN/2 x N,,/2 “sub-precoders’C; and C,, where

mitted at different time instants, in which case, the rowsfpf N,.. When castin the framework of (3), this method results
will be zero when the elements of are not, and vice versa. i, the following two linear precoders

However, the formulation given in (3) is general enough to ac- real(C, ) 0 _imag(C:) 0
commodate schemes where the training and unknown data sym- 0 _real(Cs) 0 imag(Cs)
bols are mixed and transmitted simultaneously [24]. U = imag(C.) 0 real(C,) 0

The data, precoders, and training are assumed to have been 0 imag(Cs.) 0 real(Cs)
chosen so tha® i is full rank but, at this point, are otherwise (11)

arbitrary. The algorithms presented in the next section will re- JoI 0
quire the following three additional conditions. Uy = {_ @(’) N/2 JoI } U, (12)
« K(N - K) > N,. N/

. 4 o ) whereJ is defined in (10).
The following matrix is full ranksV, - 3) Example 3: The so-calledinear dispersion(LD) codes

[ th of [23] satisfy (3) as well. For these codes
Z/{ = . (5) ]\ru
R27% Sk = A + BB, (13)
* t ¢ sparfi{) whent # 0, where 7=l
i whereco, andg; are real scalars, and,, B, areN x K com-
. _1 plex matrices. The LD coding scheme is equivalent to (3) with
t= b ©)  the following choice foif;:
-tk’

| real(Ay) —imag(B)
While splitting the data into real and imaginary parts as above Uy, = imag(Ax)  real(5y)
provides the most general STC framework, it is often conveni

to use a more compact notation involving complex quantities

when the transformation matrix, has the following form: Ap =[A1(5, k) - A, (5, F)]
[ real(Uy) —imag(Uy) @) By =[Bi(:, k) By, (5, k)]

¥~ limag(Uy)  real(Uy) and(:, k) denotes théth column of the associated matrix (as in
for someN x N, complex matrixUy,. In this case, (3) may be Matlab notation). A similar though slightly less general coding
rewritten as framework was also considered in [21].

4) Example 4:In [19] and [22], unitary constellation-ro-
s = Upu + ty. (8) tating precoders are used that satisfy (8) with

Both the models (3) and (8) allow each transmit antenna to Ui = DiOx

use different training data and different transformations of thehere®;. is V x N and unitary, andy, is a diagonal matrix
unknown data spread over different time instants. The usewfiose N diagonal elements are formed from thth row of
linear (affine) precoders like (8) have been proposed for badimother unitary matrix.
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5) Example 5: For the code described in [18 is circu- whereFisM x K, AisK x K, Vis N x K, and(-)* denotes
lant and Hankel; therefore, (8) applies with= »,, and the complex conjugate transposeS| is full rank, there exists
a full-rank K’ x K matrix H,, that satisfies
k—1
0 Iy }

U’“:L 0

V* = H,Sk = VvV =siH? (15)

o where(-) denotes conjugation.
6) Example 6: For the modulation-induced code of [14]and | ¢t v, denote the zero-forcing receiver that recoversie
[16], U is N x N and chosen to be diagonal. The methognsmitted signal fror’

of [17] is similar, except it mixes several independent symbol

streams together with different coding matrices for each signal Vwi = sk. (16)
and each transmit antenna (i.8.% is a sum of the type of
single-user signal matrices employed by [14] and [16]).

