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Microphone Subset Selection for MVDR
Beamformer Based Noise Reduction
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Abstract—In large-scale wireless acoustic sensor networks
(WASNs), many of the sensors will only have a marginal contri-
bution to a certain estimation task. Involving all sensors increases
the energy budget unnecessarily and decreases the lifetime of the
WASN. Using microphone subset selection, also termed as sensor
selection, the most informative sensors can be chosen from a set of
candidate sensors to achieve a prescribed inference performance.
In this paper, we consider microphone subset selection for
minimum variance distortionless response (MVDR) beamformer
based noise reduction. The best subset of sensors is determined by
minimizing the transmission cost while constraining the output
noise power (or signal-to-noise ratio). Assuming the statistical
information on correlation matrices of the sensor measurements
is available, the sensor selection problem for this model-driven
scheme is first solved by utilizing convex optimization techniques.
In addition, to avoid estimating the statistics related to all the
candidate sensors beforehand, we also propose a data-driven
approach to select the best subset using a greedy strategy. The
performance of the greedy algorithm converges to that of the
model-driven method, while it displays advantages in dynamic
scenarios as well as on computational complexity. Compared
to a sparse MVDR or radius-based beamformer, experiments
show that the proposed methods can guarantee the desired
performance with significantly less transmission costs.

Index Terms—Sensor selection, MVDR, noise reduction, spar-
sity, convex optimization, transmission power, greedy algorithm.

I. INTRODUCTION

M ICROPHONE arrays have become increasingly popular
in many speech processing applications, e.g., hear-

ing aids [1], teleconferencing systems [2], hands-free tele-
phony [3], speech recognition [4], human-robot interaction [5],
etc. Compared to their single-microphone counterparts, micro-
phone arrays typically lead to an enhanced performance when
detecting, localizing, or enhancing specific sound sources. This
is due to the fact that with a microphone array the sound field
is not only sampled in time, but also in space.

Manuscript received March 28, 2017; revised July 25, 2017; accepted De-
cember 14, 2017. Date of publication xxxxx xx, 2017; date of current version
xxxxx xx, 2018. This work is supported by the China Scholarship Council and
Circuits and Systems (CAS) Group, Delft University of Technology, Delft, The
Netherlands. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Sven Nordholm.

The authors are with the Faculty of Electrical Engineering, Math-
ematics and Computer Science, Delft University of Technology, 2628
CD Delft, The Netherlands (e-mail: {j.zhang-7, s.p.chepuri, r.c.hendriks,
r.heusdens}@tudelft.nl). Sundeep Prabhakar Chepuri is supported in part by
the ASPIRE project (project 14926 within the STW OTP programme), which
is financed by the Netherlands Organization for Scientific Research (NWO)
and the KAUST-MIT-TUD consortium under grant OSR-2015-Sensors-2700.
(Corresponding author: Jie Zhang)

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier: **************

Although traditional microphone arrays have been widely
investigated, see [6] and reference therein, they do have some
important limitations. Typically, conventional microphone ar-
rays have one central processing unit, that is, a fusion center
(FC), which physically connects to the microphones. Rear-
ranging the microphones in such a conventional wired and
centralized array is impractical. Moreover, usually the target
source is located far away from the array, resulting in a low
signal-to-noise ratio (SNR). In addition, typically, the size of
conventional arrays is limited as the maximum array size is
determined by the application device [7].

Recently, wireless acoustic sensor networks (WASNs) have
attracted an increased amount of interest [7]–[10]. In a WASN,
each sensor node is equipped with a single microphone or
a small microphone array, and the nodes are spatially dis-
tributed across a specific environment. The microphone nodes
communicate with their neighboring nodes or the FC using
wireless links. The use of WASNs can potentially resolve
the limitations encountered with the conventional arrays that
were mentioned before. At first, the WASN is not constrained
to any specific (fixed) array configuration. Secondly, with
a WASN, the position and number of microphones is not
anymore determined by the application device. Instead, mi-
crophones can be placed at positions that are difficult to reach
with conventional microphones. With a WASN, the array-size
limitations disappear and the network becomes scalable (i.e.,
larger array apertures can be achieved) [11]. The fact that
microphones in the WASN sample the sound field in a much
larger area can yield higher quality recordings as it is likely
that some of the sensors are close to the target source and
have a higher SNR. One of the bottlenecks in a WASN is
the resource usage in terms of power. Transmission of data
between nodes or from the nodes to the FC will influence the
battery lifetime of the sensor. Although all microphones in the
WASN will positively contribute to the estimation task, only
a few will have a significant contribution. It is questionable
whether using all microphones in the network is beneficial
taking the energy usage and lifetime of the sensors into
account. Instead of blindly using all sensors, selecting a subset
of microphones that is most informative for an estimation
task at hand can reduce the data to be processed as well as
transmission costs.

In this work, we investigate spatial filtering based noise
reduction using only the most informative data via microphone
subset selection, or so-called sensor selection, to reach a
prescribed performance with low power consumption. Sensor
selection is important for data dimensionality reduction. Math-
ematically, sensor selection is often expressed in terms of the
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following optimization problem:

arg min
p∈{0,1}M

f(p) s.t. 1T
Mp = K, (1)

where p indicates whether a sensor is selected or not, and
the cost function f(p) is optimized to select the best subset
of K sensors out of M available sensors. Basically, the
problem in (1) is a non-convex Boolean optimization problem,
which incurs a combinatorial search over all the

(
M
K

)
possible

combinations. Usually, it can be simplified via convex relax-
ation techniques [12]–[14] or using greedy heuristics, e.g.,
leveraging submodularity [15], [16]. When the cardinality of p
is of more concern, the cost function and constraint in (1) can
also be interchanged by minimizing the cardinality of p, i.e.,
||p||0, while constraining the performance meansure f(p).

In general, sensor selection can be categorized into two
classes: model-driven schemes and data-driven schemes. For
the model-driven schemes, sensor selection is an offline de-
sign, where the sensing operation is designed based only
on the data model (even before gathering data) such that
a desired ensemble inference performance is achieved. In
other words, the model-driven schemes provide the selected
sensors a priori for the inference tasks [14]. There are many
applications of the model-driven schemes for sensor placement
in source localization [13], power grid monitoring [17], field
estimation [18], target tracking [14], to list a few. In con-
trast to the offline design schemes, dimensionality reduction
can also be done on already acquired data by discarding,
i.e., censoring, less informative samples; this is referred as
data-driven schemes. Data-driven sensor selection has been
applied within the context of speech processing, e.g., speech
enhancement [19], [20], speech recognition [21], and target
tracking by sensor scheduling [22]. In the WASNs context, due
to time-varying topologies, we have typically no information
about the data model (e.g., probability density function), but
the online measured data (e.g., microphone recordings) are
available instead. In this work, we start with the model-driven
sensor selection for the spatial filtering based noise reduction
problem, which is then extended to a data-driven scheme.

A. Contributions

In this paper, we consider the problem of selecting the most
informative sensors for noise reduction based on the minimum
variance distortionless response (MVDR) beamformer. We
formulate this problem to minimize the total transmission
power subject to a constraint on the performance. While the
classical sensor selection problem formulation as also given
in (1) puts a constraint on the number of selected sensors, in
the speech enhancement context the desired number of sensors
is typically unknown. Hence, the desired number of sensors
heavily depends on the scenario, e.g., the number of sound
sources. Within the speech enhancement context it would be
more useful to relate the constraint to a certain performance
in terms of the expected quality or intelligibility of the final
estimated signal. We therefore reformulate the sensor selec-
tion problem to be constrained to a certain expected output
performance. In such a way, the selected sensors are always
the ones having the (near-)minimum transmission power.

The minimization problem is first solved by convex opti-
mization techniques exploiting the available complete joint
statistics (i.e., correlation matrices) of the microphone mea-
surements of the complete network, such that the selected
subset of microphones is optimal. This is referred as the
proposed model-driven approach.

