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SUMMARY

In speech processing applications, e.g., speech recognition, hearing aids (HAs), video
conferencing, and human-computer interaction, speech enhancement or noise reduc-
tion is an essential front-end task, as the recorded speech signals are inevitably cor-
rupted by interference, including coherent/incoherent noise and reverberation. Tradi-
tional noise reduction algorithms are mostly based on spatial filtering techniques using
a microphone array. The performance of the noise reduction algorithms scales with the
number of microphones that are involved in filtering, but a large-sized microphone array
cannot be mounted in many realistic systems, e.g., HAs. In the last few decades, with a
great development in micro-electro-mechanical systems, wireless devices are more and
more commonly-used in our daily life, like the smartphone, laptop, wireless HA, and
ipad. These devices have acoustic sensors equipped and a capability of wireless com-
munication, leading to a wireless acoustic sensor network (WASN). The WASN can be
organized in a centralized fashion where all the devices are only allowed to connect with
a fusion center (FC), or in a decentralized way where the devices are connected with the
close-by counterparts via wireless links. This WASN can resolve the disadvantages of the
traditional microphone array systems, since the wireless devices can be placed anywhere
in the vicinity and one device is able to make use of measurements from other external
devices. More importantly, the acoustic scene can be sampled more comprehensively,
resulting in a potential improvement in noise reduction performance.

Due to the fact that these wireless devices are usually battery powered, it is desirable
that the noise reduction task is accomplished before each device uses up its power bud-
get, such that the life-time of the network can be improved. It is therefore important to
make use of the total power budget as efficiently as possible. The power usage in terms of
data transmission is related to the number of sensors, the distance and the transmission
rate between two communicating nodes. In this thesis, we will mainly focus on saving
the total power usage over the WASN while maintaining an expected signal/parameter
estimation performance.

First, we consider a strategy of sensor selection for improving the WASN energy effi-
ciency, since the total power usage is directly affected by the number of sensors, as the
more sensors that are involved in spatial filtering, the higher power usage is required for
data aggregation in a WASN. The sensor selection problem is formulated as minimizing
the total power usage given a constraint on the output noise variance. Under the utiliza-
tion of a minimum variance distortionless response (MVDR) beamformer, the optimal
subset of sensors can be found by using convex optimization techniques. Then, the se-
lected sensors will use full-rate quantization to send their measurements to the FC for
the subsequent beamforming. Experimental results show that the sensors close to the
target source(s), those around the FC and some next to the coherent noise sources are
more likely to be chosen.

Second, we consider a strategy of rate distribution for improving the WASN energy

xi
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efficiency, since the power usage is also related to the communication rate. The afore-
mentioned sensor selection is actually a hard decision on the status of the sensors, while
rate distribution allows for a soft decision on the sensors. In other words, we now al-
low the sensors to communicate with the FC at any possible rate between zero and a
pre-defined maximum value. Such a rate distribution problem is formulated similarly,
i.e., minimizing the total power usage subject to a constraint on the desired noise re-
duction performance, but the optimization unknowns are the integer rates rather than
the Boolean selection variables. Both sensor selection and rate distribution can save
the power usage and guarantee the expected noise reduction performance. By leverag-
ing the multiple decision strategy, rate distribution can further reduce the power usage
compared to sensor selection. Further, we consider a more complicated but practical
scenario of a large-scale WASN consisting of HAs. For the HA user, it is necessary not
only to suppress the interfering sources, but also to preserve the binaural cues of all ex-
isting directional sources. The binaural linearly constrained minimum variance (LCMV)
beamformer is capable of performing joint noise reduction and binaural cue preserva-
tion. The proposed rate-distribution algorithm can thus easily be applied in this scenario
by substituting the binaural LCMV beamformer into the original problem formulation.
In addition, since the centralized implementation is not robust against changes in the
network topology, particularly if the FC drops out from the network, we extend the con-
sidered rate distribution approach to a fully decentralized fashion.

Finally, we consider the rate distribution problem in the context of estimating relative
acoustic transfer function (RTF), since the beamformers rely on the RTF information.
More importantly the sensor selection or rate distribution method that was proposed be-
fore is based on the RTF. Estimating the RTF can be achieved by exploiting the noise and
noisy correlation matrices, while estimating these correlation matrices requires a large
amount of data transfer. Hence, rate distribution is an option for saving the power usage
in RTF estimation. For this, we consider two well-known RTF estimation approaches,
i.e., covariance subtraction (CS) and covariance whitening (CW), and analyze their per-
formance in terms of bit rate. Following the rate-distribution formulation in the context
of noise reduction, we also propose to minimize the total power usage under a constraint
on an expected RTF estimation accuracy. We find that the resulting rate distribution is
mainly affected by the distance between the sensors and the FC and the signal-to-noise
ratio. It is shown that many bits in microphone recordings are redundant and the full-
rate transmission is certainly unnecessary.



SAMENVATTING

In spraakverwerkingstoepassingen, zoals spraakherkenning, hoorapparaten (HAs), vi-
deoconferenties, en de interactie tussen mens en computer, zijn spraakversterking of
ruisreductie een belangrijke front-end taak. Het is namelijk onontkoombaar is dat de
opgenomen spraaksignalen interferentie bevatten, waaronder coherente/incoherente
ruis en reverberatie. Traditionele ruisreductie algoritmes zijn vooral gebaseerd op spa-
tiele filter technieken met een microfoon array. De prestaties van ruisreductie algoritmes
schalen met het aantal microfoons die worden gebruikt voor het filteren. Echter, grote
microfoon-arrays kunnen vanwege de afmetingen vaak niet worden gecombineerd met
toepassingen zoals HAs. In de laatste decennia, door een sterke ontwikkeling in micro-
elektro-mechanische system, zijn draadloze apparaten steeds normaler geworden in ons
dagelijks leven. Denk hierbij aan bijvoorbeeld de smartphone, laptop, draadloze HAs, en
de iPad. Dergelijke apparaten zijn uitgerust met akoestische sensoren en kunnen draad-
loos communiceren, en vormen zo een draadloos akoestisch sensor netwerk (WASN).
Een WASN kan worden geordend op een gecentraliseerde manier waar alle apparaten
alleen mogen verbinden met een fusiecentrum (FC), of op een gedecentraliseerde ma-
nier waar apparaten zijn verbonden met hun nabijliggende tegenhangers via draadloze
verbindingen. Een dergelijk WASN kan de nadelen van traditionele microfoon-array sys-
temen opheffen, aangezien de draadloze apparaten overal in de nabijheid kunnen wor-
den geplaatst, en elk apparaat gebruik kan maken van de metingen van andere externe
apparaten. Belangrijker is dat de akoestische omgeving beter kan worden bemonsterd,
wat resulteert in een potentiele verbetering van de ruisreductie prestaties.

Doordat deze draadloze apparaten meestal in energie worden voorzien door een bat-
terij, is het wenselijk dat ruisreductie wordt bewerkstelligd voordat elk apparaat zijn ver-
mogensbudget verbruikt, zodat de levensduur van het netwerk kan worden verbeterd.
Het vermogensverbruik in termen van datatransmissie is gerelateerd aan het aantal sen-
soren, de afstand, en transmissiesnelheid tussen twee communicerende nodes. In deze
scriptie zullen we ons vooral concentreren op het besparen van het totale energiever-
bruik in de WASN, terwijl de verwachte signaal/parameter-schatting in stand wordt ge-
houden.

Als eerste beschouwen we een sensorselectie-strategie om de energie-efficiëntie van
het WASN te verbeteren, aangezien het totale energieverbruik direct gerelateerd is aan
het aantal sensoren, alsmede doordat een hoger energieverbruik nodig is voor data-
aggregatie wanneer er meer sensoren zijn betrokken bij het spatiele filteren. Dit sen-
sorselectie probleem is geformuleerd als het minimaliseren van het totale energiever-
bruik gegeven een beperking op de output ruisvariantie. Door gebruik te maken van
een minimum variance distortionless response (MVDR) beamformer kan de optimale
subset van sensoren worden gevonden door convexe optimalisatietechnieken. De gese-
lecteerde sensoren kunnen dan hun metingen kwantiseren en naar de FC sturen om te
beamformen. Experimentele resultaten tonen aan dat de sensoren dichtbij de akoesti-

xiii
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sche bron, de sensoren dichtbij de FC, en de sensoren nabij coherente ruisbronnen met
meer waarschijnlijkheid worden gekozen.

Als tweede overwegen we een strategie voor de herverderling van de bit-rate om de
energie-efficiëntie van de WASN te verbeteren. Het energieverbruik wordt namelijk ook
bepaald door de communicatie bit-rate. De eerder beschreven sensorselectie is in feite
een harde beslissing over de status van de sensoren, terwijl bit-rate verdeling het mogelijk
maakt om een zachte beslissing te nemen. Met andere woorden, we staan nu toe dat de
sensoren kunnen communiceren met de FC met elke transmissiesnelheid tussen nul bits
en een gegeven maximale waarde. Een dergelijk bit-rate herverdelingsprobleem wordt
op een gelijkaardige manier geformuleerd als het sensor selectie probleem. Namelijk als
het minimaliseren van het totale energieverbruik onderworpen aan een beperking op de
gewenste ruisreductie prestaties, waarbij de optimalisatievariabelen nu gehele getallen
zijn in plaats van Booleaanse selectievariabelen. Zowel sensorselectie als bit-rate herver-
deling kunnen energie besparen, en waarborgen de verwachte ruisreductie prestaties.
Door gebruik te maken van een meerkeuzige besluitstrategie, kan snelheidsverdeling
het energieverbruik verder verlagen vergeleken met sensorselectie. We overwegen ook
een gecompliceerder maar praktisch scenario van een grootschalig WASN die bestaat uit
HAs. Voor een HA gebruiker is het niet alleen nodig om interfererende bronnen te on-
derdrukken, maar ook om binaurale signalen van alle bestaande directionele bronnen
te behouden. De binaural linearly constrained minimum variance (LCMV) beamformer
is in staat om gelijktijdig ruis te onderdrukken en binaurale signalen te behouden. Het
voorgestelde bit-rate herverdeling algoritme kan dus makkelijk worden toegepast op dit
scenario door de binaurale LCMV beamformer in de originele probleemstelling te ver-
vangen. De gecentraliseerde implementatie is echter niet robuust tegen veranderingen
in de netwerktopologie, vooral als de FC uitvalt. Daarom breiden we deze bit-rate her-
verderling uit naar een volledig gedecentraliseerde vorm.

Tenslotte beschouwen we het bit-rate verdelingsprobleem in de context van het schat-
ten van de relatieve akoestische overdrachtsfunctie (RTF), waar de beamformers gebruik
van maken. Sterker nog, de eerder voorgestelde sensor selectie en snelheidsverdeling
methode zijn gebaseerd op de RTF. Het schatten van de RTF van worden behaald door de
ruis en ruizige correlatiematrices te exploiteren, alhoewel het schatten van deze corre-
latiematrices een grote dataoverdracht vereist. Daarom is bit-rate verdeling een manier
om energie te besparen bij het schatten van de RTF. Om dit te doen overwegen we twee
bekende benaderingen voor het bepalen van de RTF, namelijk covariance subtraction
(CS) en covariance whitening (CW), en analyseren hun prestaties aangaande de bit-rate.
In aansluiting op de bit-rate herverdelingsformulering in de context van ruisreductie,
stellen wij ook voor om het totale energieverbruik te minimaliseren gegeven een beper-
king op de verwachte nauwkeurigheid van de schatting van de RTF. We bemerken dat
de resulterende bit-rate herverdeling vooral wordt bepaald door de afstand tussen de
sensoren en de FC, alsmede de signaal-ruisverhouding. We tonen aan dat veel bits in
microfoonopnames overbodig zijn en dat een maximale bit-rate zeker onnodig is.



1
INTRODUCTION

D URING the last few decades, noise reduction, often-time called speech enhance-
ment, has been widely investigated. In many audio processing applications, e.g.,

speech recognition [1, 2], teleconferencing systems [3], sound source localization [4, 5,
6], mobile robot systems [7, 8], to list a few, it can be exploited as a front-end process
to improve the signal-to-noise ratio (SNR) for subsequent tasks. Other important ap-
plications of noise reduction are the improvement of speech intelligibility for hearing-
impaired listeners [9] and to increase the recognition rate of speech recognition sys-
tems [1, 2]. With regard to the noise reduction problem, both single-microphone algo-
rithms [10, 11, 12, 13] and multi-microphone algorithms [14, 15, 16, 17, 18, 19] can be ex-
ploited. For the single-microphone noise reduction algorithms, only temporal (spectral)
information contained in the input signal is exploited. For the multi-microphone algo-
rithms, also called beamforming, the sound field is sampled both in time and in space,
so that both temporal and spatial information can be used. The multi-microphone tech-
niques can thus achieve a great improvement in the noise reduction performance com-
pared to the single-microphone counterpart.

1.1. CONVENTIONAL MULTI-MICROPHONE NOISE REDUCTION
Conventional multi-microphone noise reduction systems are mostly based on the uti-
lization of a microphone array, as Fig. 1.1 depicts. The microphone array provides multi-
microphone audio measurements, from which both temporal and spatial information
can be employed. In general, the multi-microphone noise reduction methods can be
categorized into two classes: 1) linearly constrained beamforming [14, 15, 20] and 2)
unconstrained beamforming [21, 22, 23]. The most well-known linearly constrained
approach is the linearly constrained minimum variance (LCMV) beamformer [15, 20],
which minimizes the output signal variance subject to a set of linear constraints. For
example, these linear constraints can be used to steer a beam having a response of one
into the directions of the sources of interest and steer a beam having a response of zero
into the directions of the interferers, such that the power of the target sources can ex-
actly be preserved and the noise signals can be entirely suppressed. Due to the explicit
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Figure 1.1: A typical example of the traditional microphone array based speech processing systems.

matrix inversion involved in calculating the LCMV beamformer coefficients, the gener-
alized sidelobe canceler (GSC) [15, 24] is often used as an alternative formulation of the
LCMV beamformer, which can be implemented more efficiently. As a special case of
the LCMV beamformer, the minimum variance distortionless response (MVDR) beam-
former minimizes the output signal variance such that the target signal is undistorted
after spatial filtering, i.e., the MVDR beamformer only takes into account the linear con-
straint associated with a single target source. Hence, in the multi-microphone case the
MVDR beamformer has degrees-of-freedom left to adjust the filter coefficients, leading
to a better noise reduction performance. The LCMV beamformer can cope with multiple
sources at the cost of sacrificing the noise reduction capability. Unconstrained beam-
forming, e.g., multi-microphone Wiener filter (MWF) based algorithms, is based on the
use of a minimum mean square-error (MMSE) estimator, which minimizes the expected
mean square-error (MSE) between the ground truth of the target signal (or the target sig-
nal at a reference microphone) and the estimated target signal (or the estimated target
at the same reference microphone). The MWF can achieve a better noise reduction per-
formance than the linearly constrained beamformers, yet it would also distort the target
signal inevitably, since no constraints related to the target sources/interferers are taken
into account. In order to alleviate this drawback, one can add a constraint for the MMSE
estimator to control the signal distortion level, leading to the speech distortion weighted
MWF (SD-MWF) [23], which can then trade-off the noise reduction capability and the
signal distortion level.

In order to implement the aforementioned multi-microphone noise reduction al-
gorithms, usually the second order statistics (SOS), e.g., noise correlation matrix and
noisy correlation matrix, and the acoustic transfer functions (ATFs) are required. For es-
timating these parameters, data transmission and data processing are necessary. Given
a perfect voice activity detector (VAD), the microphone measurements can be classified
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into noise-only segments and speech-plus-noise segments. The noise and noisy corre-
lation matrices can be estimated during these two periods using sample covariance ma-
trices [25, 26, 27]. The ATFs characterize the channel responses from the sources to the
receivers, which might include a direct-path component and a series of reflections in a
reverberant environment. Instead of using the ATF for beamforming directly, the relative
acoustic transfer function (RTF) can also be used [28, 29, 30]. The RTF is defined as the
normalized ATF with respect to an arbitrarily chosen reference microphone. In practice,
the errors in estimating these involved parameters would significantly affect the perfor-
mance of the aforementioned multi-microphone noise reduction algorithms [31].

There are several limitations of conventional microphone array based noise reduc-
tion systems. From the perspective of system design, an obvious drawback of such tra-
ditional microphone arrays is the fact that it is impractical to rearrange the microphones
in such a wired array, since all the microphones are physically linked. For instance, it is
not convenient to add a new microphone to the array system. Due to the fixed array lay-
out and the fact that the array cannot be placed anywhere, the awareness of sensing the
acoustical scene is limited, in particular when the speech sources of interest are far away
from the microphone array. Moreover, the size of the conventional arrays is another lim-
itation to their practical usage, as typically the maximum array size is determined by
the application at hand. For instance, binaural hearing aids (HAs) can only host a small
number of microphones (usually 2-4 microphones per HA) [32].

1.2. WIRELESS ACOUSTIC SENSOR NETWORK
Nowadays, we are surrounded by portable devices, e.g., smartphones, laptops, hands-
free telephony kits, binaural HAs, each equipped with one or several microphones. These
devices can be positioned anywhere in the vicinity of interest. With the help of wireless
communication capabilities, the devices can communicate (or can be connected) with
other devices or a (remote) fusion center (FC), resulting in a wireless microphone net-
work or so-called wireless acoustic sensor network (WASN). Fig. 1.2 illustrates a typical
example of WASNs, which includes several smartphones, laptops, an HA and a micro-
phone array. Note that each wireless device uses an analog-to-digital converter (ADC) to
convert the analog acoustic signals to the digital versions that can be processed subse-
quently. Also, the radio frequency (RF) module which is usually a small electronic device
is utilized to transmit and/or receive radio signals between two devices.

The utilization of WASNs can potentially overcome the limitations in the context of
traditional microphone array systems and bring several benefits for audio processing
applications. Firstly, the wireless devices can be placed at locations difficult to reach
with conventional wired microphone arrays. The WASNs can thus sample and monitor
a much larger acoustical scene. With such sensor placement, some sensor nodes might
be close to the target speaker location and have a higher SNR. As a result, these sensors
can record high-quality audio measurements that could be very beneficial. Secondly, the
WASNs do not have the array-size limitation. For example, even though the HA applica-
tions require small-sized microphone arrays, the hearing assistive devices can still make
use of the data measurements from other external devices, if these devices can transmit
their recordings to the HAs via wireless links. With these advantages, it is expected that
WASNs might be the next generation for audio acquisition systems [33]. Further, the
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Figure 1.2: A typical example of WASNs, which consists of a couple of wireless devices, e.g., smartphones,
laptops, an HA, a microphone array. The nodes can communicate with the close-by neighbors.
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Figure 1.3: (a) The topology of a centralized microphone network (or centralized WASN), where all the micro-
phone nodes are physically (or wirelessly) connected to the FC. (b) The topology of a distributed WASN, where
each sensor node is allowed to communicate with the neighboring nodes.

WASNs can be constructed more flexibly, e.g., either in a centralized scheme or in a de-
centralized fashion. For the centralized WASNs as shown in Fig. 1.3(a), all the devices are
connected to an FC (similar to the conventional microphone array case, but via wireless
links). In this case, the FC collects the data measurements from all other sensors and
conducts all computations. For the decentralized WASNs as shown in Fig. 1.3(b), there is
no FC and the sensor nodes are connected to their neighboring nodes only. In this case,
all the sensors have to collaborate together to complete the tasks of interest, resulting in
a frequent information exchange over the WASN.
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1.3. ENERGY-AWARE NOISE REDUCTION IN WASNS
An important challenge for signal processing in wireless sensor networks (WSNs) in gen-
eral and WASNs in particular is the energy consumption, as in practice the sensors are
usually battery driven with a limited energy budget. When a sensor node is depleted of
energy, it will die and will be disconnected from the network. This will degrade the per-
formance of the application significantly if such a sensor is very informative, e.g., having
a high SNR. Hence, the life expectation of the WASNs is directly affected by the power
consumption. It is important to make use of the energy budget as efficiently as possible,
such that the network lifetime can be maximized. Generally speaking, the power within
the context of WASNs is consumed by two processes: data transmission and data pro-
cessing [34, 35]. The data transmission occurs between all the nodes and the FC in the
centralized setup, or between neighboring node pairs in the decentralized setup. The
data processing is conducted at the FC end in the centralized case, or distributed over
the nodes in the decentralized case.

The power consumption of each individual device depends on the transmission en-
ergy and the power for having it activated. If a sensor is turned off, it has no power con-
sumption. If a sensor is turned on, its power consumption will then be the summation
of the power for having the sensor activated, the transmission energy and the processing
power. The transmission energy of the activated sensors depends on the transmission
distance, transmission rate (in bits per sample) and the noise power spectral density
(PSD) of the communication channel [36, 37, 38]. The larger the transmission distance
(the transmission rate or channel noise PSD), the higher the transmission energy. In
addition, the total power consumption over the WASNs is the summation of the power
consumption of all devices, and the number of the activated sensors will thus affect the
total power consumption as well. Therefore, in order to improve the energy efficiency of
noise reduction techniques or signal parameter estimation algorithms in WASNs, differ-
ent strategies can be designed from different perspectives.

1.4. RESEARCH QUESTIONS
In this section, we will propose several research questions that will be discussed in this
dissertation, together with the motivations behind them.

As the devices in the WASN are equipped with a limited battery resource, they should
use the power resource as efficiently as possible in order to prolong the lifetime of the
network. Extracting the clean target signal(s) from the mixed noisy sensor measure-
ments in a WASN is required by many applications, and can be achieved using multi-
microphone spatial filtering techniques, e.g., MVDR, LCMV, MWF as mentioned in Sec. 1.1.
Let f (w,x) denote a cost function representing the total power consumption over the
WASNs, i.e., the total transmission costs between all the sensor nodes or power needed
to keep sensors turned on. Obviously, the total power consumption will depend on the
applied beamformer weights w (e.g., having a weight of zero for a particular sensor im-
plies no transmission of data is necessary). Further, it is expected that the total power
consumption depends on some additional parameters x, which can represent transmis-
sion bit-rate or selection variables. In addition, let g (w,x) denote the performance or
distortion metric, e.g., output noise power, output SNR or output intelligibility of the
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multi-microphone spatial filter when applying filter w. We can then formulate the fol-
lowing two related constrained optimization problems, that are,

minimize
w,x

f (w,x) subject to g (w,x) ≤β, (1.1)

minimize
w,x

g (w,x) subject to f (w,x) ≤C , (1.2)

where C denotes the total power budget. Notice that in (1.1) we considered g (w,x) to
be a distortion with β the maximum allowable distortion, but in the case where g (w,x)
represents a performance metric, the inequality sign should be replaced by a larger or
equal sign. As a result, the optimization problem (1.1) can be interpreted as the following
research question:

Q1: Given a prescribed performance, can we design an effective strategy for saving the
power consumption over WASNs?

Depending on the exact physical meaning of the vector variable x in (1.1), we can in-
vestigate different optimization strategies, leading to several varieties of research ques-
tion Q1. Firstly, it is possible that some nodes are closer to the target sources, having a
higher SNR and some nodes are closer to the interferers having a lower SNR. Although in-
cluding more sensors in the beamformer will generally increase the noise reduction per-
formance, it will also consume more transmission power, because all the sensor nodes
have to transmit their data to the FC in a centralized WASN. Moreover, clearly, not all sen-
sors are as informative. To achieve a certain expected performance, it could be that we
do not need to use all the measurements from all the sensors, i.e., a subset of the sensors
might be sufficient. Instead of blindly using all the sensors, selecting the most infor-
mative subset of sensors for noise reduction algorithms would significantly decrease the
amount of the transmitted data, leading to a saving of transmission cost and commu-
nication bandwidth. Therefore, from the perspective of sensor selection, the research
question Q1 can be made more specific as

Q1.1: Given a certain expected performance, can we choose a subset of microphone
nodes that minimizes the power consumption for beamforming?

From the perspective of signal acquisition, the sensor measurements are already
quantized via ADCs. In case we use full-rate transmission for the raw data, as is typically
done, a larger amount of energy usage will be required compared to the situation where
signals are quantized at lower rates, obviously, at the cost of introducing more quantiza-
tion noise. The wireless transmission power is directly related to the bit rate (e.g., an ex-
ponential relationship). This makes it worth to take into account the bit-rate allocation
among the different sensor nodes before transmission. Given the desired performance,
it is possible that certain information is redundant and lower rates are sufficient and
more energy efficient. Making use of the bit-rate budget as efficiently as possible would
be an effective way to save the energy consumption. Therefore, from the perspective of
rate distribution, the research question Q1 can also be further specified as
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Q1.2: Given a certain expected performance, how to efficiently distribute the bits for
signal quantization in order to reduce power consumption?

Since the topology of the considered WASN could be time-varying, it is more prefer-
able to organize the network in a decentralized way, resulting in the requirement of dis-
tributed beamforming based noise reduction algorithms. Given the research question
Q1, it is then natural to ask whether

Q2: Given a prescribed noise reduction performance, how to design an efficient data
transmission strategy between nodes to reduce the power consumption for dis-
tributed beamforming?

One of the potential applications of WASNs are hearing aids (HAs). In addition to per-
forming noise reduction, HAs typically have to satisfy certain constraints on the preser-
vation of the spatial sound information. These are often referred to as spatial cues. In
such WASNs for HAs, it is thus required to jointly perform noise reduction and spatial
cue preservation for the HA users. The additional microphones in the WASN offer addi-
tional advantages over the use of a conventional pair of HAs. Among these advantages
is the improved ability of noise reduction (or improved speech intelligibility), and, the
improved ability to preserve binaural spatial cues of interfering sources. Roughly speak-
ing, it holds that the more sensors are involved, the higher the degrees of freedom to
perform jointly noise reduction and spatial cue preservation. However, incorporating all
the existing devices in the WASN at full quanization rate might consume a larger than
necessary amount of transmission power. This leads to the following hearing-aid related
research question:

Q3: For the hearing-aid devices, how to efficiently make use of the measurements from
external devices to jointly achieve noise reduction and binaural cue preservation?

Typically, multi-microphone noise reduction algorithms require knowledge on the
ATFs or RTFs of the target sources with respect to the devices. Depending on the ex-
act formulation, this can be implicit (via a dependency on the target correlation matrix),
or explicit. In practice, the ATF or RTF is unknown and needs to be estimated. Within
the WASN context, this comes with transmission and quantization of data and raises the
question what the optimal rate distribution in terms of energy consumption is in order
to obtain a prescribed performance. For the RTF estimation problem, two well-known
methods are available. These are the covariance subtraction (CS) method [39, 40, 41, 42,
43] and covariance whitening (CW) method [18, 29, 44, 45]. Both approaches require
estimates of correlation matrices. In a centralized setup, estimating these two matri-
ces is performed via average smoothing over a sufficiently long period of sensor mea-
surements after all the measurements are quantized and transmitted to the FC. Hence,
similar to the noise reduction problem, there is a trade-off between the RTF estimation
accuracy and the total energy consumption, leading to the following research question
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Q4: Given a prescribed RTF estimation accuracy, can we design an effective data trans-
mission strategy for saving the power consumption over WASNs?

1.5. STRUCTURE OF THE DISSERTATION
In this section, we will present the structure of this dissertation by summarizing the con-
tribution of each included chapter.