7) Example 7: A method related to Example 6 is the full-rat
(N, = KN) code of [15], which employs a different periodic
diagonal precoder for the unique data sequence broadcast from
each transmit antenna. The corresponding linear precoders\{pfere
this approach are given by tlhé x KN matrices

Rewriting this equation in terms of real and imaginary parts
Jields

Vg = 32 17)

Vo realV) imagV)
U =Ix(k,:)®Ip @Dy —imagV) real(V)
) . ) ) andwy, is defined similarly t&; . From (3),w;, will also satisfy
whereD,, is N/P x N/P and diagonal, and is the period of ]
the modulating code. Vw, =Upu+t,, k=1,... K. (19)

8) Example 8:A number of researchers have proposed ) ) i
beamforming-based MIMO systems in which one or moratacking allK” of these equations together leads to the following
independent waveforms are broadcast using different (often §ENeral set of RN real-valued linear equations:
thogonal) transmit beamformers. In this_approﬁ‘)a,: WY, (Ix © V)% = Ui + (20)
where the columns of th& x K’ matrix W represent the
beamformer weights used to transmit fi§é signals that make where
up the rows of thex” x N matrixY. If we lety+ represent the
kth row of Y, then for this method

(18)

w1
w=| (21)
yi Wi
U c — W k‘ : I 7 = . ~
* (k)@ly : andi{, t are defined in (5) and (6). If (7) holds, théV' com-
i’ plex-valued linear equations result:

which corresponds to a raf€’ code (i.e. U is N x K'N). (IK ® \7) w=Uu+t (22)
While the STCs mentioned above were not originally for-

mulated with training data in mind, the presence of such daterew,U andt result from stackingw, Ux andt, as

is easily accommodated by the GSTBC model for all of thed@ (21). While we will use the general formulation of (20)

codes. throughout the remainder of the algorithm derivations in this
As described in the next section, the structure induced in th@ction, note that analogous solutions for the complex case of

data by (3)—(8) leads to a set of linear equations that can (#2) can be derived in an identical fashion.

solved foru and all possible zero-forcing receivers simultane- Equation (20) can be rewritten as

ously. Algorithms for estimating and these equalizers in the W _

presence of noise are then presented. It is important to note that (Ix@V) -U] [ i } =t (23)

although the algorithms described below are very flexible and

can be applied to a large number of different space-time codesiich, if solvable, would yield the unknown data sequence and

certain codes may admit simpler solutions that take advantadjeX zero-forcing receivers simultaneously. This observation

of additional structure that is not assumed here. forms the basis for the algorithms presented in what follows.

Before presenting them, we discuss the identifiabilityiodnd

u from (23). Note thatin some instances, it may not be necessary

to form (23) using allK of the equations from (19), due to the
Assume for the moment tha/ > K and that the linear redundancy introduced by the space-time code. The dimension

precoders and the transmitted symbols have been chosen sodhé23) could be reduced by choosing a subset of K’ < K

Sk is full rank. To describe the proposed algorithms, consideguations from (19), provided that the identifiability conditions

I1l. GSTBC EQUALIZATION AND SEQUENCEESTIMATION

an SVD of the ranl noiseless matriX described later are met. While such an approach would, in gen-
eral, be suboptimal, it does allow for an easy tradeoff between
X =HSg =FAV™ (14) performance and computational load.
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A. ldentifiability of “bad” sequences for these codes is one of measure zero. How-

There are several conditions necessary for (23) to havé§" One important situation where (C3) does not hold forany

unique solution. The requirement that there be at least as min{p" the rate-one STBC schemes of [5]{7]. The problemis due
equations as unknowns leads to to a fundamental ambiguity associated with blind processing of

these codes. In particular, note that for tie= 2 STBC,A S

(C1) K(N-K)=Ny has exactly the same structureSasfor any A of the form
which is typically not difficult to satisfy. As an example, for a1 —ay
rate-one codes wher¥ = N,,, N > K + 2 is sufficient for all A= {“2 a1 } :
values ofK. In the general case, (C1) is equivalent to

N Thus, it is impossible for any blind equalizer to distinguish be-

N> 224K tweenHS, and HA'AS, using only the STBC structure.
K The ambiguity can be resolved by the insertion of pilot sym-
ols in the data or by appropriately modifying the structure of
STBC. For example, in the approach of [11] and [13] (see

which implies that blind estimation via (23) is impossible fo
full-rate codes (although near-full-rate transmission is possiq