In a more practical scenario, usually it is impossible to
estimate the joint statistics of the complete network beforehand
due to the dynamics of the scenario. Instead, the real-time
measured data is only what can be accessed. Therefore, we
extend the proposed model-driven algorithm to a data-driven
scheme using a greedy sensor selection strategy. The perfor-
mance of the greedy approach is proven to converge to that
of the model-based method from an experimental perspective.
There are a few existing contributions considering microphone
subset selection in the area of audio signal processing. For
example, Szurley et al. greedily selected an informative subset
according to the SNR gain at each individual microphone
for speech enhancement [20]. Bertrand and Moonen [19]
conducted greedy sensor selection based on the contribution
of each sensor signal to mean squared error (MSE) cost for
signal estimation. Kumatani et al. proposed a channel selection
for distant speech recognition by considering the contribution
of each channel to multichannel cross-correlation coefficients
(MCCCs) [21]. The proposed greedy algorithm shows an
advantage in computational complexity and optimality as
compared to existing greedy approaches [19], [20].

B. Outline and notation

The rest of this paper is organized as follows. Sec. II intro-
duces the signal model, the classical MVDR beamforming,
and sensor selection model. Sec. III presents the problem
formulation. Sec. IV presents two solvers based on convex
optimization to solve the model-driven sensor selection prob-
lem. Sec. V proposes a greedy algorithm. Sec. VI illustrates
the simulation results. Finally, Sec. VII concludes this work.

The notation used in this paper is as follows: Upper (lower)
bold face letters are used for matrices (column vectors). (·)T
or (·)H denotes (vector/matrix) transposition or conjugate
transposition. diag(·) refers to a block diagonal matrix with
the elements in its argument on the main diagonal. 1N and 0N

denote the N × 1 vector of ones and the N ×N matrix with
all its elements equal to zero, respectively. IN is an identity
matrix of size N . A ≽ B means that A − B is a positive
semidefinite matrix. |U| denotes the cardinality of the set U .

II. PRELIMINARIES

A. Signal model

We assume a spatially distributed candidate set of M
microphone sensors that collect and transmit their observations
to an FC. The multi-microphone noise reduction methods
considered in this paper operate in the frequency domain on
a frame-by-frame basis. Let l denote the frame index and
ω the frequency bin index, respectively. We assume that the
user (i.e., FC) has one source of interest, while multiple
interfering sources are present in the environment. Using a
discrete Fourier transform (DFT) domain description, the noisy
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DFT coefficient at the k-th microphone, say yk(ω, l), for
k = 1, 2, · · · ,M , is given by

yk(ω, l) = xk(ω, l) + nk(ω, l), (2)

where xk(ω, l) = ak(ω)s(ω, l) with ak(ω) denoting the acous-
tic transfer function (ATF) of the target signal with respect to
the k-th microphone and s(ω, l) the target source signal at
the source location of interest. In (2), the component nk(ω, l)
represents the total received noise at the k-th microphone
(including interfering sources and internal thermal additive
noise). For notational convenience, the frequency variable ω
and the frame index l will be omitted now onwards bearing
in mind that the processing takes place in the frequency
domain. Using vector notation, signals from M microphones
are stacked in a vector y = [y1, ..., yM ]T ∈ CM . Simi-
larly, we define an M dimensional speech vector x for the
speech component contained in y as x = as ∈ CM with
a = [a1, · · · , aM ]

T ∈ CM denoting the steering vector which
is constructed from the ATFs, and a length-M noise vector n.
As a consequence, the signal model in (2) can be compactly
written as

y = x+ n. (3)

Assuming that the speech and noise components are mutu-
ally uncorrelated, the correlation matrix of the received signals
is given by

Ryy = E{yyH} = Rxx +Rnn ∈ CM×M , (4)

where E{·} denotes the mathematical expectation, and Rxx =
E{xxH} = Psaa

H with Ps = E{|s|2} representing the power
spectral density (PSD) of the target source. Notice that due to
the assumption that x and n are uncorrelated, Rxx can be
estimated by subtracting the noise correlation matrix Rnn,
which is estimated during the absence of speech from the
speech-plus-noise correlation matrix Ryy [23]. In this work,
we assume that a perfect voice activity detector (VAD) is
available, such that the noise-only segments and the speech-
plus-noise segments are classified accurately.

B. MVDR beamformer

The well-known MVDR beamformer minimizes the total
output power after beamforming while simultaneously keep-
ing the gain of the array towards the desired signal fixed.
Therefore, any reduction in the output energy is obtained by
suppressing interference or noise. Mathematically, this can be
written as

ŵ = argmin
w

wHRnnw, s.t. wHa = 1. (5)

The optimal solution, in a best linear unbiased estimator sense,
can be obtained using the method of Lagrange multipliers, and
is given by [8], [24], [25]

ŵ =
R−1

nna

aHR−1
nna

. (6)

After processing by the MVDR beamformer, the output
SNR evaluated at a given time-frequency bin is given by the

ratio of the variance of the filtered signal to the variance of
the filtered noise

SNRout =
E
{
|ŵHx|2

}
E {|ŵHn|2}

=
ŵHRxxŵ

ŵHRnnŵ

=Psa
HR−1

nna. (7)

C. Sensor selection model

The task of sensor selection is to determine the best subset
of sensors to activate in order to minimize an objective func-
tion, subject to some constraints, e.g., the number of activated
sensors or output noise power. We introduce a selection vector

p = [p1, p2, ..., pM ]T , (8)

where pi ∈ {0, 1} with pi = 1 indicating that the i-th sensor
is selected. Let K = ∥p∥0 represent the number of selected
sensors with the ℓ0-(quasi) norm referring to the number
of non-zero entries in p. Using a sensor selection matrix
Φp, the selected microphone measurements can be compactly
expressed as

yp = Φpy = Φpx+Φpn, (9)

where yp ∈ CK is the vector containing the measurements
from the selected sensors. Let diag(p) be a diagonal matrix
whose diagonal entries are given by p, such that Φp ∈
{0, 1}K×M is a submatrix of diag(p) after all-zero rows
(corresponding to the unselected sensors) have been removed.
As a result, we can easily get the following relationships

ΦpΦ
T
p = IK , ΦT

pΦp = diag(p). (10)

Therefore, applying the selection model to the classical MVDR
beamformer in Sec. II-B, the best linear unbiased estimator for
a subset of K microphones determined by p will be

ŵp =
R−1

nn,pap

aHp R−1
nn,pap

, (11)

where ap = Φpa is the steering vector corresponding to the
selected microphones, and Rnn,p = ΦpRnnΦ

T
p represents

the noise correlation matrix of the selected sensors after the
rows and columns of Rnn corresponding to the unselected
sensors have been removed, i.e., Rnn,p is a submatrix of Rnn.

III. PROBLEM FORMULATION

This work focuses on selecting the most informative subset
of microphones for spatial filtering based noise reduction. The
problem is formulated from the viewpoint of minimizing trans-
mission cost subject to a constraint on the output performance.
In particular, we express the filtering performance in terms of
the output noise power, which is under the MVDR beamformer
equivalent to the output SNR. However, notice that this can
easily be replaced by other performance measures expressing
the desired quality or intelligibility.

