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Neuromorphic signal processing architectures capabteal-time applications are examined as a gewreration, post-
Moore, ultra-low-power computing solution [1]. C@amtional von Neumann-type hardware (such as DSP&lsGand
FPGAS) in spiking neural networks require very higindwidths (in the GHz range), and subsequenitjh power
dissipation, to efficiently transmit spike signativeen the memory and the processor. In contrastomorphic signal
processing circuits are implemented on optimizggbc®l purpose hardware, which can provide direwt-m-one
mapping and low instruction execution redundancy. [Risparity between sequential-processing, corivaeat
computing, and parallel, event-driven, biologicalural systems is even more prominent in autonomeaeed;time
systems, especially in the presence of noisy aedntrolled sensory inpuln neural signal processing systems, the noise
offers distinct advantages by inducing neuronalaldlity [3] and, successively, enhancing the sirigy of neurons to
environmental stimuli [4], inducing synchronizatitketween neurons [5], and facilitating probabitisitiference [6].
Consequently, probabilistic noise models, as auresofor neural computation in the context of neusgohic systems,
are implemented as artificial neural networks aottZzBnann machines [7].

In this paper, proposed neuromorphic Boltzmannesysperforms robust neural computation using noigdeded

stochastic equilibriums to regenerate static ditiloutions, and a neuromorphic core extended wéli-learning and
adaptation. The structure of the core consistsndhput decoder that connects via 1024x256 prographensynapses to
256 integrate-and-fire neurons, an /0O network cemication layer, and an activity-dependent dynawidltage and

frequency scaling (DVFS) circuits for active poweduction. The neuron circuits are current-modedoctance-based,
compact, process input data on demand, in real tame& produce fast asynchronous digital outputgsul$he neuron’s
time constants and spike frequency adaptation @meratled with adaptable circuit biasing, and cansmntly, the circuit

can generate a wide range of time constants akthggiehavior. The neuron circuit employs posifisedback to reduce
the neurons’ switching time, and reduce consumedepoThe noise-induced stochastic dynamics [8]isu@emented

with log-domain subthreshold circuits, which offégh energy-efficiency and minimal power-delay prots over several
decades of operating range.

A wide range of neural network algorithms, transfed into a hardware compatible format, can be implged in the
proposed neuromorphic core. We examined the ublfitthe noise-induced stochastic dynamics of Badtzmmachines
in generalizing the variability of EEGs with a tekttaset containing the segments of 10 normal @nabhormal EEG
recordings from the human neocortex and basal @argie training data were extracted from a 10-t@nong recording
in MIT-BIH database. Experimental results show ttfe proposed system can distinguish EEG signals @6 %
accuracy, within the early onset of 0.1 ms, dughto recursive accumulation of the signal differerared concurrent
implementation of the Boltzmann architecture arrdyge neuromorphic core is fully re-configurabladaonsumes only
[9]-[10] 31 pJ/spike at 0.8 V supply voltage in@® CMOS technology.
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Abstract
. ic signal pi il i are
as anext i t-M
ultralow-power computlng soluhon
+C i ing, von

type hardware (e.g., DSPs, GPUs, FPGAs) in spiking
neural networks require very high bandwidths (in
GHz range), and subsequently, high power
dissipation, to efficiently transmit spike signal
between the memory and the processor.
Parallel, event-driven, neuromorphu: signal

ing circuits are on
spemal purpose hardware.

In this project, we designed neuromorphic core for
robust neural calculation that includes: the 10

network layer, hybrid
processing units, and activity dependen! DVFS.
Each unit i d-fi

neurons and synapses, wherein memory and
computation are co-localized.

The core is fully and
consumes only 31 pJispike at 0.8 V supply voltage
in 65 nm CMOS technology.

Background

Silicon neurons consist of one or more synapse
blocks, and a soma block.

The synapse blocks receive spikes from other
neurons, integrate them over time, and convert
them into currents.

The soma block performs the spatio-temporal
integration of the input signals, and generates the
output analog action potentials and/or digital spike
events.

The soma block can be further subdivided into
several functional blocks that reflect the

prop of the models
they il (ie., block, a
spike generation block, a refractory period block,
and a spiks or spiking
adaptation block).

