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Abstract— In 3-D integrated circuits, accurate runtime sens-
ing of on-chip temperature is required to establish dynamic
thermal management instruction sets. Placement restrictions and
excessive runtime thermal variations, however, compromise the
performance and reliability of the sensor readings. Within this
framework, a novel methodology for thermal estimation based on
unscented Kalman filter, augmented only with a limited number
of temperature sensors at a few selected locations, is proposed.
In addition, we extend discontinuous Galerkin finite-element
method to include coupling mechanism between neighboring
grid cells for accurate thermal profile estimation and introduce
a balanced stochastic truncation to find a low-dimensional but
accurate approximation of the thermal network over the whole
frequency domain. As the experimental results show, the run-
time thermal estimation method reduces temperature estimation
errors by an order of magnitude.

Index Terms— 3-D integrated circuits (ICs), multiprocessor
system-on-chip (SoC), simulation, thermal analysis, thermal
management.

I. INTRODUCTION

IN THE nanometer regime, the transistor scaling has been
slowing down due to the challenges and hindrances of

increasing variability, short-channel effects, power/thermal
problems, and the complexity of interconnect. The 3-D inte-
gration has been proposed as one of the alternatives to
overcome the interconnect restrictions [1]. Thermal manage-
ment is, however, of critical importance for 3-D integrated
circuit (IC) designs [2] due to the degradation of performance
and reliability [3]. Heat and thermal problems are exacer-
bated for 3-D applications as the vertically stacked multiple
layers of active devices cause a rapid increase of power
density. Higher temperature increases the risk of damaging the
devices and interconnects (as major back-end and front-end
reliability issues including electromigration, time-dependent
dielectric breakdown, and negative-bias temperature instability
have strong dependence on temperature), even with advanced
thermal management technologies [4]. The complexity of the
interconnection structures, back end of line structures and
through-silicon vias increase the complexity of the conductive
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heat transfer paths in a stacked die structure. Dummy vias
and intertier connections can be used to increase the vertical
heat transfer through the stack and reduce the temperature
peaks in the die [5]. Successful application of 3-D integration
requires analysis of thermal management problem, and the
development of an analytical model for heat transport in 3-D
ICs to establish thermal design rules governing the feasibility
of integration options. A thermal analysis of heterogeneous
3-D ICs with various integration schemes has been presented
in [6]. The analysis of temperature distribution on an inho-
mogeneous substrate layer is performed employing finite-
difference time domain [7], based on the image method [8],
neural networks [9], green function [10], fast Hankel transform
of green function [11], or mesh based methods [12]. However,
existing thermal-simulation methods, when applied to a full
chip, reduce the computational complexity of the problem by
homogenizing the materials within a layer, limiting the extent
of an eigenfunction expansion, or ignoring sources’ proximity
to boundaries. These simplifications render their results less
accurate at fine length scales on wires, vias, or individual
transistors. Accurate computation of temperature at the length
scales of devices and interconnects requires the development
of a fundamental analytical model for heat transport in 3-D
ICs and a detailed accounting of the heat flow from the power
sources through the nanometerscale layout within the chip.

The thermal conductivity of the dielectric layers inserted
between the device layers for insulation is very low compared
with silicon and metal [13] leading to temperature gradient in
the vertical direction of a 3-D chip. In hotspots, these ther-
mal effects are even more pronounced. Therefore, continuous
thermal monitoring is necessary to reduce thermal damage
and increase reliability. Built-in temperature sensors predict
excessive junction temperatures as well as the average tem-
perature of a die within design specifications. Underlying chip
power density is, however, highly random due to unpredictable
workload, fabrication randomness, and nonlinear dependence
between temperature and circuit parameters. Increasing the
number of sensors could possibly resolve this issue; nev-
ertheless, the cost of adding a large number of sensors is
prohibitive. Moreover, even without considering the cost of
added sensors, other limitations such as additional channels
for routing and input/output may not allow placement of
thermal sensors at the locations of interest. Several techniques
have been proposed to solve the problem of tracking the
entire thermal profile based on only a few limited sensor
observations [14]–[20]. Among these techniques, the Kalman
filter (KF)-based methods are especially resourceful as such
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methods are capable of exploiting the statistical properties
of power consumption along with sensor observations to
estimate temperatures at all the chip locations during runtime,
while simultaneously retaining the possibility to incorporate
associated sensor noise caused by fabrication variability, sup-
ply voltage fluctuation, cross coupling and so on. Existing
KF-based approaches, however, imply a linear model ignoring
the nonlinear temperature-circuit parameters dependency or
employ a linear approximation of the system around the
operating point at each time instant. These approximations,
however, can introduce large errors in the true posterior mean
and covariance of the transformed (Gaussian) random variable,
which may lead to suboptimal performance and sometimes
divergence of the filter.

In this paper, we propose statistical linear regression tech-
nique based on unscented KF (UKF) to explicitly account for
this nonlinear temperature-circuit parameters dependency of
heat sources, whenever they exist. Because we are considering
the spread of random variable, the technique tends to be
more accurate than Taylor series linearization employed in
existing KF-based approaches. As the experimental results
show, the runtime thermal estimation method reduces temper-
ature estimation errors by an order of magnitude. In addition,
we extend the study for accurate thermal profile estimation
based on discontinuous Galerkin finite-element method [21] to
include coupling mechanism between neighboring grid cells.
The extended method provides both steady-state and transient
3-D temperature distribution and can be used to simulate
geometrically complicated physical structures with limited
complexity overhead. To reduce computational complexity, we
adopt a more stable semi-implicit treatment of the numerical
dissipation terms in Runge–Kutta solver and introduce a
balanced stochastic truncation to find a low-dimensional but
accurate approximation of the thermal network over the whole
frequency domain.

This paper is organized as follows. Section II focuses on
the thermal conduction in ICs and associated thermal model.
Section III introduces the UKF for temperature estimation.
In Section IV, two algorithms are described, namely modified
Runge–Kutta method for fast numerical convergence, and
a balanced stochastic truncation for accurate model order
reduction (MOR) of thermal network. Section V elaborates the
experimental results. Finally, Section VI provides a summary
and the main conclusion.

II. THERMAL MODEL

A 3-D IC contains multiple vertically stacked silicon lay-
ers, each containing processing elements (PEs) and memory
modules (Fig. 1) [22], [23]. An offline temperature profile
estimation methodology [21] has the capability to include
layout geometry of individual circuit blocks in a chip (Fig. 2).
The model is composed by three types of layers: 1) bulk
silicon; 2) active silicon; and 3) the heat-spreading copper
layer. The chip is partitioned into a mesh according to the
information provided by the layout geometry and power dis-
tribution map.