Let c = [c1, c2, ..., cM ]T ∈ RM denote the pairwise
transmission cost between each microphone and the FC. In
general, the power consumption for wireless transmission can
be modeled as [26]

ci = c(di) + c
(0)
i , ∀i, (12)
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where c(di) represents the power consumption depending on
the distance di from the node with the i-th microphone to the
FC, and c

(0)
i is a constant depending on the power consumption

of the i-th microphone itself. Based on the energy model in
(12), our initial problem can be formulated as

min
wp,p∈{0,1}M

∥diag(p)c∥1

s.t. wH
p Rnn,pwp ≤ β

α
,

wH
p ap = 1,

(P1)

where || · ||1 denotes the ℓ1-norm, β denotes the minimum
output noise power after beamforming, and α ∈ (0, 1] is an
adaptive factor to control the output noise power compared to
β. Note that β does not depend on the measurements of the
whole network, because β/α is just a number that can be as-
signed by users, e.g., 40 dB, to indicate a desired performance.
In (P1), the ℓ1-norm is used to represent the total transmission
costs of the network, i.e., between all the selected sensors and
the FC, and it equals the inner-product cTp since both p and
c are non-negative. Also, notice that (P1) is a general case for
spatial filtering based noise reduction problems, e.g., using
MVDR beamformers or linear constrained minimum variance
(LCMV) beamformers [27]. In the next section, we will show
how the optimization problem in (P1) can be solved using
some of the properties of the MVDR beamformer.

IV. MODEL-DRIVEN SENSOR SELECTION

In this section, we propose two slightly different ways to
solve the optimization problem in (P1), firstly based on the
correlation matrix Rxx and secondly based on knowledge of
the steering vector a, respectively. Both these solvers rely on
the knowledge of the correlation matrices of the complete
network, so that they belong to the model-driven schemes.

Considering the MVDR beamformer in (11), the output
noise power using the selected sensors is given by

ŵH
p Rnn,pŵp =

(
aHp R−1

nn,pap
)−1

, (13)

where the constraint wH
p ap = 1 in (P1) is implicit. Based

on the fact that the MVDR beamformer keeps the speech
components undistorted and suppresses the noise components,
the variance of the filtered speech components can be shown
to equal

ŵH
p Rxx,pŵp = Ps, (14)

where Rxx,p denotes the submatrix of Rxx corresponding
to the selected sensors. Hence, following (7) the output SNR
using the selected sensors is given by

SNRout,p =
ŵH

p Rxx,pŵp

ŵH
p Rnn,pŵp

= Psa
H
p R−1

nn,pap

= Psa
HΦT

pR
−1
nn,pΦpa. (15)

As a result, the original optimization problem in (P1) can
equivalently be rewritten as

min
p∈{0,1}M

∥diag(p)c∥1

s.t. Psa
H
p R−1

nn,pap ≥ α · SNR,
(P2)

where SNR = Ps

β represents the maximum output SNR. Both
(P1) and (P2) are non-convex because of the Boolean variable
p, but also due to the non-linearity of the constraint in p. In
what follows, we will present solvers by linearizing (P2) and
reformulating it using convex relaxation. Note that (P1) and
(P2) are built from different perspectives (i.e., constraining the
output noise power and SNR, respectively), but in the context
of the MVDR beamforming, they are equivalent.

A. Convex relaxation using Rxx

From the output SNR in (15), the selection variable p
appears at three places, that are: ΦT

p , R−1
nn,p and Φp. We

combine these together as one new matrix Q = ΦT
pR

−1
nn,pΦp.

To simplify calculations, in what follows, we will rearrange
Q such that p occurs only at one place. Let us first consider
a decomposition of the noise covariance matrix [14], [28]

Rnn = λIM +G, (16)

where λ is a positive scalar and G is a positive definite matrix
(if λ is smaller than the smallest eigenvalue of Rnn, this
decomposition can be easily found). The reason for choosing
such a λ is to make G−1+λ−1diag(p) positive definite, which
will be seen after (24). Using (16), we have

Rnn,p = Φp (λIM +G)ΦT
p = λIK +ΦpGΦT

p , (17)

and Q can be reformulated as

Q = ΦT
p

(
λIK +ΦpGΦT

p

)−1
Φp. (18)

Using the matrix inversion lemma [29, p.18]

C
(
B−1 +CTA−1C

)−1
CT = A−A

(
A+CBCT

)−1

A,

we can simplify Q in (18) as

Q = G−1 −G−1
(
G−1 + λ−1diag(p)

)−1
G−1. (19)

Note that (19) is still non-linear in p due to the inversion
operation, but p appears now only at one place. Based on
Q, the output SNR with sensor selection as in (15) can be
calculated as [29, p.6]

SNRout,p
(1)
= trace

(
Psa

HΦT
pR

−1
nn,pΦpa

)
(2)
= trace (QRxx)

(3)
= trace

(
R

H
2
xxQR

1
2
xx

)
, (20)

where the trace(·) operator computes the trace of a matrix, and
R

1
2
xx represents the principal square root of Rxx. The second

and third equality in (20) is based on trace property, which is
employed to make the linear matrix inequality (LMI) in (25)
symmetric. Here, we utilize the trace operation to express the
output SNR as a function of Rxx. The latter can be estimated
using the recorded audio in practice, e.g., during the training
phase, or using the correlation matrices Ryy and Rnn without
the need to explicitly know the steering vector a or ap.

Secondly, in what follows we will linearize the SNR con-
straint in (P2). To do this, we introduce a new matrix Z to
equivalently rewrite the constraint in (P2) as

trace
(
Z− αPs

Mβ
IM

)
≥ 0, (21)
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R
H
2
xxQR

1
2
xx = Z, (22)

where the equality constraint in (22) is non-linear in p. For
linearization, we relax it to an inequality constraint

R
H
2
xxQR

1
2
xx ≽ Z. (23)

Note that (21) and (23) are sufficient conditions for obtaining
the original constraint in (P2), this is why we utilize ≽ for
convex relaxation. Substituting (19) in (23), we get

R
H
2
xxG

−1R
1
2
xx − Z ≽

R
H
2
xxG

−1
[
G−1 + λ−1diag (p)

]−1
G−1R

1
2
xx. (24)

Due to the positivity of λ, the positive definiteness of G and
the Boolean vector p, the matrix G−1+λ−1diag(p) is positive
definite, and this is why we chose in (16) a positive scalar
λ and a positive definite matrix G to decompose the matrix
Rnn. Using the Schur complement [30, p.650], we obtain a
symmetric LMI of size 2M from (24) as[

G−1 + λ−1diag(p) G−1R
1
2
xx

R
H
2
xxG−1 R

H
2
xxG−1R

1
2
xx − Z

]
≽ 02M , (25)

which is linear in p. Furthermore, the Boolean variable p can
be relaxed using continuous variables p ∈ [0, 1]M or semidef-
inite relaxation [31]. In this work, we utilize the former way.
Accordingly, (P2) can be expressed in the following form:

min
p,Z

∥diag(p)c∥1

s.t. trace
(
Z− αPs

Mβ
IM

)
≥ 0,[

G−1 + λ−1diag(p) G−1R
1
2
xx

R
H
2
xxG−1 R

H
2
xxG−1R

1
2
xx − Z

]
≽ 02M ,

0 ≤ pi ≤ 1, i = 1, 2, · · · ,M.
(26)

The relaxed optimization problem in (26) is a semidefinite
programming problem [30, p.128] and can be solved efficiently
in polynomial time using interior-point methods or solvers,
like CVX [32] or SeDuMi [33]. The computational complexity
for solving (26) is of the order of O(M3). The approximate
Boolean selection variables pi can be obtained by randomized
rounding using the solution of (26) [13]. Notice that the
solver in (26) depends on Rxx. In a practical scenario, this
is unknown, but can be estimated based on estimates of the
correlation matrices Ryy and Rnn as shown in (4). Ryy can
be estimated from the data itself, and Rnn can be estimated
using a VAD or noise correlation matrix estimator for the
noise-only frames, see e.g., [34].

B. Solver based on the steering vector a

Suppose the ATFs from the source to the microphones are
known, the steering vectors a (in free field) can be constructed.
With a, the output SNR in (20) can be expressed as

SNRout,p = Psa
HQa. (27)

Therefore, using the expression for Q in (19), the original
constraint in (P2) can be rewritten as

aHG−1a− aHG−1
(
G−1 + λ−1diag(p)

)−1
G−1a ≥ α

β
,

or, reorganized as

aHG−1a− α

β
≥ aHG−1

(
G−1 + λ−1diag(p)

)−1
G−1a.