Neuromorphic Electronic Circuits

Emulating the style of computation of the brain
using the physics of silicon to reproduce the
biophysics of the neural tissue:

o VLSl devices for building real-time sensory-motor
systems

o Compact and low-power behaving systems
o Brain-machine interfaces
o Neural computation.

the i ies of the neural
system they emulate, and galn a bemr
of its

Neuromorphic Signal Processor
+ Neuromorphic Boltzmann system
o Complete robust computahon using noise-
induced
static data distributions
) ic core with self-l
self-organization and adaptation.

+ Neuromorphic core consists of parallel arrays ol
ing units, and il
ﬁre neurons and synapses.

o The core comprises of input decoder that
ia

Vi
to 256 neurons

o The neuron circuits are current-mode,
conductance-based, compact, and process input
data on demand, in real time.

Overview of the Neuromorphic Core

nput
Spikes

—_—

docoder

<Internal blocks of the neuromorphic core with dedicated
synapse. The topology relaxes the dynamic range conditions
on the inputs.>

. for
and |nlonnahon transfer in neural systems

o Short-term plasticity mechanisms are effective
tools for processing temporal signals.

pse circuit including short-term plasticity (depression

o Spike-timing in the
o Event-driven computing systems.

Ts1.3 and integration T);.¢), NMDA voltage gating (Ty;.2), and
conductance-based functional blocks (Tas.2). [1]>

An Adaptive Neuron Circuit

=
<Adaptive neuron circuit including: i) input integrator
block T,43, ii) spike-frequency adaptation circuit Ty;.s,
iii) spike event generation circuit Tg4.¢ and iv) digital
communication and reset block Tgy.¢. [2-3]>

«C i implicity and of
generalized integrate-and-fire neuron models make
them valuable options for VLSl implementations.
Adapnve neuron circuit is compact, low power,

iod and spik
adaptation, and has b|olog|cally rgahshc hma
constants.

Hardware Evaluation

+ The neuron circuit can produce a wide range of time
constants and spiking behavior, and can produce
fast asynchronous dlgltal output pulses.

Noise-induced ics is i

with log-domain subthrashold circuits, which offer
high energy-efficiency and minimal power-delay
products over several decades of operating range.

A test dataset containing the segments of 10 normal
and 10 abnormal EEG recordings from the human
neocortex and basal ganglia. The training data were

from a 10-mi lon ing in the
MIT-BIH database.

The system can distinguish EEG signals with 96%
accuracy, within the early onset of 0.1 ms.

+ The p: fficient soluuon is i bya
i of the and circuit
i.e. supervised fine-tuning wnh global weighhng,
hybrid of

the processing units, dynamic voltage and
frequency scaling techniques.

The circuit Inplemented in 65 nm CMOS technology,
consumes 31 pJ/spike at 0.8 V supply voltage (for 96
% accuracy).
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<Energy per spike versus supply voltage, and classification
accuracy.>

Neuromorphic Boltzmann System

Noise-induced i ics of

(RBM) il in
generalizing the variability of EEGs
Unsupervised training of a single binary RBM via
stochastic gradient descent:
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assuming system states s’:=((v/)T,(h')T)T, with
distribution

: 1 tat
d(P° || P*(v';0") = —— ~H(s'0"

(P || P*(v";0) 2(0").2“9( (0%
given network parameters ©/:=(W',b/), i.e. the weights
W'and biases b'. The function H reads as

H(s:01) = (v Wk (b s
Gaussian-distributed states for the input RBM are

introduced through a quadratic energy function.
Linear output layer on input sample x is defined as

v (x) = Wh(x) « b

Notes: Output RBM learns input-output associations
leading to an indirectly maximized discriminant
criterion.

Hardware implementation

<A section of the classifier architecture including SRAM,
adder, multiplier, register and controller.>

Summary

+ The ic signal p for
robust neural calculanon consisting of the IO
network layer, p hybrid
analog/digital processing units, and activity
dependent DVFS.

+ Noise-induced of RBM

in izing the of EEGs.

The circuit is Implemented in 65 nm CMOS
technology and consumes only 31 pJ/spike at 0.8 V
supply voltage.
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