1.5.1. CHAPTER 2: BACKGROUND

This chapter will give a more mathematical description of the fundamental knowledge
and the research questions that are discussed in this dissertation. First, we present the
general signal model, sensor selection model, rate distribution problem and assump-
tions that are used throughout the dissertation. Furthermore, we review the conven-
tional multi-microphone spatial filtering based noise reduction algorithms (e.g., MVDR,
LCMV) and a distributed implementation of the linearly-constrained beamformers. In
addition, the CS and CW methods for RTF estimation are presented.

1.5.2. CHAPTER 3: MICROPHONE SUBSET SELECTION

This chapter answers research question Q1 from the perspective of sensor selection, i.e.,
corresponding to Q1.1. In this chapter, we consider microphone subset selection for
MVDR beamforming based multi-microphone noise reduction in WASNs. The tradi-
tional sensor selection problem is usually formulated by optimizing the performance
measure subject to a constraint on the cardinality of the selected sensors, or the other
way around. However, in the context of WASNs, we might not know how many sensors
need to be included. Further, the energy usage is a vital concern within the context of
WASNs. Therefore, we reformulate the sensor selection problem by minimizing the total
transmission cost between all the sensor nodes and the FC and constraining the output
noise power. Optimizing this sensor selection problem results in the best subset of sen-
sors that satisfies the noise reduction performance and has the minimum transmission
power.

For the proposed sensor selection problem, we present two methods for solving it.
First, following convex optimization techniques, we derive the initial problem as a semi-
definite optimization problem, which is based on the correlation matrices of the micro-
phone measurements of the complete network or the ATFs. Given the correlation matri-
ces or the ATFs, the sensor selection problem can be solved, which is called model-driven
sensor selection. However, this model-driven method is impractical, since it depends on
the statistical information of the complete network which is usually unavailable. In prac-
tice, we even do not know how many sensors are present in the WASNs, due to the fact
that the wireless devices are free to join or leave the network. In order to make the pro-
posed model-based method practical and avoid estimating the statistics beforehand, we
further propose a greedy sensor selection approach, which is called data-driven sensor
selection. It is shown that the performance of the greedy approach converges to that of
the model-driven method, while it displays advantages in dynamic scenarios (e.g., with
a moving FC). The sensors close to the target source(s), those close to the FC and some
close to the interferers are more likely to be selected, since they have a higher SNR for
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signal enhancement, a shorter distance for reducing transmission cost, and more infor-
mation on noise sources for noise suppression, respectively.

1.5.3. CHAPTER 4: CENTRALIZED RATE DISTRIBUTION

This chapter answers research question Q1 from the perspective of rate distribution, i.e.,
corresponding to Q1.2. In Chapter 3, we consider the use of sensor selection strategy to
reduce the total transmission cost over the WASNs, which means that the decision on a
sensor’s status is binary, i.e., selected or not selected. If a sensor is selected, it will use
full-rate quantization to communicate with the FC; if not, it will be turned off (or zero
rate is allocated). In this chapter, we consider a more general selection strategy, which
is called rate distribution. Differing from the sensor selection, rate distribution allows
for a soft decision on the sensors, i.e., the sensor measurements can be quantized at any
bit rate from zero to the maximum bit rate. Only if a sensor is allocated with zero bits, it
is not selected from the perspective of sensor selection; otherwise it is selected. As the
transmission power between the sensors and the FC is related to the bit rate, we can also
reduce the energy consumption by optimizing the rate distribution.

Similar to the problem formulation in Chapter 3, in this chapter we minimize the to-
tal transmission power between all the sensors and the FC subject to a constraint on the
output noise power, which is an integer optimization problem. Now, the optimization
variable is not the binary selection variable anymore, but an integer valued bit-rate vec-
tor. Using convex optimization techniques and under the utilization of an LCMV beam-
former, the rate distribution problem can also be derived as a semi-definite program.
Additionally, in this chapter we investigate the relationship between sensor selection and
rate allocation in a theoretical fashion. It can be shown that rate allocation is a general-
ization of sensor selection. More specifically, the sensor selection problem can be solved
by considering the rate allocation problem. The best microphone subset can be deter-
mined by thresholding the bit rates, e.g., the sensors whose rates are larger than a certain
threshold should be chosen for the sensor selection method. We also propose a bisec-
tion method for determining this threshold. Experimental results in simulated WASNs
show that the sensors that are closer to the sources and the FC will be allocated with
higher rates. Given the same constraint on noise reduction performance, if we neglect
the power for having a sensor activated, the rate allocation method can always save more
transmission power than the sensor selection method. However, if we take the power for
having a sensor activated into account, this will not be always the case. More specifically,
if this power is small, rate distribution is more cheaper in energy usage; otherwise sensor
selection is more economical in transmission.

1.5.4. CHAPTER 5: DECENTRALIZED RATE DISTRIBUTION

This chapter answers research question Q2, i.e., rate distribution in the context of dis-
tributed beamforming. The centralized organization of WASNs has several limitations.
Firstly, the amount of data that needs to be transmitted and saved at the FC scales up
with the network size, which is a heavy load to the FC. Secondly, all the computations
are performed at a single node and a disconnection of the FC will cause full collapse of
the network. Thirdly, it will be very power demanding if the FC is far away from the sen-
sors. In order to avoid these limitations, decentralized algorithms are preferred, since in
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the decentralized setting, the beamformer calculation is distributed over all the nodes
and the information exchange takes place between two neighboring nodes.

In this chapter, we present for the rate-distributed LCMV beamforming that was pro-
posed in Chapter 4 a corresponding decentralized solution. We decentralize the ob-
tained LCMV filter structure by exploiting an imposed block diagonal form of the noise
correlation matrix. To calculate the beamformer weights in a decentralized fashion, the
transmission rate between two neighboring nodes needs to be determined. For this, we
reformulate the centralized rate distribution problem in a node-separable form, then we
conclude that each node can determine its quantization rate locally without any infor-
mation exchange. In a simulated WASN, we show that the proposed decentralized algo-
rithm can achieve the same noise reduction performance as the centralized method, but
consumes less power. In the decentralized setting, the sensors having a higher SNR will
be allocated with a higher rate compared to the sensors having a lower SNR.

1.5.5. CHAPTER 6: RATE-DISTRIBUTED BINAURAL LCMV BEAMFORMING

This chapter investigates the situation where an HA is part of a bigger WASN and simul-
taneous noise reduction and preservation of spatial information is desired. With this ap-
plication, we demonstrate a possible application of the rate-distribution LCMV beam-
forming method that was proposed in Chapter 4. More specifically, we study research
question Q3 and provide a strategy to trade-off the noise reduction performance versus
spatial cue preservation capability via optimizing the quantization rate distribution.

In detail, the problem formulation remains the same as what we considered in Chap-
ter 4, while now the FC is assumed to be one of the HAs, i.e., all the other devices should
transmit their measurements to this HA at a certain rate. As the BLCMV beamformer can
jointly perform noise reduction and spatial cue preservation, we substitute the BLCMV
beamformer to the general rate-distribution problem, leading to the proposed rate dis-
tributed BLCMV beamforming problem in the binaural context. For comparison, we
also apply the sensor selection method that was proposed in Chapter 3 to this binaural
context. It is shown that in order to achieve the same noise reduction performance, the
rate-distribution method has to activate more sensors, each at a much lower rate than
the maximum rate, resulting in a saving of power consumption and a better spatial cue
preservation compared to the sensor selection method.

1.5.6. CHAPTER 7: RELATIVE TRANSFER FUNCTION ESTIMATION

This chapter answers research question Q4. From the previous chapters, we can con-
clude that rate distribution is an effective way for saving the power consumption over
WASNs. RTFs are required for practically any beamforming algorithm and can be cal-
culated from the correlation matrices. However, in practice, correlation matrices are
unknown as well and need to be estimated. Estimating the correlation matrices requires
a large amount of data aggregation. As a result, the transmission rate will also affect
the RTF estimation accuracy directly. Following the idea of optimizing the rate distribu-
tion that was used in the previous chapters, we propose rate-distributed RTF estimation
methods in this chapter.

As the CS and CW methods are the most often-used methods for estimating RTFs, we
first analyze the estimation accuracy of these two methods in terms of the quantization
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rate. Then, we propose to minimize the total transmission power between all the sensor
nodes and the FC, subject to a constraint on the RTF estimation accuracy. Substitut-
ing the error models of the two methods to the general problem formulation, we obtain
two corresponding semi-definite programs for rate distribution, which are model-driven
approaches. From the derivations, we find that the model-driven methods are based on
the true RTF vector, which limits their practical usage. To alleviate this drawback, we fur-
ther propose two corresponding data-driven approaches. Due to the fact that in practice
the sensors send quantized data to the FC on a segment-by-segment basis, the FC can
estimate the parameters that are required by the model-driven methods using the previ-
ously received segments and calculate the rate distribution by solving the model-driven
optimization problems, then the sensors can use the obtained rate to transmit the new
segment. In a simulated WASN, it is shown that to satisfy the same RTF estimation per-
formance, the rate-distributed CW methods need less rate budgets, i.e., less transmis-
sion power, than the CS-related methods. With increasing the number of segments, the
performance of the data-driven methods converges to that of the corresponding model-
based approaches.

1.5.7. CHAPTER 8: CONCLUSIONS

In this chapter, we draw some final conclusions of this dissertation. In addition, we de-
scribe some open challenges and interesting questions. Also, we give some suggestions
towards these open topics for future research.
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2
BACKGROUND

C HAPTER 1 presented a high-level problem description for multi-microphone noise
reduction in WASNs and the motivations behind that. In order to concisely look

into the different research questions, some preliminaries are required. In this chapter,
we therefore give an overview of the background knowledge required to read this thesis,
including the signal model, classic spatial filtering techniques, sensor selection, quan-
tization, binaural LCMV beamforming with spatial cue preservation, distributed LCMV
beamforming and classic RTF estimation methods. This background knowledge is re-
quired for reading the remaining chapters of this dissertation.

2.1. SIGNAL MODEL
We consider a WASN consisting of M microphone nodes that are involved to monitor
and sample the sound field of interest. Note that in practice each node can be equipped
with a single microphone or a small microphone array. Assume that I target sources and
J interfering sources are present in the environment. Let si (t ), i = 1, · · · , I and u j (t ), j =
1, · · · , J , respectively, denote the i th target source signal and the j th interfering source
signal in the time domain. Due to the presence of reverberation, the source signals prop-
agate to the microphone nodes through a direct path and a series of reflection paths as
illustrated in Fig. 2.1. In the time domain the microphone recording yk (t ) can be given
by

yk (t ) =
I∑

i=1

(
si ∗ äi k

)
(t )+

J∑
j=1

(
u j ∗ ḧ j k

)
(t )+ vk (t ),k = 1, · · · , M , (2.1)

where ∗ denotes convolution, äi k (t ) denotes the room impulse response (RIR) from the
i th target source location to the kth microphone node, ḧ j k (t ) the RIR of the j th interfer-
ing source with respect to the kth microphone node, and vk (t ) the spatially uncorrelated
noise at the kth microphone node, e.g., sensor-self noise.

In the short-time Fourier transform (STFT) domain, let l denote the frame index and
ω the angular frequency index, respectively. Let Si (ω, l ), U j (ω, l ) and Vk (ω, l ) denote the

13
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s: target

u: noise

Figure 2.1: An illustrative model for signal acquisition in WASNs: the target and interfering sources propagate
to the microphone nodes through a direct path and a couple of reflection paths.

STFT coefficients of si (t ), u j (t ) and vk (t ), respectively. The corresponding STFT-domain
description of the time-domain signal yk (t ) is then given by

Yk (ω, l ) =
I∑

i=1
Si (ω, l )ai k (ω, l )+

J∑
j=1

U j (ω, l )h j k (ω, l )+Vk (ω, l ),k = 1, · · · , M , (2.2)

where ai k (ω, l ) (or h j k (ω, l )) is the discrete Fourier transform (DFT) of äi k (t ) (or ḧ j k (t )),
which is then called the acoustic transfer function (ATF). Throughout this dissertation,
we assume that the ATFs of all existing sources are time-invariant, that is, the ATFs are
only frequency dependent, such that the index l can be neglected for ai k (ω, l ) and h j k (ω, l ).
This assumption is approximately true in case the sources keep static and the RIRs are
shorter than the length of the STFT analysis window. For longer RIRs, e.g., in strong
reverberant environments, a more accurate signal model is required. For the sake of no-
tational brevity, we will neglect the frequency indexω and the frame index l in the sequel
as all operations are performed per frequency band and per time frame independently.

Using vector notation, we stack for each frequency bin the microphone recordings
in an M-dimensional vector y= [Y1,Y2, · · · ,YM ]T ∈ CM where (·)T denotes matrix/vector
transposition. Similarly, we define M-dimensional vectors:

xi =


Si ai 1

Si ai 2
...

Si ai M

 , ai =


ai 1

ai 2
...

ai M

 , n j =


U j h j 1

U j h j 2
...

U j h j M

 , h j =


h j 1

h j 2
...

h j M

 , v =


V1

V2
...

VM

 ,

for the i th target source received by the WASN, the ATFs of the i th target source with
respect to the WASN, the j th interfering source received by the WASN, the ATFs of the j th
interfering source with respect to the WASN, and the uncorrelated noise components,
respectively, such that we can compactly rewrite the signal model in (2.2) as

y =
I∑

i=1
xi +

J∑
j=1

n j +v, (2.3)
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where xi = ai Si and n j = h jU j . Further, we can collect the ATFs of the target sources in
a matrix A = [a1,a2, · · · ,aI ] ∈ CM×I . Similarly, the ATFs of the interfering sources can be
collected as H = [h1,h2, · · · ,hJ ] ∈CM×J . Then, (2.3) can also be expressed as

y = As︸︷︷︸
x

+Hu+v︸ ︷︷ ︸
n

, (2.4)

where s = [S1,S2, · · · ,S I ]T ∈CI and u = [U1,U2, · · · ,UJ ]T ∈CJ .
We assume that the target sources and the interfering sources are mutually uncorre-

lated, and the sources are zero-mean, such that the relationship between the correlation
matrices can be given by

Ryy = E{yyH } = Rxx +Ruu +Rvv︸ ︷︷ ︸
Rnn

, (2.5)

where

Rxx =
I∑

i=1
E{xi xH

i } =
I∑

i=1
σ2

Si
ai aH

i = AΣxAH , (2.6)

Ruu =
J∑

j=1
E{ni nH

i } =
J∑

j=1
σ2

Ui
h j hH

j = HΣuHH , (2.7)

where Σx = diag([σ2
S1

, · · · ,σ2
SI

]) with σ2
Si

= E{|Si |2} denoting the variance of the i th target

source at a particular frequency bin, and Σu = diag([σ2
U1

, · · · ,σ2
UJ

]) with σ2
U j

= E{|U j |2}

the variance of the j th interfering source. As the sources are assumed to be zero-mean,
σ2

Si
(or σ2

U j
) also represent the power spectral density (PSD) of Si (or U j ). In (2.5), the

second-order statistics (SOS) of all disturbances are included in Rnn. In theory, Rxx is
a rank-I matrix, Ruu is a rank-J matrix, and Ryy is full-rank due to the presence of the
uncorrelated noise components.

In practice, these correlation matrices can be estimated using average smoothing.
Given a voice activity detector (VAD), the microphone recordings can be classified into
noise-only segments and speech-plus-noise segments. During the noise-only period,
the noise correlation matrix can be estimated, like

R̂nn = 1

Ln

Ln∑
l=1

n(l )n(l )H . (2.8)

Similarly, during the speech-plus-noise period, the noisy correlation matrix can be esti-
mated, like

R̂yy = 1

Ly

Ly∑
l=1

y(l )y(l )H . (2.9)

Note that the Ln segments for estimating Rnn and the Ly segments for estimating Ryy

are different. After Rnn and Ryy are estimated, the correlation matrix of the clean signal
components can be obtained by subtracting R̂nn from R̂yy, i.e.,

R̂xx = R̂yy − R̂nn, (2.10)
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Figure 2.2: The spatial beamforming structure for multichannel noise reduction algorithms.

since Rxx ,Ryy−Rnn by definition. In practice, there are errors in estimating the matrices
Rnn and Ryy, leading to a full-rank matrix R̂xx. Note that a more accurate estimate of R̂xx

can be obtained using the generalized eigenvalue decomposition (GEVD) of the matrix
pencil (R̂yy, R̂nn) [41].

2.2. SPATIAL FILTERING
Linearly constrained minimum variance (LCMV) beamforming is a well-known and widely-
used multichannel spatial filtering technique. The LCMV beamformer can be illustrated
by a multiple input single output system as Fig. 2.2 depicts with filter coefficients w =
[w1, w2, · · · , wM ]T . The filter coefficients are adjusted based on the statistics of the noise
signal and can be determined by solving the following constrained optimization prob-
lem [14, 15, 20]:

wLCMV = argmin
w

J (w), subject to ΛH w = f, (2.11)

where the cost function is given by

J (w) = E{|wH n|2} = wH Rnnw, (2.12)

and U equality constraints with f = [ f1, f2, · · · , fU ]T ∈ CU and Λ ∈ CM×U are taken into
account. Applying the technique of Lagrange multipliers, a closed-form solution to (2.11)
can be found as

wLCMV = R−1
nnΛ

(
ΛH R−1

nnΛ
)−1

f. (2.13)

The structure of Λ and f should be specified according to the requirements of the appli-
cation. For example, in caseΛ= A and f = 1I with 1I denoting an I -dimensional all-ones
column vector, the LCMV beamformer will be used to preserve the signals that come
from the directions that are characterized by the ATFs in A and try to suppress the sig-
nals that come from all other directions. In a slightly alternative formulation,Λ and f can
also be used to cancel (null) certain interferers, or, to preserve spatial cues in a binaural
hearing aid setting [46, 47, 48, 49], which will be discussed in Sec. 2.5 in detail.

After being processed by an LCMV beamformer, the output signal is thus given by

Ŝ = wH
LCMVy. (2.14)
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and the power (or variance) of the output noise signal can be computed as

J (w) = wH Rnnw = fH
(
ΛH R−1

nnΛ
)−1

f, (2.15)

and the output signal-to-noise (SNR) can be calculated by

SNRout = wH Rxxw

wH Rnnw
. (2.16)

Remark 1. In caseΛ= A with A = [a1,a2, · · · ,aI ] ∈CM×I and f = 1I are used in the general
LCMV beamforming problem formulation, that is, the LCMV beamformer is used to ex-
actly preserve the power of the target sources by constraining AH w = 1I , optimizing (2.11)
is equivalent to

wLCMV = argmin
w

wH Rnnw, subject to AH w = 1I . (2.17)

Suppose the noise signal and the target sources are mutually uncorrelated, the LCMV
beamformer is equivalent to the minimum power distortionless response (MPDR) beam-
former, which is given by1

wMPDR = argmin
w

wH Ryyw, subject to AH w = 1I , (2.18)

since wH Ryyw = wH Rnnw+wH Rxxw = wH Rnnw+Tr(Σx) where Tr(Σx) is a constant that
only depends on the power of the source signals with Tr(·) denoting the trace operation. In
this case, the LCMV beamformer is given by

w = R−1
yy A

(
AH R−1

yy A
)−1

1I = R−1
nn A

(
AH R−1

nn A
)−1

1I , (2.19)

and the corresponding output noise power is given by

J (w) = wH Rnnw = 1H
I

(
AH R−1

nn A
)−1

1I . (2.20)

Furthermore, the output SNR can be derived as

SNRout = wH Rxxw

wH Rnnw
= Tr(Σx)

1H
I

(
AH R−1

nn A
)−1

1I

, (2.21)

since we have wH Rxxw = wH AΣxAH w = 1H
I Σx1I = Tr(Σx).

Remark 2. The well-known minimum variance distortionless response (MVDR) beam-
former is a special case of the LCMV beamformer. Suppose that there is only one source of
interest which is characterized by the ATF vector a. As we wish to only preserve the power of

1Strictly speaking, minimizing wH Ryyw is not equivalent to minimizing wH Rnnw under the same linear con-
straint, due to the estimation errors in the matrices Ryy and Rnn. Here, we assume that the statistics are
perfectly estimated, such that they are equivalent.
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this source and cancel out all the other existing sources, the LCMV beamforming problem
in (2.11) can be reformulated into the following special case

wMVDR = argmin
w

wH Rnnw, subject to aH w = 1. (2.22)

Applying the method of Lagrange multipliers, the solution of the MVDR filter is given by

wMVDR = R−1
nna

(
aH R−1

nna
)−1

. (2.23)

Similarly, after being filtered by an MVDR beamformer, the output SNR can be shown as

SNRout = wH Rxxw

wH Rnnw
= σ2

S(
aH R−1

nna
)−1 =σ2

S aH R−1
nna, (2.24)

with the output noise power wH Rnnw =
(
aH R−1

nna
)−1

and σ2
S the PSD of the single target

source.

2.3. SENSOR SELECTION MODEL
Sensor selection is a sparse sensing techniques for signal inference [50, 51], which chooses
a subset of sensors from a much larger set. From the perspective of signal acquisition,
it chooses a subset of measurements corresponding to the selected sensors. Given M
sensors, sensor selection can be realized by designing a selection vector

p = [p1, p2, · · · , pM ]T ∈ {0,1}M , (2.25)

where pk = 1,∀k indicates that the kth sensor is selected, and pk = 0 means that the
kth sensor is not selected. We can use K = ||p||0 to represent the number of the selected
sensors with the `0-(quasi) norm denoting the number of non-zero entries in vector p.

Let diag(p) denote a diagonal matrix whose diagonal elements are given by p. With
the matrix diag(p) at hand, we can further construct a selection matrix Φp ∈ {0,1}K×M

which is obtained by removing the all-zero rows of diag(p), i.e., the rows corresponding
to the unselected sensors and the fat matrix Φp consisting of a subset of the rows of
diag(p). Based on this construction, we can see that the following two properties hold

ΦT
pΦp = diag(p), ΦpΦ

T
p = IK , (2.26)

where IK is a K -dimensional identity matrix.
Considering the original signal model in (2.4) and using the selection matrix, the se-

lected sensor measurements can be given by

yp =Φpy =Φpx+Φpn. (2.27)

Further, the correlation matrices of the selected measurements can be written as

Ryy,p = E{ΦpyyHΦH
p } =ΦpE{yyH }ΦH

p =ΦpRyyΦ
H
p . (2.28)
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Similarly, we can see that

Rxx,p =ΦpRxxΦ
H
p , Rnn,p =ΦpRnnΦ

H
p . (2.29)

This reveals that Ryy,p, Rxx,p and Rnn,p are the sub-matrices of Ryy, Rxx and Rnn, respec-
tively. For instance, Ryy,p can be obtained by removing the rows and columns of Ryy

corresponding to the unselected sensors.
The considered sensor selection model can be taken into account for the spatial fil-

tering techniques in Sec. 2.2. For example, the classical MVDR beamforming problem
can be extended as

wp = argmin
wp

wH
p Rnn,pwp

= argmin
wp

wH
p ΦpRnnΦ

H
p wp, subject to aH

p wp = 1, (2.30)

where ap =Φpa denotes the ATF vector for the selected sensors. Following the derivation
of the classic MVDR beamformer, the sensor selection based MVDR beamformer is given
by

wp =
R−1

nn,pap

aH
p R−1

nn,pap
, (2.31)

and the output noise power is given by

wH
p Rnn,pwp =

(
aH

p R−1
nn,pap

)−1
. (2.32)

Note that in general R−1
nn,p 6=ΦpR−1

nnΦ
H
p , so wp 6=ΦpwMVDR. Only in case the noise com-

ponents across microphones are mutually uncorrelated, i.e., Rnn is a diagonal matrix, we
will have wp =ΦpwMVDR.

In conventional sensor selection problems, the cardinality of the selected sensors
is of more interest [52, 53, 51, 50, 54, 55]. Usually, the selection strategy is designed by
minimizing the cardinality and constraining the inference performance, as the following
optimization problem shows

minimize
wp,p∈{0,1}M

||p||0

subject to g (wp,p) ≤β,
(2.33)

which is a special case of (1.1). Given the cardinality of p, i.e., it is known how many sen-
sors should be involved, and (2.33) can be reformulated equivalently by interchanging
the objective and the constraint function as

minimize
wp,p∈{0,1}M

g (wp,p)

subject to ||p||0 = K
(2.34)

Both (2.33) and (2.34) are non-convex combinatorial optimization problems, which is
caused by the Boolean constraint on the selection variable p, i.e., the cardinality function
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||p||0 is non-convex in p. One way to approach the optimal solution is by evaluating the

performance of all the
(

M
K

)
possible combinations. Obviously, this is computationally

intractable unless K and M are small.
As we stated in Chapter 1, in large-scale WASNs the cardinality of the selected sen-

sors is of less interest, since it might be the case that we even do not know how many
sensors are available. Instead, saving the total power consumption is our goal. In many
applications, it is more natural to provide a certain expected performance, e.g., a cer-
tain output noise power, a certain speech recognition precision, or a certain predicted
speech intelligibility performance. Hence, following the general problem description in
(1.1), we can reformulate the sensor selection for MVDR beamforming based noise re-
duction problem as

minimize
wp,p∈{0,1}M

f (wp,p) =
M∑

k=1
pk ck

subject to g (wp,p) =
(
aH

p R−1
nn,pap

)−1 ≤β,

(2.35)

where ck denotes the transmission power from the kth sensor to a fusion center (FC).
Again, our reformulated sensor selection problem is still non-convex essentially due to
the Boolean constraint.

In order to solve the aforementioned sensor selection problems, there are two ap-
proaches that can be applied: model-driven schemes and data-driven schemes. The model-
driven methods, e.g., [52, 53, 51, 50, 55], are based on the use of the statistics of the
complete network which needs to be estimated before online data gathering, such that
the convex optimization techniques can be applied to find the optimal subset. That is,
the model-driven sensor selection can be regarded as an offline design. The selected
subset of sensors is thus a priori knowledge of locations where the sensors should be
placed, i.e., sensor placement, such that a prescribed estimation performance is guaran-
teed. However, in many applications the statistics of the measurements of the complete
network is not always available, so that data-driven methods, e.g., greedy approaches [54,
56, 57, 58, 59, 60], should be considered for searching a near-optimal solution. In case
the cost function in the sensor selection problems is submodular [54, 58, 61, 62, 63],
submodularity-based greedy optimization can be exploited. If the submodularity can-
not be leveraged, utility-based greedy methods can be used [59, 60, 64], e.g., at each step
by adding the sensor which has the largest contribution to improve the output SNR or
by removing the sensor that has the least contribution.

