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Abstract—To improve the accuracy of static timing analysis,
the traditional nonlinear delay models are increasingly replaced
by more physical gate models, such as current source models
and transistor-level gate models. However, the extension of
these accurate gate models for statistical timing analysis is
still challenging. In this paper, we propose a novel statistical
timing analysis method based on transistor-level gate models.
The accuracy and efficiency are obtained by using an efficient
random differential equation based solver. The correlations
among signals and between input signals and delay are fully
accounted for. In contrast to Monte Carlo simulation solutions,
the variational waveforms for statistical delay calculation are
obtained by simulating only once. At the end of statistical timing
analysis, both the statistical delay moments and the variational
waveforms are available. The proposed algorithm is verified with
standard cells and ISCAS85 benchmark circuits in a 45-nm
technology. The experimental results indicate that the proposed
method can capture multiple input simultaneous switching for
statistical delay calculation, and can provide 0.5% error for delay
mean and 2.7% error for delay standard deviation estimation on
average. The proposed statistical simulation introduces a small
runtime overhead with respect to static timing analysis runtime.
The MATLAB implementation of the proposed algorithm has
two orders of magnitude speedup, compared to Spectre Monte
Carlo simulation.

Index Terms—Correlation, gate model, process variations,
random differential equations, statistical timing analysis (STA).

I. Introduction

AS the feature sizes in CMOS technologies continue to
shrink, process variations (which influence device and

interconnect properties) increase rapidly, causing uncertainty
in circuit timing. Predicting the timing uncertainty is tradi-
tionally done through corner-based analysis, which performs
static timing analysis (STA) at multiple corners to obtain
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the extreme-case results. In each corner, process parameters
are set at extreme points in the multidimensional space. As
a consequence, the worst-case delay from the corner-based
timing analysis is overly pessimistic, since it is unlikely for
all process parameters to have extreme values at the same time.
In addition, the number of process corners grows exponentially
with the number of process variations. Recently, statistical
STA (SSTA) has been proposed as an alternative to corner-
based analysis. In contrast to STA, SSTA represents gate
delays and interconnect delays as probability distributions, and
provides the distribution (or statistical moments) of timing
values rather than deterministic quantities. Typically, there are
two types of SSTA techniques: block-based SSTA and path-
based SSTA. Block-based SSTA calculates and propagates
gate delay and interconnect delay in a levelized breadth-first
manner. In path-based SSTA, a set of (near-)critical paths is
selected and submitted to the statistical timer for detailed
analysis, allowing designers to perform a quality-oriented
design pass focused on key paths. Generally, Ncp critical
paths are enumerated by using fast block-based STA [1]–[5],
where Ncp is chosen to cover a sufficient spread of paths.
Many statistical critical path selection approaches have been
proposed [6]–[9].

In both block-based and path-based SSTA approaches, the
gate timing models play a significant role for the accuracy-
efficiency tradeoff. Many published SSTA methods can be
regarded as function-based SSTA, in which the gate delay
is modeled as a linear or nonlinear function [10] of process
variations, similar to the traditional nonlinear delay model
(NLDM) [11] in STA. The coefficients in the function-based
statistical gate timing models are characterized and stored
in look-up tables with input slew (Sin) and effective load
capacitance (Ceff ) as parameters. When calculating statistical
gate delay moments, these coefficients are interpolated based
on the nominal value of Sin and Ceff . However, due to process
variations, both Sin and Ceff are variational as well. Not
considering the statistical nature of Sin and Ceff can result
in 30% delay errors and even worse for bigger circuits [12].
Also, like NLDM, function-based models do not account
for resistive interconnect and nonlinear input waveforms. In
addition, the function-based delay representation is entirely
based on nonphysical or empirical models, which is their
major source of inaccuracy [13].

A large number of more physical gate timing models have
been proposed for accurate STA, such as voltage-dependent
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current source models (CSMs) [12]–[20] and transistor-level
gate models [21]–[29]. These gate timing models, denoted as
ViVo-gate models, represent every gate by current sources and
capacitances with respect to input voltage (Vi) and output volt-
age (Vo). Most voltage-dependent CSMs target only accurate
modeling of combinational gate delay with the assumptions:
1) the input signal is independent of the output signal and
2) single input switching. Hence, they fail to model internal
nodes and capacitances, which leads to different undesired
symptoms for sequential elements, including nonmonotonic
behavior, failure to model storage behavior, etc. [18]. In
contrast, the transistor-level gate models can handle sequen-
tial circuits in the same way as the combinational circuits
without the limiting assumptions of CSMs. They are able to
consider multiple input (near-)simultaneous switching (MISS)
and to capture the input voltage change caused by the output
transition. In addition, the transistor-level gate models have a
better defined physical relationship with node voltages and
physical parameters. It has been shown that the transistor-
level gate models are more general and accurate for timing,
noise, and power analysis and practical for multimillion gate
STA runs [21]–[29]. Thus, the transistor-level gate models
recently attract much attention for accurate static timing
analysis.

The voltage-based CSMs and transistor-level gate models
have been extended for statistical delay calculation [12]–[15],
[25]. In [12], the current source and capacitance values in
the CSM are modeled as a quadratic Hermite function of
process variations. Several crossing times are characterized
based on this quadratic CSM, from which other crossing
time distributions are calculated by process variation sampling
and linear interpolation. In [13], the variational voltages and
all elements in the CSM are modeled as a stochastic first-
order expression in terms of process variations, and then the
output voltage is treated as a Markovian process for delay
distribution calculation. Similarly, a CSM with parametric
nonlinear voltage-dependent current source and parametric
capacitance is used in [14] and [15]. The voltage in [14]
is represented as a time-domain statistical variable and time-
domain integration is performed by taking into account input
voltage waveform variations. The gate output voltage distribu-
tion in [15] is obtained by Monte Carlo (MC) sampling and
stored for various voltage levels via regression-based models.
Transistor-level gate models are used to estimate the timing
variabilities based on corner-based timing analysis in [25].
However, these methods do not take signal correlations and
sequential cells into consideration, and most of them are only
verified in a few simple gates considering only single input
switching. In addition, the solvers proposed for these statistical
delay calculations either have difficulties for other gate timing
models [13], [14] or require many simulation trails [12], [15],
[25].

In this paper, to obtain high accuracy (even for important
scenarios such as MISS), we propose a statistical timing
analysis solution based on transistor-level gate models to
provide statistical delay information. To our knowledge, it
is the first time that the ViVo-gate models are extended
for statistical timing analysis and achieve sufficient accuracy

Fig. 1. Flowchart of the RDE-based statistical analysis algorithm.

for both sequential and combinational circuits. The proposed
solution has the following features.

1) The nonlinear random MNA equation is linearized into a
linear random differential equation (RDE). The resulting
RDE is solved by an RDE-based solver. The linearity
limitation is addressed by using a piecewise linear
(PWL)-RDE solver.

2) By using the RDE-based solver, the results are obtained
by simulating only once, which is much more efficient
than MC-based and many-corner-based timing analysis.

3) In the proposed RDE based statistical solver, all input
signals and their correlations are considered together,
thus fundamentally addressing MISS in statistical timing
analysis.

4) As we use a common format for voltage and current
waveforms and passive components (resistances and
capacitances) in the gate models, the correlations among
input signals and between input signal and delay are
preserved during statistical delay calculation.

Extending our previous work published in [30]–[32], this
paper adds a more general statistical delay calculation method.
Similarly, the linearity limitation encountered in [30]–[32] is
overcome by using a PWL-RDE based method. In addition,
the results are extended to include sequential circuits. The top-
level flowchart of our algorithm is shown in Fig. 1. Measured
or simulated data is collected to characterize the statistical
simplified transistor models (SSTMs), which are then used
to construct the SSTM-based gate model library for timing
analysis. After reading the netlist of the circuit, the non-MC
RDE-based statistical solver is called for analysis. If high
accuracy needs to be maintained for large process variations,
the PWL-RDE based statistical solver needs to be used. A
variational waveform of the output is provided after using the
RDE-based or PWL-RDE based solver, based on which the
desired statistical moments of delay are computed.

The rest of this paper is organized according to the flowchart
in Fig. 1. Section II presents the SSTM and gate model
construction method. Section III introduces the mathematical
derivation, calculation flow, statistical delay calculation, and
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complexity analysis of the proposed RDE-based statistical
timing analysis method. Section IV shows the PWL-RDE
based statistical solver. Section V presents the implementation
and results, and Section VI provides the conclusions.

II. Statistical Simplified Transistor Model

As a key issue for transistor-level gate models [21]–[26],
[28], [29], the transistor model needs to capture sufficient
second-order effects for accuracy, to account for the impact
of process variations, while still being simple enough to be
evaluated efficiently. The transistor models in the existing
transistor-level timing analysis methods can be categorized
into two types.

A. Detailed Transistor Models

For example, BSIM3 with efficient simulation algorithms.
The timing analysis in [23] and [24] partitions the circuit into
small channel-connected components and then simulates each
component individually. A test waveform generation algorithm
is introduced in [23], which can capture the worst case
timing with only a single simulation. A worst-case waveform
propagation was proposed in [27] for timing analysis using
BSIM3 models.