(28)
Using the Schur complement, (28) can be reformulated as a
symmetric LMI of size M + 1[

G−1 + λ−1diag(p) G−1a
aHG−1 aHG−1a− α

β

]
≽ 0M+1. (29)

Accordingly, the optimization problem in (P2) is expressed as

min
p

∥diag(p)c∥1

s.t.

[
G−1 + λ−1diag(p) G−1a

aHG−1 aHG−1a− α
β

]
≽ 0M+1

0 ≤ pi ≤ 1, i = 1, 2, · · · ,M,

(30)

where the Boolean variables p have already been relaxed using
the continuous surrogates p ∈ [0, 1]M , and (30) has a standard
semidefinite programming form, which can also be solved by
the aforementioned tools. Notice that this solver depends on
knowledge on a. To estimate (the direct path of) a one can use
a source localization algorithm, e.g., [35]–[37], in combination
with the sensor locations, or use the generalized eigenvalue
decomposition of the matrices Rnn and Ryy [38], [39].

Remark 1. The differences between (26) and (30) are three-
fold: 1) (30) preserves the constraint on the output SNR
(or noise power), yet (26) relaxes it in a convex way by
introducing an auxiliary variable Z; 2) Observing the LMIs
in (26) and (30), they differ in dimensions (i.e., 2M and
M + 1, respectively), so (30) is computationally much more
efficient; 3) The solver in (26) requires to estimate the speech
correlation matrix Rxx and the PSD Ps of the target source,
while (30) requires the steering vector a.

Remark 2. For a special case, when the noise is spatially
uncorrelated with covariance matrix

Rnn = diag
(
σ2
1 , σ

2
2 , · · · , σ2

M

)
,

the optimization problem (P2) can be simplified to the follow-
ing Boolean linear programming problem

min
p

∥diag(p)c∥1

s.t. aHR−1
nndiag(p)a ≥ α

β
.

(31)

Although the above optimization problem is nonconvex in p ∈
{0, 1}M , it admits a simple non-iterative solution based on
rank ordering. More specifically, the optimal solution to (31)
is given by setting the entries of p corresponding to the indices

min

{
i ∈ {1, 2, · · · ,M}|

c[1]

v[1]
+ · · ·+

c[i]

v[i]
≥ α

β

}
to 1, and the remaining entries of p to 0, where v[1], · · · , v[M ]

and c[1], · · · , c[M ] are numbers of v1, v2, · · · , vM and
c1, c2, · · · , cM , respectively, sorted in ascending order with
vi = ciσ

2
i /|ai|2 and ai being the i-th entry of a.
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V. GREEDY SENSOR SELECTION

In Sec. IV, the sensor selection problem was solved using
statistical information from the complete network, i.e., Rxx

and Rnn. In practice, this information is unknown and needs
to be estimated from all the sensors’ measurements. Hence, we
call this a model-driven approach as the complete Rxx and
Rnn are required as well as the transmission power from the
microphones to the FC. In a practical scenario, it is undesired
to estimate the statistics of the complete network up front, as
this would imply a lot of data transmission for sensor nodes
that might never be selected in the end as most sensors are
non-informative. Moreover, in practice, the position of the FC
or microphones might be changing as well. For this reason we
need a selection mechanism that does not rely on knowledge
of the statistics and microphone-FC distances of the com-
plete network. Instead, we could access the measurements
of neighboring sensors (close to the FC or already selected
sensors). In this section, we present a greedy approach for the
sensor selection based noise reduction problem, which does
not require to estimate the global statistics. Therefore, the
greedy algorithm can be performed online, and it belongs to
the data-driven category. In Sec. VI, we will experimentally
show that the data-driven and model-driven approach will
converge to a similar performance.

Let ri denote the spatial position of the i-th microphone,
S1 a candidate set of microphones and S2 the selected set,
respectively. The proposed greedy algorithm is summarized in
Algorithm 1. Given an arbitrary initial spatial point z0 and a
transmission range R0

1, we can initialize the candidate set S1

of sensors, i.e., the R0-closest sensors to z0. For the candidate
set S1, we estimate the noise correlation matrix Rnn,S1 and
decompose it following (16), and then solve the optimization
problem in (26) or (30). For instance, for S1 the optimization
problem in (30) can be reformulated as

min
p∈[0,1]K1

∥diag(pS1)cS1∥1

s.t.

[
G−1

S1
+ λ−1

S1
diag(pS1) G−1

S1
aS1

aHS1
G−1

S1
aHS1

G−1
S1

aS1 − α
βS1

]
≽ 0K1+1

0 ≤ pi ≤ 1, ∀i ∈ S1,
(32)

where βS1 represents the output noise power of the classical
MVDR beamformer using the microphones in the candidate
set S1, which is termed as the local constraint. Notice that
the adaptive factor α is the same as that in the model-driven
scheme. If α ≤ 1, (32) will always have a feasible solution
within S1, the feasible set will be taken and used to define
a new set S2 with |S2| ≤ |S1|. Then, based on the set
S2, a new set S1 is formed based on the R0-closest sensors
with respect to the sensors included in the set S2

2. These
operations are continued until S1 or S2 does not change (i.e.,
until convergence has been achieved). The finally selected
set S2 will always be smaller than the selected set for the

1R0 can be defined as the wireless transmission range
√

log(2M)/M in
a random geometric graph to guarantee that the network is connected with
high probability [40].

2R0-closest sensors with respect to the set S2 include all the sensors that
are R0-closest to any individual sensor in S2.

model-driven approach from Sec. IV when using the same α.
This is due to the fact that the output noise power βS1 in
the constraint of the greedy approach is based on the set S1

that is always smaller or equal to the initial set as used by
the model-driven approach in (30) (where β is obtained by
involving all sensors). As a result, β/α will always be smaller
than βS1/α. In summary, β/α < βS1/α. The performance
of the greedy approach (after convergence) will therefore
always be somewhat worse than the model-based approach,
as the constraint is less tight. This can either be solved by
choosing a different (larger) α for the greedy approach, or,
by switching from the constraint βS1/α to the constraint β/α
after convergence. As an alternative, we could have used the
constraint β/α within the greedy approach of (32) right from
the beginning. However, in that case, in the first few iterations
(32) would have no feasible solution as an insufficient amount
of measurements are available to satisfy the constraint on
the output noise power. As a consequence of an infeasible
solution, the selected set S2 will keep all sensors from S1, of
which many are actually uninformative.

In order to make the performance of the proposed greedy
algorithm converge to that of the model-driven approach, we
switch from βS1

(local constraint) to β (global constraint)
after the above iterative procedure converges (i.e., the con-
straint βS1

/α for solving (32) has been satisfied). Finally, the
proposed greedy algorithm will converge to the model-driven
method based on the global constraint. To conclude, the greedy
algorithm includes two steps: using a locally defined constraint
(βS1/α) and using a globally defined constraint (β/α), as
summarized in Algorithm 1. Recall that the globally defined
constraint, which involves β/α with β denoting the minimum
output noise power after beamforming, does not need to be
dependent on the measurements of the whole network. Hence,
the greedy algorithm does not need to know the exact optimal
performance, i.e., β. For the implementation in practice, we
only need to set a number for β/α depending on the expected
performance. Note that the computational complexity of each
iteration is of the order of O(|S1|3), and the number of
iterations depends on z0 and R0. From the description of the
algorithm, we know that both the greedy algorithm and the
model-driven method have, in the end, the same constraint
that must be satisfied, leading to very similar performance,
which can also be found in simulations.