2.4. UNIFORM QUANTIZATION
In this work we consider (noisy) microphone recordings that are sampled (i.e., discretized)
and subsequently quantized to a discrete set of levels. This leads to the introduction of
quantization noise. As we study in this work the trade-off between performance and en-
ergy consumption for beamforming in WASNs, we do not only consider transmission of
information at the maximum bit-rate, but also use more coarse quantizers. This will in-
troduce additional noise (quantization noise) into the beamforming problem. In this
section we therefore give a brief overview on the effect of quantization on the signal
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Figure 2.3: A two dimensional representation of a uniform quantizer with eight fixed quantization cells.

model introduced in Sec. 2.1.
Let a be a realization of a continuous random variable A. Any a is quantized to a

value â = Q(a), where â is a realization of random variable Â, the reproduction of A.
This leads to quantization noise nq = â −a. Given b bits per sample that can be used to
quantize a and suppose the random variable A is bounded by a ∈ [−A /2,A /2], i.e., A

denotes the range of A, we can divide the signal range into 2b quantization cells. With
these cells, any value of a can be mapped. Note that the quantization cells can be divided
uniformly or non-uniformly, leading to a uniform quantizer or non-uniform quantizer,
respectively [65, 66]. In this dissertation, we will only consider the use of uniform quan-
tizers for quantizing the microphone recordings. Fig. 2.3 shows a two dimensional rep-
resentation of a uniform quantizer with eight fixed cells.

Suppose the kth sensor uses bk bits per sample for quantizing its measurements and
yk ∈ [−Ak /2,Ak /2] with Ak /2 denoting the maximum absolute value of the kth micro-
phone signal. Under the utilization of a uniform quantizer2, we can then construct 2bk

uniform intervals (or cells) which have a width

∆k = Ak

2bk
,k = 1,2, . . . , M . (2.36)

The reproduction of yk is then given by

ŷk =∆k × round

(
yk

∆k

)
, k = 1,2, . . . , M , (2.37)

where round(·) returns the nearest integer of its argument, and the quantization noise is

2In practice, the microphone recordings are already quantized, since they are sensed by the ADCs. Here, we
introduce this secondary quantization, such that the transmission energy from sensors to the FC can be de-
creased compared to merely transmitting the raw full-rate data. In this case, this quantization noise repre-
sents the error from changing the bit resolution.
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given by
qk = ŷk − yk . (2.38)

As the quantization noise is taken into account, the signal models presented in Sec. 2.1
need to be modified by adding an additional variable qk (ω, l ) or a vector q = [q1, . . . , qM ]T .
Note that the signal range Ak might be different from sensor-to-sensor which is only re-
lated to its own signal observations.

Further, the PSD or variance of the quantization noise is given by [67, 68, 69]

σ2
qk

= ∆
2
k

12
= 1

12
×

(
Ak

2bk

)2

, k = 1,2, . . . , M , (2.39)

and the correlation matrix of the quantization noise across microphones is given by

Rqq = diag
(
σ2

q1
,σ2

q2
, . . . ,σ2

qM

)
. (2.40)

Assuming that the quantization noise and the acoustic signals are mutually uncor-
related3, the correlation matrix of the quantized microphone signals ŷ = [ŷ1, ŷ2, . . . , ŷM ]T

reads
Rŷŷ = E{ŷŷH } = Rxx +Rnn +Rqq︸ ︷︷ ︸

Rn+q

. (2.41)

Similar to the estimation of the matrices Ryy and Rnn, we can estimate Rŷŷ and Rn+q us-
ing the sample correlation matrices during the quantized speech-plus-noise segments
and the quantized noise-only segments, respectively. Since both Rn+q and Rŷŷ include
the statistics of the quantization noise, given sufficiently long noise and noisy time in-
tervals, the quantization noise will affect Rn+q and Rŷŷ in the same fashion by adding
the same matrix Rqq. As a consequence, the quantization noise will not affect the esti-
mation of Rxx due to the subtraction operation as long as the quantization rate does not
change. This is the basic motivation on how to estimate the RTFs under low communi-
cation rates, which is presented in Chapter 7.

2.5. BINAURAL LCMV BEAMFORMING
In Chapter 6, we consider the application of the presented theory on rate-distributed
spatial filtering in WASNs in Chapter 4 involving a pair of hearing aids (HAs). We there-
fore introduce in this section the binaural LCMV (BLCMV) beamformer.

For the HA users, apart from noise reduction, spatial awareness of the interfering
sources is necessary. Identifying the location of the interfering sources (they could be
important warning signals) for normal hearing people is very natural, while it is hard for
hearing-impaired listeners. As the source location is characterized by the spatial cue in-
formation, spatial cue preservation is thus of great significance for HA users. Making use
of the measurements from the external devices in WASNs can improve the performance
of such joint noise reduction and spatial cue preservation for HA applications.

3This assumption is true for high-rate quantization. For low rate, quantization subtractive dithering can be
used to meet the correlation assumptions [70, 71, 72]. The dither signal which is known at the receiver side
and the quantization noise are independent and identically distributed (i.i.d.) processes.
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In the frequency domain the spatial cues of a source include the interaural phase dif-
ference (IPD) [73], interaural level difference (ILD) [73] and interaural coherence (IC) [74].
The IPD is caused by the interaural time difference (ITD), which measures the time dif-
ference of arrival (TDOA) of the source between two ears. The ILD measures the magni-
tude difference between binaural signals because of the acoustical shadowing effect of
the head. The IPD (or ITD) and ILD are directional spatial cues, which are frequently-
used in binaural source localization algorithms [75, 76, 77, 6, 78]. In general, the IPD
(or ITD) based localization has ambiguity for high frequency bands (e.g., above 1.5 kHz)
due to phase unwrapping [76, 78], while the ILD-based localization has large estima-
tion variance at low frequency bands, so usually they are jointly used in practice. The IC
information is important for determining the width of sound fields.

In general, binaural cue preservation is achieved by sacrificing the noise reduction
capability. In other words, the more spatial cues are being preserved, the less degrees-
of-freedom are left for noise reduction. For directional sources, spatial cue preservation
can be achieved by preserving the interaural transfer function (ITF) which is defined as
the ratio of the ATFs relating the source and the two ears, since ILD, IPD and ITD are the
magnitude response, phase response and group delay of the ITF, respectively. In order
to jointly suppress noise sources and preserve the spatial cues, the multi-microphone
spatial filtering techniques mentioned in Sec. 1.1 can still be used by adding more con-
straints. For a single target source, the binaural MVDR (BMVDR) beamformer is a nat-
ural extension of the traditional MVDR beamformer in the binaural setup [79, 80]. For
the BMVDR beamforming, usually each HA has to transmit its measurements via a wire-
less link to the other HA, such that more data are available at each device for obtaining a
better noise reduction performance, and two BMVDR beamformers are then computed
at the two ears, respectively. Since only two linear constraints associated with the target
source are taken into account, the BMVDR beamformer can only preserve the binaural
cues of the target source. On the other hand, the BMVDR beamformer has more degrees-
of-freedom for filter design and can obtain a better noise reduction performance than
other linearly-constrained binaural filters. In order to further preserve the binaural cues
of the interfering sources, one can add more linear constraints associated with the ITFs
of the interfering sources to the BMVDR beamformers [80]. In case there are multiple
target sources of interest, the binaural LCMV (BLCMV) beamformer (which, similarly, is
an extension of the conventional LCMV beamforming method in the binaural context) is
an alternative solution [46, 47]. The MWF can also be extended to the binaural setting to
preserve the binaural cues, e.g., by enforcing the constraints associated with the ITFs of
all the sources of interest [48]. Again, the binaural MWF (BMWF) would distort the target
source(s) inevitably. Moreover, the IC can also be preserved by using binaural filtering
techniques [46, 81]. For most binaural filtering algorithms, the most essential challenge
is how to obtain an acceptable noise reduction performance versus spatial cue preser-
vation trade-off.

The BLCMV beamformer is an extension of the classic LCMV beamformer in the bin-
aural setting (e.g., for binaural hearing-aids) for jointly performing noise suppression
and binaural cue preservation of all the present point sources [46, 47]. Given M sensors,
the BLCMV beamformer is defined as the concatenation of two LCMV beamformers at
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the two HAs, i.e.,
wBLCMV = [wT

L ,wT
R ]T ∈C2M , (2.42)

where L and R are used to indicate the left and the right ear beamformer, respectively.
Suppose one of the HAs is the FC, all the sensors will send their measurements to this
HA, and the noise statistics Rnn ∈CM×M can be estimated at this HA. Due to the fact that
there exists a wireless link between the two HAs, one HA can also send the information
of the noise statistics to the other HA [70, 82, 83], such that the final noise correlation
matrix can be constructed as

R̃nn =
[

Rnn 0
0 Rnn

]
∈C2M×2M . (2.43)

The BLCMV beamformer wBLCMV is thus a 2M-dimensional vector. Preserving the bin-
aural cues (e.g., ILD, IPD) can be achieved by preserving the ITF, since the ILD and IPD
can be derived from the ITF as

ILD = |ITF|2, IPD =∠ITF, (2.44)

where∠ denotes the argument or angle. Given I target sources and J interfering sources,
the ITFs of the existing sources with respect to the two reference microphones are de-
fined by

ITFin
xi
= ai L

ai R
,∀i ; ITFin

n j
= hi L

hi R
,∀ j , (2.45)

where L and R are used for indicating the reference microphones at the two ears.
For the I target sources, we want not only to preserve their spatial cues, but also to

keep them undistorted. To do this, we can constrain the two LCMV beamformers by

wH
L ai = ai L , wH

R ai = ai R . (2.46)

Based on these two constraints, the spatial cues of the target sources are perserved, since
the input and output ITFs are identical, i.e.,

ITFout
xi

= wH
L ai

wH
R ai

= ai L

ai R
=⇒ ITFin

xi
= ITFout

xi
, i = 1,2, . . . , I . (2.47)

In addition, the power of the output source signals are given by

wH
L RxxwL =

I∑
i=1

|ai L |2σ2
Si

, wH
R RxxwR =

I∑
i=1

|ai R |2σ2
Si

, (2.48)

which is the clean signal power at the reference microphones. This differs from the
classic LCMV beamformer which preserves the power of the original source signals, as
shown in Remark 1. Combining the constraints in (2.46) for all the I target sources, we
can compactly express the linear constraints as

ΛH
1 w = f1, (2.49)
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where

Λ1 =
[

A 0
0 A

]
∈C2M×2I , f1 =

[
a1L , . . . , aI L , a1R , . . . , aI R

]H ∈C2I .

On the other hand, for the J interfering sources, we only need to preserve their binaural
cues (ideally, not audible in the output of the BLCMV beamformer), as the binaural cues
are essential for localizing the sources. To obtain this, the BLCMV beamformers have to
satisfy the constraint

ITFin
n j

= ITFout
n j

=⇒ h j L

h j R
= wH

L h j

wH
R h j

, j = 1, · · · , J . (2.50)

Note that for each interfering source, one constraint is required, while for each target
source two linear constraints are required as shown in (2.46). Further, (2.50) can be
rewritten into the following linear equality form:

wH
L h j h j R −wH

R h j h j L = 0, j = 1, · · · , J . (2.51)

Combining (2.51) for all interfering sources, we can compactly express the linear equality
constraints for preserving their binaural cues as

ΛH
2 w = f2, (2.52)

where

Λ2 =
[

h1h1R · · · hJ h JR

−h1h1L · · · −hJ h JL

]
∈C2M×J , f2 = [0,0, . . . ,0]T ∈RJ .

To this end, we can see that given I target sources and J interfering sources, for the
design of BLCMV beamformers, 2I + J linear constraints need to be satisfied, which can
be written in a more compact form by combining (2.49) and (2.52) together as

ΛH w = f̃, (2.53)

where

Λ=
[
Λ1 Λ2

]
∈C2M×(2I+J ), f̃ =

[
fT

1 fT
2

]T ∈C2I+J .

As a consequence, the general BLCMV beamforming problem for joint noise reduction
and spatial cue preservation can mathematically be formulated as

wBLCMV = argmin
w

wH R̃nnw, subject to ΛH w = f̃. (2.54)

Assuming that the matrixΛ is full-column rank (i.e., rank(Λ) = 2I + J )4, in case 2M ≥
2I + J , the linear system ΛH w = f̃ is underdetermined. There are 2I + J degrees-of-
freedom (DOF) dedicated to spatial cue preservation, and 2M − 2I − J DOF left for re-
ducing the objective function (i.e., performing noise reduction) by adjusting the filter

4This is true when all the existing sources have different ATFs (e.g., in different directions).



2

26 2. BACKGROUND

coefficients. Using the method of Lagrange multipliers, we can find a closed-form solu-
tion to the BLCMV problem as

wBLCMV = R̃−1
nnΛ

(
ΛH R̃−1

nnΛ
)−1

f̃ ∈C2M , for 2M ≥ 2I + J . (2.55)

Obviously, the more DOF focus on preserving spatial cues, the less DOF are left for noise
reduction, leading to a trade-off between noise reduction and spatial cue preservation.
Moreover, in case 2M = 2I+J , i.e.,Λ is a full-rank square matrix, the linear systemΛH w =
f̃ is determined, and the unique solution is given by

wBLCMV =Λ−H f̃ ∈C2M , for 2M = 2I + J . (2.56)

However, in this case there will be no DOF left for controlling the output noise power.
In case 2M ≤ 2I + J , the linear system ΛH w = f̃ is overdetermined. In this dissertation,
we will stick to the case when 2M ≥ 2I + J to reach the goal of joint noise reduction and
spatial cue preservation. After being filtered by the BLCMV beamformer in (2.55), the
output noise power is given by

wH R̃nnw = f̃H
(
ΛH R̃−1

nnΛ
)−1

f̃. (2.57)

2.6. DISTRIBUTED SPATIAL FILTERING
In order to improve the robustness of the spatial filtering techniques against the varia-
tion and scalability of the network topology, a distributed implementation is required.
To do this, we first model the WASN as a graph G = (K ,E ), where K = {1,2, . . . ,K } de-
notes the set of nodes (devices) and E the set of edges (i.e., wireless links) between the
nodes. If and only if (i , j ) ∈ E , the i th and j th nodes can directly communicate with each
other. We assume that the WASN is a connected graph, that is, there always exists a route
from one node to any other node in the graph. Suppose each node k consists of Mk

microphones, we thus have M = ∑K
k=1 Mk microphones in total. Let Nk denote the set

which contains all the neighboring nodes of node k but does not include node k itself.

2.6.1. DISTRIBUTED LCMV BEAMFORMING

In a reverberant environment, the reverberation of a sound source consists of early re-
flections and the late reverberations. Only the early reverberation is useful for enhanc-
ing the speech intelligibility [84]. This means that the noise component n that was pre-
sented in Sec. 2.1 can be a summation of the late reverberation of the target sources, and
the early and late reverberation of the interfering sources and the uncorrelated noise.
Further, in [85], it was shown that the late reverberation is highly correlated across the
microphones within a node, while it is much less correlated across the microphones at
different nodes, since the microphones within a node are spatially close and the micro-
phones at different nodes are more distant. Due to this, we use Rzz to represent the
statistics of the early reflections of the interfering sources, and Ruu for the statistics of
all the late reverberation of all sources and the uncorrelated sensor noise. More impor-
tantly, it was shown in [85] that Ruu can be approximated by a block-diagonal matrix.
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Assuming that the early reverberation and the late reverberation are mutually uncorre-
lated, the correlation matrix of all noise components can be given by

Rnn = E{nnH } = Rzz︸︷︷︸
corr

+ Ruu︸︷︷︸
uncorr

. (2.58)

The classic LCMV beamforming problem in Sec. 2.2 can be reformulated as

w=argmin
w

wH Rnnw, subject to ΛH w = f

=argmin
w

wH (
Rzz +Ruu

)
w, subject to ΛH w = f

≈ argmin
w

wH Ruuw, subject to ΛH w = f, (2.59)

where ≈ is due to the fact that given enough DOFs if the linear systemΛH w = f is exactly
satisfied, the filter w is orthogonal to the ATFs of the interfering sources. With such an
LCMV beamformer, the correlated noise components can entirely be suppressed, result-
ing in wH Rzzw = 0. Hence, we can simply use Ruu for the filter design.

In order to solve the centralized LCMV beamforming problem given by (2.59) in a
distributed fashion, we first need to write it into a node-separable form. To do this, we
split the filter vector w, the matrix Ruu, the ATF matrixΛ over nodes as [85]

w =


w1

w2
...

wK

 , Ruu =


Ru,1

Ru,1

. . .
Ru,K

 , Λ=


Λ1

Λ2
...
ΛK

 ,

where wk ∈ CMk , Ru,k ∈ CMk×Mk and Λk ∈ CMk×U , such that (2.59) can equivalently be
rewitten as

w = argmin
w

K∑
k=1

wH
k Ru,k wk , subject to

K∑
k=1
ΛH

k wk = f, (2.60)

where both the objective function and the constraint are separated in nodes. In general,
the optimal solution of an optimization problem, e.g., (2.60), cannot be approached by
optimizing the node-specific sub-problems locally, unless the sub-problems are inde-
pendent to each other. Clearly, this is not the case when considering (2.60). In order to
solve (2.60) in a distributed fashion, we consider the real-valued Lagrangian function of
(2.60), which is given by

L(w,µ) =
K∑

k=1

[
wH

k Ru,k wk −2ℜ
(
µH

(
ΛH

k wk −
f

K

))]
, (2.61)

where µ ∈ CU is a vector with Lagrangian multipliers, ℜ(·) returns the real part, and
the vector f is partitioned into K equal parts. Since L(w,µ) is convex in terms of w, the
optimal filter is the minimizer of L(w,µ), i.e.,

w∗ = argmin
w

L(w,µ). (2.62)
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Then, by setting the derivative of L(w,µ) with respect to w̄k to zero (where w̄k is the
conjugate of wk ), we can resolve the filter vector as

w∗
k = R−1

u,kΛkµ, (2.63)

which depends on the global dual variables. To find the optimal dual variables, we can
go from the primal domain to the dual domain by substituting (2.63) to the Lagrangian
function, such that the dual optimization probelm is given by

µ∗ = argmax
µ

L(w∗
1 , . . . ,w∗

K ,µ)

= argmax
µ

−
K∑

k=1
µHΛH

k R−1
u,kΛkµ+2ℜ

(
µH f

)
, (2.64)

since the dual function is concave in terms of µ. For notational brevity, we define Gk =
ΛH

k R−1
u,kΛk ,∀k. Suppose that each node k has a copy of µ, say µk , then the dual opti-

mization problem reduces to an average consensus problem, as

µ= argmin
µk

K∑
k=1

(
µH

k Gkµk −
2

K
ℜ

(
µH

k f
))

subject to µk =µm ,∀(k,m) ∈ E , (2.65)

which can be solved by using alternating direction method of multipliers (ADMM) [86],
primal-dual method of multipliers (PDMM) [87] or randomized gossip algorithms [88].

DISTRIBUTED LCMV BEAMFORMING VIA PDMM
The PDMM algorithm was recently proposed for solving general distributed optimiza-
tion problems, which was originally named by Bi-ADMM [89]. To derive the update
equations of PDMM, we first rewrite (2.65) as

min
µk

K∑
k=1

(
µH

k Gkµk −
2

K
ℜ

(
µH

k f
))

s.t. µk −µm = 0,∀(k,m) ∈ E . (2.66)

The augmented Lagrangian function of (2.66) is given by

∆L(µ,γ) =
K∑

k=1

(
µH

k Gkµk −2ℜ
(
µH

k

f

K

)
−ℜ

(
µH

k

∑
m∈Nk

k −m

|k −m|γm|k

)

+ ∑
m∈Nk

ρ

2

∥∥µk −µm

∥∥2
2

)
, (2.67)

where ρ is a positive step size and γ contains directional edge variables. For example,
bothγm|k andγk|m are associated with the edge (k,m) ∈ E , while the former one is com-
puted at node m and the latter one is computed at node k. The PDMM algorithm is an
iterative method, i.e., given two unknown variables at each iteration the update equation
for one unknown is obtained by minimizing the augmented Lagrangian while fixing the
other unknown. In our case, at the (t +1)th iteration, we can use the information of γ(t )
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to obtain the update expression for µ(t+1), which turns out

µ(t+1)
k = argmin

µk
∆L(µ,γ(t ))

= (
Gk +ρ|Nk |I

)−1

 ∑
m∈Nk

(
k −m

|k −m|γ
(t )
m|k +ρµ(t )

m

)
+ f

K

 . (2.68)

In [87] , it was shown that the node-specific (2.68) can be updated simultaneously or in
an asynchronous fashion. After µ(t+1)

k is calculated, the edge variables can be updated
as

γ(t+1)
k|m =γ(t )

m|k −ρ
k −m

|k −m|
(
µ(t+1)

k −µ(t )
m

)
, (2.69)

which is obtained by minimizing the augmented Lagrangian in terms ofγ(t )
k|m . The PDMM

update procedure can be terminated until reaching the convergence. From (2.68) and
(2.69), we can see that in each iteration not only the dual variableµ needs to be transmit-
ted between nodes, also the edge variables γ. In order to reduce the transmission cost,
we can make use of the information from previous iterations. For instance, rethinking
(2.69), we can easily see that

γ(t )
m|k =γ(t−1)

k|m −ρ m −k

|m −k|
(
µ(t )

m −µ(t−1)
k

)
. (2.70)

Substituting (2.70) into (2.68), we obtain

µ(t+1)
k = (

Gk +ρ|Nk |I
)−1

 ∑
m∈Nk

(
k −m

|k −m|γ
(t−1)
k|m +2ρµ(t )

m −ρµt−1
k

)
+ f

K

 . (2.71)

Similarly, substituting (2.70) into (2.69), we obtain

γ(t+1)
k|m =γ(t−1)

k|m +ρ k −m

|k −m|
(
2µ(t )

m −µ(t+1)
k −µ(t−1)

k

)
. (2.72)

As a consequence, we can get rid of transmitting the edge variables. Hence, at each
iteration the transmission energy is only spent for broadcasting the dual variable µ.

After the dual variable is determined, the optimal local filters can be calculated using
(2.63). Then, calculating the final beamformer output also turns to an average consensus
problem as

min
X

K∑
k=1

(
Xk −wH

k yk

)2
subject to Xk = Xm ,∀(k,m) ∈ E . (2.73)

This problem can also be solved iteratively using the PDMM algorithm with the update
equations given by [85]

X (t+1)
k =

wH
k yk +

∑
m∈Nk

(
k−m
|k−m|θ

(t )
m|k +ρX (t )

m

)
1+ρ|Nk |

, (2.74a)

θ(t+1)
k|m = θ(t )

m|k −ρ
k −m

|k −m|
(

X (t+1)
k −X (t )

m

)
, (2.74b)

where θk|m is the edge variable defined similarly as before.
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2.6.2. DISTRIBUTED MVDR BEAMFORMING
The distributed MVDR beamforming is easier to implement compared to the LCMV
beamforming. Suppose that one single target source is to be enhanced which is char-
acterized by the ATF vector a, the MVDR beamforming problem can be formulated as

w = argmin
w

wH Ruuw, subject to aH w = 1

= argmin
w

K∑
k=1

wH
k Ru,k wk , subject to

K∑
k=1

aH
k wk = 1,

(2.75)

where a = [aT
1 ,aT

2 , . . . ,aT
K ]T . The optimal local filters are given by

w∗
k =

R−1
u,k ak∑K

k=1 aH
k R−1

u,k ak
, (2.76)

since the matrix Ruu is block-diagonal, whose inverse can be computed by inverting each
block separately. With the local filters, the beamformer output can be calculated as

Ŝ = wH y =
∑K

k=1 aH
k R−1

u,k yk∑K
k=1 aH

k R−1
u,k ak

=
1
K

∑K
k=1 aH

k R−1
u,k yk

1
K

∑K
k=1 aH

k R−1
u,k ak

. (2.77)

Since both aH
k R−1

u,k yk and aH
k R−1

u,k ak can be calculated at each node locally, the calcula-
tions of the denominator and the numerator are indeed two averaging consensus prob-
lems, which can be solved using the randomized gossip algorithms, e.g., [90]. Note that
the distributed MVDR beamforming problem can also be solved by applying the afore-
mentioned PDMM algorithm.

2.7. RTF ESTIMATION
All aforementioned multi-microphone beamforming algorithms require the ATF, or, de-
pending on the formulation, the RTF. Identifying the RTFs is a necessary step prior to
beamforming. In literature, there are two often-used RTF estimation emthods, namely
covariance subtraction (CS) [39, 40, 41, 42, 43] and covariance whitening (CW) [18, 29,
44, 45]. Assuming that a single target source is of interest whose RTF needs to be identi-
fied and the target signal and all the existing interferences are mutually uncorrelated, we
can estimate the noisy correlation matrix, denoted by R̂yy, during the speech-plus-noise
segments using (2.9) and estimate the noise correlation matrix, denoted by R̂nn, during
the noise-only segments using (2.8). Given the noise and noisy correlation matrices, we
can further estimate the correlation matrix of the clean signal components, denoted by
R̂xx, using matrix subtraction as in (2.10), which is approximately rank-1 for the single
target source case.

Based on the rank-1 assumption and using the fact that Rxx ,σ2
S aaH , where σ2

S and
a denote the PSD and the ATF vector of the target source, respectively, we define the RTF
vector as

d = a/a1, (2.78)

where a1 refers the first element of a. That is, the RTF is defined as the normalized ATF
with respect to the reference microphone (here we choose the first microphone as the
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reference microphone without loss of generality). Then, we can write Rxx in terms of the
RTF as

Rxx ,σ2
X1

ddH , (2.79)

whereσ2
X1

=σ2
S |a1|2 represents the clean signal power at the reference microphone. The

CS method takes the normalized first column of R̂xx as the estimated RTF, i.e.,

d̂CS ,
R̂xxe1

eT
1 R̂xxe1

, (2.80)

where e1 = [1,0, . . . ,0]T with 1 at the first entry and zeros elsewhere. In addition, the
estimate of the signal power at the reference microphone is given by

σ̂2
X1

, eT
1 R̂xxe1. (2.81)

In high SNR environments, the CS method can provide a good RTF estimate, while its
performance degrades significantly in severe noisy scenarios.

The CW method is realized based on the utilization of eigenvalue decomposition
(EVD). Specifically, given the estimate of the noise correlation matrix R̂nn, the quantized
microphone measurements that are received by the FC are first whitened by

ÿ = R−H/2
nn ŷ. (2.82)

Then, the correlation matrix of the whitened microphone signals can be estimated by

R̂ÿÿ = 1

Ly

Ly∑
l=1

ÿÿH , (2.83)

similar as (2.9) during the speech-plus-noise segments. Letting ψ̂ denote the principal
eigenvector of the matrix R̂ÿÿ, the RTF estimate of the CW method is then given by the
normalized principal eigenvector, i.e.,

d̂CW =
R̂H/2

ÿÿ ψ̂

eT
1 R̂H/2

ÿÿ ψ̂
. (2.84)

It can be shown that the CW method is equivalent to the generalized eigenvalue de-
composition (GEVD) of the matrix pencil {R̂yy, R̂nn}, i.e., d̂CW can also be given by the
normalized generalized principal eigenvector of {R̂yy, R̂nn}. In general, the CW method
can achieve a better RTF estimation accuracy compared to the CS method, especially in
noisy environments [42, 45]. However, the CS method is more appealing from the im-
plementation point of view, because it has a much lower computational complexity, as it
only needs to take the first column of a matrix, while more computationally demanding
matrix EVD and/or matrix inversion is required by the CW method. The performance
analysis of both methods can be found in [42, 45, 91]. Note that the CS method can also
choose any other column of the speech correlation matrix, so its performance depends
on the selection of the reference microphone.
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1st&2nd phase subtraction whitening
extracting 1st column CS CW-1

EVD EVD-CS CW

Table 2.1: The classification of all the existing RTF estimation methods for a single target source case.