Whe_nK < N). _ ) Example 2 of Section Il), a different linear precoder is used for
Since Ix ® V) is full rank by construction, a necessary CONgyen and odd symbols. Note that for STBCs with rates lower
dition for eliminating trivial or ambiguous solutions to (23) isthan one (e.g., such as the one considered in the simulation ex-
that amples of [9]), there is no ambiguity other than the unknown

(C2) rankU) = N, scaling common to all blind algorithms.
2) Semi-Blind Case:The presence of training data can often
which can be guaranteed by proper code design. Additioregtablish the identifiability of the model without considering the
requirements for identifiability depend on whether the blinifluence of the unknown data. For example, if each transmit

(t = 0) or semi-blind € # 0) case is considered. antenna broadcasts at ledst> K training symbols at sample
1) Blind Case: Whent = 0, a “unique” solution to (23) can times free from the influence af and if[t; - - - t 5] is full rank,
be obtained provided that thenw can be solved for explicitly, and is clearly identifiable.

. _ While this is perhaps the most common situation, identifiability

(C3) dimnul(Lx & V) U] =1. is possible under much weaker conditions. In the general case,
The uniqueness of the solution is to within the scalar ambiguiiye following condition similar to (C3) must hold when 0
common to all blind estimators. Condition (C3) is equivalent tiyr the existence of a unique solution to (23):

dim(Spar(Ql) N---N Span(QK)) =1 (24) (C4H dimnul[Ix®@V) U t]=1.
where Clearly, (C4) requires
Qi =(U"),v Pyt #£0 @7)
and the pseudo-invergé¢' is partitioned intok blocks of size as well as
N, X N: L
U= @) = (), ), ] Fheert 70 e
From (2), (17), and (18), we have which, due to (25), is equivalent to stating that

Sparth) = Spar([s (J @ IN) S]) (25) {Zk ¢ Spar< |:Z/{1f1 + 61 s Ua + E[(
whereJ is defined in (10), so that (T oTy) (thi+ 51) @ OTy) Ui+ fz«) D (29)

span(Q;) = spar{ | (UN) tya--- (UT) Uxa
pan(Q;) P r([( )Z ' ( )Z ’ for at least oné: € {1,..., K}. In the previous expressions,
U, Feoly)tha---(U"). Je IN)Z/lKﬁD. (26) PL =T1- AAT
Equation (27) will be satisfied when the influence of the

A;:sgnllng (;ht?]tag;e _elemte?ts ?fare déagwn frorkr; a f'?'tslfa:{ training and the unknown data sequence are temporally dis-
phabet an . IS not too large, (C3) can be establis e'jgint. For example, if the first” samples transmitted from each

offline by testing (24) using (26) and all possible realizatio Sntenna are training, then for eakh
of the transmitted sequence. '

For any choice of/, there exist “bad” sequenceasthat will real(t,1)
violate (C3). As an example, wheN = N,, choosingu to :
satisfy the generalized eigenvalue relationship real(ty, ) Orsan,

"), tha =X UY), Ui B | Qoverpa |, OUk’l (30)

for any indicesi # [ or k # m will result in a nullspace of imag(t 1) TX 2N,
at least dimension two in (C3). Such a situation has not been : U2
observed in our extensive simulations for most of the example imag(t, 1)
codes described in Section II; therefore, we postulate that the set | O(v—1)yx1 |
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for some(N —T') x 2N,, matrices4y. 1, U 2, Wheret, ; denotes C. Data Direct Methods

the ith training symbol from antenn, a}ndosz indicates a
Y x Z matrix of zeros. In such a case, L sparfif), which

implies (27).