B. Simplified Transistor Models

The transistor model for timing analysis in [29] uses look-
up tables (LUTs) for drain-source current (ids) and an input-
transition-dependent constant value for five intrinsic capaci-
tances of each transistor. The transistor models in [22], [25],
and [26] also use LUTs for ids, but implement SPICE’s
version of Meyer’s model for the five intrinsic capacitances.
By using a linear-centric method, in which the Jacobian matrix
is constant for all iterations, the efficiency of transistor-level
timing analysis is significantly improved [22], [25], [26], [28].
It is shown in [25] that the LUT-based intrinsic capacitance
models are more practical than expensive analytical models.

All the methods mentioned above demonstrate practicability
and accuracy of transistor-level timing analysis.

In this paper, we extend the simplified transistor model for
statistical gate modeling. In the SSTM shown in Fig. 2 [33],
every transistor in the gate is modeled by a current source ids

and five capacitors (cgs, cgb, cgd , csb, cdb). The gate channel
capacitances cgs, cgb, and cgd are modeled as a function of Vgs

and Vds. Since csb is at least one order of magnitude smaller
than the other capacitances and cdb is normally smaller than
the load capacitance, these two junction depletion capacitances
are represented by constant values. In addition to the nominal
values of current source and capacitance, SSTM also contains
the sensitivities of these model elements to statistical pro-
cess parameters of interest. These process parameters can be
physical process parameters such as effective channel length
(Leff ) and threshold voltage (Vth), or nonphysical parameters
derived from dimension-reduction methods, such as principal
component analysis (PCA), independent component analysis
[34], [35], and reduced rank reduction [36].

The proposed SSTM has simpler characterization require-
ments and faster characterization setup and runtime, compared

Fig. 2. Proposed SSTM. ξ denotes the process variation vector.

to the CSMs mentioned in Section I. CSMs require transient
analysis or AC analysis for different combinations of Sin and
Ceff or different combinations of input and output voltages at
different corners. For transistor-level gate modeling, we only
need to characterize the unique transistors in the standard cell
library, defined by transistor width, source area, and other
model parameters. The current and capacitances of SSTM
are obtained by a DC sweep at the gate, drain, and source
terminals. For statistical analysis, the sensitivities in SSTM
are characterized by a finite-difference approximation.

The gate models are constructed by replacing every tran-
sistor in the gate by its corresponding SSTM. After RC
extraction, model order reduction techniques, such as [37] and
[38], can be employed to significantly reduce the complexity
of the interconnect model, in which every resistance and
capacitance is represented as a linear function of process
variations. It should be noted that the statistical timing analysis
method presented in Section III is independent of the transistor
model used. The proposed SSTM can be extended to include
leakage components, such as by adding a leakage current
source.

The efficiency of nonstatistical transistor-level timing anal-
ysis has been shown to be practical for large digital circuits
[25]–[27], [29], [39]. There are two different ways to perform
transistor-level timing analysis: block-based and path-based.

For block-based analysis, every gate in the circuit is visited
exactly once, in a breadth-first order, starting at the inputs.
For each of the gates some amount of work is performed
to determine the (maximum/minimum) delay of that gate.
In transistor-level analysis, this is a simple simulation task
(involving just a single gate and a few vectors) of which the
run time does not depend on the circuit size, and can be
considered constant. Of course, this constant will be higher
for transistor-level models than for simple LUT-based delay
models. This leads to a full timing analysis run time linear in
the number of gates, allowing application to very large circuits.

For the more accurate path-based transistor-level timing
analysis, which is the focus of this paper, typically a fast
block-based analysis is performed first to determine the set of
near-critical paths that need to be analyzed more carefully. As
[40] shows, even statistical path selection for a multimillion
gate chip design can be completed in a matter of seconds.
This set is typically a few hundred paths. Each of these
paths contains at most a few dozen gates, as the maximum
depth of the path relates directly to the delay and hence the
clock frequency of the design. The number of gates on a
path has not changed much over technology generations, as
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clock frequencies increase while gate delays decrease. This
makes the run time of path based timing analysis mainly
dependent on the number of paths to be analyzed, which
increases (sub)linearly with the circuit size. All this makes
path-based transistor-level timing analysis feasible even for
very large circuits.

As we show in Section III-E, the above also applies to our
statistical transistor-level timing analysis, as the overhead of
making the simulation statistical turns out to be quite small,
only a few percent of extra run time for the longest paths.

III. RDE-Based Statistical Timing Analysis

In this section, an RDE-based statistical simulation method
that directly provides variational waveforms is presented. The
theoretical derivation, calculation algorithm, correlation con-
siderations, and statistical delay calculation of this method are
introduced. In our mathematical notation, matrices are denoted
using bold fonts, and vectors and scalars are represented using
normal fonts. In this section, the following notations will be
used:

1) x, the state variable vector containing node voltages and
branch currents;

2) ẋ, its time derivative;
3) ps, the nominal value vector of process parameter p;
4) pξ, random process parameter vector;
5) δ0, the initial condition variation caused by process

variations;
6) ξ, process variation vector.

A. RDE-Based Statistical Simulation

For ViVo-gate models, such as CSMs and transistor-level
gate models in [12]–[15], [21]–[29], nodal analysis (NA)
or modified NA (MNA) is used for gate simulation. The
NA/MNA approach is deterministic with all parameter values
fixed. A typical MNA equation can be written in the following
compact format:

F (ẋ, x, t, ps) = 0 x(t0) = x0. (1)

Let xs(t) be the solution of (1) which satisfies

Fs = F (ẋs, xs, t, ps) = 0 x(t0) = x0. (2)

Since all process parameters have their nominal values ps, xs(t)
in (2) is deterministic, (2) can be solved by SPICE-like engines
or ViVo-gate model based STA methods, such as [23], [29],
and [33]. However, the solution becomes statistical if process
variations are considered.

Taking into account process variations, (1) becomes a ran-
dom differential equation as

Fξ = F (ẋ, x, t, pξ) = 0 x(t0) = x0 + δ0 (3)

ξ = pξ − ps. (4)

Our objective is to calculate the solution x(t) of (3). For
x(t) calculation, MC simulation can be considered the golden
reference since it can obtain sufficient accuracy by using
several thousands of circuit simulation trials. However, the
efficiency of the MC method is insufficient in a design flow,

and thus other statistical timing analysis methods that possess
high speedup and similar accuracy are desired. It is desired
to calculate statistical properties (e.g., statistical moments)
of x(t) directly by solving (3). The difficulties are: 1) the
equation has random variables, which differs from ordinary
differential equations, and 2) the equation is nonlinear with
respect to process variations since the relationship between
circuit elements (e.g., intrinsic capacitance and current of each
transistor) and process variations is highly nonlinear.

In order to address these two difficulties and solve x(t) from
(3), the system is linearized by a first-order truncated Taylor
expansion as follows:

Fξ ≈ Fs +
∂Fs

∂ẋs(t)
(ẋ(t) − ẋs(t))

+
∂Fs

∂xs(t)
(x(t) − xs(t)) +

∂Fs

∂ps

ξ = 0 (5)

where Fs = 0 has been introduced in (2). To simplify
the notation, the variation of state variable x is denoted by
y(t) = x(t)−xs(t). Inserting this into (5) and replacing the ma-
trices ∂Fs/∂ẋs, ∂Fs/∂xs, and ∂Fs/∂ps with C(xs), −R(xs), and
−Q(xs), respectively, the following equation can be obtained:

C(xs)ẏ(t) = R(xs)y(t) + Q(xs)ξ y0 = δ0. (6)

The nonlinear equation (3) has now been converted into a
linear RDE in y with xs-dependent coefficient matrices. If N

is the number of unknown nodes and Np is the number of
process variations, C, R, and Q in (6) are N ×N, N ×N, and
N × Np matrices, respectively.

Consequently, the solution x(t) is divided into two parts:
obtaining xs(t) from (2) and y(t) from (6). The solution
procedure of xs(t) is the typical deterministic STA [23], [29],
[33]. What remains is the difficulty in solving y(t) from the
RDE (6).

According to [41, Theorem 7.1.1], (6) has a unique mean
square solution that can be represented by (7)

y(t) = �(t, t0)y0 + �(t)ξ (7)

= �(t)ξ (8)

where �(t, t0) is the homogeneous solution of (6) satisfying
C(t)�̇(t, t0) = R(t)�(t, t0) and �(t) is an integral in the range
[t0, t], which depends on �, C, and Q. If the initial condition
x0 is deterministic, y0 is zero. On the other hand, even if the
initial condition y0 is statistical, caused by process variations,
it could also be represented as a first-order function with
respect to ξ. Therefore, y(t) can be written as in (8) where �(t)
is an N × Np matrix. It is clear from (8) that the coefficient
�(t) must be calculated efficiently for y(t).