In fact, the CS and CW methods are two extreme cases from the perspective of im-
plementation. Specifically, the CS method has a low complexity and a low estimation
accuracy; the CW method has a high complexity and a high estimation accuracy. Based
on this, we can also define two alternative RTF estimation approaches. Using the EVD
operation, the first alternative is obtained by taking the principal normalized eigenvec-
tor of the matrix R̂xx as the RTF estimate [43, 92], referred to as EVD-CS. The second
alternative is given by taking the normalized first column vector of the correlation ma-
trix R̂ÿÿ of the whitened microphone signals and multiplying with R̂H/2

nn , referred to as
CW-1. These four RTF estimation approaches are summarized in Table 2.1. In general,
the eigen decomposition based methods perform better than the methods that simply
extract the first column vector, as it was shown in [41] that approximating the matrix es-
timate R̂xx by a rank-1 matrix via its principal eigenvector can improve the performance
of the Wiener filter, compared to using its first column for the rank-1 approximation. To
conclude, the CS method method achieves the worst performance, and the CW method
the best performance, with the CW-1 and EVD-CS having intermediate performance.
From the implementation efficiency point of view, the ordering is reversed.
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3. MICROPHONE SUBSET SELECTION FOR MVDR BEAMFORMER BASED NOISE

REDUCTION

3.1. INTRODUCTION

M ICROPHONE arrays have become increasingly popular in many speech processing
applications, e.g., hearing aids [32], teleconferencing systems [93], hands-free tele-

phony [94], speech recognition [1], human-robot interaction [6], etc. Compared to their
single-microphone counterparts, microphone arrays typically lead to an enhanced per-
formance when detecting, localizing, or enhancing specific sound sources. This is due
to the fact that with a microphone array the sound field is not only sampled in time, but
also in space.

Although traditional microphone arrays have been widely investigated, see [95] and
reference therein, they do have some important limitations. Typically, conventional mi-
crophone arrays have one central processing unit, that is, a fusion center (FC), which
physically connects to the microphones. Rearranging the microphones in such a con-
ventional wired and centralized array is impractical. Moreover, usually the target source
is located far away from the array, resulting in a low signal-to-noise ratio (SNR). In ad-
dition, typically, the size of conventional arrays is limited as the maximum array size is
determined by the application device [33].

Recently, wireless acoustic sensor networks (WASNs) have attracted an increased
amount of interest [33, 96, 90, 97]. In a WASN, each sensor node is equipped with a single
microphone or a small microphone array, and the nodes are spatially distributed across
a specific environment. The microphone nodes communicate with their neighboring
nodes or the FC using wireless links. The use of WASNs can potentially resolve the lim-
itations encountered with the conventional arrays that were mentioned before. At first,
the WASN is not constrained to any specific (fixed) array configuration. Secondly, with
a WASN, the position and number of microphones is not anymore determined by the
application device. Instead, microphones can be placed at positions that are difficult
to reach with conventional microphones. With a WASN, the array-size limitations disap-
pear and the network becomes scalable (i.e., larger array apertures can be achieved) [35].
The fact that microphones in the WASN sample the sound field in a much larger area can
yield higher quality recordings as it is likely that some of the sensors are close to the tar-
get source and have a higher SNR. One of the bottlenecks in a WASN is the resource us-
age in terms of power. Transmission of data between nodes or from the nodes to the FC
will influence the battery lifetime of the sensor. Although all microphones in the WASN
will positively contribute to the estimation task, only a few will have a significant con-
tribution. It is questionable whether using all microphones in the network is beneficial
taking the energy usage and lifetime of the sensors into account. Instead of blindly using
all sensors, selecting a subset of microphones that is most informative for an estimation
task at hand can reduce the data to be processed as well as transmission costs.

In this work, we investigate spatial filtering based noise reduction using only the
most informative data via microphone subset selection, or so-called sensor selection, to
reach a prescribed performance with low power consumption. Sensor selection is im-
portant for data dimensionality reduction. Mathematically, sensor selection is often ex-
pressed in terms of the following optimization problem:

arg min
p∈{0,1}M

f (p) s.t. 1T
M p = K , (3.1)

where p indicates whether a sensor is selected or not, and the cost function f (p) is op-
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timized to select the best subset of K sensors out of M available sensors. Basically, the
problem in (1) is a non-convex Boolean optimization problem, which incurs a combi-
natorial search over all the

(M
K

)
possible combinations. Usually, it can be simplified via

convex relaxation techniques [52, 53, 55] or using greedy heuristics, e.g., leveraging sub-
modularity [98, 54]. When the cardinality of p is of more concern, the cost function and
constraint in (1) can also be interchanged by minimizing the cardinality of p, i.e., ||p||0,
while constraining the performance meansure f (p).

In general, sensor selection can be categorized into two classes: model-driven schemes
and data-driven schemes. For the model-driven schemes, sensor selection is an offline
design, where the sensing operation is designed based only on the data model (even be-
fore gathering data) such that a desired ensemble inference performance is achieved. In
other words, the model-driven schemes provide the selected sensors a priori for the in-
ference tasks [55]. There are many applications of the model-driven schemes for sensor
placement in source localization [53], power grid monitoring [99], field estimation [100],
target tracking [55], to list a few. In contrast to the offline design schemes, dimension-
ality reduction can also be done on already acquired data by discarding, i.e., censoring,
less informative samples; this is referred as data-driven schemes. Data-driven sensor se-
lection has been applied within the context of speech processing, e.g., speech enhance-
ment [101, 60], speech recognition [102], and target tracking by sensor scheduling [103].
In the WASNs context, due to time-varying topologies, we have typically no informa-
tion about the data model (e.g., probability density function), but the online measured
data (e.g., microphone recordings) are available instead. In this work, we start with the
model-driven sensor selection for the spatial filtering based noise reduction problem,
which is then extended to a data-driven scheme.

3.1.1. CONTRIBUTIONS

In this paper, we consider the problem of selecting the most informative sensors for
noise reduction based on the minimum variance distortionless response (MVDR) beam-
former. We formulate this problem to minimize the total transmission power subject to
a constraint on the performance. While the classical sensor selection problem formula-
tion as also given in (1) puts a constraint on the number of selected sensors, in the speech
enhancement context the desired number of sensors is typically unknown. Hence, the
desired number of sensors heavily depends on the scenario, e.g., the number of sound
sources. Within the speech enhancement context it would be more useful to relate the
constraint to a certain performance in terms of the expected quality or intelligibility of
the final estimated signal. We therefore reformulate the sensor selection problem to be
constrained to a certain expected output performance. In such a way, the selected sen-
sors are always the ones having the (near-)minimum transmission power.

The minimization problem is first solved by convex optimization techniques exploit-
ing the available complete joint statistics (i.e., correlation matrices) of the microphone
measurements of the complete network, such that the selected subset of microphones
is optimal. This is referred as the proposed model-driven approach.

In a more practical scenario, usually it is impossible to estimate the joint statistics
of the complete network beforehand due to the dynamics of the scenario. Instead, the
real-time measured data is only what can be accessed. Therefore, we extend the pro-
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posed model-driven algorithm to a data-driven scheme using a greedy sensor selection
strategy. The performance of the greedy approach is proven to converge to that of the
model-based method from an experimental perspective. There are a few existing contri-
butions considering microphone subset selection in the area of audio signal processing.
For example, Szurley et al. greedily selected an informative subset according to the SNR
gain at each individual microphone for speech enhancement [60]. Bertrand and Moo-
nen [101] conducted greedy sensor selection based on the contribution of each sensor
signal to mean squared error (MSE) cost for signal estimation. Kumatani et al. proposed
a channel selection for distant speech recognition by considering the contribution of
each channel to multichannel cross-correlation coefficients (MCCCs) [102]. The pro-
posed greedy algorithm shows an advantage in computational complexity and optimal-
ity as compared to existing greedy approaches [60, 101].

3.1.2. OUTLINE AND NOTATION
The rest of this paper is organized as follows. Sec. 3.2 introduces the signal model, the
classical MVDR beamforming, and sensor selection model. Sec. 3.3 presents the prob-
lem formulation. Sec. 3.4 presents two solvers based on convex optimization to solve the
model-driven sensor selection problem. Sec. 3.5 proposes a greedy algorithm. Sec. 3.6
illustrates the simulation results. Finally, Sec. 3.7 concludes this work.

The notation used in this paper is as follows: Upper (lower) bold face letters are used
for matrices (column vectors). (·)T or (·)H denotes (vector/matrix) transposition or con-
jugate transposition. diag(·) refers to a block diagonal matrix with the elements in its ar-
gument on the main diagonal. 1N and 0N denote the N ×1 vector of ones and the N ×N
matrix with all its elements equal to zero, respectively. IN is an identity matrix of size N .
A º B means that A−B is a positive semidefinite matrix. |U | denotes the cardinality of
the set U .

3.2. PRELIMINARIES

3.2.1. SIGNAL MODEL
We assume a spatially distributed candidate set of M microphone sensors that collect
and transmit their observations to an FC. The multi-microphone noise reduction meth-
ods considered in this paper operate in the frequency domain on a frame-by-frame ba-
sis. Let l denote the frame index andω the frequency bin index, respectively. We assume
that the user (i.e., FC) has one source of interest, while multiple interfering sources are
present in the environment. Using a discrete Fourier transform (DFT) domain descrip-
tion, the noisy DFT coefficient at the k-th microphone, say Yk (ω, l ), for k = 1,2, · · · , M , is
given by

Yk (ω, l ) = Xk (ω, l )+Nk (ω, l ), (3.2)

where Xk (ω, l ) = ak (ω)S(ω, l ) with ak (ω) denoting the acoustic transfer function (ATF)
of the target signal with respect to the k-th microphone and S(ω, l ) the target source
signal at the source location of interest. In (3.2), the component Nk (ω, l ) represents the
total received noise at the k-th microphone (including interfering sources and internal
thermal additive noise). For notational convenience, the frequency variable ω and the
frame index l will be omitted now onwards bearing in mind that the processing takes
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place in the frequency domain. Using vector notation, signals from M microphones are
stacked in a vector y = [Y1, ...,YM ]T ∈CM . Similarly, we define an M dimensional speech

vector x for the speech component contained in y as x = aS ∈CM with a = [
a1, · · · , aM

]T ∈
CM denoting the steering vector which is constructed from the ATFs, and a length-M
noise vector n. As a consequence, the signal model in (3.2) can be compactly written as

y = x+n. (3.3)

Assuming that the speech and noise components are mutually uncorrelated, the cor-
relation matrix of the received signals is given by

Ryy = E{yyH } = Rxx +Rnn ∈CM×M , (3.4)

where E{·} denotes the mathematical expectation, and Rxx = E{xxH } = σ2
S aaH with σ2

S =
E{|S|2} representing the power spectral density (PSD) of the target source. Notice that
due to the assumption that x and n are uncorrelated, Rxx can be estimated by subtract-
ing the noise correlation matrix Rnn, which is estimated during the absence of speech
from the speech-plus-noise correlation matrix Ryy [104]. In this work, we assume that a
perfect voice activity detector (VAD) is available, such that the noise-only segments and
the speech-plus-noise segments are classified accurately.

3.2.2. MVDR BEAMFORMER
The well-known MVDR beamformer minimizes the total output power after beamform-
ing while simultaneously keeping the gain of the array towards the desired signal fixed.
Therefore, any reduction in the output energy is obtained by suppressing interference or
noise. Mathematically, this can be written as

ŵ = argmin
w

wH Rnnw, s.t. wH a = 1. (3.5)

The optimal solution, in a best linear unbiased estimator sense, can be obtained using
the method of Lagrange multipliers, and is given by [14, 20, 96]

ŵ = R−1
nna

aH R−1
nna

. (3.6)

After processing by the MVDR beamformer, the output SNR evaluated at a given
time-frequency bin is given by the ratio of the variance of the filtered signal to the vari-
ance of the filtered noise

SNRout =
E
{
|ŵH x|2

}
E
{|ŵH n|2} = ŵH Rxxŵ

ŵH Rnnŵ

=σ2
S aH R−1

nna. (3.7)

3.2.3. SENSOR SELECTION MODEL
The task of sensor selection is to determine the best subset of sensors to activate in or-
der to minimize an objective function, subject to some constraints, e.g., the number of
activated sensors or output noise power. We introduce a selection vector

p = [p1, p2, ..., pM ]T , (3.8)
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where pi ∈ {0,1} with pi = 1 indicating that the i -th sensor is selected. Let K = ‖p‖0 rep-
resent the number of selected sensors with the `0-(quasi) norm referring to the number
of non-zero entries in p. Using a sensor selection matrix Φp, the selected microphone
measurements can be compactly expressed as

yp =Φpy =Φpx+Φpn, (3.9)

where yp ∈ CK is the vector containing the measurements from the selected sensors.
Let diag(p) be a diagonal matrix whose diagonal entries are given by p, such that Φp ∈
{0,1}K×M is a submatrix of diag(p) after all-zero rows (corresponding to the unselected
sensors) have been removed. As a result, we can easily get the following relationships

ΦpΦ
T
p = IK , ΦT

pΦp = diag(p). (3.10)

Therefore, applying the selection model to the classical MVDR beamformer in Sec. 3.2.2,
the best linear unbiased estimator for a subset of K microphones determined by p will
be

ŵp =
R−1

nn,pap

aH
p R−1

nn,pap
, (3.11)

where ap =Φpa is the steering vector corresponding to the selected microphones, and
Rnn,p = ΦpRnnΦ

T
p represents the noise correlation matrix of the selected sensors after

the rows and columns of Rnn corresponding to the unselected sensors have been re-
moved, i.e., Rnn,p is a submatrix of Rnn.

3.3. PROBLEM FORMULATION
This work focuses on selecting the most informative subset of microphones for spatial
filtering based noise reduction. The problem is formulated from the viewpoint of mini-
mizing transmission cost subject to a constraint on the output performance. In partic-
ular, we express the filtering performance in terms of the output noise power, which is
under the MVDR beamformer equivalent to the output SNR. However, notice that this
can easily be replaced by other performance measures expressing the desired quality or
intelligibility.

Let c = [c1,c2, ...,cM ]T ∈RM denote the pairwise transmission cost between each mi-
crophone and the FC. In general, the power consumption for wireless transmission can
be modeled as [105]

ci = c(di )+ c(0)
i , ∀i , (3.12)

where c(di ) represents the power consumption depending on the distance di from the
node with the i -th microphone to the FC, and c(0)

i is a constant depending on the power
consumption of the i -th microphone itself. Based on the energy model in (3.12), our
initial problem can be formulated as

min
wp,p∈{0,1}M

‖diag(p)c‖1

s.t. wH
p Rnn,pwp ≤ β

α
,

wH
p ap = 1,

(P1)
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where || · ||1 denotes the `1-norm, β denotes the minimum output noise power after
beamforming, andα ∈ (0,1] is an adaptive factor to control the output noise power com-
pared to β. Note that β does not depend on the measurements of the whole network,
because β/α is just a number that can be assigned by users, e.g., 40 dB, to indicate a
desired performance. In (P1), the `1-norm is used to represent the total transmission
costs of the network, i.e., between all the selected sensors and the FC, and it equals the
inner-product cT p since both p and c are non-negative. Also, notice that (P1) is a general
case for spatial filtering based noise reduction problems, e.g., using MVDR beamform-
ers or linear constrained minimum variance (LCMV) beamformers [106]. In the next
section, we will show how the optimization problem in (P1) can be solved using some of
the properties of the MVDR beamformer.

3.4. MODEL-DRIVEN SENSOR SELECTION
In this section, we propose two slightly different ways to solve the optimization problem
in (P1), firstly based on the correlation matrix Rxx and secondly based on knowledge
of the steering vector a, respectively. Both these solvers rely on the knowledge of the
correlation matrices of the complete network, so that they belong to the model-driven
schemes.

Considering the MVDR beamformer in (3.11), the output noise power using the se-
lected sensors is given by

ŵH
p Rnn,pŵp =

(
aH

p R−1
nn,pap

)−1
, (3.13)

where the constraint wH
p ap = 1 in (P1) is implicit. Based on the fact that the MVDR

beamformer keeps the speech components undistorted and suppresses the noise com-
ponents, the variance of the filtered speech components can be shown to equal

ŵH
p Rxx,pŵp =σ2

S , (3.14)

where Rxx,p denotes the submatrix of Rxx corresponding to the selected sensors. Hence,
following (3.7) the output SNR using the selected sensors is given by

SNRout,p =
ŵH

p Rxx,pŵp

ŵH
p Rnn,pŵp

=σ2
S aH

p R−1
nn,pap

=σ2
S aHΦT

p R−1
nn,pΦpa. (3.15)

As a result, the original optimization problem in (P1) can equivalently be rewritten as

min
p∈{0,1}M

‖diag(p)c‖1

s.t. σ2
S aH

p R−1
nn,pap ≥α ·SNR,

(P2)

where SNR = σ2
S
β represents the maximum output SNR. Both (P1) and (P2) are non-

convex because of the Boolean variable p, but also due to the non-linearity of the con-
straint in p. In what follows, we will present solvers by linearizing (P2) and reformulating
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it using convex relaxation. Note that (P1) and (P2) are built from different perspectives
(i.e., constraining the output noise power and SNR, respectively), but in the context of
the MVDR beamforming, they are equivalent.

3.4.1. CONVEX RELAXATION USING Rxx
From the output SNR in (3.15), the selection variable p appears at three places, that are:
ΦT

p , R−1
nn,p and Φp. We combine these together as one new matrix Q = ΦT

p R−1
nn,pΦp. To

simplify calculations, in what follows, we will rearrange Q such that p occurs only at one
place. Let us first consider a decomposition of the noise covariance matrix [55, 51]

Rnn =λIM +G, (3.16)

where λ is a positive scalar and G is a positive definite matrix (if λ is smaller than the
smallest eigenvalue of Rnn, this decomposition can be easily found). The reason for
choosing such a λ is to make G−1 +λ−1diag(p) positive definite, which will be seen after
(3.24). Using (3.16), we have

Rnn,p =Φp
(
λIM +G

)
ΦT

p =λIK +ΦpGΦT
p , (3.17)

and Q can be reformulated as

Q =ΦT
p

(
λIK +ΦpGΦT

p

)−1
Φp. (3.18)

Using the matrix inversion lemma [107, p.18]

C
(
B−1 +CT A−1C

)−1
CT = A−A

(
A+CBCT

)−1
A,

we can simplify Q in (3.18) as

Q = G−1 −G−1
(
G−1 +λ−1diag(p)

)−1
G−1. (3.19)

Note that (3.19) is still non-linear in p due to the inversion operation, but p appears now
only at one place. Based on Q, the output SNR with sensor selection as in (3.15) can be
calculated as [107, p.6]

SNRout,p
(1)= trace

(
σ2

S aHΦT
p R−1

nn,pΦpa
)

(2)= trace
(
QRxx

)
(3)= trace

(
R

H
2

xxQR
1
2
xx

)
, (3.20)

where the trace(·) operator computes the trace of a matrix, and R
1
2
xx represents the princi-

pal square root of Rxx. The second and third equality in (3.20) is based on trace property,
which is employed to make the linear matrix inequality (LMI) in (3.25) symmetric. Here,
we utilize the trace operation to express the output SNR as a function of Rxx. The latter
can be estimated using the recorded audio in practice, e.g., during the training phase,
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or using the correlation matrices Ryy and Rnn without the need to explicitly know the
steering vector a or ap.

Secondly, in what follows we will linearize the SNR constraint in (P2). To do this, we
introduce a new matrix Z to equivalently rewrite the constraint in (P2) as

trace

(
Z− ασ2

S

Mβ
IM

)
≥ 0, (3.21)

R
H
2

xxQR
1
2
xx = Z, (3.22)

where the equality constraint in (3.22) is non-linear in p. For linearization, we relax it to
an inequality constraint

R
H
2

xxQR
1
2
xx º Z. (3.23)

Note that (3.21) and (3.23) are sufficient conditions for obtaining the original constraint
in (P2), this is why we utilize º for convex relaxation. Substituting (3.19) in (3.23), we get

R
H
2

xxG−1R
1
2
xx −Z º R

H
2

xxG−1
[

G−1 +λ−1diag
(
p
)]−1

G−1R
1
2
xx. (3.24)

Due to the positivity of λ, the positive definiteness of G and the Boolean vector p, the
matrix G−1 +λ−1diag(p) is positive definite, and this is why we chose in (3.16) a positive
scalar λ and a positive definite matrix G to decompose the matrix Rnn. Using the Schur
complement [108, p.650], we obtain a symmetric LMI of size 2M from (3.24) asG−1 +λ−1diag(p) G−1R

1
2
xx

R
H
2

xxG−1 R
H
2

xxG−1R
1
2
xx −Z

º 02M , (3.25)

which is linear in p. Furthermore, the Boolean variable p can be relaxed using contin-
uous variables p ∈ [0,1]M or semidefinite relaxation [109]. In this work, we utilize the
former way. Accordingly, (P2) can be expressed in the following form:

min
p,Z

‖diag(p)c‖1

s.t. trace

(
Z− ασ2

S

Mβ
IM

)
≥ 0,G−1 +λ−1diag(p) G−1R

1
2
xx

R
H
2

xxG−1 R
H
2

xxG−1R
1
2
xx −Z

º 02M ,

0 ≤ pi ≤ 1, i = 1,2, · · · , M .

(3.26)

The relaxed optimization problem in (3.26) is a semidefinite programming problem [108,
p.128] and can be solved efficiently in polynomial time using interior-point methods or
solvers, like CVX [110] or SeDuMi [111]. The computational complexity for solving (3.26)
is of the order of O (M 3). The approximate Boolean selection variables pi can be obtained
by randomized rounding using the solution of (3.26) [53]. Notice that the solver in (3.26)
depends on Rxx. In a practical scenario, this is unknown, but can be estimated based on
estimates of the correlation matrices Ryy and Rnn as shown in (3.4). Ryy can be estimated
from the data itself, and Rnn can be estimated using a VAD or noise correlation matrix
estimator for the noise-only frames, see e.g., [25].



3

42
3. MICROPHONE SUBSET SELECTION FOR MVDR BEAMFORMER BASED NOISE

REDUCTION

3.4.2. SOLVER BASED ON THE STEERING VECTOR a
Suppose the ATFs from the source to the microphones are known, the steering vectors a
(in free field) can be constructed. With a, the output SNR in (3.20) can be expressed as

SNRout,p =σ2
S aH Qa. (3.27)

Therefore, using the expression for Q in (3.19), the original constraint in (P2) can be
rewritten as

aH G−1a−aH G−1
(
G−1 +λ−1diag(p)

)−1
G−1a ≥ α

β
,

or, reorganized as

aH G−1a− α

β
≥ aH G−1

(
G−1 +λ−1diag(p)

)−1
G−1a. (3.28)

Using the Schur complement, (3.28) can be reformulated as a symmetric LMI of size
M +1 [

G−1 +λ−1diag(p) G−1a
aH G−1 aH G−1a− α

β

]
º 0M+1. (3.29)

Accordingly, the optimization problem in (P2) is expressed as

min
p

‖diag(p)c‖1

s.t.

[
G−1 +λ−1diag(p) G−1a

aH G−1 aH G−1a− α
β

]
º 0M+1

0 ≤ pi ≤ 1, i = 1,2, · · · , M ,

(3.30)

where the Boolean variables p have already been relaxed using the continuous surro-
gates p ∈ [0,1]M , and (3.30) has a standard semidefinite programming form, which can
also be solved by the aforementioned tools. Notice that this solver depends on knowl-
edge on a. To estimate (the direct path of) a one can use a source localization algorithm,
e.g., [112, 113, 114], in combination with the sensor locations, or use the generalized
eigenvalue decomposition of the matrices Rnn and Ryy [44, 29].

Remark 3. The differences between (3.26) and (3.30) are threefold: 1) (3.30) preserves the
constraint on the output SNR (or noise power), yet (3.26) relaxes it in a convex way by
introducing an auxiliary variable Z; 2) Observing the LMIs in (3.26) and (3.30), they differ
in dimensions (i.e., 2M and M +1, respectively), so (3.30) is computationally much more
efficient; 3) The solver in (3.26) requires to estimate the speech correlation matrix Rxx and
the PSD σ2

S of the target source, while (3.30) requires the steering vector a.

Remark 4. For a special case, when the noise is spatially uncorrelated with covariance
matrix

Rnn = diag
(
σ2

1,σ2
2, · · · ,σ2

M

)
,

the optimization problem (P2) can be simplified to the following Boolean linear program-
ming problem

min
p

‖diag(p)c‖1

s.t. aH R−1
nndiag(p)a ≥ α

β
.

(3.31)
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Although the above optimization problem is nonconvex in p ∈ {0,1}M , it admits a simple
non-iterative solution based on rank ordering. More specifically, the optimal solution to
(3.31) is given by setting the entries of p corresponding to the indices

min

{
i ∈ {1,2, · · · , M }| c[1]

v[1]
+·· ·+ c[i ]

v[i ]
≥ α

β

}

to 1, and the remaining entries of p to 0, where v[1], · · · , v[M ] and c[1], · · · ,c[M ] are num-
bers of v1, v2, · · · , vM and c1,c2, · · · ,cM , respectively, sorted in ascending order with vi =
ciσ

2
i /|ai |2 and ai being the i -th entry of a.

3.5. GREEDY SENSOR SELECTION
In Sec. 3.4, the sensor selection problem was solved using statistical information from
the complete network, i.e., Rxx and Rnn. In practice, this information is unknown and
needs to be estimated from all the sensors’ measurements. Hence, we call this a model-
driven approach as the complete Rxx and Rnn are required as well as the transmission
power from the microphones to the FC. In a practical scenario, it is undesired to esti-
mate the statistics of the complete network up front, as this would imply a lot of data
transmission for sensor nodes that might never be selected in the end as most sensors
are non-informative. Moreover, in practice, the position of the FC or microphones might
be changing as well. For this reason we need a selection mechanism that does not rely
on knowledge of the statistics and microphone-FC distances of the complete network.
Instead, we could access the measurements of neighboring sensors (close to the FC or
already selected sensors). In this section, we present a greedy approach for the sensor
selection based noise reduction problem, which does not require to estimate the global
statistics. Therefore, the greedy algorithm can be performed online, and it belongs to the
data-driven category. In Sec. 3.6, we will experimentally show that the data-driven and
model-driven approach will converge to a similar performance.

Let ri denote the spatial position of the i -th microphone, S1 a candidate set of mi-
crophones and S2 the selected set, respectively. The proposed greedy algorithm is sum-
marized in Algorithm 1. Given an arbitrary initial spatial point z0 and a transmission
range R0

1, we can initialize the candidate set S1 of sensors, i.e., the R0-closest sensors
to z0. For the candidate set S1, we estimate the noise correlation matrix Rnn,S1 and de-
compose it following (3.16), and then solve the optimization problem in (3.26) or (3.30).
For instance, for S1 the optimization problem in (3.30) can be reformulated as

min
p∈[0,1]K1

‖diag(pS1 )cS1‖1

s.t.