B. Least-Squares Algorithms

From (14) and (16), we see that

Under the assumption of an identifiable model, the following,here

least-squares problem can be solved for estimatésaridu in

the presence of noise:
2

W, U = arg min
w,Qa

(Ix V) —U] [Vﬂ :

The solution to (31) can be found in several different, although

equivalent ways.
1) Blind Case:

a) Solve forw andu simultaneously from the right singular
vector of [Ix @ V) — U] with smallest singular value.

b) Set
VI,
W= : u (32)
VTZ/{K
whereu is found from the right singular vector of
Pl
Py
with smallest singular value.
c) Set
a=ut (IK ®V)‘;V (34)

wherew is found from the right singular vector of

Py (Ix @ V) (35)

with smallest singular value.
2) Semi-Blind Case:
a) Solve forw andu simultaneously using

{Vﬂ =[@reV) —u]'t (36)
b) Solve forw in terms ofa
VT, VT,
w = ; a4+ :
VIUk Vit
=~ [ o P)U) (1 o P €
K
=3 ((PiUh) T UP. (38)
k=1
c) Solve foru in terms ofw
&=yt ((IK ® V)W — e) (39)
w = [P (Ix ® V)] PAt. (40)

(31)

(33)

(37)

Vw;, = XTFA twy, (41)
which leads to an equation analogous to (17)
AW, =81 = Up i + ty, (42)
T i T
_ _reaI(XT) |mag(}§ ) (43)
imag(X*)  real(X")
- | real(wy k)
W =FA lwy. (45)
Stacking alliX equations like (43) yields
[(@x @) ~U] {H =t (46)
where
Wm,l
W,=|
Wa, K

Equation (46) is equivalentto (23), except tias now replaced

by A'. Instead of solving (23), we could therefore solve (46) di-
rectly forw, andu. This would alleviate the computation of an
SVD of X and, hence, reduce the computational complexity.
Note that in contrast to the zero-forcing equalizer which
has no degrees of freedom, the zero-forcing equatizehas

K (M — K) degrees of freedom (the dimension of the right null
space ol @ X). Hence, when solving (46yv.. should be pre-
vented from lying in the right null space of; @ X.

In the blind case, we need to solve (46) under a specific
constraint in order to avoid the trivial solution. This constraint
should be chosen such th&t, cannot lie in the right null space
of Iy ® X. Putting a unit constraint ofw?Z a”]? or w,, [cf.
the blind methods (a) and (c)] clearly does not prevent this and
generally leads to poor performance. On the other hand, a unit
norm constraint oni [cf. the blind method (b)] does prevent
w,, from lying in the right null space df; @ X'. However, the
blind method related to this constraint requires the computation
of X*, which has complexity comparable to the computation of
the SVD ofX. Another appropriate constraint is the unit output
energy constraint[29], i.el[{Ix ®X)w..||? = 1. The algorithm
corresponding to this constraint can be shown to be equivalent
to blind method (c), wherd/ is replaced by theV x A ma-
trix Q obtained by computing th@ R decomposition oiX7":

XT = QR.

In the semi-blind case, there is no problem since the nonzero
training sequence ¢ spar{i/} preventsw,, from lying in the
right null space oI x @ X and methods similar to the semi-blind
methods (a)—(c) can be applied.

D. Processing Subsequent Data Blocks
An important implementational issue is the redundancy of

While mathematically equivalent, one of the three approachssiving for bothw andu rather than justi directly. One ad-
for each case may have a slight numerical or computational adntage of estimating the receiver weighitor w,. along with
vantage over the others, depending on the valuds,aV, and u is that the weights can be used to process subsequent data

Ny.

blocks with minimal additional computation, provided that the
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channel is stationary. The first block of data would be used toWhenM > K, two separate situations must be considered
find an estimate ofv,. by either direct estimation using the refor the case of blind estimation (¥ < K, methods similar to
sults of Section I1I-C or by transforming the subspace-based ¢isese described in Section 1V-B must be used).

timate w using (45). Estimates of the transmitted datafor  Users with unique STCPata from users that employ
subsequent blocks of dafd are then found using the weights unique linear precodeidd® can typically be recovered
obtained from the first block with no modification to the algorithms described previ-
iyt |:(IK © ") . — E’} ) (47) ously. 'I_'he term “unbique" here denotes that igsignals
transmitted by usei should not be able to be generated

using anyK; of the linear precoders from other users with
E. Processing Real Symbols K; or more transmit antennas. A necessary condition for