VI. SIMULATIONS

In this section, the proposed algorithms are experimentally
evaluated. Sec. VI-A introduces three reference methods that
we will use for comparison. In Sec. VI-B, the experimental
setup is explained. In Sec. VI-C, the proposed model-driven
sensor selection based MVDR beamformer (referred to as
MD-MVDR in short) is compared with the reference methods
introduced in Sec. VI-A. In Sec. VI-D, we will analyze the
performance of the proposed greedy approach as a data-
driven sensor selection, including the convergence behaviour,
initialization and the adaptivity of a moving FC. Sec. VI-E
compares the computational complexity between the model-
driven method and the greedy approaches.
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Algorithm 1: Greedy Sensor Selection

1 Step 1: initialization
2 Initial point: z0
3 Transmission range: R0

4 Selected set: S2 = ∅
5 Candidate set: S1 = {i|∥ri − z0∥2 ≤ R0, ∀i };
6 Step 2: considering local constraint
7 Cardinality of the active set: K1 = |S1|;
8 Decomposing: Rnn,S1 = λS1IK1 +GS1 ;
9 Solving (32) using the local constraint βS1

;
10 Update:
11 S2 = {i|pi = 1, ∀i ∈ S1};
12 S1 = S2 ∪ {i|∥ri − rS2∥2 ≤ R0, ∀i};
13 Go to line 6 until converge;
14 Step 3: solving (32) using global constraint β;
15 If infeasible, update
16 S2 = S1;
17 S1 = S2 ∪ {i|∥ri − rS2∥2 ≤ R0, ∀i};
18 Go to line 14;
19 If feasible, update
20 S2 = {i|pi = 1, ∀i ∈ S1};
21 S1 = S2 ∪ {i|∥ri − S2∥2 ≤ R0, ∀i};
22 Go to line 14 until converge;
23 Return S2.

A. Reference methods

Apart from the classical MVDR beamforming without sen-
sor selection as introduced in Sec. II-B, the proposed ap-
proaches will also be compared with a weighted sparse MVDR
beamformer [41]–[43], a radius-based MVDR beamformer and
a utility-based greedy method [19], [20].

1) Weighted sparse MVDR beamformer: A naive alternative
to sensor selection for spatial filtering is to enforce sparsity
in the filter coefficients while designing the beamformer. Due
to the physical nature of sound, this approach trades a small
loss in SNR for a large reduction in communication power re-
quired to produce a beamformer output by reducing the active
nodes. Some existing works on sparse MVDR beamformers
are presented in [41]–[43]. One of our reference methods is
therefore a sparse MVDR beamformer. However in order to
make the comparison with the sparse MVDR beamformer fair,
we use a weighting by the transmission power. Using the
model of transmission costs from (12), the weighted sparse
MVDR beamformer can be formulated as

ŵ =argmin
w

wHRnnw + µ∥wHdiag(c)∥0

s.t. wHa = 1,
(33)

where µ denotes the regularization parameter to control spar-
sity, and the ℓ0-norm can be relaxed by the ℓ1-norm or
the concave surrogate based on sum-of-logarithms [13], [44].
When µ = 0, it is identical to the classical MVDR beamformer
in Sec. II-B. Note that a larger µ leads to a sparser w.
The product wHdiag(c) indicates the pairwise transmission
costs. Weighting the beamforming filter w, the sensors with
smaller transmission costs have a dominant contribution to
w compared to sensors with larger transmission costs. From

Algorithm 2: Utility based greedy sensor addition

1 Initialization: same to Algorithm 1;
2 for k = 1, 2, ...,M
3 Compute the gain of output noise power ∆ by

adding each sensor in S1\S2 to S2;
4 Compute utility vector: g = [∆1

c1
, ∆2

c2
, ...,

∆|S1\S2|
c|S1\S2|

]T ;
5 i = argmaxi g;
6 Add sensor: S2 = S2 ∪ i;
7 Update: S1 = S2 ∪ {i|∥ri − rS2∥2 ≤ R0, ∀i};
8 end for until cS2 ≥ cT
9 Return S2.

the standpoint of implementation, for each frequency bin, if
|wi| ≥ ε,∀i, the i-th sensor will be selected, otherwise not.
Due to this “inevitable” thresholding, the resulting beamformer
is not necessarily MVDR anymore. The threshold ε is chosen
empirically.

2) Radius-based MVDR beamformer: The goal of this
article is to minimize the transmission costs while constraining
the performance. A straightforward way to reduce transmission
costs is by selecting the sensors close to the FC. The closer
a sensor to the FC, the less transmission power is required.
Hence, given a radius γ, we can involve the sensors within
the circle centered by the FC for the MVDR beamfomer,
which we call radius-based MVDR beamformer. An example
is given in Fig. 2(a), where the blue sensors are chosen with
γ = 6 m. Obviously, this approach does not take the source
or interference information into account, and its performance
suffers from γ and the network topology.

3) Utility based greedy sensor addition: In [20], the most
informative subset of microphones is obtained by greedily
removing the sensor that has the least contribution to a
utility measurement (e.g., SNR gain, output noise power, MSE
cost), also called backward selection. This method requires to
know the statistics offline and can be considered a model-
driven approach. While in [19], apart from sensor selection
based on backward selection, an alternative was proposed by
greedily adding the sensor that has the largest contribution to
the utility (forward selection). This can be considered as an
online data-driven procedure. In order to compare the proposed
greedy algorithm with the state-of-the-art greedy methods,
we summarize [19], [20] as the utility based greedy sensor
addition shown in Algorithm 2. In this work, our focus is on
the transmission costs. To measure the utility, we therefore
take the ratio of the gain of the output noise power ∆ that
is obtained by adding each sensor from S1\S2 to S2, to the
transmission cost. Here, the sets S1 and S2, are respectively,
defined the same as for Algorithm 1. The sensor which has
the larger ratio between noise reduction and transmission cost
would have the larger utility. When the transmission costs for
the selected set S2 exceeds the maximum cost budget cT , the
algorithm is terminated. Note that this approach only adds one
sensor to the selected set S2 per iteration, thus it may require
many iterations to get an acceptable solution.
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Figure 1. Output noise power in terms of transmission cost for different
choices of α, µ, γ, cT .

B. Experiment Setup

Fig. 2(a) shows the experimental setup employed in the
simulations, where 169 candidate microphones are placed
uniformly in a 2D room with dimensions (12 × 12) m. The
desired speech source (red solid circle) is located at (2.4, 9.6)
m. The FC (black solid square) is placed at (9, 3) m. Two
interfering sources (blue stars) are positioned at (2.4, 2.4) m
and (9.6, 9.6) m, respectively. The target source signal is a
10 minute long concatenation of speech signals originating
from the TIMIT database [45]. The interferences are stationary
Gaussian speech shaped noise sources. All signals are sampled
at 16 kHz. We use a square-root Hann window of 20 ms for
framing with 50% overlap. The ATFs are generated using [46]
with reverberation time T60 = 200 ms. The threshold ε for the
sparse MVDR beamformer is set to be 10−5 empirically, since
the coefficients smaller than this threshold are negligible. We
also model microphone self noise using zero-mean uncorre-
lated Gaussian noise with an SNR of 50 dB.

To focus on the concept of sensor selection, we assume that
the ATFs (i.e., steering vector a) are perfectly known. In prac-
tice, this can be estimated using source localization algorithms,
e.g., [35], [36], in combination with the sensor locations, or,
by calculating the generalized eigenvalue decomposition of the
matrices Rnn and Ryy [38], [39]. For the correlation matrices,
we use noise-only segments which are long enough to estimate
Rnn; during the speech-plus-noise segments Ryy is tracked
and Rxx can be obtained by subtracting the estimate of Rnn

from Ryy simultaneously. For the wireless transmission model
in (12), we consider the simplest wireless transmission case,
where the transmission cost between each sensor and the FC is
proportional to the square of their Euclidean distance [47], and
we assume that the device dependent cost c(0)i = 0, ∀i. In the
following simulations, the transmission costs are normalized
between 0 and 1 based on the total transmission costs between
all the microphones and the FC.