G−1
S1

+λ−1
S1

diag(pS1 ) G−1
S1

aS1

aH
S1

G−1
S1

aH
S1

G−1
S1

aS1 − α
βS1

º 0K1+1

0 ≤ pi ≤ 1, ∀i ∈S1,

(3.32)

1R0 can be defined as the wireless transmission range
√

log(2M)/M in a random geometric graph to guarantee
that the network is connected with high probability [115].
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where βS1 represents the output noise power of the classical MVDR beamformer using
the microphones in the candidate set S1, which is termed as the local constraint. No-
tice that the adaptive factor α is the same as that in the model-driven scheme. If α ≤ 1,
(3.32) will always have a feasible solution within S1, the feasible set will be taken and
used to define a new set S2 with |S2| ≤ |S1|. Then, based on the set S2, a new set S1 is
formed based on the R0-closest sensors with respect to the sensors included in the set
S2

2. These operations are continued until S1 or S2 does not change (i.e., until conver-
gence has been achieved). The finally selected set S2 will always be smaller than the
selected set for the model-driven approach from Sec. 3.4 when using the same α. This
is due to the fact that the output noise power βS1 in the constraint of the greedy ap-
proach is based on the set S1 that is always smaller or equal to the initial set as used by
the model-driven approach in (3.30) (where β is obtained by involving all sensors). As
a result, β/α will always be smaller than βS1 /α. In summary, β/α < βS1 /α. The per-
formance of the greedy approach (after convergence) will therefore always be somewhat
worse than the model-based approach, as the constraint is less tight. This can either
be solved by choosing a different (larger) α for the greedy approach, or, by switching
from the constraint βS1 /α to the constraint β/α after convergence. As an alternative,
we could have used the constraint β/α within the greedy approach of (3.32) right from
the beginning. However, in that case, in the first few iterations (3.32) would have no
feasible solution as an insufficient amount of measurements are available to satisfy the
constraint on the output noise power. As a consequence of an infeasible solution, the
selected set S2 will keep all sensors from S1, of which many are actually uninformative.

In order to make the performance of the proposed greedy algorithm converge to that
of the model-driven approach, we switch from βS1 (local constraint) to β (global con-
straint) after the above iterative procedure converges (i.e., the constraint βS1 /α for solv-
ing (3.32) has been satisfied). Finally, the proposed greedy algorithm will converge to
the model-driven method based on the global constraint. To conclude, the greedy algo-
rithm includes two steps: using a locally defined constraint (βS1 /α) and using a globally
defined constraint (β/α), as summarized in Algorithm 1. Recall that the globally defined
constraint, which involves β/α with β denoting the minimum output noise power af-
ter beamforming, does not need to be dependent on the measurements of the whole
network. Hence, the greedy algorithm does not need to know the exact optimal perfor-
mance, i.e., β. For the implementation in practice, we only need to set a number for
β/α depending on the expected performance. Note that the computational complexity
of each iteration is of the order of O (|S1|3), and the number of iterations depends on
z0 and R0. From the description of the algorithm, we know that both the greedy algo-
rithm and the model-driven method have, in the end, the same constraint that must be
satisfied, leading to very similar performance, which can also be found in simulations.

3.6. SIMULATIONS
In this section, the proposed algorithms are experimentally evaluated. Sec. 3.6.1 intro-
duces three reference methods that we will use for comparison. In Sec. 3.6.2, the exper-

2R0-closest sensors with respect to the set S2 include all the sensors that are R0-closest to any individual
sensor in S2.
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Algorithm 1: Greedy Sensor Selection

Step 1: initialization
Initial point: z0

Transmission range: R0

Selected set: S2 =∅
Candidate set: S1 = {i |‖ri − z0‖2 ≤ R0, ∀i };

Step 2: considering local constraint
Cardinality of the active set: K1 = |S1|;
Decomposing: Rnn,S1 =λS1 IK1 +GS1 ;
Solving (3.32) using the local constraint βS1 ;
Update:

S2 = {i |pi = 1, ∀i ∈S1};
S1 =S2 ∪ {i |‖ri − rS2‖2 ≤ R0, ∀i };
Go to Step 2 until converge;

Step 3: solving (3.32) using global constraint β;
If infeasible, update

S2 =S1;
S1 =S2 ∪ {i |‖ri − rS2‖2 ≤ R0, ∀i };
Go to line 14;

If feasible, update
S2 = {i |pi = 1, ∀i ∈S1};
S1 =S2 ∪ {i |‖ri −S2‖2 ≤ R0, ∀i };
Go to line 14 until converge;

Return S2.

imental setup is explained. In Sec. 3.6.3, the proposed model-driven sensor selection
based MVDR beamformer (referred to as MD-MVDR in short) is compared with the ref-
erence methods introduced in Sec. 3.6.1. In Sec. 3.6.4, we will analyze the performance of
the proposed greedy approach as a data-driven sensor selection, including the conver-
gence behaviour, initialization and the adaptivity of a moving FC. Sec. 3.6.5 compares
the computational complexity between the model-driven method and the greedy ap-
proaches.

3.6.1. REFERENCE METHODS
Apart from the classical MVDR beamforming without sensor selection as introduced
in Sec. 3.2.2, the proposed approaches will also be compared with a weighted sparse
MVDR beamformer [116, 117, 118], a radius-based MVDR beamformer and a utility-
based greedy method [101, 60].

WEIGHTED SPARSE MVDR BEAMFORMER

A naive alternative to sensor selection for spatial filtering is to enforce sparsity in the fil-
ter coefficients while designing the beamformer. Due to the physical nature of sound,
this approach trades a small loss in SNR for a large reduction in communication power
required to produce a beamformer output by reducing the active nodes. Some existing
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works on sparse MVDR beamformers are presented in [116, 117, 118]. One of our refer-
ence methods is therefore a sparse MVDR beamformer. However in order to make the
comparison with the sparse MVDR beamformer fair, we use a weighting by the trans-
mission power. Using the model of transmission costs from (3.12), the weighted sparse
MVDR beamformer can be formulated as

ŵ = argmin
w

wH Rnnw+µ‖wH diag(c)‖0 s.t. wH a = 1, (3.33)

where µ denotes the regularization parameter to control sparsity, and the `0-norm can
be relaxed by the `1-norm or the concave surrogate based on sum-of-logarithms [53,
119]. Whenµ= 0, it is identical to the classical MVDR beamformer in Sec. 3.2.2. Note that
a larger µ leads to a sparser w. The product wH diag(c) indicates the pairwise transmis-
sion costs. Weighting the beamforming filter w, the sensors with smaller transmission
costs have a dominant contribution to w compared to sensors with larger transmission
costs. From the standpoint of implementation, for each frequency bin, if |wi | ≥ ε,∀i ,
the i -th sensor will be selected, otherwise not. Due to this “inevitable" thresholding,
the resulting beamformer is not necessarily MVDR anymore. The threshold ε is chosen
empirically.

RADIUS-BASED MVDR BEAMFORMER

The goal of this article is to minimize the transmission costs while constraining the per-
formance. A straightforward way to reduce transmission costs is by selecting the sensors
close to the FC. The closer a sensor to the FC, the less transmission power is required.
Hence, given a radius γ, we can involve the sensors within the circle centered by the FC
for the MVDR beamfomer, which we call radius-based MVDR beamformer. An exam-
ple is given in Fig. 3.2(a), where the blue sensors are chosen with γ = 6 m. Obviously,
this approach does not take the source or interference information into account, and its
performance suffers from γ and the network topology.

UTILITY BASED GREEDY SENSOR ADDITION

In [60], the most informative subset of microphones is obtained by greedily removing the
sensor that has the least contribution to a utility measurement (e.g., SNR gain, output
noise power, MSE cost), also called backward selection. This method requires to know
the statistics offline and can be considered a model-driven approach. While in [101],
apart from sensor selection based on backward selection, an alternative was proposed
by greedily adding the sensor that has the largest contribution to the utility (forward
selection). This can be considered as an online data-driven procedure. In order to com-
pare the proposed greedy algorithm with the state-of-the-art greedy methods, we sum-
marize [101, 60] as the utility based greedy sensor addition shown in Algorithm 2. The
utility based greedy sensor removal can be summarized similarly. In this work, our focus
is on the transmission costs. To measure the utility, we therefore take the ratio of the gain
of the output noise power∆ that is obtained by adding each sensor from S1\S2 to S2, to
the transmission cost. Here, the sets S1 and S2, are respectively, defined the same as for
Algorithm 1. The sensor which has the larger ratio between noise reduction and trans-
mission cost would have the larger utility. When the transmission costs for the selected
set S2 exceeds the maximum cost budget cT , the algorithm is terminated. Note that this
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Algorithm 2: Utility based greedy sensor addition

Initialization: same to Algorithm 1;
for k = 1,2, ..., M

Compute the gain of output noise power∆ by adding each sensor in S1\S2 to
S2;

Compute utility vector: g = [∆1
c1

, ∆2
c2

, ...,
∆|S1\S2 |
c|S1\S2 |

]T ;

i = argmaxi g;
Add sensor: S2 =S2 ∪ i ;
Update: S1 =S2 ∪ {i |‖ri − rS2‖2 ≤ R0, ∀i };

end for until cS2 ≥ cT

Return S2.

approach only adds one sensor to the selected set S2 per iteration, thus it may require
many iterations to get an acceptable solution.

3.6.2. EXPERIMENT SETUP

Fig. 3.2(a) shows the experimental setup employed in the simulations, where 169 can-
didate microphones are placed uniformly in a 2D room with dimensions (12× 12) m.
The desired speech source (red solid circle) is located at (2.4,9.6) m. The FC (black
solid square) is placed at (9,3) m. Two interfering sources (blue stars) are positioned
at (2.4,2.4) m and (9.6,9.6) m, respectively. The target source signal is a 10 minute long
concatenation of speech signals originating from the TIMIT database [120]. The inter-
ferences are stationary Gaussian speech shaped noise sources. All signals are sampled
at 16 kHz. We use a square-root Hann window of 20 ms for framing with 50% overlap.
The ATFs are generated using [121] with reverberation time T60 = 200 ms. The threshold
ε for the sparse MVDR beamformer is set to be 10−5 empirically, since the coefficients
smaller than this threshold are negligible. We also model microphone self noise using
zero-mean uncorrelated Gaussian noise with an SNR of 50 dB.

To focus on the concept of sensor selection, we assume that the ATFs (i.e., steering
vector a) are perfectly known. In practice, this can be estimated using source localization
algorithms, e.g., [112, 113], in combination with the sensor locations, or, by calculating
the generalized eigenvalue decomposition of the matrices Rnn and Ryy [44, 29]. For the
correlation matrices, we use noise-only segments which are long enough to estimate
Rnn; during the speech-plus-noise segments Ryy is tracked and Rxx can be obtained by
subtracting the estimate of Rnn from Ryy simultaneously. For the wireless transmission
model in (3.12), we consider the simplest wireless transmission case, where the trans-
mission cost between each sensor and the FC is proportional to the square of their Eu-
clidean distance [34], and we assume that the device dependent cost c(0)

i = 0,∀i . In the
following simulations, the transmission costs are normalized between 0 and 1 based on
the total transmission costs between all the microphones and the FC.
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Figure 3.1: Output noise power in terms of transmission cost for different choices of α,µ,γ,cT .

3.6.3. EVALUATION OF THE MODEL-DRIVEN APPROACH

In order to compare the state-of-the-art approaches mentioned in Sec. 3.6.1, we first
investigate the influence of the required parameters α,µ,γ,cT on the performance, for
the proposed and the different reference methods. Fig. 3.1 shows the relationship be-
tween the output noise power (in dB) and the transmission power for SIR = 0 dB with SIR
representing signal-to-interference ratio. Fig. 3.1 also shows the results without random-
ized rounding (blue dashed curve) regarded as the lower bound of the proposed method,
i.e., involving the selection variable p (thus, no selection) for computations. As we can
see that the performance of MD-MVDR is smaller than that of the MD-MVDR without
rounding, the binary solution of the proposed method using randomized rounding is
still satisfactory in terms of expected output noise power. We can conclude that in order
to reach the same noise reduction performance, the proposed approach always requires
significantly less transmission costs compared to the weighted sparse beamformer or
radius-based beamformer. If the transmission power budget cT (defined in Algorithm 2)
is small, the proposed method performs better than the backward selection [60], and if
cT is large, they are comparable. Furthermore, when α = 0.65,γ = 6,µ = 3.5×10−6, the
four approaches approximately have the same transmission power as cT = 0.09. Hence,
in the simulations that will follow we will compare the cases for α = 0.65,γ = 6,µ =
3.5×10−6,cT = 0.09. Note that in Fig. 3.1, all the microphones are involved for the MVDR
beamforming when α= 1,γ=∞,µ= 0,cT = 1. This is the optimal MVDR beamformer.

Fig. 3.2(a)-(d) illustrate typical sensor selection examples for one angular frequency
(ω = π/256 rad/s) of the radius-based MVDR beamformer (γ = 6), sparse MVDR beam-
former (µ = 3.5×10−6), backward selection (cT = 0.09) and the proposed method (α =
0.65), respectively. In addition, we show the radius for the radius-based MVDR, where all
the sensors within this radius are selected, and thus not depicted explicitly in Fig. 3.2(b)-
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Figure 3.2: Microphone subset selection examples (The blue sensors are activated for the MVDR beamformer):
(a) radius-based MVDR beamforming, (b) sparse MVDR beamforming, (c) backward selection [60] and (d)
proposed method (α = 0.65) for spatially correlated noises, respectively, (e) proposed method for correlated
case with α= 0.9, and (f) proposed method (α= 0.9) for spatially uncorrelated noises only.

(d). For fixed sensor and source locations, it is observed that the selected sensors are
the same for most frequency bins. The sensors within the green circles (γ = 6) are se-
lected by the radius-based method, which chooses the γ-closest sensors relative to the
FC for the MVDR beamformer. It can be seen that in order to save transmission power as
well as to reduce noise, the proposed approach selects some microphones close to the
source and some close to the FC for computation, while the sparse MVDR beamformer
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or radius-based method do not have this property. Although the backward selection
has this property, it performs somewhat worse in noise reduction, which can be seen
in Fig. 3.1. On one hand, the signals recorded by the microphones close to the source
position are degraded less by the interfering source, and they preserve the target source
better. Those microphones are helpful for enhancing the target source. On the other
hand, the microphones close to the FC require less transmission power to transmit data
to the FC. They are selected as they hardly add to the total transmission costs. When we
increase the adaptive factor α, more sensors that are close to the interference positions
are selected as well, because they carry information on the interfering sources as shown
in Fig. 3.2(e).

Fig. 3.2(f) illustrates the case where interfering sources are absent, and the micro-
phone recordings are degraded by the microphone self noise, taking the noise level SNR
= 50 dB. Compared to Fig. 3.2(e), most selected microphones are the same, and they are
more aggregate to the source position as well as to the FC. The difference is whether to
select sensors that are close to the interferences. From this comparison, we can also
conclude that the sensors that are close to the interference are useful for cancelling the
correlated noise.

3.6.4. EVALUATION OF THE DATA-DRIVEN APPROACH
In this subsection, we will evaluate the proposed greedy approach compared to the model-
driven algorithm and the utility-based method. The experimental setup is kept the same
as that used for the model-driven approach. The advantages of the greedy algorithm
will be demonstrated from three perspectives, i.e., convergence behaviour, initialization,
and for a scenario with a moving FC. Note that for the greedy approach, its convergence
behaviour depends on the initial point z0 and the transmission range.

CONVERGENCE BEHAVIOUR

In order to analyze the convergence behaviour of the proposed greedy approach, the
sensor network topology in this work is viewed as a grid topology, such that its trans-
mission range R0 is fixed to the distance between two neighboring microphone nodes.
In this part, we take the initial point z0 at the position (9, 3) m as an example to show
the convergence behaviour of the greedy algorithm. The effect of the choice of z0 will be
looked into later in this section.

Fig. 3.3 illustrates the proposed greedy algorithm (i.e., Algorithm 1) for α= 0.9 using
the same experimental setup of Fig. 3.2(e). In detail, at the 1st iteration (e.g., k = 1)
the R0-closest candidate set S1 has five sensors. Based on the local constraint three
sensors (in blue) are selected to form the set S2. The candidate set S1 is then increased
by adding the R0-closest sensors with respect to S2. This procedure continues for the
first 21 iterations. When k = 21, we can see that S2 is completely surrounded by S1, such
that if we still use the local constraint, there would be no new sensors that can be added
to S1, from which we conclude that the local constraint, i.e., βS1 /α, has been satisfied.
In order to satisfy the global constraint on the output noise power, the algorithm is then
switched to the global constraint after the 21st iteration, i.e., β/α. Finally, three more
iterations are further required the reach the expected performance.

We can see from Fig. 3.3, that the proposed greedy method does not blindly increase
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Figure 3.3: An illustration of the convergence behaviour for the proposed greedy algorithm (i.e., Algorithm 1).
The initial point is located at (9, 3) m.

the candidate set S1 towards all possible directions. Instead, S1 is increased only in the
informative direction to the source location, such that the less informative microphones
are not included. Furthermore, notice that the final selected set S2 differs slightly from
the model-driven approach in Fig. 3.2(e), as the greedy approach does not select the sen-
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Figure 3.4: Cardinality of candidate set and transmission power vs iterations.

sors that are close to the interfering sources, but it selects more sensors close to the target
source. Hence, convergence towards the model-based approach is obtained in the sense
of performance, but not in terms of selected sensors as the solution is not necessarily
unique. In general, given an expected noise reduction performance and transmission
power budget, it could be that more than one microphone subset are satisfactory. So
for the proposed greedy approach, we cannot guarantee that the final selected subset is
unique or entirely the same as the model-driven approach, but we can make sure that
they have a similar performance.

In Fig. 3.4, we show the ratio of cardinality of the candidate set S1 to the total number
of sensors M and transmission power per iteration. The combination of the global and
local constraint is compared to a greedy algorithm that uses only the global constraint
for Algorithm 1. Using only the global constraint, S1 would blindly increase towards
all directions. Clearly, we see that by using a combination between the local and the
global constraint, much less sensors are included per iteration, such that the transmis-
sion power is kept low.

INITIALIZATIONS

In this part, we will show the effect of the initial point z0 on the convergence rate. Fig. 3.5
illustrates the output noise power (in dB) in terms of iterations for four different ini-
tializations, i.e., centre (6, 6) m, source position (2.4, 9.6) m, interference position (2.4,
2.4) m and FC (9, 3) m. The red dashed line represents the performance of the model-
driven algorithm proposed in Sec. 3.4, which selects the most informative sensors from
all the possible candidates. The black dashed line denotes the performance of the classi-
cal MVDR beamformer using all microphones. The magenta curve shows the proposed
greedy algorithm for the MVDR beamformer. The blue dashed curve denotes the per-
formance of the utility-based algorithm [60, 101]. The output noise power of the greedy
algorithm includes two steps: local constraint (βS1 /α) and global constraint (β/α). The
moment that the constraint is switched from the local to the global constraint is indi-
cated by the red marker “×". When executing the local constraint, the output noise
power decreases fastest for the initialization at the source position and slowest for the FC
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Figure 3.5: Output noise power in terms of iterations for different initial point z0: (a) centre, (b) source, (c)
interference, (d) FC.

initialization. This is due to the fact that the sensors that are close to the source are more
informative for speech enhancement. After the algorithm converges based on the local
constraint, by switching to the global constraint, the output noise decreases further until
it reaches the performance of the model-driven approach. Hence, from a perspective of
performance, the proposed greedy algorithm converges to the model-driven method. In
addition, if the initial point is closer to the source position, the convergence is faster. To
conclude, the initialization only influences the convergence rate, and it does not affect
the final performance. More importantly, for all the cases of initialization, the proposed
greedy approach converges to the model-driven method in the sense of performance.

Furthermore, from Fig. 3.5 we observe that the proposed greedy algorithm converges
with much less iterations as compared to the utility-based method, because the latter
only selects one sensor in each iteration. Note that in the comparisons the total trans-
mission cost budgets for the two approaches are kept the same. Also, there is no guar-
antee for the utility-based method to fulfill the expected noise reduction performance.
Given the same transmission cost budget, the proposed greedy algorithm can therefore
obtain more reduction in noise power and converge much faster in terms of iterations.
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Figure 3.6: An illustration of the sensor selection based on the proposed greedy algorithm for the moving FC.

MOVING FC

In this part, we will show the advantage of the greedy algorithm in a dynamic scenario
with a moving FC. In practice, the FC could be moving, because usually it is regarded
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as a mobile user. Fig. 3.6 shows an example of greedy sensor selection for a moving FC,
where the FC moves along the black dashed rectangle. The starting point is located at
(4, 8) m, and at this position it takes 12 steps (9 steps for the local constraint and 3 steps
for the global constraint) for the greedy algorithm to converge to a feasible informative
set. The changing trend of the previous 11 steps is similar to Fig. 3.3, so we merely show
the results of the steps 1 and 12 in the left top subplot in Fig. 3.6. The FC then slowly
moves to the next position (4, 6.67) m. For the second position, we use the selected mi-
crophone set from the first position to update the candidate set, and then solve (3.32). It
is found that only 5 iterations (1 for the local constraint and 4 for the global constraint)
are required to obtain convergence. Subsequently, the FC continues moving. For the
next positions, the greedy algorithm only requires about 6 iterations to converge. Hence,
in the dynamic scenario with a moving FC, the proposed greedy approach can signifi-
cantly save computational resources. Since the interferences are Gaussian shaped noise
sources, once the noise correlation matrix Rnn is estimated using the noise-only seg-
ments before the FC starts to move, it can still be used for the subsequent positions of
the FC. Hence, for the moving FC case, we only need to update Ryy or Rxx based on the
real-time recordings. It is also noteworthy that the FC is not a microphone and the ATFs
(i.e., the steering vector a) stay the same even when the FC is moving, since the positions
of microphones and the target source are fixed.

An interesting phenomenon occurs in Fig. 3.6. As the FC moves further away from
the source, we can clearly see the importance of the sensors that are close to the inter-
ference. When the FC is located at (4, 6.67) m, two sensors close to the interference are
also selected. This cannot be distinguished when FC = (4, 8) m, where the FC is closer to
the source. Hence, we can conclude that the sensors that are close to the source, to the
FC and to the interference are informative, and they are helpful to enhance the target
source, to save transmission costs and to cancel the interfering sources, respectively.

3.6.5. COMPLEXITY ANALYSIS

In this subsection, we will compare the computational complexity of the greedy algo-
rithms to that of the model-driven approach. For the model-driven approach, its com-
plexity is of the order of O (M 3), so we use M 3 in the worst case for analysis without
loss of generality. For the proposed greedy algorithm (i.e., Algorithm 1), suppose that
J iterations are required to converge, in each iteration its complexity is of the order of
O (|S1|3), thus we can use

∑J
j=1 |S1|3 to represent its computational complexity. For the

utility-based greedy algorithm (i.e., Algorithm 2), we can find that its computational
complexity is of the order of O (|S2|2(|S1| − |S2|)) for each iteration from [101], thus∑J

j=1 |S2|2(|S1|− |S2|) can be exploited to represent its total complexity.

Fig. 3.7 compares the execution time of the two aforementioned greedy strategies.
The execution time is normalized by the runtime of model-driven method, whose run-
time is 1 as benchmark. From Fig. 3.7, we can see that the execution time of the pro-
posed greedy algorithm depends on the initial point z0, as it will be more expensive for
the initial points that are further from the target source. Furthermore, for most initial
points the proposed algorithm is computationally more efficient than the utility-based
method, because we need much less iterations (20 iterations compared to 90 iterations
approximately which has already been demonstrated in Fig. 3.5).
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Figure 3.7: True normalized execution time in terms of different initial points.

Although the computational complexity of the greedy algorithms could be larger
than that of the model-driven algorithm, it belongs to the data-driven schemes. That
is, we do not need to know the number of microphones in an environment, and it is
unnecessary to inform all microphones to transmit their recorded data to the FC to esti-
mate the statistics beforehand. Instead, it is only required to include the closest neigh-
boring microphone nodes gradually, the FC then updates the statistics and decides the
informative subset. Hence, compared to the model-driven method which is suitable for
static environments, the greedy approach can be applied to dynamic scenarios, espe-
cially with infinite candidate microphones.

3.7. CONCLUSION
In this work, we considered selecting the most informative microphone subset for the
MVDR beamfomer based noise reduction. The proposed strategies were formulated
through minimizing the transmission cost with the constraint on noise reduction per-
formance. Firstly, if the statistics (e.g., the estimates of noise correlation matrices) are
available, the microphone subset selection can be solved in a model-driven scheme by
utilizing the convex optimization techniques. Additionally, in order to make the sensor
selection capable of dynamic environments, a greedy approach in a data-driven scheme
was proposed as an extension of the model-driven method. The performance of the
proposed greedy algorithm converges to that of the model-driven approach. More im-
portantly, it works more effectively in dynamic environments (e.g., with a moving FC).
We concluded that in order to enhance the speech source as well as to save transmis-
sion costs, the sensors close to the source signal, those close to the FC and some close
to the interferences are of larger probability to be selected, and they are helpful to en-
hance the target source, to save transmission costs and to cancel the interfering source,
respectively. In a more general WASN, the network could consist of larger number of
microphone nodes, which makes the model-driven approach impractical. The greedy
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algorithm is still effective to handle the microphone subset selection problem.





4
RATE-DISTRIBUTED SPATIAL

FILTERING BASED NOISE

REDUCTION IN WASNS

This chapter is based on the article published as "Rate-Distributed Spatial Filtering Based Noise Reduction in
Wireless Acoustic Sensor Networks" by J. Zhang, R. Heusdens, and R. C. Hendriks in IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 26, no. 11, pp. 2015–2026, 2018.

59



4

60 4. RATE-DISTRIBUTED SPATIAL FILTERING BASED NOISE REDUCTION IN WASNS

4.1. INTRODUCTION

R ECENTLY, wireless acoustic sensor networks (WASNs) have attracted an increasing
amount of interest [33, 90, 97]. Compared to conventional microphone arrays with

a fixed configuration, WASNs have advantages in array-size limitation and scalability of
the networks. In a WASN, each sensor node is equipped with a single microphone or
a small microphone array, and the nodes are spatially distributed across a specific envi-
ronment. Due to the fact that the microphone nodes in a WASN can be placed anywhere,
the sound field is sampled in a much larger area. It is possible that some of the nodes
are close to the target source(s) and have higher signal-to-noise ratio (SNR), such that
higher quality recordings can be obtained. In a WASN, the microphone nodes are con-
nected to their neighboring nodes or a fusion center (FC) using wireless links, resulting
in a distributed or centralized framework, respectively. In this work, we will mainly focus
on the centralized framework, where each node samples and quantizes the microphone
recordings, and transmits them to a remote FC. The tasks of interest, e.g., signal estima-
tion or binaural cue preservation, are assumed to occur at the FC.

In WASNs, each sensor node is usually battery powered having a limited energy bud-
get. It is therefore important to take the energy consumption into account in the design
of algorithms. Generally, the energy usage within the context of WASNs can be linked to
two processes: data transmission and data processing [34, 35]. The data transmission
occurs between the nodes and the FC, and data processing at the FC end. Usually, data
exchange is more expensive than data processing in terms of energy usage.