When the transmitted symbdbs, are purely real, it is stan- this to hold is that for all # i, wherek; > K;

dard in multichannel problems to split the data into real and [UD (P Iyn)UD]
Imaginary parts as must be full column rank for alk; x K; permutation
3 matricesP (each row ofP has a single one and zeroes
% real (X) _ [.real(H) } Syt [_real(N) } ' elsewhere).( g
imag (X) imag(H) imag(N) « Users with nonunique STCH, say, ' users share the
N . same set of precodets, then (23) formed frond{ will
Working with X instead ofX effectively doubles the number of have a nullspace of dimensieh. This nullspace will be
available receive channels and allows replacement of the condi- spanned by the unknown information sequences of the
tion M > K with 2 > K. Note that in this case, the simpli- &' usersfa'V . .. w@)]. Additional information about the
fied model of (8) should be used in describing the transmitted  signals would be required to separate the individual user’s
data. symbol sequences in a second step, using, for example,
the assumption of constant modulus [30] or finite alphabet
IV. EXTENSIONS OF THEALGORITHM signals [31].

This section considers extensions of the above algorithms!tgach user transmits linearly independent training data, then
cases involving multiple users, more transmit than receive 4R€ SeMi-blind approach ?f Section I1I-B can be used directly,
tennas, a rank-deficient channel, or frequency-selective fadiH\d?emer or not the users c_odes are unique. This is done by
In most cases, the approach taken is to modify the resulting dSi&P!Y rewriting (36) so that it is specific to user
models so that they are isomorphic to the basic case considered ‘fv(i) @1 70
in Section II. Once this is done, the algorithms of Section 11I-B 91~ [(IKz‘ V) -u } £ (49)
can more or less be directly applied.

A. Multiple Users B. More Transmit Than Receive Antennas

If & symbol-synchronous users are present, then (1) beco elsp certain cases, a slight modification to the data will allow
y 4 usu P ' M algorithms of Sections I11-B and C to be applied in situations
X=IIZx + N (48) whereM < K. In particular, assume that (7) holds and that

U, = Urlfork = 2,...,K and some squareV, = N)

where full-rank matrix U. This constraint is satisfied by the circulant
M=[H, - -Hy) M xK code of [18]. It can easily be implemented with the diagonal
Sk 1 precoders of [14] and [16] and it trivially applies to all codes in
T the form of (7) withK = 2 andU; = I. It does not hold for
T = : K xN orthogonal, full-diversity STBCs like the Alamouti code and its
Sk derivatives. Under these assumptiosis= U*~1s;, and in the
d single-user case
K= 2 K XU” —HS  U” (50)
1= S[’
and whereS ., ;, H;, and K; represent, respectively, the trans- =[0 H] LlT (UST)K:| (51)

mitted signals, channel, and number of transmit antennas for —[0 H]Sxk (52)
theth user. Assume that each user employs space-time coding o K+l

in the form of (3), Wherd,[(z) represents the K; N x 2Nu,i where0 is anM x 1 vector of zeros. Since

matri3< ‘containing alliK; precoders for useras in (5) and with HSx =[H 0]Sky:

u, £ representing, respectively, tBé/, ; x 1 data sequence . .
and2K; N x 1 training data vectors. Note that data obeying (48'3 stacking operation leads to
could also be generated by a single user whose transmit antennas { XT} =H,Ss 41 (53)
are divided intod groups, with each group transmitting a dif- XU

ferent data sequence. Such an approach could be used to twldere H, is a2M x (K + 1) block Sylvester matrix iden-
off diversity for throughput. tical in form to those obtained in single-input multiple-output
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blind equalization problems (e.g., see [32]). Thus, the same detaere each matrix tapl(¢) is M x K. Let Sk (¢) represent
model is obtained as before, except the row dimension (numitiee X x N’ matrix containing the symbols broadcast from the
of effective receive antennas) has been doubled, whereas Ehéransmit antennas at symbol timesg + 1,...,t + N/ — 1,
column dimension (number of effective transmit antennas) habere the value oV’ will be specified below. Then, th& x N’
increased by only one. Stackidg— 1 times and adding the ef- matrix of received data at timecan be represented as

fects of noise leads to

X A Sk(t)
& Xt =mo)--HL-D| ;| +No
Xp= : =HpSk4r-1+Np (54) Sk(t—L+1)