Although the theorem in [41] points out that the solution
process of (7) is defined by the joint probability distributions
of all the random variables ξ, solving �(t) directly, however,
is in general difficult to achieve. Instead of directly solving
�(t) for �(t), we substitute (8) into (6). Then, the equation
for �(t) becomes

C(xs)�̇(t) = R(xs)�(t) + Q(xs). (9)

Now the random differential equation (6) becomes a linear
ordinary differential equation in �(t), which can be solved



214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2014

efficiently by well-known methods. After solving xs(t) and
�(t), x(t) can be obtained in (10) based on y(t) = x(t) − xs(t)
and (8)

x(t) = xs(t) + �(t)ξ. (10)

Here, the process variation vector ξ includes both global
process variations and local variations. For a specific random
process parameter with a global deviation and local deviations,
the global deviation and correlated local deviation affect all
the transistors in the same way; hence, they can be clubbed
together [42]. As an extra optimization, the large number of
local process deviations can be converted into a much smaller
number of independent local variables by using techniques
such as Karhunen–Loève expansion [43] and PCA during
analysis. According to [29] and [42], the local variables can be
further collapsed to a single variable, such as by treating it in
a root of the sum of square fashion, to prevent an explosion in
the number of variables. By using these methods, the number
of process variations can be reduced significantly.

Based on (10), the time-varying moments of the output
voltage can be calculated. The mean and covariance of x(t)
are expressed in (11) and (12), respectively

μx = E{x(t)} = xs(t) (11)

�xx = E
{

(x(t) − μx)∗2
}

= �(t)�ξξ�
T (t) (12)

where z∗2 = zzT . �ξξ = E{ξξT } is the covariance matrix of the
process variations and has the following format:

�ξξ =

⎡
⎢⎢⎣

σ2
1 ρ12σ1σ2 . . . ρ1Np

σ1σNp

ρ12σ1σ2 σ2
2 . . . ρ2Np

σ2σNp

. . . . . .

ρNp2σNp
σ1 ρNp2σNp

σ2 . . . σ2
Np

⎤
⎥⎥⎦ (13)

where ρab denotes the correlation coefficient between the ath

and bth process variations.

B. Analysis Flow

The delay distribution analysis procedure is shown in Algo-
rithm 1. The implementation details of Steps 1–5 are presented
as follows.

Step 1: The initial condition x0 of every gate is obtained
from the data characterized in the library according to the
switching of nominal input signals (rising, falling, or static).
A DC analysis method is also included in the algorithm for
generality.

Step 2: In general, for waveform evaluation STA [12]–[15],
[21]–[27], [29], in order to solve the nominal waveform xs(t),
modified nodal analysis leads to nonlinear ordinary differential
equations or differential algebraic equation system that, in
most cases, is transformed into a nonlinear algebraic system
H(xs) = 0 by means of numerical integration methods [44]. At
every integration step, a Newton–Raphson (NR)-type method
is then used to solve H(xs) = 0. If H(xs) = 0 is a set of
nonlinear algebraic equations over the variable vector xs and
H is twice differentiable in xs with a Lipschitz continuous
[45] Jacobian matrix JNR = ∂H/∂xs, the NR method can be
used to solve xs with the iterations as

xs,k+1 = xs,k − J−1
NR(xs,k) · H(xs,k) (14)

Algorithm 1 Delay distribution calculation

Initialization :
SSTM-based gate models {section II}
Input waveform data (variational or deterministic)
The number k: the kth node output which needs to propagate
Analysis
1. Initial condition x0

2. STA: solve (2) for nominal value xs(t)
3. Update matrices C, R, Q based on xs(t)
4. Solve (9) for �(t) by following iterations:
for j = 1 to Np do

if ξj �= 0 then
solve C(xs)Ψ̇j(t) = R(xs)Ψj(t) + Q(xs)u

else
Ψj(t) = 0 {0: empty vector}

end if
end for
Ψj(t) = �(t)u where u is a Np × 1 selection vector with
only the jth value one.
5. Save the output data for propagation: vnom(t) and Sv,ξ(t)
6. Calculate the statistical delay {section III-D}

where xs,k is the xs at the kth iteration. Since JNR depends on
xs, each iteration of the NR method usually needs to update
the Jacobian matrix JNR, calculate the LU decomposition or
the JNR inversion, resolve the equation, and check errors and
convergence. By using the NR method, the Jacobian matrix
update and the inversion or LU decomposition dominates
the runtime of the iterations. However, only the direction
of the Jacobian matrix ensures convergence [22], [25], [26],
which means that a simpler and less expensive JNR can
be used. In addition, the NR method requires a continuous
derivative ∂H/∂xs. Although our LUT-based transistor model
significantly reduces the complexity of the model itself, direct
use of LUT-based models to speed up the waveform evaluation
with the NR-based algorithm is less efficient, since it requires
high-order spline interpolation methods for continuous and
smooth partial derivatives. Therefore, the simplified chord
(SC) method is used in our algorithm, which uses a constant
Jacobian matrix for all iterations at each time step

xs,k+1 = xs,k − J−1
C · H(xs,k). (15)

Although the SC method has a linear convergence rate, which
is slower than the quadratic convergence rate of the NR
method, the runtime cost of the SC method is lower in our
application.

Step 3: At every time point, once xs is known, C, R, and
Q are updated and function (9) can be solved to obtain �.
However, the high dimension of � and Q poses additional
difficulty, which is solved in Step 4.

Step 4: If the jth process parameter does not have variations
or its variation is ignored (ξj = 0), then Ψ j(t) = 0. Otherwise,
(ξj �= 0), Ψj(t), the sensitivity of the variational voltage to the
jth process variation, must be computed. Based on (9), Ψj(t)
is calculated as

C(xs)Ψ̇j(t) = R(xs)Ψj(t) + Q(xs)u j = 1 : Np (16)
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where u is an Np × 1 selection vector whose elements are all
zeros except the jth element, which has value one (j = 1 :
Np). After using a numerical integration method, due to xs-
dependent coefficients C(xs), R(xs), and Q(xs), (16) becomes
a linear algebraic equation with respect to the variable Ψj . In
our algorithm, we use the trapezoidal method; then, the linear
algebraic equation (LAE) is expressed as

AΨj(tn) = B j = 1 : Np. (17)

The expressions of A and B are formulated as follows:

A = 2 · Cn − hn · Rn (18)

B = 2 · Cn · Ψj(tn−1) + hn · fn−1 + hn · Qnu (19)

fn−1 = RnΨj(tn−1) + Qn−1u (20)

where Cn, Rn, and Qn denote the value of C, R, and Q at
xs(tn), respectively, and hn is the time step that is used to
solve xs(tn). Therefore, (17) can be solved fast without the
necessity of root-finding iterations. Only LU decomposition,
and forward and backward substitution are needed to solve the
linear algebraic equation. In addition, when j varies from 1 to
Np, only the right-hand side of (17), B, needs to be updated.
The same coefficient A of Np LAEs in (17) only requires LU
decomposition once to solve these Np LAEs.

Step 5: A voltage of interest, which needs to be stored and
propagated (denoted as vo(t, ξ)), can be expressed as

vo(t, ξ) = χT xs(t) + χT �(t)ξ

= vnom(t) + ST
v,ξ(t)ξ (21)

where χ is an N × 1 selection vector whose elements are all
zeros except the kth element has value one (k = 1 : Np), vnom

is the nominal voltage, and Sv,ξ is Np ×1 sensitivity vector of
output voltage with respect to ξ.

During path-based timing analysis, each critical path can
be simulated as a whole to obtain vnom(t) and ST

v,ξ(t) directly
for statistical path delay calculation. Gate-by-gate propagation
can also be used. For a single transition propagating from
gate to gate, vnom(t) and ST

v,ξ(t) of each gate during the
transition period (when vnom switches from low to high or
from high to low) are propagated. This expresses the voltages
as linear functions of the process variables, through which the
correlations between voltages are implicitly defined. Using our
methods in a traditional block-based SSTA tool that abstracts
from transitions and logic values would require the implemen-
tation of notions of statistical maximum and minimum voltage
waveform/delay over a set of possible transitions. We have not
explored this in our research, as it would introduce a lot of
inaccuracy, which is at odds with the high accuracy of our
transistor-level gate models.

C. Correlations of Variational Waveforms

During statistical timing analysis, the correlation of signals
caused by process variations and path reconvergence should
be considered and efficiently simulated. Fig. 3 shows the delay
standard deviation (σ) of a NAND2 with respect to different cor-
relation coefficients (ρ) of the input arrival times, for several
nominal arrival time differences (dt). The arrival time distri-
bution of each input signal has standard deviation σt = 10 ps.

Fig. 3. Importance of correlations. pdf denotes probability density function.

It is clear that the correlation of input signals has significant
impact on the delay σ when input arrival time distributions
are close (e.g., dt = 0 in Fig. 3), and it cannot be ignored.