In order to reduce the energy usage in WASNs, there are two techniques that can be
employed: sensor selection [53, 122, 52, 101, 60, 59, 58] and rate allocation [82, 70, 57].
For sensor selection, the most informative subset of sensors is chosen by maximizing
a performance criterion while constraining the cardinality of the selected subset, or by
minimizing the cardinality while constraining the performance. In this way, the number
of sensors contained in the selected subset can be much smaller than the total set of
sensors, resulting in a sparse selection. Due to the fact that only the selected sensors
need to transmit their recordings to the FC, sensor selection is an effective way to save
the energy usage.

Compared to sensor selection, rate allocation allows for a more smooth operating
curve as sensors are not selected to only operate at full rate or zero rate (when not se-
lected), but at any possible rate. For rate allocation, the idea is to allocate higher rates
to the more informative sensors while lower or zero rates are allocated to the others.
There are many studies on quantization for signal estimation in the context of wireless
sensor networks, see [123, 124] and reference therein, typically under the assumption
that the measurement noise across sensors is mutually uncorrelated. These models are
not suitable for realistic audio applications, e.g., speech enhancement, where the noise
is typically correlated across sensors because of the presence of directional interfering
sources. In [125, 70], the effect of a bit-rate constraint was investigated for noise re-
duction in WASNs. In [82], rate-constrained collaborative noise reduction for wireless
hearing aids (HAs) was studied from an information-theoretic standpoint, resulting in
an information transmission strategy between two nodes. However, the approach pro-
posed in [82] requires full binaural statistics which are difficult to estimate in a practical
setting. In [57], a greedy quantization method was proposed for speech signal estima-



4.1. INTRODUCTION

4

61

tion based on a so-called signal utility, which indeed represents the importance of mi-
crophone recordings. However, it only decreases/increases one bit for a node at each
iteration, resulting in low convergence speed.

The difference between sensor selection and rate allocation problems lies in binary
versus more smooth decisions. Given a maximum bit rate, the sensor selection ap-
proaches choose a subset of sensors first, and the selected sensors then communicate
with the FC using the maximum rate. That is, each sensor only makes a binary decision
on the communication rate, i.e., zero or maximum rate. In contrast to sensor selection,
rate allocation approaches can execute multiple decisions on the rate, i.e., any bit rate
can be fractional from zero bit rate to the maximum bit rate. If a sensor is allocated zero
bits, it will not be selected. Hence, in general, rate allocation approaches do not lead to
a WASN that is as sparse as the one that is obtained by the sensor selection approaches,
but they can better reduce energy consumption used for transmission. On the other
hand, sensor selection approaches could save more energy usage for data processing at
the FC end, as typically less measurements are involved in computations.

In this work, we will only consider the energy usage for data transmission and neglect
the energy usage for other processes. The wireless transmission power is regarded as a
function of the distance between sensor nodes and the FC and the rate (i.e., bits per sam-
ple) which is used to quantize the signals to be transmitted. We intend to reduce energy
usage from the perspective of rate allocation for spatial filtering based noise reduction
in WASNs. The total wireless transmission costs are minimized by constraining the per-
formance of the output noise power. Using a linearly constrained minimum variance
(LCMV) beamformer, the problem is solved by convex optimization techniques. After
the bit rates are determined, each microphone node uniformly quantizes and transmits
its recordings to the FC for the signal processing tasks at hand.

4.1.1. CONTRIBUTIONS

The contributions of the paper can be summarized as follows. Firstly, we design a rate
allocation strategy for rate-distributed LCMV (RD-LCMV) beamforming in WASNs by
minimizing the energy usage and constraining the noise reduction performance. The
original non-convex optimization problem is relaxed using convex relaxation techniques
and reformulated as semi-definite programming. Based on numerical results in simu-
lated WASNs, we find that the microphone nodes that are close to the sources (including
target sources and interferers) and the FC are more likely to be allocated with more bit
rates, because they have more information on SNR and cost less energy, respectively.

Secondly, we extend the model-driven microphone subset selection approach for
minimum variance distortionless response (MD-MVDR) beamformer from [122] to the
LCMV beamforming framework (referred as MD-LCMV). By doing so, we find the link
between rate allocation and sensor selection problems, i.e., rate allocation is a general-
ization of sensor selection. In [122], the best microphone subset is chosen by minimizing
the total transmission costs and constraining the noise reduction performance, where
the transmission cost between each node and the FC is only considered as a function of
distance. The selected microphone will communicate with the FC using the maximum
bit rate. The energy model of the approach in the current paper is more general as com-
pared to that in [122]. Based on the rates obtained by the proposed RD-LCMV approach,
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the best microphone subset of MD-LCMV can be determined by putting a threshold on
the rates, e.g., the sensors whose rates are larger than this threshold are chosen.

Finally, numerical simulations demonstrate that the selected microphone subsets
resulting from thresholding the rates from the RD-LCMV method and directly applying
MD-LCMV are completely the same. Both RD-LCMV and MD-LCMV can guarantee a
given performance requirement, but RD-LCMV shows a superiority in energy efficiency.

4.1.2. OUTLINE AND NOTATION
The rest of this paper is organised as follows. Sec. 4.2 presents preliminary knowledge on
the signal model, uniform quantization, the used energy model and LCMV beamform-
ing. In Sec. 4.3, the problem formulation and a solver for the RD-LCMV optimization
are given. Sec. 4.4 extends the sensor selection for MVDR beamforming from [122] to the
LCMV beamforming framework and discusses the link between sensor selection and rate
allocation problems. Sec. 4.5 shows the application of the proposed RD-LCMV method
within the WASNs. Finally, Sec. 4.6 concludes this work.

The notation used in this paper is as follows: Upper (lower) bold face letters are used
for matrices (column vectors). (·)T or (·)H denotes (vector/matrix) transposition or con-
jugate transposition. diag(·) refers to a block diagonal matrix with the elements in its
argument on the main diagonal. 1N and ON denote the N × 1 vector of ones and the
N ×N matrix with all its elements equal to zero, respectively. IN is an identity matrix of
size N . E{·} denotes the statistical expectation operation. A º B means that A−B is a
positive semidefinite matrix. Finally, ¯ denotes the Hadamard (elementwise) product.

4.2. PRELIMINARIES

4.2.1. SIGNAL MODEL
We consider a spatially distributed candidate set of M microphone sensors that collect,
quantize and transmit their observations to an FC. In the short-term Fourier transform
(STFT) domain, let l denote the frame index andω the frequency bin index, respectively.
We assume that there are I speech sources of interest, while J interfering sources are
potentially present in the environment. Using an STFT-domain description, the noisy
DFT coefficient of the quantized signal which is to be transmitted to the FC at the kth
microphone, say Ŷk (ω, l ),k = 1,2, · · · , M , is given by

Ŷk (ω, l ) = Yk (ω, l )+Qk (ω, l ),∀k, (4.1)

where Qk (ω, l ) denotes the quantization noise which is assumed to be uncorrelated with
the microphone recording1 Yk (ω, l )2, given by

Yk (ω, l ) =
I∑

i=1
ai k (ω)Si (ω, l )︸ ︷︷ ︸

Xi k (ω,l )

+
J∑

j=1
b j k (ω)U j (ω, l )︸ ︷︷ ︸

N j k (ω,l )

+Vk (ω, l ), (4.2)

1This assumption holds under high rate communication. Under low rate, this can be achieved using subtrac-
tive dither [70, 71].

2In real-life applications, yk is already quantized, since it is acquired by the analog-to-digital converter (ADC)
of the kth microphone. In this case, Qk would represent the error from changing the bit resolution of Yk .
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with

• ai k (ω) denoting the acoustic transfer function (ATF) of the i th target signal with
respect to the kth microphone;

• Si (ω, l ) and Xi k (ω, l ), the i th target source at the source location and the i th target
source at the kth microphone, respectively;

• b j k (ω) the ATF of the j th interfering source with respect to the kth microphone;

• U j (ω, l ) and Ni k (ω, l ), the j th interfering source at the source location and the j th
interference source at the kth microphone, respectively;

• Vk (ω, l ) uncorrelated noise at the kth microphone.

Notice that in (4.2), we assume that the ATFs are shorter than the length of the STFT
window, such that the ATFs can be modelled as a multiplicative factor that varies with
frequency in the STFT domain. For longer ATFs, a more accurate signal model is re-
quired for each frequency band, e.g., see [126]. For notational convenience, we will omit
the frequency variable ω and the frame index l now onwards bearing in mind that the
processing takes place in the STFT domain. Using vector notation, the M channel sig-
nals are stacked in a vector ŷ = [Ŷ1, ..., ŶM ]T ∈ CM . Similarly, we define M dimensional
vectors y,xi ,n j ,v,q for the microphone recordings, the i th target component, the j th
interfering component, the additive noise and the quantization noise, respectively, such
that the signal model in (4.1) can compactly be written as

ŷ = y+q =
I∑

i=1
xi +

J∑
j=1

n j +v+q, (4.3)

where xi = ai si ∈CM and n j = b j u j ∈CM with

ai = [ai 1, ai 2, · · · , ai M ]T , b j = [b j 1,b j 2, · · · ,b j M ]T .

Alternatively, if we stack the ATFs for the target sources and the interfering sources, in
matrices, the microphone recordings can also be written like,

y = As+Bu+v, (4.4)

where

A =


aT

1
aT

2
...

aT
I


T

∈CM×I , s =


s1

s2
...

sI

 ∈CI , B =


bT

1
bT

2
...

bT
J


T

∈CM×J , u =


u1

u2
...

uJ

 ∈CJ .

In order to focus on the concept of rate-distributed noise reduction, we assume in this
work that the ATFs of the existing sources (i.e., A and B) are known.
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Assuming that the target signals and the interferers are mutually uncorrelated, the
correlation matrix of the recorded signals is given by

Ryy = E{yyH } = Rxx +Ruu +Rvv︸ ︷︷ ︸
Rnn

∈CM×M , (4.5)

where Rxx = ∑I
i=1E{xi xH

i } = ∑I
i=1σ

2
si

ai aH
i = AΣxAH with σ2

si
= E{|Si |2} the power spec-

tral density (PSD) of the i th target source and Σx = diag
(
[σ2

s1
, · · · ,σ2

sI
]
)
. Similarly, Ruu =∑J

j=1E{ni nH
i } =∑J

j=1σ
2
ui

b j bH
j = BΣuBH withσ2

ui
= E{|Ui |2} the PSD of the j th interfering

source and Σu = diag
(
[σ2

u1
, · · · ,σ2

uJ
]
)
. The correlation matrix of all disturbances includ-

ing quantization noise in the quantized signals ŷ is given by

Rn+q = Rnn +Rqq, (4.6)

under the assumption that the received noises and quantization noise are mutually un-
correlated. In practice, Rn+q can be estimated using the quantized noise-only segments
of sufficient duration, and Rŷŷ can be estimated using the quantized speech+noise seg-
ments3.

4.2.2. UNIFORM QUANTIZATION

The uniform quantization of a real number a ∈ [−Ak
2 , Ak

2 ] with Ak /2 denoting the maxi-
mum absolute value of the kth microphone signal using bk bits can be expressed as

Q(a) =∆k

⌊
a

∆k

⌋
+ 1

2

 , k = 1, · · · , M , (4.7)

where the uniform intervals have width∆k =Ak /2bk . Note that Ak is different from sen-
sor to sensor which is determined by its own signal observations. Each sensor should
inform its Ak to the FC by communication. Considering the case of uniform quantiza-
tion, the variance or PSD of the quantization noise is approximately given by [68, 69]

σ2
qk

=∆2
k /12, k = 1, · · · , M , (4.8)

and the correlation matrix of the quantization noise across microphones reads

Rqq = 1

12
×diag

[
A 2

1

4b1
,
A 2

2

4b2
, ...,

A 2
M

4bM

] . (4.9)

3Note that both Rŷŷ and Rn+q have quantization noise included, i.e., Rŷŷ = Ryy +Rqq and Rn+q = Rnn +Rqq.
Given sufficiently long noise and noisy segments, the quantization noise will influence Ryy and Rnn in the
same fashion by adding a same matrix Rqq. Therefore, the estimation of Rxx is not dependent on the com-
munication rate, because it is obtained by subtracting Rn+q from Rŷŷ.
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4.2.3. TRANSMISSION ENERGY MODEL
We assume that the noise on the communication channels between the sensors and the
FC is additive and white Gaussian with PSD Vk . The channel power attenuation factor is
d r

k , where dk is the transmission distance from the kth microphone to the FC and r is the
path loss exponent (typically 2 ≤ r ≤ 6) [36, 127]. Without loss of generality, we assume
r = 2 in this work. The SNR4 of the kth channel then is

SNRk = d−2
k Ek /Vk , (4.10)

where Ek represents the transmitted energy of the kth microphone node per sample.
Assuming Gaussian distributions for the noise and transmitted signal, the maximum ca-
pacity of such a communication channel for a specific time-frequency bin is given by the
Shannon theory [128]

bk = 1

2
log2

(
1+SNRk

)
, (4.11)

which implies that bk bits per sample at most can reliably be transmitted from micro-
phone k to the FC. Based on the SNRk and bk , the transmission energy from microphone
k to the FC for a specific time-frequency bin can be formulated as

Ek = d 2
kVk (4bk −1), (4.12)

which is a commonly used transmission model [36, 37, 38]. The above transmission en-
ergy model holds under two conditions [36, 38]: 1) in the context of spectrum-limited ap-
plications (e.g., audio signal processing); 2) under the assumption that we quantize the
microphone recordings at the channel capacity, which is in fact an ideal source/channel
coding scheme, such that the quantized signals perfectly fit in the channel capacity.

4.2.4. LCMV BEAMFORMING
The well-known LCMV beamformer is a typical spatial filtering technique where the out-
put noise energy is minimized under a set of linear constraints. These constraints can
be used to preserve target sources, or steer zeros in the direction of interferences (i.e.,
to suppress noise signals). In the context of binaural noise reduction [47, 46, 80], LCMV
beamforming can also be used to preserve certain interaural relations in order to pre-
serve spatial cues. Mathematically, the LCMV beamformer can be formulated as

ŵLCMV = argmin
w

wH Rn+qw, s.t. ΛH w = f, (4.13)

which has U equality constraints with f = [ f1, f2, · · · , fU ]T ∈ CU and Λ ∈ CM×U . More
specifically, in case the LCMV beamformer is employed to suppress noise, matrix Λ can
be constructed using A and all the entries in f are non-zero values [14, 20, 129]; in case
the LCMV beamformer is used for joint noise reduction and spatial cue preservation in
a binaural setup, Λ is constructed using the matrices A and B, and the vector f will have
some zeros corresponding to the interfering sources [47, 46]. To make the framework
proposed in this paper more general, we therefore do not specify the structure of Λ or

4The SNR mentioned in this section is used to measure the noise level over the communication channels,
which is different from the acoustic noise or acoustic SNR that will be discussed in the experiments.
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Figure 4.1: A typical communication model in WASNs.

f, which should be chosen according to the requirements in applications. The closed-
form solution to (4.13), which can be found by applying Lagrange multipliers, is given
by [14, 20, 129]

ŵLCMV = R−1
n+qΛ

(
ΛH R−1

n+qΛ
)−1

f. (4.14)

The output noise power after LCMV beamforming can be shown to be given by [129]

ŵH Rn+qŵ = fH
(
ΛH R−1

n+qΛ
)−1

f. (4.15)

4.3. RATE-DISTRIBUTED LCMV BEAMFORMING

4.3.1. GENERAL PROBLEM FORMULATION
Fig. 4.1 shows a typical communication model in WASNs, which is considered in this
work. The microphone recordings are quantized with specified bit rates and then trans-
mitted to an FC through noisy communication channels. The FC conducts noise re-
duction and outputs the estimated target signal(s). In this work, we are interested in
minimizing the transmission costs by allocating bit rates to microphones to achieve a
prescribed noise reduction performance. Our initial goal can be formulated in terms of
the following optimization problem:

min
w,b

M∑
k=1

d 2
kVk (4bk −1)

s.t. wH Rn+qw ≤ β

α

ΛH w = f,

bk ∈Z+, bk ≤ b0,∀k,

(P1)

where β denotes the minimum output noise power that can be achieved when all sen-
sors use full-rate quantization,α ∈ (0,1] is to control a certain expected performance,Z+
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denotes a non-negative integer set, and b0 the maximum rate per sample of each micro-
phone signal. The unknown variable b is implicit in the output noise power wH Rn+qw.
Note that (P1) is a general form for the rate-distributed spatial filtering based noise re-
duction problem. Also, β/α does not depend on the rate allocation strategy or statistics
of the whole sensor network, becauseβ/α is just a number that can be assigned by users,
e.g., 40 dB, to indicate an expected performance. By solving (P1), we can determine the
optimal rate distribution that each microphone can utilize to quantize its recordings,
such that the noise reduction system achieves a desired performance with minimum
energy usage. One simple method to solve (P1) is exhaustive search, i.e., evaluating the
performance for all (b0 + 1)M choices for the rate distribution, but evidently this is in-
tractable unless b0 or M is very small. Next, we will find an efficient solver for (P1).

4.3.2. SOLVER FOR RATE-DISTRIBUTED LCMV BEAMFORMING
In this section, we will reformulate (P1) in the context of LCMV beamforming. Consider-
ing the utilization of an LCMV beamformer for noise reduction, the second constraint in
(P1) is automatically satisfied. Substituting the solution of the LCMV beamformer from
(4.14) into (P1), we get the following simplified optimization problem:

min
b

M∑
k=1

d 2
kVk (4bk −1)

s.t. fH
(
ΛH R−1

n+qΛ
)−1

f ≤ β

α

bk ∈Z+, bk ≤ b0,∀k,

(P2)

where the bit rates b are implicit in the output noise power fH
(
ΛH R−1

n+qΛ
)−1

f, which

is clearly non-convex and non-linear in terms of b. In what follows, we will explicitly

express fH
(
ΛH R−1

n+qΛ
)−1

f in b and reformulate (P2) by semi-definite relaxation.

First of all, the first inequality constraint in (P2) is equivalent to the following two
new constraints by introducing a new Hermitian positive definite matrix Z ∈ SU++ with
SU++ denoting a set for Hermitian positive definite matrices of dimension U ×U , i.e.,

ΛH R−1
n+qΛ= Z, (4.16)

fH Z−1f ≤ β

α
. (4.17)

The inequality (4.17) can be rewritten as a linear matrix inequality (LMI) using the Schur
complement [108, p.650], i.e., [

Z f

fH β
α

]
º OU+1. (4.18)

However, the equality constraint in (4.16) is clearly non-convex in terms of the unknowns
b. We therefore relax it to

ΛH R−1
n+qΛº Z, (4.19)

since (4.17) and (4.19) are sufficient conditions to obtain the original constraint in (P2),
and we use º in (4.19) for convex relaxation.
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Then, in order to linearize (4.19) in b, we calculate R−1
n+q as

R−1
n+q =

(
Rnn +Rqq

)−1 = R−1
nn −R−1

nn

(
R−1

nn +R−1
qq

)−1
R−1

nn, (4.20)

where the second equality is derived from the matrix inversion lemma [107, p.18](
A+CBCT

)−1 = A−1 −A−1C
(
B−1 +CT A−1C

)−1
CT A−1.

Substitution of the expression for R−1
n+q from (4.20) into (4.19), we obtain

ΛH R−1
nnΛ−Z ºΛH R−1

nn

(
R−1

nn +R−1
qq

)−1
R−1

nnΛ. (4.21)

Using the Schur complement, we obtain the following LMI5[
R−1

nn +R−1
qq R−1

nnΛ

ΛH R−1
nn ΛH R−1

nnΛ−Z

]
º OM+U , (4.22)

where R−1
qq can be computed from (4.9) as

R−1
qq =12×diag

[
4b1

A 2
1

,
4b2

A 2
2

, ...,
4bM

A 2
M

] . (4.23)

For notational convenience, we define a constant vector e =
[

12
A 2

1
, · · · , 12

A 2
M

]
. Further, we

introduce a variable change tk = 4bk ∈ Z+,∀k, such that R−1
qq = diag(e¯ t) and (4.22) are

both linear in t. In order to convexify the integer constraint bk ∈ Z+,∀k, we relax it to
bk ∈R+, i.e., tk ∈R+,∀k. Altogether, we arrive at

min
t,Z

M∑
k=1

d 2
kVk (tk −1) (4.24)

s.t.

[
Z f

fH β
α

]
º OU+1, (4.24a)[

R−1
nn +R−1

qq R−1
nnΛ

ΛH R−1
nn ΛH R−1

nnΛ−Z

]
º OM+U , (4.24b)

1 ≤ tk ≤ 4b0 , ∀k, (4.24c)

which is a standard semi-definite programming problem [108, p.128] and can be solved
efficiently in polynomial time using interior-point methods or solvers, like CVX [110] or
SeDuMi [111]. The computational complexity for solving (4.24) is of the order of O ((M +
U )3). After (4.24) is solved, the allocated bit rates can be resolved by bk = log4 tk ,∀k
which are continuous values.
5Note that (4.22) is not an LMI essentially, because it is not linear in the unknown parameters b. Here, we call

it LMI for convenience, since it looks like an LMI and is linear in 4bk ,∀k.
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4.3.3. RANDOMIZED ROUNDING
The solution provided by the semi-definite program in (4.24) consists of continuous val-
ues. A straightforward and often used technique to resolve the integer bit rates is by
simply rounding, in which the integer estimates are given by round

(
bk

)
,∀k where the

round(·) operator rounds its arguments towards the nearest integer. However, there is
no guarantee that the integer solution obtained by this rounding technique always sat-
isfies the performance constraint. Hence, we utilize a variant rounding technique, i.e.,
randomized rounding [53], to the estimates obtained from (4.24). Specifically, letting
ceil

(
bk

)− bk and 1 − ceil
(
bk

)+ bk ,∀k denote the probabilities for bk to be the near-
est lower integer and the nearest upper integer, respectively, where the ceil(·) operator
rounds its arguments towards the nearest upper integer, then we can randomly round
bk to the nearest upper/lower integer based on its probability distribution and the pre-
scribed performance requirement. Usually, such a randomized rounding procedure needs
to be performed multiple times, and the best solution is then selected. Alternatively, we
can simply use ceil

(
bk

)
,∀k to resolve the integer rates. However, this is suboptimal com-

pared to the randomized rounding technique due to more unnecessary energy usage.

4.4. RELATION TO MICROPHONE SUBSET SELECTION
In this section, we will show the relation between rate allocation and sensor selection. To
do so, we first represent the rate-distributed LCMV beamforming in (4.24) as a Boolean
optimization problem, and then we extend the sensor selection based MVDR beam-
former from [122] to the LCMV beamforming framework. We find that sensor selection
is a special case of the rate allocation problem. Finally, we propose a bisection algorithm
that can be used to obtain the sensor selection results as in [122] based on the rate allo-
cation method.

4.4.1. REPRESENTATION OF RATE-DISTRIBUTED LCMV BEAMFORMING
In this subsection, we will represent the rate-distributed LCMV beamforming in (4.24)
from the perspective of Boolean optimization. This representation turns out to be very
useful when comparing the rate-distributed LCMV beamforming framework to the LCMV
beamforming based sensor selection framework. Setting pk = tk /4b0 ,∀k in (4.24), we
obtain the following equivalent form

min
p,Z

4b0
M∑

k=1
pkVk d 2

k −ε (4.25)

s.t.

[
Z f

fH β
α

]
º OU+1, (4.25a)[

R−1
nn +R−1

qq R−1
nnΛ

ΛH R−1
nn ΛH R−1

nnΛ−Z

]
º OM+U , (4.25b)

0 ≤ pk ≤ 1,∀k, (4.25c)

where R−1
qq = 4b0 diag

(
e¯p

)
and ε=∑M

k=1 d 2
kVk which is an irrelevant constant that does

not depend on the optimization variables. Note that for (4.25), optimizing the objective
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function is equivalent to minimizing
∑M

k=1 pkVk d 2
k . Given the solution of (4.25), the rates

to be allocated can be resolved by bk = log4 pk +b0,∀k and the randomized rounding
technique in Sec. 4.3.3.

Remark 5. From the perspective of optimization, (4.24) and (4.25) are equivalent, i.e.,
both are semi-definite programming problems with the same computational complexity
and can provide the optimal rate distribution. However, apart from the function of rate
allocation, (4.25) gives an insight to sensor selection, because its unknowns p are contin-
uous values between 0 and 1. Hence, if we apply the randomized rounding technique to
the continuous p, we can obtain a Boolean solution which can indicate whether a sensor
is selected or not. In other words, if we are interested in sparsity-aware networks instead
of energy-aware ones, (4.25) can be employed to select the best microphone subset.

Based on the representation of rate-distributed LCMV beamforming in (4.25), next
we will find the relation between rate allocation and sensor selection.

4.4.2. MODEL-DRIVEN LCMV BEAMFORMING
In [122], we considered the problem of microphone subset selection based noise reduc-
tion in the context of MVDR beamforming. We minimized the transmission costs by
constraining to a desired noise reduction performance. The transmission cost was re-
lated to the distance between each microphone and the FC. In the case the number of
constraints in (4.13) is reduced to a single constraint preserving a single target, the LCVM
beamformer reduces to a special case, i.e., the MVDR beamformer. Hence, mathemat-
ically, the original sensor selection problem in [122] can be extended by adding more
linear constraints to obtain the following optimization problem

min
wp,p

M∑
k=1

pk d 2
k

s.t. wH
p Rn+q,pwp ≤ β

α
,

ΛH
p wp = f,

(4.26)

where p = [p1, · · · , pM ]T ∈ {0,1}M are selection variables to indicate whether a sensor is
selected or not, wp denotes the coefficients of the LCMV beamformer corresponding to
the selected sensors, Λp is a submatrix of Λ which was defined in (4.13), and other pa-
rameters are defined similarly as in (P1). Note that the transmission cost in (4.26) is only
influenced by the transmission distance, since we assume that all the selected sensors
use a full-rate quantization, such that we do not need the ideal source/channel coding
assumption for the sensor selection problem and the channel noise Vk ,∀k is neglected.
Suppose that for the microphone subset selection problem, all the candidate sensors
use the maximum rates, i.e., b0 bits per sample, to communicate with the FC, such that

Rn+q = Rnn +Rqq and Rqq = 1
12 ×diag

([
A 2

1

4b0
,

A 2
2

4b0
, ...,

A 2
M

4b0

])
. The problem (4.26) is called

model-driven LCMV beamforming, because it is based on the statistical knowledge Rn+q.
We will show that the optimization problem in (4.26) can be solved by considering

(4.25). Let diag(p) be a diagonal matrix whose diagonal entries are given by p, such that
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Φp ∈ {0,1}K×M is a submatrix of diag(p) after all-zero rows (corresponding to the unse-
lected sensors) have been removed. As a result, we can easily get the following relation-
ships

ΦpΦ
T
p = IK , ΦT

pΦp = diag(p). (4.27)

Therefore, applying the selection model to the classical LCMV beamformer in (4.14), the
best linear unbiased estimator for a subset of K microphones determined by p will be

ŵp = R−1
n+q,pΛp

(
ΛH

p R−1
n+q,pΛp

)−1
f, (4.28)

where Rn+q,p =ΦpRn+qΦ
T
p represents the total noise correlation matrix of the selected

sensors after the rows and columns of Rn+q corresponding to the unselected sensors
have been removed, i.e., Rn+q,p is a submatrix of Rn+q.