% () (56)
=HS (1) + N(#). (57)

whereN p is formed identically t(f(p. The new “channel” ma-
trix Hp is guaranteed to be full rank as long Hsis and will
have at least as many rows as columns, provided that

As before, the subscript ol 1.(¢) indicates that the matrix
containsK L rows. Since it is likely thaty/ < KL, several
delayed versions oK(¢) can be stacked to create a low-rank

K-1 model
P> .
The single-user algorithms of Section I11-B can then be directly Xpd:ef : =HSk(+r-1) +N (58)
applied toX j» rather thanX. A larger value ofP is typically X(t _ P 1)

required in cases involving multiple users. Note that in general,
the stacking operation will lead to a noise teMp that is nei- where™ is an M P x K(L + P — 1) block Sylvester matrix
ther temporally nor spatially white, evenN was. This can be defined as in Section IV-B, and
accounted for, however, by prewhitening in both space and time. S0

x(t
C. Rank-Deficient Channels Sk(Lir 1) = . ) (59)

If the channel is rank deficient, i.e., raf) = p < Si(t—L—P+2)

min{M, K}, then in the noiseless case, réRk = p. If the
SVD of X in (14) is partitioned so thaV contains the first The stacking factoF is chosen so th&f is tall, which requires
p right singular vectors, then (15) still holds, except tiht
will be p x K. The transpose of (15) will then be equivalent P> M
to a noiseless version of the original model (1) for a case with - M-K

more transmit than receive antennas (il is fat), and the As with standard blind equalization problems, a low-rank model
approach of Section IV-B can be used. Instead of (54), thesuits because the intersection of the rowspace of successive
algorithms are applied to the matrix delayed versions of the daf(¢ — i) and X (¢t — i — 1) has
v dimensionk (L — 1).
def v+uT The key observation here is that (58) is essentially identical
Xp= ) (55) to (1), except that the temporal diversity of the channel and the
P data stacking have spread the STC structure bveP’ — 1 time
v+ (UT) shifts. To be more precise, I8¢ = N+ L+ P —2, and assume
that the first encoded data sampleSip (¢) occurs at timé. In
other wordsS (t — ¢) containsi andL + P — 2 — i samples
K—1 from the previous and next-sample blocks of transmitted data,
respectively. Letv; ; be the zero-forcing equalizer associated
with the kth row of S (¢ — 7), and letZ; be the set of indices
shown in the equation at the bottom of the page. Then

(60)

where P is chosen to satisfy

P>

p—1"

D. Frequency-Selective Fading

In general, the technique presented here requifes- K. V(Zi,:) Wi, = Up + ty,
This requirement can be relaxed for certain types of codes (e.g., k=1,....K,i=0,..., L+ P -2 (61)
see [18] for an example) but not in the general case. Assume the
MIMO channel can be represented as/atap FIR filter whereV(Z;, :) denotes the matrix formed fro using only
the rows inZ;. The algorithms of Section 11I-B can be directly
HO)+H(1)z' + -+ H(L — 1)z~ (FY applied to estimatev, ; andi, except that instead of having
i=[li+1 i+2 -+ N+4+¢|N+i+1 N +i+2 -+ N +N+i4].
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2K N equations witr2(K? + N,,) unknowns as in (23), there ' '
are now2K N(L+P—1) equations witl2( K ?(L+P—1)+N,,) Sl
Khowns B SRS
Ix ®V(Zo,:)
Ix ®V(Tryp—2::) s
VNVl,O g 10 == Training Only
. @ x AIarnout!w/X
u i - 2 g
X7 el -©- Circulant w,
x VYI&,O =|:lua+|:]. (62) 10 S i
Wi,1 : g T T
i Z/[ t ___________________
o SNR=20 4B o —— SN
| WK, L+P—2 ] 107 , ,
A A ) 1 2 3 4 5 6 7 8
The extra equations provided by the channel's temporal div¢ Length of Training Sequence (Samples)
sity relax identifiability condition (C1) to b& (L+ P —1)(N —
K) > N Fig. 1. Semi-blind symbol error rate versus training inteffdor Alamouti
= u-