Fig. 3 also shows that when the mean values of arrival times
are far away from each other (e.g., dt = 6σt = 60 ps), the delay
σs are almost the same for different correlation coefficients.
This leads to the possibility of an extra optimization. In our
algorithm, if more than one input switch in a multi-input gate,
the 50% crossing times σ of every two switching inputs are
calculated and checked. If the signals are not overlapping, the
correlation between them will be ignored and the latest/earliest
input or inputs will be propagated while the other is assumed
static. On the other hand, if they are overlapping, all stochastic
correlated inputs are considered.

D. Statistical Delay calculation

Besides statistical simulation, the extraction of statistical
delay from variational voltages is also key to extend ViVo-gate
models for statistical timing analysis. The methods of existing
gate level statistical timing analysis have the following three
main categories.

1) Interpolation-based analysis. The output waveforms at
different corners are simulated in [25], and then the
output waveform is characterized by linear interpola-
tion. However, this method assumes that the results at
different corners are linear with respect to the process
variations and many samples are required for delay
calculation.

2) MC simulation based on statistical CSMs. The statistical
moments of several crossing times are calculated by
MC simulations based on statistical CSMs in [12],
[15]. However, even though the MC simulations are
applied, the accuracy of statistical delay calculation is
not competitive due to the over-simplified CSMs.

3) Direct calculation based on Markovian process assump-
tion. After calculating the nominal voltage and voltage
sensitivities with respect to process variations, the delay
distribution is calculated by assuming that the voltage at
every time point is a Markovian stochastic process due
to the numerical integration method [13], [30], [31]. In
order to calculate the distribution of a crossing time,
the joint probability of voltage at different time steps is
calculated by using the bivariate normal distribution for-
mula, which is erroneous when the Gaussian distribution
assumption for voltages is inaccurate.

In our algorithm, we use a more general method for statis-
tical delay calculation. Fig. 4 shows a variational waveform
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Fig. 4. Variational waveform and statistical crossing time.

where T50 nom is the 50% crossing time of the nominal
voltage. Since t50 is defined as the time for voltages to cross
Vdd/2, for every possible waveform, the voltage at t50 can be
written as

vo(t50, ξ) = Vdd/2 (22)

where vo(t, ξ), described in (21), is the variational waveform
due to the process variations ξ.

The derivative of (22) with respect to process variation ξ

can be expressed as

∂vo(t, ξ)

∂ξ

∣∣∣∣t=T50 nom
+

∂vnom(t)

∂t

∣∣∣∣
t=T50 nom

· ∂t50

∂ξ
= 0 (23)

where vnom(t) denotes the nominal voltage vector without
process variations after using the RDE-based solver in (21).
Based on (23), the sensitivity of t50 with respect to ξ (St,ξ) can
be calculated as

St,ξ = −
∂vo(T50 nom, ξ)

∂ξ

∂vnom(T50 nom)

∂t

= −Sv,ξ(T50 nom)

Sv,t(T50 nom)
(24)

where Sv,ξ(t) is the Np ×1 sensitivity vector calculated by the
RDE-based statistical solver (21) and Sv,t(T50 nom) is the slope
of nominal value at T50 nom. Based on the sensitivity St,ξ, the
statistical 50% crossing time can be obtained as

t50 = T50 nom + ST
t,ξξ. (25)

Other statistical crossing times can be calculated in the same
way with different threshold voltages. Equation (25) indicates
that the crossing time is a first-order function of the process
variations. The mean and standard deviation can be calculated
based on (25) with

μt50=T50 nom (26)

σt50=
√

ST
t,ξ�ξξSt,ξ (27)

where �ξξ is the covariance matrix of the process variations
which has been introduced in (13). The correlations of the
process variations are considered in the σt50 calculation. Since
the RDE-based method is based on SSTM-based gate models,
all input signals are considered for voltage sensitivity Sv,ξ

calculation that is used for t50 calculation. Therefore, MISS
is fundamentally handled in the algorithm.

E. Complexity Analysis

In Algorithm 1, the majority of the runtime is consumed
in Step 2 to calculate the nominal value xs and in Step 4
to compute the sensitivities �. Therefore, TSSTA ≈ TSTA +
T�, where TSSTA is the runtime of the whole statistical timing

analysis algorithm, TSTA is the runtime of Step 2 and T� is
the time of Steps 3 and 4.

Step 2 can be solved by ViVo-gate model based STA
procedures [12]–[15], [23], [29], [33], and its efficiency de-
pends on the gate models and the simulation methods. The
proposed LUT-based transistor model can significantly reduce
the runtime of model evaluation [25], [26], [29]. In transistor-
level circuit simulation methods, the solving procedure of
the circuit equation (2) is mainly the LAE solution at each
iteration, including the LU factorization, forward substitution,
and backward substitution. By using the proposed SC method,
the LU factorization only needs to be done once at every time
point, rather than at every iteration. By using sparse matrix
techniques, the computational complexity is usually O(Nα),
α ≈ 1.2 ∼ 1.5, which is significantly better than the cubic
complexity without using the sparse matrix techniques [45].

Compared to the traditional ViVo-gate model based STA,
our statistical timing analysis method requires extra runtime
T�(t) to calculate the statistical moments of delay. According
to the computation method introduced in Step 4, no root-
finding iterations (e.g., NR and SC methods) are necessary to
calculate �. Hence, in contrast to TSTA, the complexity of T�

is O(Nα) at each time point (no iterations) rather than at each
iteration. Although Np LAEs need to be solved in Step 4, the
solving procedure of these Np LAEs in (16) shares the same
coefficient A. Therefore, solving Np LAEs requires only one
LU decomposition, which reduces the runtime of statistical
timing analysis significantly.

For the circuit simulation, the runtime is mainly consumed
by the following parts: 1) matrix update, including model
evaluation and element stamp; 2) LAE solution after LU
factorization; 3) LU factorization; and 4) others, including time
step calculation, convergence check, etc. In order to analyze
the runtime ratio, the differential equation of xs(t) in (2) can
be considered to have an ordinary differential equation format
similar to (16). The runtime of solving xs(t) at every time point
is approximately [N2 +(2N2 +N)·Nit]·Tup+Nit ·TLE +TLU +Tot ,
where Tup denotes the runtime for updating an entry in
a matrix, TLE denotes the runtime to solve an LAE after
obtaining the LU factorization results, TLU represents the
runtime of LU factorization of an N×N matrix, Tot represents
the runtime of part 4 at every time point; and Nit is the average
number of iterations at every time point using the SC method.
It is worth noting that the N ×N Jacobian matrix JSC consists
of the derivatives of elements (e.g., currents and capacitances
of SSTM) with respect to node voltages.

In contrast, the runtime of solving �(t) at every time point
is approximately (βN2 + NNp) · Tup + Np · TLE + TLU , where
β < 1. The β is less than one since some entries of JSC are
reused in R update, which reduces the runtime for matrix
update at every time point in Step 4. Since Step 2 and Step 4
have the same number of time points, the runtime overhead is

T�

TSTA

≈ (βN2 + NNp) · Tup + Np · TLE + TLU

[N2 + (2N2 + N) · Nit] · Tup + Nit · TLE + TLU + Tot

.

(28)
According to (28), if the circuit is large (N � 1) and Tup

dominates the runtime, T�

TSTA
< 1

1+2Nit
. We can see from T�

TSTA
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Algorithm 2 Piecewise Linear RDE-Based Statistical Delay
Calculation

Initialization :
SSTM-based gate models, input waveform data and the
number k, same as the Initialization in Algorithm 1.
ξ(m)
s , the nominal value of process variation in the subspace


(m).
Analysis
for m = 1 to M do

1. Initial condition x
(m)
0 when p(m)

s = ps + ξ(m)
s

2. STA: solve (2) for nominal value x(m)
s when p = p(m)

s

3. Update matrices C, R, Q based on x(m)
s

4. Solve (9) for �(m) similar like Step 4 in Algorithm 1
5. Save the output data: v(m)

nom(t) and S
(m)
v,ξ (t)

end for
6. Construct the output signal
7. Calculate the statistical delay {Section III-D}

that the runtime overhead of our statistical simulation is
small, especially for large circuits.

IV. Piecewise Linear RDE-Based Statistical

Simulation

In the proposed RDE-based statistical method presented in
Section III-A, the stochastic MNA (3) is solved by a first-
order Taylor approximation, which implies the assumption that
the solution of (3) can be considered linear in the range of ξ

variabilities. For instance, we can see from Fig. 5 that if the
Leff distribution has a small variance, the linearization is valid.
In contrast, if the distribution spans [44 nm, 58 nm], the linear
model is not accurate enough. The validity of linearization can
be verified by checking whether the truncation error of (5)
is smaller than an error threshold. However, it is nontrivial
to calculate the truncation error since it involves the 2nd-
order derivative of circuit elements, such as transistor intrinsic
capacitances and currents. According to our experimental
results, for highly nonlinear process parameters such as Leff ,
when 3σ/μ is larger than 10%, the piecewise linear solver
is required to maintain the accuracy for statistical timing
analysis.