Nominal power distribution (including switching and leak-
age power dissipation) for each functional unit according to its

Fig. 1. 3-D chip package with PEs on vertically stacked silicon lay-
ers [22], [23].

Fig. 2. Offline setup of the methodology for thermal profile estimation [21].
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Fig. 3. (a) Chip top view. (b) 3-D view of the grid point a. (c) Equivalent
electrical circuit for each cell.

activity factor is assigned an initial value. Each functional unit
in the floorplan is represented by one or more thermal cells of
the silicon layer (Fig. 3). Physical parameters such as thermal
conductivity and heat transfer coefficient depend on specific
packaging material properties and applied cooling techniques.
Boundary conditions are determined by the operating envi-
ronment. The simulator uses layout geometry, power distrib-
ution, boundary conditions, and physical thermal parameters
as initial values to formulate the system of partial differential
equations, which are approximated into a system of ordinary
differential equations (ODEs) with discontinuous Galerkin
method. The first step in discontinuous Galerkin finite-element
discretizations is to form weak formulation/algebraic system:
the variables are expanded in the domain or in each element
in a series in terms of a finite number of basis functions.
Each basis function has compact support within each element.
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This expansion is then substituted into the weak formulation,
and a test function is chosen alternately to coincide with a basis
function, to obtain the discretized weak formulation. Next, the
integrals are evaluated in local coordinate system and global
matrices and vectors are assembled in the assembly routine.
The resulting ODEs are then numerically integrated in a self-
consistent manner using modified Runge–Kutta method. To
control the error due to the surface approximation, we evaluate
the magnitude of the difference between the analytical distri-
bution of temperature T , and an interpolation of this function
on a finite-element edge length. The errors of interpolation
increase when the heat is changing faster (the higher the
curvature of the function of the exact temperature T ).

To control this error, we employ l-adaptive control [21]
by designing graded meshes, with small elements located
in regions of expected high error, and proportionally large
elements elsewhere. To accurately estimate power dissipation
and resulting temperature profile, the electrothermal couplings
are also embedded in the core of the simulator that simulta-
neously estimates temperature-dependent quantities for each
simulation step. The scheme based on [24] and extended
in [25] uses instantaneous temperature monitoring coupled
with information on the physical structure of the die stack
to determine operating voltage–frequency levels for PEs.

A. Thermal Conduction in ICs

Fundamentally, IC thermal modeling is the simulation of
heat transfer from heat producers (transistors and intercon-
nect), through silicon die and cooling package, to the ambient
environment. A schematic representation of the chip layer
and its thermal mesh model is shown in Fig. 3. The chip
is divided into meshes according the layout geometry and
power distribution map in the x-, y-, and z-directions, here,
δx, δy, and δz are each mesh’s side sizes. The Fourier equation
governing heat diffusion via thermal conduction in an IC is as
follows:

cV
∂T

∂ t
= ∇ · g(∇T )T + Q (1)

where Q is the heat source, T is the temperature at time
t , cV is a capacitance of the volume V , ∇T = [∂T /∂x ,
∂T /∂y, ∂T /∂z], and the matrix g is the conductivity matrix of
material with three orthogonal directions of different thermal
conductivities g = diag(ga), a = x , y, z, gx , gy, and gz

are the thermal conductivities coefficients. The source of heat
generation Q depends on the nature of the circuit operation.
At the device simulation level, it is the local Joule heat as
a function of current density and electric field, and at the
block level, it can be assumed that the power consumption
for the functional block under the typical signal pattern is the
source for the entire block. To approximate the solutions of
these equations using numerical methods, we use finite dis-
cretization, i.e., an IC model is decomposed into numerous 3-D
elements, where adjacent elements interact via heat diffusion.

Each element is sufficiently small to permit its temperature
to be expressed as a difference equation, as a function of
time, its material characteristics, its power dissipation, and the
temperatures of its neighboring elements. The temperature in

the control volumes along the boundaries of the computational
domain is determined using constraints representing boundary
conditions. Each cell is assigned the specific heat capacity of
the associated material and also a temperature. If a dual grid
is formed by joining the centers of adjacent cells, each edge
of the dual grid will intersect exactly one face of the primary
grid. The thermal conductivity can be thought to be assigned
for the edge of the dual grid. If the two cells on either side
of the face belong to the same material, the assigned thermal
conductivity is that of the material. If the two cells belong to
different materials, the thermal conductivity is chosen on the
basis of the thermal conductivity values of both the materials.
We also allow for the existence of interfacial thermal resistance
(due to scattering of thermal carriers at the interface).

B. Thermal Conduction Model

We take up the Galerkin finite-element discretization for the
thermal conduction initial boundary value problems. Balancing
the order of differentiation by shifting one derivative from
the temperature to the test function η is beneficial: we use
basis functions that are less smooth because we do not require
the second derivatives, and also we are able to satisfy the
natural boundary conditions without having to include them
as a separate residual. The integration by parts in the case of
a multidimensional integral is generalized in the divergence
theorem. The surface heat transfer coefficient h is defined
as h = 1/(Aeff R), where Aeff is the effective area normal
to the direction of heat flow and R is the equivalent ther-
mal resistance. We assume a Dirichlet boundary condition
of the form T = 0 (absolute temperature equal to ambient
temperature) at the radial and the z = max(z) boundaries. This
condition is applied by setting the temperature at the center
of the boundary cells along the radial and the z = max(z)
boundaries to zero. Note that the boundary conditions are
specific to the package design. Although different packages
with varying heat sink properties would change the boundary
conditions, the general nature of the solution will not change.
The boundary condition at z = min(z) is assumed to be of
the mixed type gz∂T /∂z − hT = 0, where gz is the thermal
conductivity in the z-direction. Physically, this corresponds
to heat loss being proportional to the difference between the
absolute temperature and the ambient temperature. To simplify
the problem, we reduce the originally 3-D model to two
active coordinates, while still describing the heat conduction
through a 3-D domain; the function describing the temperature
distribution depends only on two spatial coordinate variables
though.