C. Evaluation of the model-driven approach

In order to compare the state-of-the-art approaches men-
tioned in Sec. VI-A, we first investigate the influence of the
required parameters α, µ, γ, cT on the performance, for the

proposed and the different reference methods. Fig. 1 shows
the relationship between the output noise power (in dB) and
the transmission power for SIR = 0 dB with SIR represent-
ing signal-to-interference ratio. Fig. 1 also shows the results
without randomized rounding (blue dashed curve) regarded as
the lower bound of the proposed method, i.e., involving the
selection variable p (thus, no selection) for computations. As
we can see that the performance of MD-MVDR is smaller than
that of the MD-MVDR without rounding, the binary solution
of the proposed method using randomized rounding is still
satisfactory in terms of expected output noise power. We can
conclude that in order to reach the same noise reduction per-
formance, the proposed approach always requires significantly
less transmission costs compared to the weighted sparse beam-
former or radius-based beamformer. If the transmission power
budget cT (defined in Algorithm 2) is small, the proposed
method performs better than the backward selection [20],
and if cT is large, they are comparable. Furthermore, when
α = 0.65, γ = 6, µ = 3.5 × 10−6, the four approaches ap-
proximately have the same transmission power as cT = 0.09.
Hence, in the simulations that will follow we will compare
the cases for α = 0.65, γ = 6, µ = 3.5 × 10−6, cT = 0.09.
Note that in Fig. 1, all the microphones are involved for the
MVDR beamforming when α = 1, γ = ∞, µ = 0, cT = 1.
This is the optimal MVDR beamformer.

Fig. 2(a)-(d) illustrate typical sensor selection examples for
one angular frequency (ω = π/256 rad/s) of the radius-based
MVDR beamformer (γ = 6), sparse MVDR beamformer
(µ = 3.5 × 10−6), backward selection (cT = 0.09) and
the proposed method (α = 0.65), respectively. In addition,
we show the radius for the radius-based MVDR, where all
the sensors within this radius are selected, and thus not
depicted explicitly in Fig. 2(b)-(d). For fixed sensor and source
locations, it is observed that the selected sensors are the same
for most frequency bins. The sensors within the green circles
(γ = 6) are selected by the radius-based method, which
chooses the γ-closest sensors relative to the FC for the MVDR
beamformer. It can be seen that in order to save transmission
power as well as to reduce noise, the proposed approach selects
some microphones close to the source and some close to the
FC for computation, while the sparse MVDR beamformer or
radius-based method do not have this property. Although the
backward selection has this property, it performs somewhat
worse in noise reduction, which can be seen in Fig. 1. On one
hand, the signals recorded by the microphones close to the
source position are degraded less by the interfering source,
and they preserve the target source better. Those microphones
are helpful for enhancing the target source. On the other hand,
the microphones close to the FC require less transmission
power to transmit data to the FC. They are selected as they
hardly add to the total transmission costs. When we increase
the adaptive factor α, more sensors that are close to the
interference positions are selected as well, because they carry
information on the interfering sources as shown in Fig. 2(e).

Fig. 2(f) illustrates the case where interfering sources are
absent, and the microphone recordings are degraded by the
microphone self noise, taking the noise level SNR=50 dB.
Compared to Fig. 2(e), most selected microphones are the
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(c) Backward selection (cT = 0.09)
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(e) Proposed approach (α = 0.9)
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(f) Uncorrelated case (α = 0.9)

Figure 2. Microphone subset selection examples (The blue sensors are activated for the MVDR beamformer): (a) radius-based MVDR beamforming, (b)
sparse MVDR beamforming, (c) backward selection [20] and (d) proposed method (α = 0.65) for spatially correlated noises, respectively, (e) proposed
method for correlated case with α = 0.9, and (f) proposed method (α = 0.9) for spatially uncorrelated noises only.

same, and they are more aggregate to the source position as
well as to the FC. The difference is whether to select sensors
that are close to the interferences. From this comparison,
we can also conclude that the sensors that are close to the
interference are useful for cancelling the correlated noise.

D. Evaluation of the data-driven approach

In this subsection, we will evaluate the proposed greedy
approach compared to the model-driven algorithm and the
utility-based method. The experimental setup is kept the same
as that used for the evaluation of the model-driven approach.
The advantages of the greedy algorithm will be demonstrated
from three perspectives, i.e., convergence behaviour, initializa-
tion, and for a scenario with a moving FC. Note that for the
greedy approach, its convergence behaviour depends on the
initial point z0 and the transmission range.

1) Convergence behaviour: In order to analyze the conver-
gence behaviour of the proposed greedy approach, the sensor
network topology in this work is viewed as a grid topology,
such that its transmission range R0 is fixed to the distance
between two neighboring microphone nodes. In this part, we
take the initial point z0 at the position (9, 3) m as an example
to show the convergence behaviour of the greedy algorithm.

The effect of the choice of z0 will be looked into later in this
section.

Fig. 3 illustrates the proposed greedy algorithm (i.e., Algo-
rithm 1) for α = 0.9 using the same experimental setup of
Fig. 2(e). In detail, at the 1st iteration (e.g., k = 1) the R0-
closest candidate set S1 has five sensors. Based on the local
constraint three sensors (in blue) are selected to form the set
S2. The candidate set S1 is then increased by adding the R0-
closest sensors with respect to S2. This procedure continues
for the first 21 iterations. When k = 21, we can see that S2

is completely surrounded by S1, such that if we still use the
local constraint, there would be no new sensors that can be
added to S1, from which we conclude that the local constraint,
i.e., βS1/α, has been satisfied. In order to satisfy the global
constraint on the output noise power, the algorithm is then
switched to the global constraint after the 21st iteration, i.e.,
β/α. Finally, three more iterations are further required the
reach the expected performance.

We can see from Fig. 3, that the proposed greedy method
does not blindly increase the candidate set S1 towards all
possible directions. Instead, S1 is increased only in the in-
formative direction to the source location, such that the less
informative microphones are not included. Furthermore, notice
that the final selected set S2 differs slightly from the model-
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Figure 3. An illustration of the convergence behaviour for the proposed greedy algorithm (i.e., Algorithm 1). The initial point is located at (9, 3) m.

driven approach in Fig. 2(e), as the greedy approach does not
select the sensors that are close to the interfering sources,
but it selects more sensors close to the target source. Hence,
convergence towards the model-based approach is obtained in
the sense of performance, but not in terms of selected sensors
as the solution is not necessarily unique. In general, given an
expected noise reduction performance and transmission power
budget, it could be that more than one microphone subset are
satisfactory. So for the proposed greedy approach, we cannot
guarantee that the final selected subset is unique or entirely
the same as the model-driven approach, but we can make sure
that they have a similar performance.

In Fig. 4, we show the ratio of cardinality of the candidate
set S1 to the total number of sensors M and transmission
power per iteration. The combination of the global and local
constraint is compared to a greedy algorithm that uses only
the global constraint for Algorithm 1. Using only the global
constraint, S1 would blindly increase towards all directions.
Clearly, we see that by using a combination between the local
and the global constraint, much less sensors are included per
iteration, such that the transmission power is kept low.

2) Initializations: In this part, we will show the effect of
the initial point z0 on the convergence rate. Fig. 5 illustrates
the output noise power (in dB) in terms of iterations for four
different initializations, i.e., centre (6, 6) m, source position
(2.4, 9.6) m, interference position (2.4, 2.4) m and FC (9, 3) m.
The red dashed line represents the performance of the model-
driven algorithm proposed in Sec. IV, which selects the most
informative sensors from all the possible candidates. The black
dashed line denotes the performance of the classical MVDR
beamformer using all microphones. The magenta curve shows
the proposed greedy algorithm for the MVDR beamformer.
The blue dashed curve denotes the performance of the utility-
based algorithm [19], [20]. The output noise power of the
greedy algorithm includes two steps: local constraint (βS1/α)
and global constraint (β/α). The moment that the constraint
is switched from the local to the global constraint is indicated
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Figure 4. Cardinality of candidate set and transmission power vs iterations.

by the red marker “×”. When executing the local constraint,
the output noise power decreases fastest for the initialization
at the source position and slowest for the FC initialization.
This is due to the fact that the sensors that are close to the
source are more informative for speech enhancement. After
the algorithm converges based on the local constraint, by
switching to the global constraint, the output noise decreases
further until it reaches the performance of the model-driven
approach. Hence, from a perspective of performance, the
proposed greedy algorithm converges to the model-driven
method. In addition, if the point of initialization is closer to
the source position, the convergence is faster. To conclude, the
initialization only influences the convergence rate, and it does
not affect the final performance. More importantly, for all the
cases of initialization, the proposed greedy approach converges
to the model-driven method in the sense of performance.