In order to overcome the accuracy problem of nonlinear
process variations ξ, we partition the ξ space such that (3) can
be considered linear in each subspace. Let ξ ⊆ 
 where 


is the domain in which ξ varies and 
(m), m = 1, 2, . . . , M

as the mutually exclusive subspaces that form a partition and
satisfy i)
M⋃

m=1


(m) = 
 and ii) 
(m)
⋂


(n) = ∅(m �= n = 1, 2, . . . , M).

For instance, if Leff distribution in Fig. 5 has standard
deviation 3σ = 6 nm, we can divide it into three subspaces
[−∞, 48 nm), [48 nm, 52 nm], and (52 nm, +∞]. The divid-
ing method also depends on the nonlinearity of the process
variation. If a process variation is much more nonlinear in a
subspace than in other subspaces, we can divide this subspace
into more subspaces.

Fig. 5. Ids of nMOS transistor with width 130 nm and nominal length 50 nm
when Vgs = VDD and Vds = VDD. The pdf of Leff variability is normalized
to illustrate the position in the Leff x-axis.

According to the law of total probability [46], the probabil-
ity of x, denoted as Pr(x), can be expressed as

Pr(x) =
M∑

m=1

P (m)
r Pr(x|
(m)) (29)

P (m)
r = Pr(ξ ∈ 
(m)) =

∫

(m)

fξ(ξ)dξ (30)

where fξ(ξ) is the probability density function (pdf ) of ξ and
P (m)

r is the probability of ξ in the subspace 
(m). Based on
the law of total probability, x(t) can be calculated from the
solution in each subspace. The piecewise linear method is a
common method to manage nonlinearity. Its application for
device mismatch simulation was proposed in [47], and we
apply it to our RDE-based statistical simulation method.

The piecewise linear RDE-based statistical delay calculation
flow is listed in Algorithm 2. ξ(m)

s , being the nominal value of
process variation in each 
(m), is chosen such that the solution
can be considered linear in the neighborhood spanned by the
value of ξ(m). Since ξ(m)

s is not always zero now, the nominal
process parameter in subspace 
(m) becomes p(m)

s = ps + ξ(m)
s .

Then, the proposed RDE-based statistical method is performed
in each subspace. The linearization for statistical MNA (3)
is performed at x(m)

s and p(m)
s , where x(m)

s is the output curve
under p(m). After solving �(m), the following variational output
in each 
(m) can be obtained

x(m) = x(m)
s + �(m)

(
ξ(m) − ξ(m)

s

)
(31)

where the explicit dependence on time is omitted for notational
simplicity. Based on (31), the mean of x(m) can be calculated
as

μ(m)
x = E

{
x(m)

}

(m)

= x(m)
s + �(m)E

{
ξ(m) − ξ(m)

s

}

(m)

= x(m)
s + �(m)

(
μ

(m)
ξ − ξs

(m)
)

(32)
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where E {z(ξ)}
(m) =
∫


(m) z(ξ)fξ(ξ)dξ. The covariance of x(m),
denoted as �(m)

xx , can be derived by substituting (31) for x(m)

and (32) for μ(m)
x to (33), respectively

�(m)
xx = E

{(
x(m) − μ(m)

x

)∗2
}


(m)
(33)

= E
{(

x(m)
s + �(m)

(
ξ(m) − ξ(m)

s

)
− x(m)

s + �(m)
(
μ

(m)
ξ − ξ(m)

s

))∗2
}


(m)

= E

{(
�(m)

(
ξ(m) − μ

(m)
ξ

))∗2
}


(m)

(34)

where z∗2 = zzT . Let �
(m)
ξξ be the covariance of ξ in 
(m), �(m)

xx

can be rewritten in a compact form as

�(m)
xx = �(m)�

(m)
ξξ �(m)T . (35)

In (32) and (35), the unknown items, μ
(m)
ξ and �

(m)
ξξ , are the

mean and covariance of ξ in 
(m), and can be written as

μ
(m)
ξ =

∫

(m)

ξ(m)fξ(ξ)dξ (36)

�
(m)
ξξ =

∫

(m)

(
ξ(m) − μ

(m)
ξ

)∗2
fξ(ξ)dξ. (37)

It is worth noting from (32) that if ξ(m)
s is chosen such that

ξ(m)
s = μ

(m)
ξ , the calculation of μ(m)

x is simplified to μ(m)
x = x(m)

s .
In addition, the minimization of E

{‖ ξ(m) − ξ(m)
s ‖2

}
maxi-

mizes the chances that the linear approximation around ξ(m)
s

has good accuracy in the variability range of ξ(m).
Based on the results in each subspace, the total output can

be computed. According to the law of total probability shown
in (29), the mean of x can be obtained from

μx = E {x} =
M∑

m=1

P (m)
r

∫

(m)

x(m)fξ(ξ)dξ

=
M∑

m=1

P (m)
r μ(m)

x (38)

where P (m)
r and μ(m)

x have been introduced in (30) and (32).
Similarly, the covariance of x can be calculated as

�xx = E
{

(x(ξ) − μx)∗2
}

=
M∑

m=1

P (m)
r E

{(
x(m) − μx

)∗2
}


(m)

=
M∑

m=1

P (m)
r E

{(
x(m) − μ(m)

x + μ(m)
x − μx

)∗2
}


(m)

=
M∑

m=1

P (m)
r

(
�(m)

xx +
(
μ(m)

x − μx

)∗2
)

. (39)

Then, μx and �xx can be used to obtain the mean and variance
of vo(t, ξ) [introduced in (21)].

Different from the statistical delay calculation method in-
troduced in Section III-D, �(t) is not calculated by using the
PWL-RDE solver. Therefore, Sv,ξ(t) is not available and (24)
cannot be calculated. However, we can use the similar method

to calculate the mean and variance of t50. According to (27),
the variance of t50 can be expressed as

σ2
t50

= ST
t,ξ�ξξSt,ξ. (40)

By substituting the expression of St,ξ into (24) to (40), we can
have the following expression:

σ2
t50

=
ST

v,ξ(T50 nom)�ξξSv,ξ(T50 nom)

Sv,t(T50 nom)
. (41)

As defined in (21), ST
v,ξ(t) = χT �(t). Therefore, (41) can be

rewritten as

σ2
t50

=
χT �(T50 nom)�ξξ�

T (T50 nom)χ

Sv,t(T50 nom)
. (42)

According to (12), (42) is written as

σ2
t50

=
χT �xx(T50 nom)χ

Sv,t(T50 nom)
. (43)

Therefore, based on μx and �xx, the mean of t50 is calculated
based on (26) and the variance of t50 is calculated based on
(43).

The computational complexity of the piece-wise RDE-based
method is M times the complexity of the RDE-based method
presented in Section III-E, since Algorithm 1 is repeated M

times in Algorithm 2. Therefore, the optimum number M

depends not only on the number of process variations, 3σ

of each process variation distribution and the nonlinearity of
each process variation for accuracy, but also on the runtime.
According to our experiments, Leff is more nonlinear than Vth.
When 3σ/μ > 10% for Leff , the PWL-RDE solver should be
used and we choose M = 3 for the experiments.

V. Experimental Results

The proposed statistical timing analysis algorithm was im-
plemented in Matlab and tested on all combinational cells
and widely used sequential cells found in the standard cell
library of the Nangate 45-nm Open Cell Library Package 2009
[48] and on ISCAS85 benchmark circuits. All experiments
were performed on a computer with an Intel core 2 duo CPU
with 3-GHz clock speed and 3 GB of memory. The SSTM is
characterized by using the BSIM4 model in Spectre. Spectre
can provide the necessary intrinsic capacitance values of each
transistor after DC simulation.

The Verilog netlists of all ISCAS85 circuits are downloaded
from [49] and then mapped to the Nangate 45-nm Technology
Library with Cadence Encounter. The parasitic RC models of
the wires are extracted from layout and stored in SPF and
SPEF files. From each circuit we extract the most critical
nonfalse path found by the timing engine in Encounter. The
parser in our algorithm reads the Verilog netlist and SPF files,
and then constructs simulation equations for stages, paths, and
circuits. In order to check the error contributed by the SSTM
only, we also implemented the SSTM model in Verilog-A and
loaded it as a compiled model in Spectre [50]. The following
symbols will be used in this section.

1) RDEM: The proposed RDE-based method (Section III)
using the SSTM model (Section II).
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TABLE I

Errors of RDEM Relative to SpectreB

2) SpectreM: Spectre simulation using the SSTM model.
3) SpectreB: Spectre simulation using the BSIM4 model.
4) PWL-RDEM: The proposed piece-wise linear RDE-

based method (Section IV) using SSTM.

All relative errors reported in this paper are from comparison
to the results from SpectreB.