The surface of the 3-D solid consists of the two cross
sections, and of the cylindrical surfaces, the inner and the
outer. The two cylindrical surfaces may be associated with
boundary condition of any type. We simplify calculation by
preintegrating in the thickness direction, dV = ΔzdS and
dS = ΔzdC . The volume integrals are then evaluated over the
cross-sectional area Sc, provided h is independent of z; the
surface integrals are computed as integrals over the contour of
the cross section Cc. Adding the surface (Newton) boundary
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Fig. 4. Surface approximation of L-form wire with collection of triangles.

condition residual, (1) is expressed as

∫
Sc

ηcV ∂T /∂ t�zdS =
∫

Sc

∇ηg(∇T )T �zdS

+
∫

Sc

ηQ�zdS +
∫

Cc

ηh(T −Ta)�zdC (2)

where Ta is the known temperature of the surrounding
medium. The domain of the surface is approximated as a
collection of triangles. As an illustrative example, we show
in Fig. 4 L-form wire. As the triangles are the finite elements
with straight edges, we are only approximating any boundaries
that are curved. This error is controlled by length-adaptive
error control [21]. Because the basis on the standard trian-
gle satisfies the Kronecker delta property, the values of the
degrees of freedom Ti (t), i = 1,…, N f , at the i nodes are
simply the values of the interpolated temperature at the nodes,
Ti (t) = T (xi , yi , t). We express the system of ODEs, which
results from the introduction of the Galerkin finite-element
test function η (the so-called discretization in space) on
(2) as

N f∑
i=1

C ji∂Ti
/
∂ t =

N f∑
i=1

G ji Ti + Pj , j = 1, . . . , N f (3)

where

C ji =
∫

Sc

N j cV Ni�zdS, i, j = 1, . . . , N f

G j i =
∫

Sc

(∇N j )h j i g(∇Ni )
T �zdS, i, j = 1, . . . , N f

Pj = PQ j + PC j + PG j , j = 1, . . . , N f

PQ j =
∫

Sc

N j Q�zdS, j = 1, . . . , N f . (4)

C ji and G ji , are the capacity and conductivity matrices,
respectively, PQ j designates internal heat generation, and N is
piecewise linear Galerkin basis function.

Boundary condition in a weighted residual sense is given as

PC j =
N∑

i=N f +1

[∫
Sc

N j cV Ni�zdS
]
∂Ti/∂ t, j = 1, . . . , N f

PG j =
N∑

i=N f +1

[∫
Sc

(∇N j )h j g(Ni )
T �zdS

]
Ti , j =1, . . . , N f .

(5)

The analogy between heat flow and electrical conduction is
invoked here, because they are described by exactly the same
differential equations for a potential difference. The tempera-
ture is represented as voltage, heat flow represented as electric
current, the term on the left-hand side in (3) represented as
a capacitor and the rest of the terms on the right-hand side
represented as conductances, giving rise to an RC circuit [26].
The resulting thermal network in (3) is represented in state-
space form with the grid cell temperatures as states and the
power consumption as inputs to this system

C ji

(
dTi

dt

)
= G ji Ti (t) + B j Pj (t) (6)

where C ji , G ji ∈ R mji ×mji are the matrixes describing
the reactive and dissipative parts in the model, respec-
tively, Ti (t) ∈ R mi are the time-varying temperature vectors,
B j ∈ R mj ×pj is the input selection matrix, and Pj (t) ∈ R p j

is the vector of power inputs (heat sources as function of
time, wherever they exists). The number of state variables
m is called the order of (6) and p is the number of inputs.
The outputs of this state-space model are the temperatures at
the sensor locations, which are observed by sensor readings
Sj (t) ∈ R q j

S j (t) = ET
j Ti (t) (7)

where E j ∈ R qj×mj is the output matrix, which identifies
the sensor grid cells at which temperatures are observable.
For simplicity, and because this holds true for electrical
circuits, we restrict ourselves to (7) with q = p. We are
assuming that distinct measurements are coming from distinct
sensors: E j has only one nonzero element per row. We connect
the nodes of the thermal network of the grid cells (Fig. 2) to the
nodes of their neighboring cells through the coupling relations

Pj (t) = K j1S1(t) + · · · + K jk Sk(t) + D j P(t), j = 1, . . . , k

S(t) = L1S1(t) + · · · + Lk Sk(t) (8)

where K jk ∈ R pj ×q , D j ∈ R pj ×p , and L j ∈ R q×q j are the
coupling matrixes. If I -H (s)K is the invertible, the input–
output relation of the coupled system (6)–(8) can be written
as S(s) = �(s)P(s), where S(s) and P(s) are the Laplace
transforms of S(t) and P(t), respectively, and the closed-loop
transfer function �(s) has the following form:

�(s) = L(I −H (s)K )−1H (s)D

H (s)= diag(H1(s), . . ., Hk(s))H j(s) = ET
j (sC j −G j )

−1B j .

(9)
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We express a generalized state-space realization of �(s) by

C(dT/dt) = GT (t) + B P(t)

C = C ∈ R m,m

G = G + B K ET ∈ R m,m

S(t) = ET T (t)

B = B D ∈ R m,p

ET = P ET ∈ R q,m . (10)

C. Electrothermal Couplings

Thermal issues arising from the high density of integration
in 3-D architectures necessitates the use of aggressive thermal
management techniques, and the inclusion of thermal effects
in the architecture space exploration stage of the design flow.
Given the gravity of thermal issues encountered deep within
die stacks, a runtime power management strategy is essential
toward ensuring a reliable design. A comprehensive thermal
management policy for 3-D multiprocessors incorporating
temperature aware workload migration and runtime global
power-thermal budgeting is presented in [27]. Within the
policy, PEs with available temperature budgets executing high
instructions per cycle workloads are scaled to higher voltage
and frequency levels to improve their performance after weigh-
ing the potential performance benefits of such scaling against
the consequent thermal implications for neighboring PEs.

We incorporate a runtime power manager with a thermal
simulation engine to yield a methodology for temperature
power simulation of 3-D architectures [24]. In multiprocessor
system-on-chip, the activity rate is replaced by a cycle accurate
trace of each PE execution, suggesting the cycles during which
computational operations were performed, and those during
which it remained idle. The voltage and frequency levels of
PEs are controlled by a custom power management scheme
that enables the investigation of the thermal implications of
various power management techniques on 3-D stacks. The
scheme based on [24] and extended in [25] uses instantaneous
temperature monitoring coupled with information on the phys-
ical structure of the die stack to determine operating voltage–
frequency levels for PEs. Additionally, a weighted policy is
adapted while implementing scaling decisions, thereby pre-
venting PEs on deeper tiers from reaching critical temperatures
and thus being turned off. The methodology outperforms
conventional 2-D dynamic voltage and frequency scaling tech-
nique, both in its ability to maintain the temperatures of all
PEs stable, as well as in its improvement of performance by
increasing the aggregate system frequency [24], [25].