and circulant space-time coding schemes.

V. SIMULATION EXAMPLES perform better for the circulant code than for the Alamouti

The first example considers a case with one udér= 3 code, especially when the number of training symbols is small,
receive antennags = 2 transmit antennas, a block 8, = 40 since in the limit wherél' = 0, the structure of the Alamouti
transmitted data symbols, and a variable numibef training code is not identifiable. However, the structure of the code still
symbols (v = N, + 7). Two different space-time coding provides some information, as evidenced by the fact that an
strategies were implemented: 1) the circulant code of [18] afdER is achieved that is 1.5-4 times smaller than when using
2) the Alamouti code [5]. Unit-amplitude QPSK symbols werthe training data alone.
generated for both the training and unknown data, and theThe second example involves two users, each with two
elements of the channel and noise matrices were zero-mes@nsmit antennas and a variable number of receive antennas.
circular complex Gaussian random variables, with varianc&ébe noise, data, and training symbols were generated as above
chosen to achieve the desired SNR. In the plots shown faith N, = 40 and?” = 5 (hence, N = 45), and both users
this and other examples, the SNR is defineds-§yo2, where employed the same zero-padded diagonal linear precoders
o3 and o2 are the variances of the elementsHf and N, defined by
respectively. In each trial, a new randoHi, N, t, and u
are generated and used to create observations for both of the U, = [Oiﬂo} , Uy = [05540}
above codes side-by-side. The training data was always placed 40

at the beginning of ea.lch. block of.data, as In (,30)' Both trWhereD is a 40x 40 diagonal matrix with nonzero entries
subspace-based se'm|-.bl|nd algorithm of Sgc’uon li-B antﬂawn at random from the unit circle. The signals from the two
the direct-data semi-blind approach of Section IlI-C [COMgsq s can still be separated in this case since each transmitted
spondl_ng 0 (46)] were |mplemente_d. In add|t|9n, wiier 3, linearly independent training data. Subspace-based stimates of
the training data was also used by itself to estimate the Chanm?iere obtained both with unstacked data and with data stacked

. . . NS . u
H and, in turn, a set of zero-forcing equaliz&f$. Estimates of nce P = 2), as described in Section IV-B. The SER results

u were then obtained by substituting these equalizers into 2 plotted in Fig. 2 versus SNR. No result is shown¥br= 3

foIIowin_g equation, which was derived using notation Sim"a’érmdP = 1 since a low-rank model is not available in this case.
to that in (41)—~(47): While P > 1 is not required fotd/ > 3, stacking provides a

N : - . significant performance advantage; stacking once has roughly

u=Uu [(IK ® X)W — t} the same effect as adding a receive antenna, resulting in an

order of magnitude improvement in SER.
wherew, = ved(H)?] and ve¢-) is the column stacking op-  Inthe final example, a single user with two antennas transmits
erator. over anL = 2tap frequency-selective fading channel using a di-
Fig. 1 shows the symbol error rate (SER) achieved by tlagonal linear precoder witi; = I, andU, = D, whereD is