Furthermore, from Fig. 5 we observe that the proposed
greedy algorithm converges with much less iterations as com-
pared to the utility-based method, because the latter only se-
lects one sensor in each iteration. Note that in the comparisons
the total transmission cost budgets for the two approaches are
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Figure 5. Output noise power in terms of iterations for different initial point
z0: (a) centre, (b) source, (c) interference, (d) FC.

kept the same. Also, there is no guarantee for the utility-based
method to fulfil the expected performance on the output noise
power. Given the same transmission cost budget, the proposed
greedy algorithm can therefore obtain more reduction in noise
power and converge much faster in terms of iterations.

3) Moving FC: In this part, we will show the advantage
of the greedy algorithm in a dynamic scenario with a moving
FC. In practice, the FC could be moving, because usually it is
regarded as a mobile user. Fig. 6 shows an example of greedy
sensor selection for a moving FC, where the FC moves along
the black dashed rectangle. The starting point is located at (4,
8) m, and at this position it takes 12 steps (9 steps for the
local constraint and 3 steps for the global constraint) for the
greedy algorithm to converge to a feasible informative set. The
changing trend of the previous 11 steps is similar to Fig. 3,
so we merely show the results of the steps 1 and 12 in the
left top subplot in Fig. 6. The FC then slowly moves to the
next position (4, 6.67) m. For the second position, we use
the selected microphone set from the first position to update
the candidate set, and then solve (32). It is found that only
5 iterations (1 for the local constraint and 4 for the global
constraint) are required to obtain convergence. Subsequently,
the FC continues moving. For the next positions, the greedy al-
gorithm only requires about 6 iterations to converge. Hence, in
the dynamic scenario with a moving FC, the proposed greedy
approach can significantly save computational resources. Since
the interferences are Gaussian shaped noise sources, once the
noise correlation matrix Rnn is estimated using the noise-only
segments before the FC starts to move, it can still be used for
the subsequent positions of the FC. Hence, for the moving
FC case, we only need to update Ryy or Rxx based on the
real-time recordings. It is also noteworthy that the FC is not
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Figure 7. Execution time in terms of different initial points.

a microphone and the ATFs (i.e., the steering vector a) stay
the same even when the FC is moving, since the positions of
microphones and the target source are fixed.

An interesting phenomenon occurs in Fig. 6. As the FC
moves further away form the source, we can clearly see the
importance of the sensors that are close to the interference.
When the FC is located at (4, 6.67) m, two sensors close to
the interference are also selected. This cannot be distinguished
when FC = (4, 8) m, where the FC is closer to the source.
Hence, we can conclude that the sensors that are close to the
source, to the FC and to the interference are informative, and
they are helpful to enhance the target source, to save transmis-
sion costs and to cancel the interfering sources, respectively.

E. Complexity analysis

In this subsection, we will compare the computational com-
plexity of the greedy algorithms to that of the model-driven
approach. For the model-driven approach, its complexity is of
the order of O(M3), so we use M3 in the worst case for
analysis without loss of generality. For the proposed greedy
algorithm (i.e., Algorithm 1), suppose that J iterations are
required to converge, in each iteration its complexity is of the
order of O(|S1|3), thus we can use

∑J
j=1 |S1|3 to represent

its computational complexity. For the utility-based greedy
algorithm (i.e., Algorithm 2), we can find that its computa-
tional complexity is of the order of O(|S2|2(|S1| − |S2|)) for
each iteration from [19], thus

∑J
j=1 |S2|2(|S1| − |S2|) can be

exploited to represent its total complexity.
Fig. 7 compares the execution time of the two aforemen-

tioned greedy strategies. The execution time is normalized
by the runtime of model-driven method, whose runtime is 1
as benchmark. From Fig. 7, we can see that the execution
time of the proposed greedy algorithm depends on the initial
point z0, as it will be more expensive for the initial points
that are further from the target source. Furthermore, for
most initial points the proposed algorithm is computationally
more efficient than the utility-based method, because we need
much less iterations (20 iterations compared to 90 iterations
approximately which has already been demonstrated in Fig. 5).

Although the computational complexity of the greedy algo-
rithms could be larger than that of the model-driven algorithm,
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Figure 6. An illustration of the sensor selection based on the proposed greedy algorithm for the moving FC.

it belongs to the data-driven schemes. That is, we do not need
to know the number of microphones in an environment, and
it is unnecessary to inform all microphones to transmit their
recorded data to the FC to estimate the statistics beforehand.
Instead, it is only required to include the closest neighboring
microphone nodes gradually, the FC then updates the statistics
and decides the informative subset. Hence, compared to the
model-driven method which is suitable for static environments,
the greedy approach can be applied to dynamic scenarios,
especially with infinite candidate microphones.

VII. CONCLUSIONS

In this work, we considered selecting the most informative
microphone subset for the MVDR beamfomer based noise
reduction. The proposed strategies were formulated through
minimizing the transmission cost with the constraint on noise
reduction performance. Firstly, if the statistics (e.g., the esti-
mates of noise correlation matrices) are available, the micro-
phone subset selection can be solved in a model-driven scheme
by utilizing the convex optimization techniques. Additionally,
in order to make the sensor selection capable of dynamic
environments, a greedy approach in a data-driven scheme was
proposed as an extension of the model-driven method. The
performance of the proposed greedy algorithm converges to
that of the model-driven approach. More importantly, it works
more effectively in dynamic environments (e.g., with a moving
FC). We concluded that in order to enhance the speech source
as well as to save transmission costs, the sensors close to the
source signal, those close to the FC and some close to the
interferences are of larger probability to be selected, and they
are helpful to enhance the target source, to save transmission
costs and to cancel the interfering source, respectively. In
a more general WASN, the network could consist of larger
number of microphone nodes, which makes the model-driven
approach impractical. The greedy algorithm is still a possible
alternative to handle the microphone subset selection problem.
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Varshney, “Sensor selection for estimation with correlated measurement
noise,” IEEE Trans. Signal Process., vol. 64, no. 13, pp. 3509–3522,
2016.

[15] D. Golovin, M. Faulkner, and A. Krause, “Online distributed sensor se-
lection,” in Proceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks, 2010, pp. 220–231.

[16] S. Rao, S. P. Chepuri, and G. Leus, “Greedy sensor selection for non-
linear models,” in IEEE 6th International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015, pp.
241–244.

[17] T. ElBatt and A. Ephremides, “Joint scheduling and power control for
wireless ad hoc networks,” IEEE Trans. Wireless Commun., vol. 3, no.
1, pp. 74–85, 2004.

[18] H. Zhang, J. Moura, and B. Krogh, “Dynamic field estimation us-
ing wireless sensor networks: Tradeoffs between estimation error and
communication cost,” IEEE Trans. Signal Process., vol. 57, no. 6, pp.
2383–2395, 2009.

[19] A. Bertrand and M. Moonen, “Efficient sensor subset selection and link
failure response for linear MMSE signal estimation in wireless sensor
networks,” in EURASIP Europ. Signal Process. Conf. (EUSIPCO), 2010,
pp. 1092–1096.

[20] J. Szurley, A. Bertrand, M. Moonen, P. Ruckebusch, and I. Moerman,
“Energy aware greedy subset selection for speech enhancement in
wireless acoustic sensor networks,” in EURASIP Europ. Signal Process.
Conf. (EUSIPCO), 2012, pp. 789–793.