III. DYNAMIC THERMAL TRACKING

Complex ICs with large die area require multiple thermal
sensors to capture temperatures at a wide range of locations
as the unpredictability of a workload leads to continuous
migration of hotspots, and within-die manufacturing variations
lead to parameter variability that further conceal the locations
of the thermal hotspots. However, the thermal sensors, together
with their support circuitry and wiring, complicate the design
process and increase the total die area and manufacturing costs.

Given the limitations on the number of thermal sensors,
it is necessary to optimally place them near potential hot-
spot locations. In [28], a clustering algorithm is described
that computes the thermal sensor positions, which best serve
clusters of potential hot-spot locations. In [29], an optimal
sensor problem is computed as the unite-covering problem.
In [30], the unknown temperature at a particular location is
computed as a weighted combination of the known measure-
ments at other locations. Nevertheless, these techniques may
be ineffective for dynamic thermal tracking or if the accuracy
or availability of sensors measurements is in question.

A. Preliminary

Several online techniques have been proposed to solve the
above problem [14]–[20]. Among these techniques KF-based
methods generate thermal estimates for all the chip locations
while countering sensor noise and can be applied to real-time
thermal tracking problems. The KF propagates the mean and
covariance of the probability density function of the model
state in an optimal (minimum mean square error) way in linear
dynamic systems. As very large scale integration fabrication
technology, however, continues to scale down, leakage power
can take up to 50% of the total chip power consumption [31].
Note that leakage has the nonlinear nature that increase expo-
nentially with the chip temperature. Therefore, the standard
KF tends to underestimate the actual chip temperature due
to the assumed linear model. Consider (10) in corresponding
discrete-time state space

Tn = ATn−1 + J (PD(n−1) + PL(n−1)) + rn−1

= ATn−1 + J PD(n−1) + J K1T 2
n−1eK2/Tn−1 + rn−1

= f (Tn−1) + rn−1

Sn = h(Tn) + un (11)

where Tn is the state vector representing temperatures at
different grid cells at time n, A, and J are the coefficient
matrices determined by the circuit parameters (C and G)
and the chosen length of the time step. For clarity, we
subdivided power P into two components, dynamic power
PD(n−1) and leakage power PL(n−1). While dynamic power
consumption PD(n−1) = (1/2)αCL V 2

DD f , where CL is the
switching capacitance, α is the switching activity of output
node, VDD is the supply voltage, and f is the operation
frequency of system, is weakly coupled with temperature
variation, static power consumption is a strong function of
temperature PL(n−1) = K1T 2

n−1exp(K2/T n−1) [32], where K1
and K2 are the design/technology and fixed supply voltage
constants, respectively. Sn is the output vector of temperatures
at sensor locations, rn−1 ∼ N(0,Rn−1) is the Gaussian process
noise, and un ∼ N(0,Un) is the Gaussian sensor noise (noise
caused by fabrication variability, supply voltage fluctuation,
cross coupling, etc.).

Because of unpredictability of workloads (power vector is
unknown until runtime) and fabrication/environmental vari-
abilities, the exact value of Tn at runtime is difficult to predict.
To elevate the issue, on-chip sensors provide an observation
vector Sn , which is essentially a subset of Tn plus sensor
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noise un . In (11), h(·) is a transformation function determined
by the sensor placement. Because of the sensors power/area
overheads, their number and placement are highly constrained.
Therefore, the problem of tracking the entire thermal profile
(vector Tn) based on only a few limited sensor observations
Sn is rather complex.

To extend the model for the nonlinear leakage-temperature
function f (·), the most common way of applying the KF
is in the form of the extended KF (EKF). In the EKF, the
probability density function is propagated through a linear
approximation of the system around the operating point at
each time instant. These approximations, however, can intro-
duce large errors in the true posterior mean and covariance
of the transformed (Gaussian) random variable, which may
lead to suboptimal performance and sometimes divergence
of the filter. In contrast, the UKF, which uses the unscented
transform (UT) [33], [34], is using the statistical linearization
technique to linearize a nonlinear function of a random vari-
able through linear regression between k data points drawn
from a priori distribution of the random variable. Because
we are considering the spread of random variable, the UT
is able to capture the higher order moments caused by
the nonlinear transform better than the EKF Taylor series-
based approximations [33]. The mean and covariance of the
transformed ensemble can then be computed as the estimate
of the nonlinear transformation of the original distribution.
The UKF outperforms the EKF in terms of prediction and
estimation error at an equal computational complexity for
general state-space problems [34]. In addition, the UKF can
easily be extended to filter possible power estimation noises,
restricting the influence of the high-frequency component in
power change on the modeling approach.

B. Temperature Estimation

The UKF estimates online the temperature during the nor-
mal operation in a predict-correct manner based on inaccurate
information of temperature and power consumption. The mea-
surement update incorporates the new measurements into the
a priori estimate to obtain an improved a posteriori estimate
of the temperature. A time and measurement update step is
repeated for each run of the algorithm. In UKF, the initial-
ization step uses the UT to generate the 2k + 1 sigma points
and appropriate weights W for the mean m and covariance
computations [34]. The first step in the time update phase is
the propagation of the input domain points, which are referred
to as sigma points [34], through the nonlinear function in the
transition equation (12). Given an k -dimensional distribution
with covariance , the a priori estimate of a mean for the state
vector is computed as a weighted average of the propagated
sigma points (13). We compute the a priori error covariance
from the weighted outer product of the transformed points
(14). The covariance Rn−1 is added to the end of (14) to
incorporate the process noise. To compute the new set of
sigma points, we need the square root matrix of the posterior
covariance n = n

T
n . A Cholesky decomposition [35]

is used for this step for numerical stability and guaranteed

positive semidefiniteness of the state covariances [34]

Ti|n = f (Ti|n−1), i = 0, . . . 2k (12)

m−
n =

2k∑
i=0

W (m)
i Ti|n (13)

−
n = qr

([√
W (c)

i (Ti|n − m−
n )

√
Rn−1

])

−
n = cholupdate

([
−
n , (T0|n −m−

n ), sgn{W (c)
0 }

√
W (c)

0

])

(14)

where qr function returns only the lower triangular matrix.
The weights are not time dependent and do not need to be
recomputed for every time interval. The superscripts m and c
on the weights refer to their use in mean and covariance calcu-
lations, respectively. Note that this method differs substantially
from general sampling methods (e.g., Monte Carlo methods
such as particle filters, which require orders of magnitude more
sample points in an attempt to propagate an accurate (possibly
non-Gaussian) distribution of the state.