Applying the result in (4.28) to (4.26) yields a simplified optimization problem based
on the LCMV beamformer as

min
p

M∑
k=1

pk d 2
k

s.t. wH
p Rn+q,pwp ≤ β

α
,

(4.29)

where similar to (4.15) the output noise power is given by

wH
p Rn+q,pwp = fH

(
ΛH

p R−1
n+q,pΛp

)−1
f. (4.30)

By introducing a symmetric PSD matrix Z ∈ SU+ , we can rewrite the constraint in (4.29)
into two new constraints in a similar way as in the previous section, i.e.,

ΛH R−1
n+qΛ= Z, (4.31)

fH Z−1f ≤ β

α
. (4.32)

The inequality in (4.32) can be rewritten as an LMI using the Schur complement, which
is identical to (4.25a). Also, similar to Sec. 4.3, we relax the equality constraint in (4.31) to

ΛH
p R−1

n+q,pΛp º Z, (4.33)

due to the non-convexity. The left-hand side of (4.33) can be calculated as

ΛH
p R−1

n+q,pΛp
(a)= ΛHΦT

p R−1
n+q,pΦpΛ

(b)= ΛHΦT
p

(
ΦpRn+qΦ

T
p

)−1
ΦpΛ

(c)= ΛHΦT
p

ΦpRnnΦ
T
p +ΦpRqqΦ

T
p︸ ︷︷ ︸

Q


−1

ΦpΛ

(d)= ΛH
[

R−1
nn −R−1

nn

(
R−1

nn +ΦT
p Q−1Φp

)−1
R−1

nn

]
Λ

(e)= ΛH R−1
nnΛ−ΛH R−1

nn

(
R−1

nn +4b0 diag(p¯e)
)−1

R−1
nnΛ, (4.34)
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where (c) constructs ΦpRqqΦ
T
p as a new diagonal matrix Q ∈ RK×K whose diagonal en-

tries correspond to the selected sensors, (d) is derived based on the matrix inversion
lemma [107, p.18]6, and (e) holds when p contains Boolean variables.

Substitution of (4.34) into (4.33) and using the Schur complement, we can obtain
an LMI which will be identical to (4.25b). Altogether, we then reformulate the sensor
selection problem for the LCMV beamforming as the following semi-definite program:

min
p,Z

M∑
k=1

pk d 2
k (4.35)

s.t.

[
Z f

fH β
α

]
º OU+1, (4.35a)[

R−1
nn +R−1

qq R−1
nnΛ

ΛH R−1
nn ΛH R−1

nnΛ−Z

]
º OM+U , (4.35b)

0 ≤ pk ≤ 1,∀k, (4.35c)

where the Boolean variables pk ,∀k have already been relaxed by continuous surrogates.
Comparing the rate allocation problem in (4.25) with the sensor selection problem in
(4.35), we see that they only have difference in the cost functions. Intuitively, the sensor
selection problem is equivalent to the rate allocation problem when all the communica-
tion channels have the same noise power, e.g., Vk = 1,∀k. Based on this observation, it
can be concluded that the sensor selection problem can be solved by the rate allocation
algorithm. In other words, the proposed rate allocation approach is a generalization of
the sensor selection method in [122].

4.4.3. THRESHOLD DETERMINATION BY BISECTION ALGORITHM
In Sec. 4.4.2, we have shown the relationship between the rate allocation problem and
sensor selection, i.e., the former is a generalization of the latter problem, from a theoret-
ical perspective. From this, we know that the best subset of microphones can be iden-
tified by the solution of rate distribution. Now, the essential question remaining is how
to determine the selected sensors as in [122], based on the rate distribution presented in
the current work. Here, we propose a bisection algorithm for threshold determination.

In detail, given the rate distribution bk ,∀k which is the solution of the problem (4.24)
and the maximum rate b0, first we set the threshold T = b0

2 , such that we choose a subset
of sensors, say S , whose rate is larger than T , that is, S = {k|bk ≥ T }. If the performance

using the sensors contained in the set S , say τ, is larger than β
α , we decrease T and

update S ; if τ< β
α , we will increase T . This procedure continues until β

α −τ≤ ε where ε
is a predefined very small positive number. Furthermore, the best subset of microphones
can also be found by solving the optimization problem in (4.25), while we need to apply
the randomized rounding technique to resolve the Boolean variables p.

6Based on the Woodbury identity
(
A+CBCT

)−1 = A−1 − A−1C
(
B−1 +CT A−1C

)−1
CT A−1, we can see that

C
(
B−1 +CT A−1C

)−1
CT = A − A

(
A+CBCT

)−1
A. Taking A = R−1

nn,B = Q−1 and C = ΦT
p and applying the

Woodbury identity to the right side of the third equality in (4.34), we can obtain the fourth equality.
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Figure 4.2: A typical WASN in a 2D scenario, where the indexes of microphones are labelled.

4.5. NUMERICAL RESULTS
In this section, we will show some numerical results for the proposed algorithm in terms
of noise reduction in WASNs.

4.5.1. SINGLE TARGET SOURCE

Fig. 4.2 shows the experimental setup employed in the simulations, where 24 candidate
microphones are placed uniformly in a 2D room with dimensions (3×3) m. The desired
speech source (red solid circle) is located at (0.3,2.7) m. The FC (black solid square) is
placed at the centre of the room. Two interfering sources (blue stars) are positioned at
(0.3,0.3) m and (2.7,2.7) m, respectively. The target source signal is a 10 minute long
concatenation of speech signals originating from the TIMIT database [120]. The inter-
ferences are stationary Gaussian speech shaped noise sources. The uncorrelated noise is
modeled as microphone self noise at an SNR of 50 dB. All signals are sampled at 16 kHz.
We use a square-root Hann window of 20 ms for framing with 50% overlap. The acoustic
transfer functions are generated using [121] with reverberation time T60 = 200 ms. In or-
der to focus on the rate-distributed spatial filtering issue, we assume that a perfect voice
activity detector (VAD) is available in the sequel. Also, the microphone-to-FC distance
dk ,∀k and the channel noise Vk ,∀k are assumed to be known, e.g., Vk = 1,∀k without
loss of generality. For the noise correlation matrix Rnn, it is estimated at the FC end using
sufficiently long noise-only segments when each node communicates with the FC at the
maximum rate b0 or larger.

An example of bit-rate allocation obtained by the rate-distributed LCMV beamform-
ing and model-driven sensor selection based MVDR beamforming (referred to as MD-
MVDR in short) [122] is shown in Fig. 4.3 with α = 0.8. Since only one target source of
interest exists, the optimization problem in (4.24) for the proposed method reduces to
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Figure 4.3: Example of rate allocation by the proposed approach (RD-MVDR) and sensor selection method
(MD-MVDR). For the latter method, the selected sensors are allocated with b0 bits, i.e., 16 bits per sample.

rate-distributed MVDR beamforming, which is referred to as RD-MVDR in short. From
Fig. 4.3, it is observed that in order to fulfill the same performance, the proposed RD-
MVDR method activates more sensors than the MD-MVDR. The MD-MVDR has a smaller
cardinality of the selected subset. However, each active sensor obtained by RD-MVDR is
allocated with a much lower bit-rate per sample compared to the maximum rates, i.e.,
b0 = 16 bits. Also, the sensors that are close to the target source and the FC are more
likely to be allocated with higher bit-rates, because they have a higher SNR and less en-
ergy costs, respectively. More importantly, we find a threshold for the rate distribution of
RD-MVDR, e.g., 6.2818 bits, using the bisection algorithm from Sec. 4.4.3, and the active
sensors whose rates are larger than this threshold are completely the same as the best
subset obtained using the MD-MVDR algorithm. This phenomenon supports the con-
clusion that we have made in Sec. 4.4, i.e., the best microphone subset selection problem
can be resolved by the rate allocation algorithm. Hence, given the solution of rate dis-
tribution, to find out the best microphone subset is equivalent to determining a bit-rate
threshold.

In order to show the comparison of the proposed method in terms of noise reduction
and energy usage, we also show the output noise power (in dB) and energy usage ratio
(EUR) in terms of α in Fig. 4.4, where the indicator EUR is defined by

EURi = Ei /Emax, i ∈ { RD-MVDR, MD-MVDR}, (4.36)

where Ei denotes the energy used by the RD-MVDR or MD-MVDR method, and Emax

the maximum transmission energy when all the sensors are involved and communicate
with the FC using b0 bits. Clearly, the lower the EUR, the better the energy efficiency.

In Fig. 4.4, we also compare to the desired maximum noise power, i.e., 10log10
β
α . Note

that β denotes the output noise power when using all sensors. Although this is hard
to calculate in practice, in the simulations it can be estimated by including all sensors
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the desired performance (i.e., β/α) and the maximum performance when using all sensors (i.e., β) will be
−10log10α.

and allocating each with b0 bits. In practical applications, we just need to set a value

for 10log10
β
α , e.g., 40 dB, to constrain the desired performance. From Fig. 4.4, it follows

that both RD-MVDR and MD-MVDR satisfy the performance requirement (i.e., below

the upper bound 10log10
β
α ), while RD-MVDR is more efficient in the sense of energy

usage, which is also explicit in the rate distribution in Fig. 4.3.
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Figure 4.5: The average difference between the desired performance 10log10
β
α and output noise power of the

RD-MVDR or MD-MVDR method in terms of α with random source/FC positions.
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4.5.2. MONTE-CARLO SIMULATIONS
In order to give a more comprehensive comparison between rate allocation and sensor
selection, we conduct Monte-Carlo simulations to show their average noise reduction
performance. Considering the experimental setup in Fig. 4.2, we fix the microphone
placement and the positions of the two interfering sources, but randomly choose the
positions for the single target source and the FC. In Fig. 4.5, we show the average differ-

ence between the performance requirement 10log10
β
α and the output noise power of the

RD-MVDR/MD-MVDR method in terms of the performance controller α, i.e., 10log10
β
α

minus the output noise power of the RD-MVDR/MD-MVDR method, which is always
positive. The results are averaged over 200 trails. It can be seen that with increasing
α, the average difference for both RD-MVDR and MD-MVDR decreases. Compared to
the MD-MVDR method, the RD-MVDR method achieves a smaller difference for all α-
values, that is, the performance of the proposed rate-distributed approach is closer to
the performance requirement.
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Figure 4.6: The average difference between the desired performance 10log10
β
α and output noise power of the

RD-MVDR or MD-MVDR method in terms of the ATF errors with fixed source/FC positions and α= 0.6.

In addition, in practice the ATFs are usually estimated by the generalized eigenvalue
decomposition of the matrices Rnn and Ryy [29, 44]. The ATF estimation accuracy is
affected by the estimation of the second-order statistics, i.e., VAD and available speech-
absence/speech-presence durations. In order to analyze the robustness of the proposed
approach to the ATF estimation errors in realistic scenarios, we conduct Monte-Carlo
simulations. Considering that the ATF estimation of a single source (the setup is similar
to Fig. 4.2) is given by â = a+ ã, where a and ã represent the true ATF and the estimation
error, respectively, we define

ζ= 10log10
E[||ã||2]

||a||2 , (4.37)

to measure the level of the estimation error. Given ζ in dB, we can generate ã randomly
based on zero-mean complex Gaussian distributions. Fig. 4.6 shows the average differ-
ence between the performance requirement and the aforementioned methods in terms
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Figure 4.7: A larger-scale WASN, which consists of 169 microphone uniformly placed in a (12×12) m 2D room.
The sensors are labelled from bottom to top and from left to right, which is similar to the labeling in Fig. 4.2.
The selected microphones are obtained by solving (4.35) for α= 0.8.

of the ATF estimation error ζ with fixed source/FC positions and α = 0.6. The results
are also averaged over 200 trails. Clearly, the performance of the MD-MVDR method is
further away from the desired performance. With increasing ζ, the mean values of the av-
erage performance difference do not change too much, but the corresponding variances
increase gradually. Hence, the proposed method is robust against the ATF estimation
errors.

4.5.3. MULTIPLE TARGET SOURCES

In order to further investigate the noise reduction capability of the proposed algorithm
for multiple target sources, we consider a larger-scale WASN as Fig. 4.7 shows, which
consists of 169 microphones uniformly placed in a 2D room with dimensions (12×12)
m. The FC is placed at the center of the room. Two target sources are located at (2.4,9.6)
m and (9.6,2.4) m, respectively. Two interfering sources are located at (2.4,2.4) m and
(9.6,9.6) m, respectively. Fig. 4.8 shows the rate distribution, where the proposed method
(referred as RD-LCMV) is compared to the model-driven sensor selection method (re-
ferred as MD-LCMV in Sec. 4.4.2), which is solved by the bisection algorithm in Sec. 4.4.3.
Similar to Fig. 4.3, the sensors that are close to the target sources and FC are allocated
with higher rates. The 85th microphone node is allocated with the highest rate, e.g., 16
bits, because it is exactly located at the position of the FC. Also, it is shown that the best
microphone subset by MD-LCMV can be determined by finding the optimal threshold
for the solution of RD-LCMV (i.e., 3.7812 bits). Furthermore, we plot the sensor selec-
tion result that is obtained by solving (4.35) in Fig. 4.7. Comparing the sensors selected
by solving (4.35) as shown in Fig. 4.7 to the sensors that are selected by applying the
bisection algorithm to the solution of the RD-LCMV algorthm as shown in Fig. 4.8, we
see that both sets are completely identical. This also validates the relationship between
sensor selection and the rate allocation problem.
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Figure 4.8: Rate distribution for the larger-scale WASN in Fig. 4.7 with α = 0.8. The MD-LCMV problem is
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To summarize, the rate allocation algorithms (RD-LCMV or RD-MVDR) activate more
sensors than the sensor selection algorithms (MD-MVDR or MD-LCMV) in general, but
each activated sensor is allocated with a much lower bit-rate. Hence, from the perspec-
tive of energy usage for data transmission, the rate allocation algorithms consume less
energy.

4.6. CONCLUSION
In this paper, we investigated the rate-distributed spatial filtering based noise reduction
problem in energy-aware WASNs. A good strategy for bit-rate allocation can significantly
save the energy costs, and meanwhile achieve a prescribed noise reduction performance
as compared to a blindly uniform allocation for the best microphone subset obtained by
the sensor selection approach. The problem was formulated by minimizing the total
transmission costs subject to the constraint on a desired performance. In the context of
LCMV beamforming, we formulated the problem as a semi-definite program (i.e., RD-
LCMV). Further, we extended the model-driven sensor selection approach in [122] for
the LCMV beamforming (i.e., MD-LCMV). It was shown that the rate allocation prob-
lem is a generalization of sensor selection, e.g., the best subset of microphones can be
chosen by determining the optimal threshold for the rates that are obtained by the RD-
LCMV or RD-MVDR algorithm. In WASNs, based on numerical validation, we found that
the microphones that are close to the source(s) and the FC are allocated with higher
rates, because they are helpful for signal estimation and for reducing energy usage, re-
spectively.
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5.1. INTRODUCTION

R ECENTLY, several beamforming algorithms have been proposed for wireless acoustic
sensor networks (WASNs), e.g., [130, 131, 132, 133, 134, 96, 30, 90, 135]. The cal-

culations are done either in a centralized way [130, 131, 132, 133] or in a distributed
way [134, 96, 30, 90, 135]. In the centralized case, all the sensor nodes need to trans-
mit their measurements to a fusion center (FC), and the FC performs all computations.
There are several limitations on the centralized approach. First, the amount of data that
needs to be sent and saved in the FC scales up with the network size. Moreover, with an
FC, all operations are performed in a single node, which, in case of disconnection from
the network, will cause full collapse of the system. In contrast, the decentralized imple-
mentation distributes calculations over the nodes in the WASN, which could overcome
the limitations of the centralized approaches.

In WASNs, usually the sensors are battery powered with a limited energy budget. To
reduce the energy consumption of beamforming algorithms, one could apply sensor se-
lection [53, 122, 52] or rate allocation [82, 57, 136, 49] to reduce the amount of transmit-
ted information. Rate allocation is more general than sensor selection, as it allows for
multiple decisions on the status of sensors. However, sensor selection and rate alloca-
tion methods typically work in a centralized fashion, which is, as argued above, unde-
sirable due to scalability and instability issues. In this letter we therefore investigate a
decentralized solution for rate-distributed beamforming.

In [85], a distributed linearly constrained minimum variance (LCMV) beamform-
ing method for WASNs was proposed. This method block-diagonalizes the noise/noisy
correlation matrix using linear equality constraints, leading to an efficient distributed
implementation for the LCMV beamformer. However, this method does not take into
account the quantization noise introduced during the communication between the de-
vices. Nor does it take the energy usage due to transmission into account. The rate-
distributed LCMV (RD-LCMV) beamformer proposed in [136] is an effective method to
reduce the transmission costs over WASNs. It optimally distributes rates to the sensors
by minimizing the transmission power under a constraint on the noise reduction per-
formance. However, the RD-LCMV method was derived in a centralized way. This is less
efficient with respect to transmission energy if the FC is far away from the WASN.

In this paper our contribution is twofold. First, we solve the rate-allocation prob-
lem introduced in [136] for the distributed beamformer proposed in [85]. As the beam-
former output highly depends on the quantization noise, we allocate the rates between
the devices such that the distributed LCMV beamformer in [85] guarantees a pre-defined
performance. Secondly, we propose a distributed solution to the RD-LCMV problem in-
troduced in [136]. Experiments in a simulated WASN validate the proposed decentral-
ized method, i.e., the expected noise reduction performance is achieved with a saving of
transmission costs compared to the centralized implementation.

5.2. FUNDAMENTALS

5.2.1. SIGNAL MODEL

We consider a connected WASN consisting of K nodes, where each node k ∈K = {1, ...,K },
with K the set of node indices, has Mk ,∀k microphones. In total, we have M =∑K

k=1 Mk
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microphones that acquire the sound field consisting of one target source degraded by
acoustic background noise. Let E denote the set of edges of the network and Nk the
set of neighbouring nodes of node k. If and only if (i , j ) ∈ E , the i th and j th nodes can
communicate with each other directly. Let l and ω denote the index of time frame and
angular frequency, respectively. In the short-term Fourier transform (STFT) domain, the
noisy STFT coefficient at the κth microphone, say Yκ(ω, l ),∀κ, is given by

Yκ(ω, l ) = Xκ(ω, l )+Nκ(ω, l ), (5.1)

where Xκ(ω, l ) = aκ(ω)S(ω, l ) with aκ(ω) the acoustic transfer function (ATF) of the target
signal with respect to the κth microphone and S(ω, l ) the STFT coefficient of the target
source signal at the source location. In reverberant environments, the ATF consists of
early reverberation (typically the first 50 ms) and late reverberation components [137,
84]. Only the early reflections of the target source are beneficial for improving the speech
intelligibility. Therefore, in (5.1), the total noise Nκ(ω, l ) received by microphone κ is
given by

Nκ(ω, l ) = Zκ(ω, l )+Uκ(ω, l ), (5.2)

where Zκ(ω, l ) denotes the correlated noise components including the early reflections
of all interfering sources, and Uk (ω, l ) the remaining noise components including the
late reverberation from all sources and the sensor noise. For notational brevity, the fre-
quency variable ω and the frame index l will be omitted now onwards. Using vector
notation, the M channel signals are stacked in a vector y = [Y1, ...,YM ]T ∈ CM . Similarly,
we define M-dimensional vectors x,n,z,u,a for the clean speech component, the total
noise, the correlated noise, remaining noise and ATF, respectively, such that the signal
model in (5.1) can compactly be written as

y = x+n = x+z+u, (5.3)

where x = aS. To focus on the concept of rate-distributed noise reduction, we assume
in this work that the ATFs of all sources are known. In a centralized setting, the RTF can
be estimated using covariance substraction or covariance whitening method [45]. In the
distributed setting this can be estimated using [138, 139, 140, 141]. Further, we assume
that all sources are mutually uncorrelated, and the early reflections and late reverbera-
tion are also mutually uncorrelated (which is strictly speaking true under the assumption
that the STFT coefficients S across time are uncorrelated), such that the second-order
statistics (SOS) of the noise components can be written as

Rn = E[|n|2] = Rz +Ru, (5.4)

where E{·} denotes the statistical expectation operation. Estimation of Rn(l ) can be done
during target-free periods. This is true under the assumption that the DTF coefficients S
across time are uncorrelated, because if the late and early reverberations fall in different
time frames, then the late reflections in time frame l are uncorrelated with the early
reflections in the same frame l .
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5.2.2. CENTRALIZED LCMV BEAMFORMING
The LCMV beamformer [14, 20, 142, 129] is widely used in array processing. The filter
coefficients are designed to minimize the output noise power subject to a set of linear
constraints,

wLCMV = argmin
w

wH Rnw, s.t. ΛH w = f. (5.5)

The closed-form solution to (5.5) is given by [14, 20, 142, 129]

wLCMV = R−1
n Λ

(
ΛH R−1

n Λ
)−1

f. (5.6)

Notably, the linear constraints in (5.5) can be used to preserve target sources, eliminate
interfering sources [14, 20, 142, 129], or preserve the spatial cues of the sound field [47,
46, 49].

In general, the microphones within a single node are spatially close, while the mi-
crophones at different nodes in a WASN are typically more distant. In [85], it was argued
that the late reverberation is highly correlated in the first case, while much less corre-
lated in the latter case. Hence, it was suggested that the SOS Ru can be approximated by
a block-diagonal matrix where each block corresponds to the SOS of the late reverbera-
tion of one node only and the microphone self-noise. By properly using the constraints
in the LCMV framework to cancel the early components contained in z and leveraging
the block-diagonal structure of the SOS, the LCMV beamforming problem in (5.5) can
be implemented in a distributed fashion. Hence, as in [85], in this work we specify f =
[1,0, · · · ,0]T ∈Cr+1 (r is the number of interferers), andΛ= [a,b1, · · · ,br ] ∈CM×(r+1) con-
sisting of ATF vectors with b j ,∀ j the ATF of the j th interfering source. Clearly, with such
a set of linear constraints ΛH w = f and given enough degrees-of-freedom, the power of
the target source is preserved and the power of the correlated sources can entirely be
suppressed. As a result, the output noise power after LCMV beamforming can be shown
to be given by [129]

E
[
|wH n|2

]
= E

[
|wH u|2

]
= wH Ruw, (5.7)

due to the fact that bH
j w = 0,∀ j . That is, any decrease in the objective function of (5.5)

is caused by reducing the uncorrelated noise components. As a result, the matrix Rn can
be replaced by Ru. In the sequel, we will use the block-diagonal approximation of Ru for
the design of algorithms.

5.3. DISTRIBUTED LCMV BEAMFORMING WITH QUANTIZATION

NOISE
Given the block-diagonal matrix Ru, by using (5.7) and the constraints to null the early
components contained in z, the centralized LCMV beamforming problem in (5.5) can be
written in the following node separable form:

w∗ = argmin
w

K∑
k=1

wH
k Ru,k wk , s.t.

K∑
k=1
ΛH

k wk = f, (5.8)

where wk ∈ CMk , Λk ∈ CMk×(r+1) and Ru,k = E[uk uH
k ] ∈ CMk×Mk with uk ∈ CMk denote

the elements of w, the rows of Λ and the kth block of the matrix Ru, respectively. The
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subscript k is used to indicate the components associated with node k. Considering the
real-valued Lagrangian function of (5.8), we can obtain the optimal local LCMV filter,
given by [85]

w∗
k = R−1

u,kΛkµ
∗, (5.9)

whereµ∗ ∈Cr+1 is a vector with Lagrangian multipliers. Clearly, the optimal local LCMV
filter w∗

k depends on the global optimal dual variables µ∗. To determine µ∗, one can
consider the dual optimization problem of (5.8), given by

µ∗ = argmax
µ

−
K∑

k=1
µHΛH

k R−1
u,kΛkµ+2ℜ

(
µH f

)
, (5.10)

where ℜ(·) returns the real part. For notational simplicity, we define Gk =ΛH
k R−1

u,kΛk ,∀k.
To optimize (5.10) in a distributed fashion, we introduce µk ,∀k to denote the local ver-
sion of µ at each node. With this, (5.10) is equivalent to

min
µk

K∑
k=1

(
µH

k Gkµk −
2

K
ℜ

(
µH

k f
))

s.t. µk =µm ,

for all (k,m) ∈ E . The resulting problem can be solved using randomized gossip [88],
ADMM [86] or PDMM [87]. For instance, as shown in [85], the PDMM update procedure
for the (i +1)th iteration can be summarized as

µ(i+1)
k =(

Gk +ρ|Nk |I
)−1

×
[ ∑

m∈Nk

( k −m

|k −m|γ
(i )
m|k +ρµ(i )

m

)
+ f

K

]
, (5.11a)

γ(i+1)
k|m =γ(i )

m|k −ρ
k −m

|k −m|
(
µ(i+1)

k −µ(i )
m

)
, (5.11b)

where γk|m and γm|k are the direct-edge variables computed at nodes k and m, re-
spectively, associated with the edge (k,m) ∈ E , I denotes the identity matrix, and ρ is
a positive step size. Note that in (5.11), by substituting the update equation for γ(i )

m|k , we
can get rid of transmitting the edge variables. As such, updating the edge variables can
be performed by broadingcasting µ(i )

k . The iterative procedure can be terminated until

|µ(i )
k −µ(i )

m | < ε where ε is a small positive number.
In [143, 144], the convergence of PDMM was shown in the presence of quantization

noise. Due to quantization, the dual variables exchanged among nodes are noisy, i.e.,
µ̂(i )

k =µ(i )
k + µ̃(i )

k , where µ̃(i )
k denotes the quantization noise which is assumed to be zero-

mean1. Using the above PDMM update equations, the LCMV filter from (5.9) in iteration
i is given by

ŵ(i )
k = w(i )

k + w̃(i )
k = R−1

u,kΛk

(
µ(i )

k + µ̃(i )
k

)
, (5.12)

where w̃(i )
k = R−1

u,kΛk µ̃
(i )
k is the error caused by quantization. After the local filters are

obtained, calculating the beamformer output reduces to an average consensus problem

1This assumption holds when subtractive dithering based uniform quantization is used. The dither signal,
which is known at the receiver side, and the quantization noise are i.i.d. processes.
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as

min
X

K∑
k=1

(
Xk − ŵH

k yk

)2
s.t. Xk = Xm ,∀(k,m) ∈ E . (5.13)

The PDMM update equations for (5.13) can be found in [85]. Note that for stationary
signals, the update procedure in (5.11) is time-invariant, while (5.13) is always both time
and frequency dependent. To reduce the communication costs, we will next derive how
to find the optimal quantization rate distribution for iteratively calculating the local fil-
ters and beamforming.