semi-blind algorithms presented in this paper, together wihd0x 40 diagonal matrix with nonzero entries drawn at random
the performance obtained using training alone. The notatimom the unit circle. Data was collected by &h = 3 element
“w/V” and “w/X" in the legend indicates, respectivelyreceive array and stackdd = 3 times to create a 9 43 data
whether the subspace or direct-data algorithm was used. Thatrix X3, with a signal subspace of dimension eight. The3
subspace algorithm achieves an SER that is about 10-56%atrix taps had elements of equal average power and were gen-
lower than that of the direct-data approach for both codes wighated as in the previous two examples. No training data was as-
better relative performance at higher SNRs. The algorithreemed to be present; thereforewas estimated using the blind
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Fig.2. Semi-blind symbol error rate versus SNR for diagonal linear precodifi@- 3. Mean blind decoding performance versus SNR for diagonal linear
and variousM andP. precoding in a frequency selective fading channel.

16 T T T T T

subspace algorithm of Section IlI-B and the blind data-directa, .
gorithm (with output normalization) of Section III-C applied to ?.,’4

the model in (62). Equation (62) exploits all of the STC structur g
due to the temporal diversity added by stacking and the memc g 2} -
of the channel. Howeven is identifiable using far fewer equa- 4

=
<10

tions. To examine the tradeoff between computation and perfcs
mance that results from taking only a subset of the equatio s
represented by (62), four different estimatesiafere obtained

using bothy andX’. The first estimate was calculated from the
right singular vector oflx ® V(Zy,:) U] with the smallest

singular value. This estimate only makes use of the structus
presentinthe firskv,, = 40 samples of the data block (those tha
correspond to delay zero) and ignores the information prese
due to the temporal diversity. The second estimate was calc®
lated in the same way using the matrix o : : : : :

- Q- delay 0 w/X
-~ delay 0 wV i

% delays 0-1w/X
-%- delays 0—1 wV
- % delays 0-2 w/X
—%— delays 0-2 w/V -
-+ delays 0-3 w/X
—+— delays 0-3 w/V

®

ion of Angle Betwe:

t

vial
N

andard De

[ 5 10 15 20 25 30
SNR (dB)
Ix oV (IOv :) U Fig. 4. Blind decoding standard deviations versus SNR for diagonal linear
Irn®V(L,:) U precoding in a frequency-selective fading channel.
and, thus, uses not only the zero-delay structure of samples 1-40 VI. CONCLUSIONS

but that of the first delay present at samples 2—-41 as well. Thex general framework for space-time block coding has been
final two estimates build on these by exploiting delays 0-2 apflasented and shown to include a number of recently proposed
0-3, respectively. Figs. 3 and 4 plot, respectively, the mean giglies or code families as special cases. All codes within this
standard deviation of the angle (in degrees) between eactygfhework employ linear precoders (or affine precoding when
these four estimates and the twas a function of SNR for both training data is present) and were referred to as generalized

the subspace and direct-data algorithms. The angle betweeghce-time block codes (GSTBCs). In the noiseless case, the re-

and an estimaté is defined to be dundant structure of GSTBCs allows for construction of a set of
o channel-independent linear equations whose solution, if it ex-

6 (u, @) = cos < u UJ ) ) ists, simultaneously yields the transmitted data sequence and
[lu| fJal a vector containing all possible zero-forcing receivers. Condi-

tions under which a unique solution exists were discussed, and
At low SNR, there is a large improvement associated wilkast-squares blind and semi-blind algorithms were proposed for
using all of the available temporal diversity, but this advantadieding estimates with noisy data. While the algorithms were
decreases as the SNR increases. Exploiting the informatimesented for the single-user flat-fading case, where the channel
from an additional delayed block of data provides about a 3-d8full rank and there are more receive than transmit antennas,
performance gain, except when going from delays 0-2 to 0-€ktensions to scenarios involving multiple users, more transmit
where the gain is only about 1 dB. than receive antennas, rank-deficient channels, and frequency-
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selective fading were presented. Several simulation studies wejz]
used to illustrate the performance of both the basic algorithm
and some of its extensions. (23]
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