The known measurement equation h(·) is used to transform
the sigma points into a vector of respective (predicted) mea-
surements (15). The a priori measurement vector is computed
as a weighted sum of the generated measurements (16)

Si|n = h(Ti|n), i = 0, . . . , 2k (15)

μ−
n =

2k∑
i=0

W (m)
i Si|n . (16)

In the correction step, the computation of the Kalman gain
(and, therefore the correction phase of the filtering) is based
on the covariance of the measurement vector (17), where Un is
the measurement noise covariance, and the covariance of the
state and measurement vectors (18). These are computed using
the weights (which were obtained from the UT during the
initialization step) and the deviations of the sigma points from
their means

Zn = qr

([√
W (m)

i (Si|n − μ−
n )

√
Un

])
(17)

Zn = cholupdate

([
Zn, (S0|n − μ−

n ), sgn{W (m)
0 }

√
W (m)

0

])

	n =
2k∑

i=0

W (c)
i (Ti|n − m−

n )(Si|n − μ−
n )T . (18)

The Kalman gain is then computed from these covariance
matrices (19). We calculate the a posteriori estimate mn in (20)
as a combination of the a priori estimate of a mean of the state
vector and a weighted difference between the measurement
result Sn and its a priori prediction. The a posteriori estimate
of the error covariance matrix is updated using (21)

Kn = (	n/ZT
n )/Zn (19)

mn = m−
n + kn[Sn − μ−

n ] (20)

n = cholupdate( −
n , knZn,−1) (21)

where / denotes a back substitution operation as a superior
alternative to the matrix inversion. Obtained values of mn and
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n become the input of the successive prediction–correction
loop.

IV. REDUCING COMPUTATIONAL COMPLEXITY

We introduce two techniques that significantly reduce the
computational complexity of our model. One of the tech-
niques includes techniques for fast numerical convergence,
whereas the other provides fast and accurate MOR technique
of dynamic IC thermal network.

The ODE in (3) needs to be numerically integrated in time
as analytical solutions are not possible in general. Although
many time marching numerical methods for solving ODEs are
based on methods that do not require explicit differentiation,
these methods are conceptually based on repeated Taylor series
expansions around increasing time instants. Revisiting these
roots and basing time marching on Taylor series expansion
allows element-by-element time step adaptation by supporting
the extrapolation of temperatures at arbitrary times.

The MOR enables us to find a low-dimensional but accurate
approximation of the thermal network (10), which preserves
the input–output behavior to a desired extent. In an asymptotic
waveform evaluation (AWE) algorithm [36] explicit moment
matching was used to compute the dominant poles via Padé
approximation. As the AWE method is numerically unstable
for higher order moment approximation, a more efficient solu-
tion of the numerical problem of AWE is to use a projection-
based Krylov subspace MOR methods, such as the Padé via
Lanczos method [37], or PRIMA [38]. These methods are,
however, not efficient for circuits with many inputs and output
terminals as the reducing costs are tied to the number of
terminals; the number of poles of reduced models is also pro-
portional to the number of terminals. In addition, PRIMA-like
methods do not preserve structure properties like reciprocity of
a network. Alternatively, MOR can be performed by means of
singular value decomposition (SVD)-based approaches such
as control-theory-based truncated balance realization (TBR)
methods, where the weakly uncontrollable and unobservable
state variables are truncated to achieve the reduced models
[39]–[45]. The major advantage of SVD-based approaches
over Krylov subspace methods lies in their ability to ensure
the errors satisfy an a priori upper bound [43]. Furthermore,
SVD-based methods typically lead to optimal or near optimal
reduction results as the errors are controlled in a global
way.

A. Modified Runge–Kutta Solver

We first designate numerical dissipation and boundary con-
dition terms and treat them separately. We adopt a more stable
semi-implicit treatment of the numerical dissipation terms,
which is formally correct for the Crank–Nicolson scheme,
but implies a modification of dissipation terms in (3) for the
Runge–Kutta scheme. Using a discontinuity detector [46], the
modified third-order Runge–Kutta predictor–corrector scheme,
the spatially discrete system in (3) reads

(1 + �t
(Tn))T(1) = Tn + �t�(Tn)

(1 + 1/4�t
(T(1)))T(2) = 1/4(3Tn + T(1) + �t�(T(1)))

(1 + 2/3�t
(T(2)))T(n+1) = 1/3(Tn + 2T(2) + 2�t�(T(2)))

(22)

where � = C−1G and 
 = C−1 P for two time instants Tn

and Tn+1. Note that the terms designating boundary conditions
are treated separately. To achieve fast convergence, the coef-
ficients in the Runge–Kutta scheme have been optimized to
damp the transients in the pseudotime integration as quickly
as possible and to allow large pseudotime steps. In addition,
the use of a point implicit Runge–Kutta scheme ensures that
the integration method is stable. Convergence to steady state is
further accelerated using a multigrid technique, e.g., the origi-
nal fine mesh is coarsened a number of times and the solution
on the coarse meshes is used to accelerate convergence to
steady state on the fine mesh.

The boundary conditions in (5) also have to be written
in terms of the discrete (in space and time) temperature.
For the time marching between time indexes Tn and Tn+1,
the form of the right-hand side depends, among other things,
on the time-marching scheme chosen. The terms involved
in the surface integral involve temperature and the spatial
derivatives of temperature on the surfaces. We approximate
these terms using the nearest neighbor temperatures only.
Hence, the discrete form of the surface integral is of the form
of a linear combination of the temperature at the center of the
cell and the temperature at the center of the neighboring cells.
The modified implicit Runge–Kutta scheme can not be used
to compute neighbor temperatures at boundary condition, as it
results in circular dependency problems. More specifically, Tn

must be known before Ti is computed. Similarly, Tn depends
on Ti . To solve this problem, we use the forward Euler method
to extrapolate Tn . In addition, to increase efficiency, we employ
backward Euler (θ = 1, where the free parameter θ is used
to control accuracy and stability of the scheme) and factor the
matrix PQ before the time stepping starts and then use forward
and backward substitution in each time step

θ [PC, j ]n+1 + (1 − θ)[PC, j ]n+1

=
N∑

i=N f +1

[ ∫
Sc

N j cV N T
i �zdS

]
((Ti|n+1 − Ti|n)/�t)

θ [PG, j ]n+1 + (1 − θ)[PG, j ]n+1

=
N∑

i=N f +1

[ ∫
Sc

(∇N j )h j g(∇Ni )
T �zdS

]
(θTi|n+1 + (1 − θ)Ti|n)

(23)
where we approximate the prescribed temperature rate rather
than use its exact value.