A. SSTM-Based Deterministic Timing Analysis

Since the statistical simulation depends on the nominal
value computation [xs in (2)], the accuracy of the proposed
SSTM-based gate models, used with our RDE-based method,
for deterministic timing analysis (no process variations) is
important. The accuracy of SSTM is first tested on the
minimum-sized standard cells INV, NAND2, NOR2, AND2, XOR2,
BUF, MUX2, AOI21, AOI211, and NAND4. Every switching
input signal is a ramp with input slew varying from 7.5 ps
to 600 ps and the load capacitance changes from 0.40 fF to
25.6 fF. The input slew and load capacitance ranges are the
same as the ranges in the NLDM liberty file of the library.
Both rising and falling inputs are simulated. In addition, the
scenarios that all input signals switch at the same time (MISS)
are also included in the experiments. For every gate, hundreds
of simulations are performed for different input slew, output
capacitance, and input switching scenarios, which result in
hundreds of delay and slew errors. For accuracy comparison,
the thousands of simulations of the cells listed above lead to
delay and slew error statistics, as listed in Table. I. These
results indicate a high accuracy of deterministic delay and
slew calculation of these cells by using our SSTM-based gate
model in the RDE-based engine.

The accuracy of the SSTM-based model and the determin-
istic simulation method are also tested on the critical paths
of the ISCAS circuits. The results obtained by using RDEM
and those obtained in SpectreM are both compared to the
results of SpectreB and listed in Table II. The last row in
Table II shows the average absolute value of the errors. The
delay and slew errors of SpectreM are within 1% and 2%
of SpectreB, which indicates the accuracy of our LUT-based
simplified transistor model for timing analysis. The absolute
value of delay and slew errors using SpectreM are slightly
worse than the error magnitudes from RDEM on average. This
may be caused by the combination of the LUT-based SSTM
models and NR-based algorithms in Spectre, which suffer from
non-smooth derivatives. Our use of the simplified chord algo-
rithm, as explained in Step 2 of Section III-B, prevents such
problems.

B. Statistical Delay Calculation Considering MISS

In order to evaluate the capability of our statistical sim-
ulation method for multiple variational inputs, we applied

TABLE II

Delay and Output Slew Errors (%) for Deterministic Timing

Analysis Relative to the Results of SpectreB

Fig. 6. All moment percentage errors comparison for MISS.

our RDEM approach on cells with up to four inputs. The
multi-input cells are NAND2, NOR2, NOR3, NAND3, AOI21,
AOI211, AOI22, and NAND4. All input signals of these gates
are variational with variable correlation and have a high prob-
ability to switch near-simultaneously (MISS). The variational
input signals are modeled as a ramp signal of 40-ps mean input
transition time with voltage variations. The following two
parameters are varied to obtain diverse scenarios to simulate
for every cell: 1) the standard deviation of input voltages
(σV ) and 2) nominal arrival time differences between every
two input signals (similar to dt in Fig. 3). The minimum
and maximum σV are 1% and 10% of Vdd , respectively. The
correlations among pairs of voltage variations range from 0
to 0.8. The statistical simulation results are compared to 10K
SpectreB MC simulations. Fig. 6 shows that most μ errors
are within 1%. Only AOI211 has errors larger than 1% when
the correlation coefficient is 0.8 and σV is large. All the delay
σ errors are lower than 6%, except two (6.42% and 6.71%)
coming from NAND4 and AOI21, respectively, when all inputs
have the same nominal arrival time. The third-order statistical
central moment, skewness (γ), has maximum errors around
8%, which occurs when both σV and the correlation coefficient
have the largest value. The average μ, σ, and γ errors are
0.38%, 2.30%, and 2.87%, respectively. For statistical delay
calculation with MISS, these seem to be acceptable errors.

C. Statistical Delay Calculation for Sequential Circuits
The RDEM method is applied to the following three

different sequential circuits with increasing level of
complexity [51]: 1) an active-high transparent latch
(DLH X1) composed of 16 transistors; 2) a positive-edge
triggered D flip-flop (DFF X1) composed of 28 transistors;
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Fig. 7. Sequential test circuit (SEQ X1) used for experiments. The wire
resistance is Rwire = 50 
.

TABLE III

Delay Mean and Standard Deviation Errors of Three

Sequential Circuits Compared With 10K SpectreB MC Results

and 3) a sequential circuit (SEQ X1) shown in Fig. 7, 90
transistors in total. The wires in SEQ X1 are modeled by RC
π models. In addition, MISS occurs naturally in this circuit in
the combinational cell AND2 X1. The effective length (Leff )
and threshold voltage (Vth) are chosen as the process variations
with 0.5 nm and 0.04 V standard deviations, respectively.
The load capacitance (CL) is changed from 10 fF to 25 fF
for different scenarios. All the delay mean errors are within
1% of SpectreB MC simulations, except DLH X1 that has
a −2.86% maximum mean error, as can be seen in Table III.
Also, DLH X1 has bigger delay σ errors. The worse accuracy
is due to the capacitance approximation of our SSTM models
and the size of the transistors used in DLH X1. Since the
DLH X1 uses relatively wider transistors connected to the
output, its internal output node capacitance (mainly Cdb of
the connected transistors) is comparable in value to CL,
which makes the results very sensitive to the accuracy of the
Cdb model in the SSTM. Therefore, when CL is bigger, both
mean error and σ error are better for DLH X1. According to
the results shown in Table III, most of the standard deviation
errors are within 2%, which indicates a good accuracy of the
RDEM method for sequential circuits.

D. Statistical Timing Analysis

For the next experiments, Leff and Vth are chosen as the
interdie process variations. Intradie variations could also be
included in a similar way by adding more variables. For effi-
ciency concerns, we can use methods such as Karhunen–Loève
expansion [43] and PCA to significantly reduce the number of
process variations. 10K Monte Carlo-based SpectreB simula-
tions are used for accuracy and efficiency comparison. In order
to check the dependency between accuracy and the magnitude
of process variations, different variation-to-mean ratios of Leff

and Vth are chosen for the statistical timing analysis (case I and
case II in Table IV). Table IV lists delay mean and standard
deviation results of ISCAS85 circuits in different cases. In
this table, σS(μS) denotes the delay standard deviation (mean)

Fig. 8. Delay standard deviations of each ISCAS circuit obtained from
RDEM, PWL-RDEM, and SpectreB MC simulations, respectively.

results of SpectreB MC simulation, while σR(μR) denotes the
delay standard deviation (mean) results by using RDEM. error

means the relative errors of RDEM and errorpwl represents the
relative errors by using PWL-RDEM, compared to the 10K
SpectreB MC.

From Table IV, it is clear that for the mean delay values,
the linear RDEM method shows good accuracy for the small
variations of case I, and this is also true for the mean
delay results for the large variations of case II. For the
delay standard deviation, however, the errors with the larger
variations in case II are too big for the RDEM algorithm.
Here, the PWL-RDEM method shows its power, and is able
to reduce the errors by a factor of three, using a partition in
three subspaces.

The delay standard deviations of each ISCAS circuit ob-
tained from RDEM, PWL-RDEM, and SpectreB MC simula-
tions are illustrated in Fig. 8. For bigger process variations,
RDEM underestimates the delay variation while PWL-RDEM
captures the nonlinearity more accurately resulting in a much
lower error. It also can be seen from Fig. 8 that the value of
delay σs from RDEM and PWL-RDEM are quite close for
short paths (e.g., C499 and C1355).

The path delay distributions calculated by using the linear
RDE solver and the PWL-RDE solver are different. As an
example, the path delay distributions of C1908 are shown in
Fig. 9. The delay pdf of the RDE solver is obtained from
(25). However, this delay model is not available when using
the PWL-RDE solver, as explained in Section IV. Instead, we
can calculate the delay mean and variance directly based on
(26) and (43). As a consequence, the pdf of PWL-RDE shown
in Fig. 9 is obtained by a Gaussian distribution fitting based
on delay mean and standard deviation. We can observe that
the delay pdf from the RDE solver is slightly narrower than
the delay pdf from Spectre MC simulation. In addition, the
pdf from PWL-RDE is a Gaussian distribution and closer to
the Spectre MC results.

Fig. 10 illustrates the relationship of the delay μ errors and
delay σ errors with respect to correlation coefficient ρ of case
I. It highlights the impact of process parameter correlation on
the accuracy of our method. The delay means are increasing
slowly with ρ with all delay mean errors within 1% of
10K spectreB MC simulations. However, the delay standard
deviation errors of some circuits are decreasing while others
are increasing along with ρ.
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TABLE IV

Delay μ and σ Results of ISCAS85 Circuits With Different Process Variation Values, Compared With 10K SpectreB MC

Fig. 9. Path delay pdf s of C1908 obtained by using linear RDE and
PWL-RDE solvers, respectively.

Fig. 10. Delay μ (upper) and σ errors (bottom) of ISCAS85 circuits. Leff
and Vth variable with three different correlations ρ. Different colors of the
groups represent the circuits listed in Table IV from C432 to C7552.