[21] K. Kumatani, J. McDonough, J. F. Lehman, and B. Raj, “Channel
selection based on multichannel cross-correlation coefficients for distant
speech recognition,” in Int. Workshop Hands-Free Speech Commun.,
2011, pp. 1–6.

[22] Y. He and K. P. Chong, “Sensor scheduling for target tracking in sensor
networks,” in IEEE Conf. on Decision and Control, 2004, vol. 1, pp.
743–748.

[23] R. C. Hendriks, R. Heusdens, and J. Jensen, “MMSE based noise PSD
tracking with low complexity,” in IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), 2010, pp. 4266–4269.

[24] Otis Lamont Frost III, “An algorithm for linearly constrained adaptive
array processing,” Proceedings of the IEEE, vol. 60, no. 8, pp. 926–935,
1972.

[25] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE Signal Process. Mag., vol. 5, no. 2, pp. 4–24,
1988.

[26] Q. Wang, M. Hempstead, and W. Yang, “A realistic power consumption
model for wireless sensor network devices,” in 2006 3rd annual IEEE
communications society on sensor and ad hoc communications and
networks, 2006, vol. 1, pp. 286–295.

[27] P. C. Loizou, Speech enhancement: theory and practice, CRC press,
2013.

[28] S. P. Chepuri and G. Leus, “Sparse sensing for distributed detection,”
IEEE Trans. Signal Process., vol. 64, no. 6, pp. 1446–1460, 2015.

[29] K. B. Petersen, M. S. Pedersen, et al., “The matrix cookbook,” Technical
University of Denmark, vol. 7, pp. 15, 2008.

[30] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge
university press, 2004.

[31] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
of quadratic optimization problems,” IEEE Signal Process. Mag., vol.
27, no. 3, pp. 20, 2010.

[32] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined
convex programming,” 2008.

[33] J. F. Sturm, “Using SeDuMi 1.02: a Matlab toolbox for optimization
over symmetric cones,” Optimization methods and software, vol. 11, no.
1-4, pp. 625–653, 1999.

[34] R. C Hendriks and T. Gerkmann, “Noise correlation matrix estimation
for multi-microphone speech enhancement,” IEEE Trans. Audio, Speech,
Language Process., vol. 20, no. 1, pp. 223–233, 2012.

[35] M. Pollefeys and D. Nister, “Direct computation of sound and micro-
phone locations from time-difference-of-arrival data.,” in IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), 2008, pp. 2445–2448.

[36] M. Crocco, A. Del Bue, and V. Murino, “A bilinear approach to
the position self-calibration of multiple sensors,” IEEE Trans. Signal
Process., vol. 60, no. 2, pp. 660–673, 2012.

[37] J. Zhang, R. C. Hendriks, and R. Heusdens, “Structured total least
squares based internal delay estimation for distributed microphone auto-
localization,” in Int. Workshop Acoustic Signal Enhancement (IWAENC),
2016.

[38] J. R. Jensen, J. Benesty, and M. G. Christensen, “Noise reduction with
optimal variable span linear filters,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 24, no. 4, pp. 631–644, 2016.

[39] S. Markovich, S. Gannot, and I. Cohen, “Multichannel eigenspace beam-
forming in a reverberant noisy environment with multiple interfering
speech signals,” IEEE Trans. Audio, Speech, Language Process., vol.
17, no. 6, pp. 1071–1086, 2009.

[40] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[41] M. Wax and Y. Anu, “Performance analysis of the minimum variance
beamformer,” IEEE Trans. Signal Process., vol. 44, no. 4, pp. 928–937,
1996.

[42] Y. Zhang, B. P. Ng, and Q. Wan, “Sidelobe suppression for adaptive
beamforming with sparse constraint on beam pattern,” Electronics
Letters, vol. 44, no. 10, pp. 615–616, 2008.

[43] M. O’Connor, W. B. Kleijn, and T. Abhayapala, “Distributed sparse
MVDR beamforming using the bi-alternating direction method of mul-
tipliers,” in IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
2016, pp. 106–110.

[44] E. J. Candes, M. B. Wakin, and S. Boyd, “Enhancing sparsity by
reweighted l1 minimization,” Journal of Fourier analysis and appli-
cations, vol. 14, no. 5-6, pp. 877–905, 2008.

[45] J. S. Garofolo, “DARPA TIMIT acoustic-phonetic speech database,”
National Institute of Standards and Technology (NIST), vol. 15, pp. 29–
50, 1988.

[46] E. A. P. Habets, “Room impulse response generator,” Tech. Rep.
[47] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393–
422, 2002.

Jie Zhang was born in Anhui Province, China, in
1990. He received the M.Sc. degree from the School
of Electronics and Computer Engineering, Shenzhen
Graduate School, Peking University, Beijing, China.
He is currently working toward the Ph.D. degree in
the Circuits and Systems Group at the Faculty of
Electrical Engineering, Mathematics, and Computer
Science, Delft University of Technology, Delft, The
Netherlands.

His current research interests include multimi-
crophone speech processing for noise reduction,

enhancement and sound source localization, binaural auditory, energy-aware
wireless (acoustic) sensor networks.

Sundeep Prabhakar Chepuri (M’16) received his
M.Sc. degree (cum laude) in electrical engineer-
ing and Ph.D. degree (cum laude) from the Delft
University of Technology, The Netherlands, in July
2011 and January 2016, respectively. He has held
positions at Robert Bosch, India, during 2007-2009,
and Holst Centre/IMEC-NL, The Netherlands, dur-
ing 2010-2011. He is currently with the Circuits and
Systems Group at the Faculty of Electrical Engineer-
ing, Mathematics and Computer Science of the Delft
University of Technology, The Netherlands.

Dr. Chepuri received the Best Student Paper Award for his publication at the
ICASSP 2015 conference in Australia. Currently, he is an Associate Editor of
the EURASIP Journal on Advances in Signal Processing. His general research
interest lies in the field of mathematical signal processing, statistical inference,
sensor networks, and wireless communications.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. **, NO. *, ** 2018 14

Richard Christian Hendriks was born in
Schiedam, The Netherlands. He received the B.Sc.,
M.Sc. (cum laude), and Ph.D. (cum laude) degrees
in electrical engineering from the Delft University of
Technology, Delft, The Netherlands, in 2001, 2003,
and 2008, respectively. He is currently an Assistant
Professor in the Circuits and Systems (CAS) Group,
Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology.
His main research interest is on audio and speech
processing, including speech enhancement, speech

intelligibility improvement and intelligibility modelling. In March 2010,
he received the prestigious VENI grant for his proposal “Intelligibility
Enhancement for Speech Communication Systems”. He obtained several
best paper awards, among which the IEEE Signal Processing Society best
paper award in 2016. He is an Associate Editor for the IEEE/ACM Trans.
on Audio, Speech, and Language Processing and the EURASIP Journal on
Advances in Signal Processing.

Richard Heusdens received the M.Sc. and Ph.D.
degrees from Delft University of Technology, Delft,
The Netherlands, in 1992 and 1997, respectively.
Since 2002, he has been an Associate Professor in
the Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technol-
ogy. In the spring of 1992, he joined the digital
signal processing group at the Philips Research
Laboratories, Eindhoven, The Netherlands. He has
worked on various topics in the field of signal
processing, such as image/video compression and

VLSI architectures for image processing algorithms. In 1997, he joined the
Circuits and Systems Group of Delft University of Technology, where he
was a Postdoctoral Researcher. In 2000, he moved to the Information and
Communication Theory (ICT) Group, where he became an Assistant Professor
responsible for the audio/speech signal processing activities within the ICT
group. He held visiting positions at KTH (Royal Institute of Technology,
Sweden) in 2002 and 2008 and was a guest professor at Aalborg University
from 2014-2016. He is involved in research projects that cover subjects such
as audio and acoustic signal processing, speech enhancement, and distributed
signal processing.