B. Adjusted Balanced Stochastic Truncation

In this paper, we introduce a balanced stochastic trunca-
tion [47] in MOR of thermal networks to provide a uniform
approximation of the frequency response for the original
system over the whole frequency domain and to preserve
phase information. The approach presented here produces
orthogonal basis sets for the dominant singular subspace of the
controllability and observability Gramians, which significantly
reduces the complexity and computational costs of SVD, while
preserving MOR accuracy and the quality of the approxima-
tions of the TBR procedure.
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The balanced truncation [39] involves the explicit balancing
of (10). This procedure is dangerous from a numerical point
of view because the balancing transformation matrix  tends
to be highly ill conditioned. The square root method [45] is
an attempt to cope with this problem by avoiding explicit
balancing of the system. The method is based on the Cholesky
factors of the Gramians instead of the Gramians themselves.
In [48], the use of the Hammarling method was proposed to
compute these factors. Recently, in [40] and [44], it has been
observed that the solutions often have low numerical rank,
which means that there is a rapid decay in the eigenvalues of
the Gramians. Moreover, approximating directly the Cholesky
factors of the Gramians and using these approximations to
provide a reduced model, has a comparable cost to that of the
popular moment-matching methods. It requires only matrix–
vector products and linear solvers. For large systems with
a structured transition matrix, this method is an attractive
alternative because the Hammarling method can generally not
benefit from such structures. In the original implementation,
this step is the computation of exact Cholesky factors, which
may have full rank.

To guarantee the passivity of the reduced model and sim-
plify the computational procedure, we first convert original
descriptor systems into standard state-space equations by map-
ping C → I , G → C−1G , and B → C−1B. If we define
�(s) = �(s)�T (−s), and let W be a square minimum spectral
factor of �, satisfying �(s) = W T (−s)W (s), a state-space
realization (GW , BW , EW ) of W (s) can be obtained as

GW = G BW = B + Y E ET
W = ET − BT

W X (24)

where Y is the controllability Gramian (e.g., the low-rank
approximation to the solution) of � given by Lyapunov
equation

GY + Y GT + BBT = 0 (25)

and X is the observability Gramian of W , being the solution
of the Riccati equation

XG + GT X + E FET + XBW M−1BT
W X = 0 (26)

where F ∈ R p×p is symmetric positive semidefinite and
M ∈ R m×m is symmetric positive definite. In the iterative
procedure, we approximate the low-rank Cholesky factors 	
and �, such that �T � ≈ X and 	T 	 ≈ Y . We obtain the
observability Gramian X by solving the Riccati equation (26)
with a Newton double step iteration

(GT − Z (z−1)BT
W )X (z) + X (k)(G − BW Z (z−1)T

)

= −ET FE − Z (z−1)M F Z (z−1)T

Z (z) = X (z)BW M−1 (27)

where the feedback matrix Z = XBW M−1, for z = 1, 2, 3,…,
which generates a sequence of iterates X (z). This sequence
converges toward the stabilizing solution X if the initial
feedback Z0 is stabilizing, i.e., G − BZ(0)T is stable. If we
partition  and −1 as  = [J U ] and −1 = [OV ]−1

then Il = OJ is the identity matrix, � = J O is a projection
matrix, and O and J are the truncation matrices. In the related
balancing model reduction methods, the truncation matrices

Fig. 5. UltraSparc T1 architecture floorplan.

O and J can be determined knowing only the Cholesky
factors of the Gramians Y and X . If we let 	T � = U�V T ,
where � = diag(σ 1,…, σ l), be SVD of 	T �, then we
can calculate the truncation matrices O = �−1/2V T � and
J = 	T U�1/2. Under a similarity transformation of the state-
space model, both parts can be treated simultaneously after a

transformation of the system (
�

C,
�
G,

�

B,
�
E

T
) with a nonsingular

matrix  ∈ R m×m into a stochastically balanced system
�

C = J T C O
�

G = J T G O
�

B = J T B
�

E = E O (28)

where
�

C,
�
G ∈ R l×l ,

�

B ∈ R l×p , and
�
E ∈ R p×l are of the order

l much smaller than the original order m, if controllability
Gramian Y satisfies −1Y−T = T X . SVDs are arranged
so that the diagonal matrix containing the singular values has
the same dimensions as the factorized matrix and the singular
values appear in nonincreasing order.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The chip architecture determines the complexity of process-
ing versus storage versus communication elements and thus
the thermal peak of these elements. A chip with complex PEs
(e.g., wide issue and multithreaded) will require larger storage
elements (e.g., large multilevel caches and register files) as
well as sophisticated communication elements (e.g., multi-
level wide buses, networks with wide link channels, deeply
pipelined routers, and significant router buffering). On the
other extreme, there are chip architectures where PEs are
single ALUs serviced by a few registers at ALU input/output
ports, interconnected with simple single-stage routers with a
little buffering. Application characteristics dictate how these
elements are used, and hence influencing the thermal profile of
the chip. In this paper, as a platform for analyzing the absolute
and relative thermal impact of all the components of a chip,
we use a two-die stack consisting of 300-μm-thick dies with a
30 mm × 10 mm cross section and an architecture resembling
UltraSparc T1 architecture [49] (Fig. 5), stacked together
through a thermally resistive interface material. Tiles are
interconnected through a wormhole routed 3-D mesh network
consisting of seven-port routers with two TSV-based vertical
links. Alongside enabling stacking, the use of a 3-D mesh
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Fig. 6. Temperature error versus mesh size for the proposed (bold line) and
generalized finite-element method (dashed line).

results in lower end-to-end packet latencies when compared
with planar meshes with the same number of nodes and under
identical traffic conditions. The experiments were executed on
a 64-b Linux server with two quadcore Intel Xeon 2.5-GHz
CPUs and 16-GB main memory. Values regarding thermal
resistance, silicon thickness, and copper layer thickness have
been derived from [49] and its floorplan and power/area
distribution ratio of each element from [50], respectively.

Basic Math application from the MiBench benchmark [51]
is selected and run on datasets provided by [52]. Switching
activities were obtained using SimpleScalar [53]. The cal-
culation was performed in a numerical computing environ-
ment [54]. Thermal profile has been estimated as in [21].
Thermal conductance matrix is generated for time equal to
temperature check cycle, which improves effective utiliza-
tion of instantaneous temperature margin [24]. The power
is dissipated in each die in hotspots of variable extension
(minimum size = 100 μm in this paper), while the structure is
thermally isolated on the sides. Heat sink and package thermal
resistances are assumed to be 2 and 20 K/W, respectively.
Thermal conductivity of silicon is taken to be 148 W/(mK) and
that of copper interconnect 383 W/(mK). In comparison with
the heat sink and package resistances, the silicon resistance is
∼0.02 K/W.