The accuracy to estimate the delay moments considering
correlation coefficient highly depends on the sensitivity char-
acterization. According to the relationship between Ids, Leff ,
and Vth, the device Ids decreases when Leff or Vth increases.
However, since Vth ∝

√
1 + LPE0

Leff
, the increasing Leff causes

decreasing Vth, which further results in rising Ids. There-
fore, these two process parameters are physically correlated

Fig. 11. Run time comparison T�/TSTA.

and the delay variations caused by Leff and Vth are partly
compensated. These physically correlated process variations
lead to difficulties for device sensitivity characterization. The
sensitivities of CSM model element to process variations are
characterized based on best mean square error fit and derived
from a series of SPICE MC simulations in [13]. In order to
prevent an explosion of LUTs, Goel and Vrudhula [12] model
the current and capacitance in gate models as second-order
Hermite polynomials of process variations. These methods
vary all the process variations of interest together for sen-
sitivity characterization, which takes into account the physical
correlation of process parameters. However, characterization
takes thousands of times longer. In our method, simple finite
differences are used for sensitivity approximation, which is
much faster for characterization (only one or two extra DC
analyses are required for each transistor) at the cost of some
accuracy. Taking into account local correlations for sensitivity
characterization would improve the accuracy of our statistical
timing analysis method with high correlations.

E. Runtime

As mentioned in Section III-E, the total computation time of
the proposed method is TSSTA = TSTA+T�. T�, the computation
time of the proposed RDEM algorithm, is approximately
proportional to TSTA, as mentioned in Section III-E. Since the
statistical simulation is performed with fewer matrix evalua-
tions and without time step calculation nor NR iterations, the
ratio T�/TSTA should be smaller for bigger circuits. Fig. 11
shows the runtime overhead of T� with respect to TSTA in the
critical paths of the ISCAS85 circuits. The proposed statistical
calculation shows lower runtime overhead for bigger circuits,
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as expected. Compared to SpectreB MC runs, the proposed
RDEM method, which is implemented in Matlab, achieves
200× speedup on average. The speedup is smaller for larger
circuits, showing the benefit of the sparse matrix techniques
and efficient data loading techniques employed in Spectre. The
same benefit can be obtained for our methods by using these
techniques for higher efficiency.

VI. Conclusion

In this paper, we present a method to extend voltage-
based gate models for statistical timing analysis. We construct
gate models based on SSTMs for high accuracy. Correlations
among input signals and between input signal and delay are
fully preserved during simulation. Furthermore, the MISS
problem is addressed by considering all input signals together.
The variational waveform for statistical delay calculation is
computed by a new RDE-based method. For high accuracy in
the case of large process variations, we proposed a piecewise
linear RDE-based statistical solver, which divides the process
variation space into several subspaces. Since the proposed tim-
ing analysis is based on the transistor-level gate models, it is
able to handle both combinational and sequential circuits. The
experiments demonstrated the good combination of accuracy
and efficiency of the proposed method for both deterministic
and statistical timing analyses.

From the future work point of view, the proposed RDE-
based method is generic for different transistor models. Hence,
this method can be extended to evaluate the impact of
small process variations on analog circuits. In this case, the
proposed LUT-based device model with linear interpolation
needs changes due to the small signal and continuousness
requirements in analog circuit simulation.

Acknowledgment

The authors would like to thank X. Zhen, Delft University
of Technology, Delft, The Netherlands, who implemented the
proposed SSTM into Spectre.

References

[1] A. Gattiker, S. Nassif, R. Dinakar, and C. Long, “Timing yield estimation
from static timing analysis,” in Proc. ISQED, 2001, pp. 437–442.

[2] C. S. Amin, N. Menezes, K. Killpack, and F. Dartu, “Statistical
static timing analog: How simple can we get?” in Proc. DAC, 2005,
pp. 652–657.

[3] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, Z. Min, K. Gala,
et al., “Statistical delay computation considering spatial correlations,” in
Proc. ASPDAC, 2003, pp. 271–276.

[4] R.-B. Lin and M.-C. Wu, “A new statistical approach to timing analysis
of VLSI circuits,” in Proc. Int. Conf. VLSI Des., 1998, pp. 507–513.

[5] H. Mangassarian and M. Anis, “On statistical timing analysis with inter-
and intra-die variations,” in Proc. DATE, vol. 1. 2005, pp. 132–137.

[6] S. Tsukiyama and M. Fukui, “Accuracy of the criticality probabilty
of a path in statistical timing analysis,” in Proc. ECCTD, 2009,
pp. 707–710.

[7] Z. He, T. Lv, H. Li, and X. Li, “Graph partition based path se-
lection for testing of small delay defects,” in Proc. ASPDAC, 2010,
pp. 499–504.

[8] J. Chung, J. Xiong, V. Zolotov, and J. Abraham, “Path criticality com-
putation in parameterized statistical timing analysis,” in Proc. ASPDAC,
2011, pp. 249–254.

[9] X. Lin and A. Davoodi, “Bound-based statistically-critical path extrac-
tion under process variations,” IEEE Trans. Computer-Aided Design
Integ. Circuits Syst., vol. 30, no. 1, pp. 59–71, Jan. 2011.

[10] S. Bhardwaj, S. Vrudhula, and A. Goel, “A unified approach for full chip
statistical timing and leakage analysis of nanoscale circuits considering
intradie process variations,” IEEE Trans. Computer-Aided Design Integr.
Circuits Syst., vol. 27, no. 10, pp. 1812–1825, Oct. 2008.

[11] J. F. Croix and D. F. Wong, “A fast and accurate technique to opti-
mize characterization tables for logic sythesis,” in Proc. DAC, 1997,
pp. 337–340.

[12] A. Goel and S. Vrudhula, “Statistical waveform and current source based
standard cell models for accurate timing analysis,” in Proc. IEEE DAC,
2008, pp. 227–230.

[13] H. Fatemi, S. Nazarian, and M. Pedram, “Statistical logic cell delay
analysis using a current-based model,” in Proc. IEEE DAC, 2006, pp.
253–256.

[14] B. Liu and A. B. Kahng, “Statistical gate level simulation via voltage
controlled current source models,” in Proc. IEEE Int. Workshop Behav-
ioral Modeling Simulation, Sep. 2006, p. 23.

[15] B. Liu, “Gate level statistical simulation based on parameterized mod-
els for process and signal variations,” in Proc. IEEE ISQED, 2007,
pp. 257–262.

[16] J. F. Croix and D. F. Wong, “Blade and razor: Cell and interconnet
delay analysis using current-based models,” in Proc. IEEE DAC, 2003,
pp. 386–389.

[17] C. Amin, C. Kashyap, N. Menezes, K. Killpack, and E. Chiprout, “A
multi-port current source model for multiple-input switching effects in
CMOS library cells,” in Proc. IEEE DAC, Jun. 2006, pp. 247–252.

[18] C. Kashyap, C. Amin, N. Menezes, and E. Chiprout, “A nonlinear
cell macromodel for digital applications,” in Proc. IEEE ICCAD, 2007,
pp. 678–685.

[19] N. Menezes, C. Kashyap, and C. Amin, “A true electrical cell model
for timing, noise, and power grid verification,” in Proc. IEEE DAC, Jun.
2008, pp. 462–467.

[20] B. Amelifard, S. Hatami, H. Fatemi, and M. Pedram, “A current source
model for CMOS logic cells considering multiple input switching and
stack effect,” in Proc. IEEE DATE, 2008, pp. 568–574.

[21] A. Devgan, “Accurate device modeling techniques for efficient tim-
ing simulation of integrated circuits,” in Proc. IEEE ICCD, 1995,
pp. 138–143.

[22] F. Dartu, “Gate and transistor level waveform calculation for timing
analysis,” Ph.D. dissertation, Center for Electron. Design Automation,
Carnegie Mellon Univ., Pittsburgh, PA, USA, 1997.

[23] P. Kulshreshtha, R. Palermo, M. Mortazavi, C. Bamji, and H. Yalcin,
“Transistor-level timing analysis using embedded simulation,” in Proc.
IEEE ICCAD, 2000, pp. 344–349.

[24] P. F. Tehrani, S. W. Chyou, and U. Ekambaram, “Deep sub-micron static
timing analysis in presence of crosstalk,” in Proc. IEEE ISQED, 2000,
pp. 505–512.

[25] E. Acar, “Linear-centric simulation approach for timing analysis,” Ph.D.
dissertation, Dept. of ECE, Carnegie Mellon Univ., Pittsburgh, PA, USA,
2001.

[26] E. Acar, F. Dartu, and L. Pileggi, “TETA: Transistor-level wave-
form evaluation for timing analysis,” IEEE Trans. Computer-Aided
Design Integr. Circuits Syst., vol. 21, no. 5, pp. 605–616, May
2002.

[27] L. McMurchie and C. Sechen, “WTA-waveform-based timing analysis
for deep-micro circuits,” in Proc. IEEE ICCAD, 2002, pp. 625–631.

[28] Z. Wang and J. Zhu, “Transistor-level static timing analysis by piecewise
quadratic waveform matching,” in Proc. IEEE DATE, 2003, pp. 312–317.

[29] S. Raja, F. Varadi, M. Becer, and J. Geada, “Transistor level gate
modeling for accurate and fast timing, noise, and power analysis,” in
Proc. IEEE DAC, 2008, pp. 456–461.