B. Reducing Computational Complexity

For thermal profile comparison purposes [21], we
implemented generalized finite-element method, which can
be found in several commercially available software packages
(e.g., Hotspot [55] and ANSYS [56]). The accuracy of a
discretization concerns the rate of convergence as function of
mesh size. The truncation error consists of the discretization
applied to the exact solution. Fig. 6 shows that the numerical
accuracy of the proposed Galerkin method with l-adaptive
error control is one to two orders of magnitude more accurate
for comparable mesh size than corresponding generalized
finite-element method. Furthermore, we compared modified
Runge–Kutta solver with Euler (as in Hotspot [55]) and
Newmark (in ANSYS [56]). As shown in Table I, the proposed
method offers increased accuracy, while simultaneously
increases solution efficiency. Theoretically, the modified

TABLE I

ACCURACY COMPARISON AT TOP SURFACE

Fig. 7. Convergence history of residual form. Convergence is obtained after
46 iterations.

third-order Runge–Kutta scheme can reach accuracy of
O(Δ4

t ) [46]. On the other hand, the accuracy of Euler method
is O(Δ2

t ). The errors in Euler scheme are dominated by the
deterministic terms as long as the step size is large enough.
In more detail, the error of the method behaves like O(α2 +
εα + ε2α1/2), when ε is used to measure the smallness of
the temperature and α is the time step. The smallness of the
temperature also allows special estimates of the local error
terms, which can be used to control the step size. An efficient
implementation of the Newmark methods for linear problems
requires that direct methods (e.g., Gauss elimination) be used
for the solution in the system of algebraic equations. When
a step size should be updated, the prediction of the new step
size has to be made such that the prescribed accuracy can
be achieved with the least cost. The rate of convergence of
the global error in the Newmark integration can be O(Δ2

t ).
Correspondingly, the rate of convergence of the local error
should achieve O(Δ3

t ). Suppose that the current time step is
α, then we have O(κα3), where κ is a constant depending
on the exact solution.

Using the balanced stochastic truncation MOR technique
for indirect sensing, we obtain low-dimensional but accurate
approximation of the thermal network (11). The convergence
history for solving the Lyapunov equation (25) with respect to
the number of iteration steps is plotted in Fig. 7. Convergence
is obtained after 46 iterations. The total CPU time needed to
solve the Lyapunov equation according to the related tolerance
for solving the shifted systems is 0.27 s. Note further that
saving iteration steps means that we save large amounts of
memory especially in multiple input and output systems where
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Fig. 8. Convergence history of the normalized residual form of the Newton
double step iteration (27) for solving the Riccati equation (26).

Fig. 9. Bode magnitude plot of the approximation errors.

the factors are growing by p columns in every iteration
step. The convergence history of the Newton double step
iteration (27) for solving the Riccati equation (26) is shown
in Fig. 8. Because of symmetry, the matrices F and M can be
factored by a Cholesky factorization. Hence, the equations to
be solved in (27) have a Lyapunov structure similar to (25).
In this algorithm, the (approximate) solution of the Riccati
equation is provided as a low-rank Cholesky factor prod-
uct [57] rather than an explicit dense matrix. The algorithm
requires much less computation compared with the standard
implementation, where Lyapunov is solved directly by the
Bartels–Stewart or the Hammarling method.

The CPU time needed to solve the Riccati equation inside
the iteration is 0.77 s. Fig. 9 shows a comparison with
the TBR method [40]. When very accurate Gramians are
selected, the approximation error of the reduced system is
very small compared with the Bode magnitude function of
the original system. The lower two curves correspond to the
highly accurate reduced system; the proposed MOR technique
delivers a system of lower order. For the lower curve, the CPU
time of the proposed method is 11.47 s versus 19.64 s for the
TBR method. The upper two denote k = 15 reduced orders;
the proposed technique delivers two orders of magnitude better
accuracy. The reduced order is chosen in dependence of the
descending ordered singular values σ 1, σ 2, …, σ r , where r is
the rank of factors that approximate the system Gramians.

For m variation sources and l reduced parameter sets, the
full parameter model requires O(m2) simulation samples and
thus has a O(m6) fitting cost. On the other hand, the proposed

Fig. 10. Sensor measurements, actual, and estimated temperatures.

parameter reduction technique has a main computational cost
attributable to the O(m + l2) simulations for sample data
collection and O(l6) fitting cost significantly reducing the
required sample size and the fitting cost. The CPU time of the
proposed method for k = 15 reduced order is 8.35 s. The TBR
method requires 14.64-s CPU time.

C. Temperature Tracking

In the experiments, the temperature values of the grid cell
containing the sensors are observable, whereas the temper-
ature at other grid cells are estimated with proposed UKF.
We assumed 16 × 16 chip gridding granularity. Furthermore,
for thermal tracking, we assumed that the sensors are uni-
formly scattered on the chip. The number of samples and
the sample locations is varied. No specific sensor technology
is assumed in this paper. The readings from the temperature
sensors initiate the estimation algorithm. The transformation
matrix h(·) in (11) is determined by the sensor placement.
Gaussian noise is superimposed on the actual temperature
values to model the inaccuracies of real thermal sensors,
such as supply voltage fluctuation, fabrication variability,
cross coupling, and so on. Processes generating these noises
are assumed to be stationary between different successive
prediction–correction steps. Actual temperatures at the sensor
locations and locations of interest are obtained with the
proposed Galerkin method and acquired results compared with
HotSpot [55] and ANSYS [56], as in Fig. 6. In this sense,
the measurement error designates the temperature difference
between sensors readings and real temperature at locations of
interest in the observed grid cell.