[30] Q. Tang, A. Zjajo, M. Berkelaar, and N. P. van der Meijs, “RDE-based
transistor-level gate simulation for statistical static timing analysis,” in
Proc. IEEE DAC, 2010, pp. 787–792.

[31] Q. Tang, A. Zjajo, M. Berkelaar, and N. P. van der Meijs, “Statistical
delay calculation with multiple input simultaneous switching,” in Proc.
IEEE ICICDT, 2011, pp. 1–4.

[32] Q. Tang, A. Zjajo, M. Berkelaar, and N. P. van der Meijs, “Transistor-
level gate model based statistical timing analysis considering correla-
tions,” in Proc. IEEE DATE, 2012, pp. 917–922.

[33] Q. Tang, A. Zjajo, M. Berkelaar, and N. P. van der Meijs, “Transistor
level waveform evaluation for timing analysis,” in Proc. VARI, 2010,
pp. 1–6.

[34] A. Hyvarinen and E. Oja, “Independent component analysis: Algorithms
and applications,” Neural Netw. J., vol. 13, nos. 4–5, pp. 411–430,
2000.

[35] R. Manduchi and J. Portilla, “Independent component analysis of
textures,” in Proc. IEEE ICCV, vol. 2. 1999, pp. 1054–1060.



TANG et al.: STATISTICAL TRANSISTOR-LEVEL TIMING ANALYSIS USING A DIRECT RANDOM DIFFERENTIAL EQUATION SOLVER 223

[36] Z. Feng, P. Li, and Y. Zhan, “Fast second-order statistical static timing
analysis using parameter dimension reduction,” in Proc. IEEE DAC,
2007, pp. 244–249.

[37] Y. Bi, K. J. van der Kolk, J. F. Villena, L. M. Silveira, and N. P. van der
Meijs, “Fast statistical analysis of RC nets subject to manufacturing
variabilities,” in Proc. IEEE DATE, 2011, pp. 32–37.

[38] X. Li, P. Li, and L. T. Pileggi, “Parameterized interconnect order
reduction with explicit-and-implicit multi-parameter moment match-
ing for inter/intra-die variations,” in Proc. IEEE ICCAD, 2005,
pp. 806–812.

[39] V. S. Nandakumar, D. Newmark, Y. Zhan, and M. Marek-Sadowska,
“Statistical static timing analysis flow for transistor level macros in a
microprocessor,” in Proc. 11th IEEE ISQED, 2010, pp. 163–170.

[40] V. Zolotov, J. Xiong, H. Fatemi, and C. Visweswariah, “Statistical path
selection for at-speed test,” IEEE Trans. Computer-Aided Design Integr.
Circuits Syst., vol. 29, no. 5, pp. 749–759, May 2010.

[41] T. T. Soong, Random Diffrential Equations in Science and Engineering.
New York, NY, USA: Academic, 1973.

[42] C. Visweswariah and K. Ravindran, “First-order incremental block-based
statistical timing analysis,” IEEE Trans. Computer-Aided Design Integr.
Circuits Syst., vol. 25, no. 10, pp. 2170–2180, Oct. 2006.

[43] S. Vrudhula, J. M. Wang, and P. Ghanta, “Hermite polynomial based
interconnect analysis in the presence of process variations,” IEEE
Trans. Computer-Aided Design Integr. Circuits Syst., vol. 25, no. 10,
pp. 2001–2011, Oct. 2006.

[44] A. Brambilla, A. Premoli, and G. Storti-Gajani, “Recasting modified
nodal analysis to improve reliability in numerical circuit simulation,”
IEEE Trans. Circuits Syst., vol. 52, no. 3, pp. 522–534, Mar. 2005.

[45] F. N. Najm, Circuit Simulation. Hoboken, NJ, USA: Wiley, 2010.
[46] Z. Peyton and J. R. Peebles, Probability, Random Variables, and Random

Signal Principles. New York, NY, USA: McGraw-Hill, 1993.
[47] G. Biagetti, P. Crippa, A. Curzi, S. Orcioni, and C. Turchetti, “Piecewise

linear second moment statistical simulation of ICs affected by non-
linear statistical effects,” Int. J. Circuit Theory Appl., vol. 38, no. 9,
pp. 969–993, 2010.

[48] Nangate 45nm Open Cell Library. (2009) [Online]. Available:
https://www.si2.org/openeda.si2.org/projects/nangatelib/

[49] X. Lu and W. P. Shi. (2004). Layout and Parasitic Information for ISCAS
Circuits [Online]. Available: http://dropzone.tamu.edu/xiang/iscas.html

[50] X. Zheng, “Implementing and evaluating a simplified transistor model
for timing analysis of integrated circuits,” Master’s thesis, Dept. of
EEMCS/ME, Delft Univ. Technol., Delft, The Netherlands, 2012.

[51] J. Rodriguez, Q. Tang, A. Zjajo, M. Berkelaar, and N. van der Meijs,
“Direct statistical simulation of timing properties in sequential circuits,”
in Proc. PATMOS, 2012, pp. 131–141.

Qin Tang (S’11) received the B.S. degree from
the Department of Electronic Engineering, Southeast
University, Nanjing, China, and the M.S. degree
from the Department of Microelectronics and Solid
State Electronics, School of Electronic Science and
Engineering, Southeast University in 2006 and 2008,
respectively, and the Ph.D. degree from the Delft
University of Technology in 2013.

She is currently with the State Key Laboratory of
Solid State Lighting, China. Her current research
interests include design automation of integrated

circuits, specifically circuit simulation, transistor and gate modeling, timing
analysis, and statistical performance analysis.

Javier Rodrı́guez received the Telecommunication
Engineering degree from the Technical University
of Madrid, Madrid, Spain, in 2006, and the M.Sc.
degree in electrical engineering (microelectronics)
from the Department of Microelectronics, Delft Uni-
versity of Technology, Delft, The Netherlands, in
2012, focusing on circuit design automation and
verification techniques.

He is currently with Strukton Rolling Stock,
Alblasserdam, The Netherlands, as a Software
Engineer.

Amir Zjajo (M’02) received the M.Sc. and DIC
degrees from Imperial College London, London,
U.K., in 2000, and the Ph.D. degree from the Eind-
hoven University of Technology, Eindhoven, The
Netherlands, in 2010, all in electrical engineering.

He joined Philips Research Laboratories, Eind-
hoven, in 2000, as a Research Staff Member with
the Mixed-Signal Circuits and Systems Group. From
2006 to 2009, he was with Corporate Research, NXP
Semiconductors, Eindhoven, as a Senior Research
Scientist. In 2009, he joined the Department of

Microelectronics, Delft University of Technology, Delft, The Netherlands, as a
Faculty Member with the Circuit and Systems Group. He has published more
than 60 papers in referenced journals and conference proceedings. He holds
more than ten U.S. patents or has patents pending. He has authored two books.
His current research interests include mixed-signal circuit design, signal
integrity and timing, and yield optimization of very large scale integration.

Dr. Zjajo serves as a member of the Technical Program Committee of
the IEEE Design, Automation and Test in Europe Conference, the IEEE
International Symposium on Circuits and Systems, and the IEEE International
Mixed-Signal Circuits, Sensors and Systems Workshop.

Michel Berkelaar (M’96) received the Ph.D. de-
grees in electrical engineering from the Eindhoven
University of Technology, Eindhoven, The Nether-
lands, in 1987 and 1992, respectively.

From 1992 to 2000, he was an Assistant and
Associate Professor with the Eindhoven University
of Technology. From 2000 to 2009, he was the Di-
rector of Research with Magma Design Automation,
Eindhoven. Currently, he is a Researcher with the
Department of Microelectronics, Delft University of
Technology, Delft, The Netherlands. He has pub-

lished more than 60 papers at conferences and in journals, mainly in the
areas of logic synthesis and statistical timing.

Dr. Berkelaar has served as a reviewer for many conferences and journals.
He has served as the Topic Chair for ICCAD and DATE on multiple occasions.
He has also served as the Program Chair for IWLS.

Nick van der Meijs (M’87) received the M.Sc.
and Ph.D. degrees from the Delft University of
Technology (TU Delft), Delft, The Netherlands, in
1985 and 1992, respectively.

Currently, he is an Associate Professor with the
Circuits and Systems Group, Department of Micro
Electronics and Computer Engineering, TU Delft.
As the Director of Studies, he is responsible for the
content, organization, and quality of the B.Sc. and
M.Sc. curricula in electrical engineering and com-
puter engineering at TU Delft. He has (co-)authored

some 100 papers on various topics, including design frameworks, interconnect
optimization, and parasitics modeling, and was one of the lead developers
of the SPACE 2-D and 3-D parasitic layouts to circuit extractors. He and
his research group currently focus both on modeling of parasitic effects in
advanced integrated circuits and on circuit level design methods and tools for
dealing with variability.

Dr. van der Meijs is a Regular Reviewer for various EDA and design
methodology conferences and journals. He has served as the Topic Chair
on multiple at conferences.