We compare the accuracy of our approach with that of
the KF [14] and EKF [16]. In KF dynamic model, function
f (·) in (11) is a linear Gaussian model. Such a model does
not account for the nonlinear temperature-circuit parameters
dependency and, therefore its usability in the practical appli-
cations is restricted. Furthermore, because of the inaccuracy
of its linear model, the standard KF relies excessively on the
accuracy of sensor input. The temperature estimates derived
from the KF are nonanticipative in the sense that they are only
conditional to sensor measurements obtained before and at the
time step n.
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TABLE II

ERROR STATISTICS FOR LIMITED NUMBER OF SENSORS

However, after we have obtained measurements, we could
compute temperature estimates of Tn−1, Tn−2,…, which are
also conditional to the measurements after the corresponding
state time steps. With the Rauch–Tung–Striebel smoother,
more measurements and information are available for the
estimator. Therefore, these temperature estimates are more
accurate than the nonanticipative measurements computed by
the KF. The EKF approximates the nonlinearities with linear
or quadratic functions or explicitly approximate the filtering
distributions by Gaussian distributions. In UKF, the UT is
used for approximating the evolution of Gaussian distribution
in nonlinear transforms. Fig. 10 shows that the proposed
method always keeps track of the actual temperature with high
accuracy for a randomly chosen chip location that does not
coincide with the sensor location. For clarity, we only depicted
UKF tracking. There is no observable difference between
the reduced and original model results, which suggests high
accuracy of MOR. With (11), we simulated the thermal profile
of the test processor for a total duration of 600 s (the
simulation starts at room temperature). This is assumed to be
the real chip temperature and is used to measure estimation
accuracy. We examine the mean absolute error and the standard
deviation of the error as the location of interest. These values
are averaged over all the locations of interest.

High precision of temperature tracking (within 0.5 °C for
mean and 1.1 °C for standard deviation) for various cases,
ranging from two to six sensors, respectively, placed at an
arbitrary location around the hotspot, is shown in Table II.
In ICs, the placement of the sensors is constrained to areas
where there is enough spatial slack due to the limitations
such as additional channels for routing and input/output. For
thermal sensors, if one sensor per router is not affordable
for large on-chip networks, the network can be partitioned
into regions and multiple adjacent routers within a region
could share the same sensor. The proposed technique is able
to estimate the temperature at the locations far away from
the limited number of sensors. As anticipated, the Kalman
techniques are relatively independent of the relative position of
the sensor and the location of interest. The UKF obtain almost
identical accuracy (variations of <0.3 °C) across the examined
range significantly outperforming KF and EKF, especially
when the number of sensors is small. This difference is shown
in Fig. 11. Note that 1 °C accuracy translates to 2-W power
savings [58]. The state vector representing temperatures at
different grid cells at time n in (11) and function f (·) is
determined by the circuit parameters and the chosen length
of time steps.

Fig. 11. Error comparison between KF, EKF, and UKF.

Table III shows statistics of the measurement and esti-
mation errors for different sizes of time steps. The cho-
sen time step is at 10−4 s and multiplied by powers
of two. Thermal profile transition in 3-D ICs is a very
slow process and a noticeable temperature variation takes at
least several hundred milliseconds to change; accordingly, a
few millisecond overheads for reading noisy thermal sen-
sors will not impact the effectiveness of dynamic thermal
management unit. High precision within 1.1 °C for both
mean and standard deviation is obtained even with a large
time step size. The average error in Table IV (across all
the chip locations) of each method is reported as we vary
the sensor noise level as defined in (11). As we increase
the noise level, the estimation accuracy generated by KF
and EKF degrades more rapidly in contrast to UKF, which
generates accurate thermal estimates (within 0.8 °C) under all
the examined circumstances. The improved performance of the
UKF compared with the EKF is due to two factors, namely the
increased time-update accuracy and the improved covariance
accuracy. In the UKF case, the covariance estimation is very
accurate, which results in a different Kalman gains in the
measurement-calibration equation and hence the efficiency of
the measurement-calibration step. The advantage of EKF over
UKF is its relative simplicity compared with its performance.
Nevertheless, because EKF is based on a local linear approxi-
mation, its accuracy is limited in highly nonlinear systems.
In addition, the filtering model is restricted in the sense
that only Gaussian noise processes are allowed and thus the
model cannot contain, for example, discrete-valued random
variables.
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TABLE III

ERROR STATISTICS FOR DIFFERENT TIME STEPS

TABLE IV

ERROR STATISTICS FOR DIFFERENT NOISE SETTINGS

Fig. 12. Runtime overhead of the UKF recursive regression.

The Gaussian restriction also prevents handling of
hierarchical models or other models, where significantly
non-Gaussian distribution models would be needed. The EKF
also formally requires the measurement model and dynamic
model functions to be differentiable. Even when the Jacobian
matrices exist and could be computed, the actual computation
and programming of Jacobian matrices are error prone and
hard to debug. On the other hand, UKF is not based on
local linear approximation; UKF uses a bit further points in
approximating the nonlinearity.

The computational load increases when moving from the
EKF to the UKF if the Jacobians are computed analytically
[the average runtime of EKF versus UKF (Fig. 12) is ∼16
and 19 ms for one measurement, respectively]. However, for
higher order systems, the Jacobians for the EKF are computed
using finite differences. In this case, the computational load
for the UKF is comparable with the EKF. Effectively, the EKF
builds up an approximation to the expected Hessian by taking
outer products of the gradient. The UKF, however, provides
a more accurate estimate through direct approximation of the
expectation of the Hessian. Another distinct advantage of the
UKF occurs when either the architecture or error metric is

such that differentiation with respect to the parameters is not
easily derived as necessary in the EKF. The UKF effectively
evaluates both the Jacobian and Hessian precisely through its
sigma point propagation, without the need to perform any
analytic differentiation.

VI. CONCLUSION

Accurate temperature estimation is one of the fore-
most steps in the evaluation of successful high-performance
3-D IC designs. However, because of the temperature sen-
sors power/area overheads and the limitations such as addi-
tional channels for routing and input/output, their number
and placement are highly constrained to areas where there
is enough spatial slack. Therefore, the problem of tracking
the entire thermal profile based on only a few limited sen-
sor observations is rather complex. This problem is further
aggravated due to unpredictability of workloads and fabri-
cation/environmental variabilities. Within this framework, in
this paper, to improve thermal management efficiency, we
present methodology based on UKF for accurate temperature
estimation at all the chip locations while simultaneously
countering sensor noise. As the results show, the proposed
method generates accurate thermal estimates (within 1.1 °C)
under all the examined circumstances. In comparison with
KF and EKF, the UKF consistently achieves a better level
of accuracy at limited costs. In addition, to provide sig-
nificant reductions on the required simulation samples for
constructing accurate models, we introduce a balanced sto-
chastic truncation MOR. The proposed approach produces
orthogonal basis sets for the dominant singular subspace of
the controllability and observability Gramians, which exploits
lowrank matrices and avoids large-scale matrix factorizations,
significantly reducing the complexity and computational costs
of Lyapunov and Riccati equations, while preserving MOR
accuracy and the quality of the approximations of the TBR
procedure.
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