5.4. PROPOSED DISTRIBUTED RATE ALLOCATION
In [136], the centralized rate-distributed LCMV (RD-LCMV) beamforming problem was
formulated by minimizing the total transmission energy between all sensor nodes and
the FC and constraining the resulting output noise power. Let the transmission power
from node k to a neighboring node m for a single time-frequency bin be d 2

kVkm(4bk −1),
where 0 ≤ bk ≤ b0,∀k denotes the integer rate that is used by the node k, and dk and
Vkm denote the transmission range and the channel noise power spectral density (PSD)
between node k and node m, respectively [36, 37, 38]. Assuming that in each iteration
we randomly (e.g., at a probability of 1

K ) pick one node of the WASN that broadcasts
information to all of its neighboring nodes, such that the expected transmission power
per iteration can be given by

g (b) = 1

K

K∑
k=1

d 2
kVk

(
4bk −1

)
, (5.14)

where Vk is the mean value of Vkm ,m ∈Nk . Assuming that I iterations are used for cal-
culating the filters through (5.11) and J iterations for beamforming in (5.13), respectively,
the original RD-LCMV problem in [136] can be reformulated as

min
b

g (b) s.t.
K∑

k=1

(
E
[
|ŵ(I )H

k uk |2
]
+E

[
ζ(J )

Xk

])
≤ β

α
, (P1)

where α ∈ (0,1] is the parameter to control the expected performance, E[ζ(J )
Xk

] denotes
the primal mean-squared error (MSE) caused by quantizing Xk in calculating the beam-
former output, i.e., ζ(J )

Xk
= |Xk −Q(J )

bk
(Xk )|2 with Q(J )

bk
(Xk ) denoting the quantized Xk using

bk bits. Further, the filter ŵ(I )
k was given in (5.12), and β = ∑K

k=1E[|w(I )H
k uk |2] denotes

the minimum output noise power (i.e., without quantization noise). In (P1), the term
E[|ŵ(I )H

k uk |2] denotes the residual acoustic noise and the residual noise of the beam-

former due to quantizingµk . Note that ζ(J )
Xk

depends on the number of iterations and the
topology of the network. Since the beamforming is performed iteratively with quanti-
zation, the quantization noise ζ(J )

Xk
will accumulate at each iteration. However, in [143],

it was shown that in case of quantization with sufficiently small fixed cell width (e.g.,
uniform quantization), the error accumulates but the growth is so slow that it can be
considered constant over the iteration range of interest. That is, the primal MSE E[ζ(J )

Xk
]

can be approximated by
E[ζ(J )

Xk
] ≈Cσ2

k ,∀k, (5.15)
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where σ2
k denotes the noise variance depending on the bit rate and the quantization

range, and C is a constant which only depends on the topology of the network and is
O (K ).

The noise power at node k in (P1) can be calculated by

E
[
|ŵ(I )H

k uk |2
]

(a)= E

[(
w(I )

k + w̃(I )
k

)H
uk uH

k

(
w(I )

k + w̃(I )
k

)]
(b)= E

[
w(I )H

k uk uH
k w(I )

k

]
+2E

[
ℜ(w(I )H

k uk uH
k w̃(I )

k )
]
+E

[
w̃(I )H

k uk uH
k w̃(I )

k

]
,

where we note that
∑K

k=1E
[

w(I )H
k uk uH

k w(I )
k

]
=β.

Proposition 1. If the quantization noise µ̃(I )
k and the acoustic noise uk are independent,

we have
E
[
ℜ(w(I )H

k uk uH
k w̃(I )

k )
]
= 0, E

[
w̃(I )H

k uk uH
k w̃(I )

k

]
= Tr

(
Gk Rµ̃k

)
,

where Rµ̃k
= E

[
µ̃(I )

k µ̃(I )H
k

]
and Tr(·) returns the trace of a matrix.

Proof. The proof follows from the observation that E(AB) = E(A)E(B) if A and B are in-
dependent (and E(aH bbH a) = E(Tr(bbH aaH )) = Tr(E(aaH )E(bbH )) if a and b are indepen-
dent vectors). Specifically, let f (X ) denote the probability density function of a random
variable X . If the quantization noise µ̃(I )

k and acoustic noise uk are independent, we can

see that f (µ̃(I )
k ,uk ) = f (µ̃(I )

k ) f (uk ). Then, the expectations can be calculated as

E

[
ℜ

(
w(I )H

k uk uH
k w̃(I )

k

)]
=ℜ

(
E
[

w(I )H
k uk uH

k R−1
u,kΛk µ̃

(I )
k

])
=ℜ

{∫
uk

∫
µ̃(I )

k

w(I )H
k uk uH

k R−1
u,kΛk µ̃

(I )
k f (µ̃(I )

k ,uk )duk dµ̃(I )
k

}

=ℜ
{∫

uk

w(I )H
k uk uH

k R−1
u,kΛk f (uk )

∫
µ̃(I )

k

µ̃(I )
k f (µ̃(I )

k )dµ̃(I )
k duk

}
= 0,

since E
[
µ̃(I )

k

]
= ∫

µ̃(I )
k
µ̃(I )

k f (µ̃(I )
k )dµ̃(I )

k = 0. In addition, we have

E
[

w̃(I )H
k uk uH

k w̃(I )
k

]
= E

[
µ̃(I )H

k ΛH
k R−1

u,k uk uH
k R−1

u,kΛk µ̃
(I )
k

]
=

∫
uk

∫
µ̃(I )

k

µ̃(I )H
k ΛH

k R−1
u,k uk uH

k R−1
u,kΛk µ̃

(I )
k f (µ̃(I )

k ,nk )duk dµ̃(I )
k

=
∫
µ̃(I )

k

µ̃(I )H
k ΛH

k R−1
u,k

∫
uk

uk uH
k f (uk )duk︸ ︷︷ ︸

=E
[

uk uH
k

]
=Ru,k

R−1
u,kΛk µ̃

(I )
k f (µ̃(I )

k )dµ̃(I )
k

=
∫
µ̃(I )

k

µ̃(I )H
k ΛH

k R−1
u,kΛk µ̃

(I )
k f (µ̃(I )

k )dµ̃(I )
k

= E
[
µ̃(I )H

k ΛH
k R−1

u,kΛk µ̃
(I )
k

]
= Tr

(
Gk Rµ̃k

)
,

which completes the proof.
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To this end, we can see that

K∑
k=1

E
[
|ŵ(I )H

k uk |2
]
=β+

K∑
k=1

Tr
(
Gk Rµ̃k

)
. (5.16)

Further, we use fixed-rate uniform quantizers for all iterations to quantize the dual
variables, such that the SOS of the quantization noise µ̃(I )

k can be given by [136, 68, 57]

Rµ̃k
= E

[
µ̃(i )

k µ̃(i )H
k

]
= 1

12
× A 2

4bk
Ir+1,∀i , (5.17)

where A = max |µ∗| and is pre-defined. Similarly, we have σ2
k = 1

12 × B2
k

4bk
with Bk the

expected dynamic range of the optimal beamformer output. Using a variable change
1 ≤ tk = 4bk ≤ 4b0 ,∀k and the property in (5.15), (P1) can be simplified as

min
t

g (b) s.t.
K∑

k=1

[
Tr

(
Gk

)
A 2 +B2

kC
]

/tk ≤ δ, (P2)

where δ = 12
(
β
α −β

)
. By solving the KKT condition ∂L (t,λ)

∂tk
= 0, the optimal solution to

(P2) can be found as

t∗k =
√
λ

(
A 2Tr(Gk )+B2

kC
)
/d 2

kVk , (5.18)

which only depends on the Lagrange multiplier λ. To determine λ, one can consider the
dual problem of (P2). Substituting (5.18) into (P2), we obtain the dual problem as

min
λ

K∑
k=1

(
δ

K
λ−2

√
λ

(
A 2Tr(Gk )+B2

kC
)

d 2
kVk +d 2

kVk

)
, (5.19)

which is quadratic in
p
λ and the constraint on δ is partitioned into K equal parts. As a

result, we can see that the optimal global multiplier is given by

λ∗ = 1

K 2

(
K∑

k=1

√
λk

)2

, (5.20)

where the local λk is defined by

λk = K 2
(
A 2Tr(Gk )+B2

kC
)

d 2
kVk /δ2,∀k. (5.21)

Clearly, determiningλ∗ turns into an averaging problem, sinceλk can be computed sep-
arately at each node. Then, we can use PDMM to calculate the average consensus of

√
λk

that is required by (5.20). This requires a large amount of information exchange. To avoid
this, we can consider using the locally optimalλk from (5.21) only, instead of the globally
optimal λ∗. Substituting (5.21) into (5.18), we obtain the rate distribution as

tk = K
(
A 2Tr(Gk )+B2

kC
)

/δ, (5.22)

which reveals that by using local λk , the rate can be determined locally without any in-
formation exchange and it only depends on the noise power. However, this might affect
the global optimality of the rate distribution, which will be studied experimentally. No-
tably, the final rates should be resolved by bk = log4 tk ,∀k and randomized rounding as
in [136].
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5.5. NUMERICAL RESULTS
Fig. 5.1 shows a simulated WASN in a 2D room with dimensions (6×4) m. We consider
K = 21 nodes and each node has Mk = 3,∀k microphones. We set ρ = 0.5 and C = 21.
One target source is located at (2,3) m. Five noise sources are randomly placed around
the WASN. The duration of all sources is 10 minutes. All sources originate from the TIMIT
database [120]. The sensor noise is modeled as white Gaussian noise at an SNR of 50 dB.
The sampling frequency is 16 kHz. A square-root-Hann window of 50 ms for framing
with 50% overlap is applied to the signals. The ATFs are generated using [121] with re-
verberation time T60 = 200 ms. The 21st node is assumed to be the FC for the centralized
RD-LCMV method [136], i.e., all other nodes are only connected to this FC. When we cal-
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Figure 5.1: Experimental setup, where the last node is assumed to be the FC for the centralized RD-LCMV
method [136].
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Figure 5.2: Rate distribution for one frequency bin with α= 0.8 and b0 = 16 bits per sample.

culate the dual variable µ using PDMM from (5.11), the warm-start procedure proposed
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in [85] is employed to achieve an acceptable precision of PDMM within a finite num-
ber of iterations. Fig. 5.2 shows a rate-distribution example of the proposed method and
the centralized method [136] for α= 0.8. For the proposed method, the nodes that have
higher SNR are allocated with higher rate, e.g., node 6. For the centralized method [136],
the nodes that are closer to the FC are allocated with higher rate. In addition, we show
the output noise power and transmission cost averaged over frequencies in terms of α
in Fig. 5.3. The energy of the RD-LCMV method is used for transmitting the raw audio
realizations. For the proposed method, if we use the local λk in (5.21) to determine the
rate distribution, the energy is only used for transmitting the dual variable µ and calcu-
lating the beamformer output; if the rate distribution is computed using (5.18) with the
global λ∗ from (5.20), some extra energy needs to be spent for calculating λ∗. Clearly,
both the centralized method and the proposed decentralized method satisfy the desired
noise reduction performance, while the proposed method using (5.21)-(5.22) consumes
less energy, since each sensor node only needs to communicate with the neighboring
nodes, instead of with the remote FC. This reveals that using the local λk is effective for
the energy usage versus performance trade-off in spite of scarifying rate optimality. Note
that in general a global optimization problem cannot be approached by optimizing lo-
cal sub-problems separately. We considered optimizing the local problems in this work,
as the simulation results show that it gives a better energy usage versus performance
trade-off.
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Figure 5.3: Output noise power and transmission energy in terms of α.

5.6. CONCLUSION
In this work, we solved the rate-distributed LCMV beamforming problem in [136] in a
fully distributed fashion. The quantization rates were determined locally without any
information exchange. Numerical results show the superiority of the proposed method
in energy usage. More importantly, the decentralized implementation is more robust
against the network variation compared to the centralized method.
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RATE-DISTRIBUTED BLCMV

BEAMFORMING FOR ASSISTIVE

HEARING IN WASNS

This chapter is based on the article published as "Rate-Distributed Binaural LCMV Beamforming for Assistive
Hearing in Wireless Acoustic Sensor Networks" by J. Zhang, R. Heusdens and R. C. Hendriks in the 10th IEEE
Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 460–464, Sheffield, UK, 2018.

89



6

90 6. RATE-DISTRIBUTED BLCMV BEAMFORMING FOR ASSISTIVE HEARING IN WASNS

left HA right HA

 ! 

 " 

 # 

 $%!  $ 

… 

&! 

&" 

&# 
&$%! &$ 

Fusion center

S: target Noise

Noise

Figure 6.1: A general binaural HA configuration in WASN.

6.1. INTRODUCTION
With the introduction of wireless communication, binaural processing for hearing as-
sistive devices has attracted an increasing interest, e.g., [145, 146, 147]. The traditional
hearing-aid (HA) configuration consists of two HAs that are mounted on the two ears,
but operate independently. Although this setup can very well suppress noise, it does not
take interaural information between the two HAs into account. That is, traditional HAs
cannot preserve the spatial cues in the sound field. However, in many scenarios the user
needs to be able to identify the direction of the audible sound sources, which can be
obtained from the spatial cues (e.g., interaural level/phase difference).

In order to jointly suppress noise and preserve spatial cues, several binaural HA algo-
rithms have been proposed assuming the availability of wireless communication chan-
nels, e.g., [148, 47, 149, 141]. In this work, we consider a general framework where the
HAs are part of a bigger wireless acoustic sensor network (WASN) with additional as-
sistive wireless microphones, see Fig. 6.1. The microphones can thus be part of the HA
itself, or positioned somewhere in the vicinity. The microphone recordings are transmit-
ted via wireless links to a fusion center (FC), which we consider in this work to be one of
the HAs, see Fig. 6.1. Subsequently, the FC computes the binaural outputs for both HAs
and transmits the output to the contralateral HA. As such, the FC can preserve the inter-
aural information in the binaural outputs. The larger number of microphones in such
a setup can potentially lead to both better noise reduction and spatial cue preservation.
These advantages of binaural HAs in a WASN setup come with higher battery costs for
transmission of data, and, introduction of quantization noise. These facts are typically
neglected in most contributions on binaural speech enhancement, with the exception
of e.g., [82, 70, 46, 80, 150].

In practice, HAs and assistive microphones in a WASN are battery driven, so that the
trade off between the increased performance and energy usage for communication over
such WASNs should be taken into account. Typically, the network lifetime needs to be
maximized. In order to reduce the energy usage, generally there are two techniques that
can be employed: sensor selection [53, 122, 52] and rate allocation [82, 70, 57, 136]. Sen-
sor selection approaches lead to sparse networks, as only the most informative sensors
are involved such that the energy usage in terms of data processing is saved effectively.
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Compared to sensor selection, rate allocation approaches can be used to distribute com-
munication rates optimally to save the energy usage in terms of data transmission, since
the transmission power between nodes and the FC is directly affected by the rate. The
relationship between sensor selection and rate allocation was investigated in [136].

In this work, we apply the rate allocation approach in [136] to a binaural HA set-
ting in a WASN. The problem is formulated by minimizing the total transmission power
and constraining the noise reduction performance. The spatial cues are preserved us-
ing linear constrains within a binaural linearly constrained minimum variance (BLCMV)
beamformer framework. Simulations show that although both the sensor selection and
rate allocation approaches satisfy the performance requirement, the proposed rate al-
location method is more efficient in energy usage and can preserve more interferers’
spatial cues by including more sensors, each at a relatively low rate.

6.2. FUNDAMENTALS

6.2.1. SIGNAL MODEL
In this work, we assume that there are M microphones that are monitoring the sound
field, see e.g. Fig. 6.1, where the FC allocates bit rates to each microphone node and
computes the binaural output for each HA. In the short-term Fourier transform (STFT)
domain, let l denote the frame index and ω the angular frequency bin. The noisy DFT
coefficient of the quantized signal which is to be transmitted to the FC is given by

Ŷk (ω, l ) = Yk (ω, l )+Qk (ω, l ), k = 1,2, · · · , M , (6.1)

where Qk (ω, l ) denotes the quantization noise which is assumed to be uncorrelated with
the microphone recording1 yk (ω, l ) given by

Yk (ω, l ) =
I∑

i=1
ai k (ω)Si (ω, l )︸ ︷︷ ︸

Xi k (ω,l )

+
J∑

j=1
h j k (ω)U j (ω, l )︸ ︷︷ ︸

N j k (ω,l )

+Vk (ω, l ),

where ai k (ω) denotes the acoustic transfer function (ATF) of the i th target signal with re-
spect to the kth microphone; Si (ω, l ) and Xi k (ω, l ), the i th target source at the source lo-
cation and at the kth microphone, respectively; h j k (ω) the ATF from the j th interferer to
the kth microphone; U j (ω, l ) and Ni k (ω, l ), the j th interferer at the source location and
at the kth microphone, respectively; Vk (ω, l ) the kth microphone self noise. For nota-
tional brevity, we will omit the frequency variable ω and the frame index l now onwards.
Using vector notation, the M channel signals are stacked in a vector ŷ = [Ŷ1, ..., ŶM ]T .
Similarly, we define the vectors y, xi , n j , v, q for the microphone recordings, the i th tar-
get component, the j th interfering component, the additive noise and the quantization
noise, respectively. Using this notation, (6.1) can be written compactly as

ŷ =
I∑

i=1
xi +

J∑
j=1

n j +v+q = As+Hu+v+q, (6.2)

1This assumption holds under high rate communication. At low rates, this can be achieved by subtractive
dither [70, 71].
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where xi = ai si ∈CM and n j = h j u j ∈CM with

ai =


ai 1

ai 2
...

ai M

 , h j =


h j 1

h j 2
...

h j M

 , A =


aT

1
aT

2
...

aT
I


T

, s =


s1

s2
...

sI

 , H =


hT

1
hT

2
...

hT
J


T

, u =


u1

u2
...

uJ

 .

We assume in this work that the ATFs of the present sources (i.e., A and H) are known.
In practice, the target ATFs can be estimated using the generalized eigenvalue decom-
position of the noise and noisy correlation matrices. The ATFs of the interferers can be
replaced by pre-determined ATFs as in [151], at the cost of a small increase of the errors
on the spatial cues. Assuming that all sources are mutually uncorrelated, the second-
order statistics are then given by

Ryy = E{yyH } = Rxx +Ruu +Rvv︸ ︷︷ ︸
Rnn

∈CM×M , (6.3)

where Rxx =∑I
i=1E{xi xH

i } and Ruu =∑J

j=1E{ni nH
i }. In practice, Rnn can be estimated us-

ing noise-only frames, and Ryy during the speech+noise frames. The total noise second-
order statistics in ŷ is given by Rn+q = Rnn +Rqq, under the assumption that the received
noise sources and quantization noise are mutually uncorrelated. In case sensors utilize
uniform quantizers to quantize their recordings, Rqq then reads [57, 136, 69]

Rqq = 1

12
diag

[
A 2

1

4b1
,
A 2

2

4b2
, ...,

A 2
M

4bM

] , (6.4)

where Ak = max{|yk |} and bk ,∀k denotes the bit rate used by the kth microphone node.
Note that the quantization in the sequel takes place in the STFT domain, e.g., the real
and imaginary parts of the complex STFT coefficients are quantized separately.

6.2.2. BLCMV BEAMFORMING WITH BINAURAL CUE PRESERVATION
In [47], a general BLCMV beamforming framework was proposed for joint noise reduc-
tion and binaural cue preservation. Mathematically, this problem was formulated as

ŵBLCMV = argmin
w

wH R̃n+qw, s.t. ΛH w = f̃, (6.5)

where

R̃n+q =
[

Rn+q 0
0 Rn+q

]
∈C2M×2M , (6.6)

Λ=
[
Λ1 Λ2

]
∈C2M×(2I+J )

=
[

A 0 h1h1R · · · hJ hJ R

0 A −h1h1L · · · −hJ hJ L

]
, (6.7)
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f̃ =
[

fH
1 fH

2

]T ∈C2I+J

=
[

a∗
1L · · · a∗

I L a∗
1R · · · a∗

I R 0 0 · · · 0
]T

,

and the BLCMV beamformer is the concatenation of the LCMV beamformers at the two
HAs, i.e., wBLCMV = [wT

L wT
R ]T . In the BLCMV formulation, L and R are used to indicate

the left and right beamformer or reference microphone for the two ears, respectively.
Information on the spatial cues is contained in the interaural transfer function (ITF). The
ITF of the i th target source with respect to the reference microphones can be defined as
ITFxi = ai L

ai R
,∀i , and the ITF of interferers can be defined similarly. Accordingly, we can

see that the constraint ΛH w = f̃ in (6.5) consists of two components: 1) a constraint on
the exact preservation of the I target sources, i.e.,ΛH

1 w = f1, for which we know that full
preservation requires

ITFin
xi
= ITFout

xi
= ai L

ai R
, i = 1, · · · ,I ; (6.8)

2) A constraint on the preservation of the J interferers, i.e.,ΛH
2 w = f2, for which we know

that preserving the spatial cues requires

ITFin
n j

= ITFout
n j

= h j L

h j R
= wH

L h j

wH
R h j

, j = 1, · · · ,J . (6.9)

With the preservation of ITFs in (6.8-6.9), the binaural cues, e.g., interaural level differ-
ence (ILD) and interaural phase difference (IPD) are also preserved, because ILD and
IPD are derived from ITF as

ILD = |ITF|2, IPD =∠ITF. (6.10)

Using the method of Lagrange multipliers, the closed-form solution of the above BLCMV
problem is given by

ŵBLCMV = R̃−1
n+qΛ(ΛH R̃−1

n+qΛ)−1 f̃ ∈C2M . (6.11)

For more details on BLCMV beamforming with binaural cue preservation, we refer to [47,
46, 80, 152, 153] and references therein.

6.3. RATE-DISTRIBUTED BLCMV BEAMFORMING

6.3.1. GENERAL PROBLEM FORMULATION
Let Vk be the noise power spectral density (PSD) at the kth communication channel and
dk the distance over which transmission takes place. The transmission energy model is
then given by [136]

g (b) =
M∑

k=1
d 2

kVk (4bk −1), (6.12)

where b = [b1, · · · ,bM ]T . The above energy model holds under two conditions [36, 37, 38]:
1) in the context of band-limited applications (e.g., audio processing); 2) the microphone
recordings are quantized at the channel capacity for reliable transmission. In this work,
we intend to minimize g (b) by allocating bit rates to microphone nodes, such that a
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prescribed noise reduction performance is obtained. With this, our initial problem can
be formulated as:

min
w,b

g (b) =
M∑

k=1
d 2

kVk (4bk −1)

s.t. wH R̃n+qw ≤ β

α

ΛH w = f̃, bk ∈Z+, bk ≤ b0,∀k,

(P1)

where β denotes the minimum output noise power that can be achieved, α ∈ (0,1] is
to control the expected performance, Z+ denotes the set of non-negative integers, and
b0 the maximum number of bits per sample of each microphone signal. Note that β/α
does not depend on the rate allocation strategy or statistics of the sensor network, be-
cause β/α is just a number that can be assigned by the users, e.g., 40 dB, to indicate
a certain expected performance. By solving (P1), we can determine the optimal rate
distribution that each microphone can utilize to quantize its recordings, such that the
noise reduction system achieves a desired performance with minimum energy usage.
One simple method to solve (P1) is exhaustive search, i.e., evaluating the performance
for all (b0 +1)M choices for the rate distribution, but evidently this is intractable unless
b0 or M is very small. In the next section, we will propose an efficient solver for (P1) in
the context of BLCMV beamforming.

6.3.2. SOLVER FOR RATE-DISTRIBUTED BLCMV BEAMFORMING
Substituting the solution of the BLCMV beamformer from (6.11) to the general problem
formulation in (P1), we can obtain a simplified optimization problem for rate-distributed
BLCMV beamforming as

min
b

g (b) =
M∑

k=1
d 2

kVk (4bk −1)

s.t. f̃H (ΛH R̃−1
n+qΛ)−1 f̃ ≤ β

α

bk ∈Z+, bk ≤ b0,∀k,

(P2)

where b is implicit in the output noise power f̃H (ΛH R̃−1
n+qΛ)−1 f̃, which is non-convex and

non-linear in terms of b. In what follows, we will explicitly express f̃H (ΛH R̃−1
n+qΛ)−1 f̃ in

terms of b.
First of all, in order to reformulate (P2) as a convex optimization problem, we in-

troduce a symmetric positive semi-definite matrix Z ∈ S2I+J
+ with S+ denoting the set

of symmetric positive semi-definite matrices, such that the first inequality constraint in
(P2) can be recast to the following two new constraints equivalently, i.e.,

ΛH R̃−1
n+qΛ= Z, (6.13)

f̃H Z−1 f̃ ≤ β

α
. (6.14)

The inequality (6.14) can be rewritten as a linear matrix inequality (LMI) using the Schur
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complement [108, p.650], i.e., [
Z f

fH β
α

]
º O2I+J+1. (6.15)

However, the equality constraint in (6.13) is both non-linear and non-convex in the un-
known b. The non-convexity can be tackled by relaxing it to

ΛH R−1
n+qΛº Z, (6.16)

since (6.14) and (6.16) are sufficient to obtain the original constraint in (P2). In order to
linearize (6.16) in b, we calculate R̃−1

n+q as

R̃−1
n+q = (R̃nn + R̃qq)−1

= R̃−1
nn − R̃−1

nn(R̃−1
nn + R̃−1

qq )−1R̃−1
nn, (6.17)

where the second equality is derived from the matrix inversion lemma [107, p.18]2, and

R̃nn =
[

Rnn 0
0 Rnn

]
, R̃qq =

[
Rqq 0

0 Rqq

]
. (6.18)

Substituting R−1
n+q from (6.17) into (6.16), we obtain

ΛH R̃−1
nnΛ−Z ºΛH R̃−1

nn(R̃−1
nn + R̃−1

qq )−1R̃−1
nnΛ. (6.19)

Using the Schur complement, we obtain the following LMI[
R̃−1

nn + R̃−1
qq R̃−1

nnΛ

ΛH R̃−1
nn ΛH R̃−1

nnΛ−Z

]
º O2M+2I+J , (6.20)

where R̃−1
qq =

[
R−1

qq 0
0 R−1

qq

]
and R−1

qq can be calculated from (6.4) directly. For notational

convenience, we define a constant vector e = [ 12
A 2

1
, · · · , 12

A 2
M

]. Further, we introduce a vari-

able change tk = 4bk ∈ Z+,∀k, such that R−1
qq = diag(e¯ t) and (6.20) are both linear in

t. In order to convexify the integer constraint bk ∈ Z+,∀k, we relax it to bk ∈ R+, i.e.,
tk ∈R+,∀k. Altogether, we arrive at

min
t,Z

g (t) =
M∑

k=1
d 2

kVk (tk −1)

s.t. (6.15), (6.20),1 ≤ tk ≤ 4b0 ,∀k,

(6.21)

which is a standard semi-definite programming problem [108, p.128] and which can
be solved efficiently in polynomial time using interior-point methods or solvers, e.g.,
CVX [110].

After (6.21) is solved, the allocated bit rates can be resolved by bk = log4 tk ,∀k which
are continuous values. In order to resolve the final integer rates, we apply the random-
ized rounding technique [53, 122, 136] to the solution of (6.21).

2(A+CBCT )−1 = A−1 −A−1C(B−1 +CT A−1C)−1CT A−1
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Figure 6.2: Experimental setup and rate distribution obtained by RD-BLCMV, MD-BLCMV and exhaustive
search, respectively.

6.4. SIMULATION RESULTS
For the experiments, we place in total M = 6 microphones in a 2D room with dimen-
sions (3×4) m, see Fig. 6.2 (left). From these M microphones, one is placed at each ear.
These two microphones are taken as the reference microphone for the two HAs. The
other four wireless microphones are placed as a (wireless) uniform linear array, whose
x-coordinates are given by {0.9,1.3,1.7,2.1} m, and the y-coordinate is set to 1 m. The
radius of the head of a user who wears the HAs is assumed to be 10 cm, and the FC is
positioned at the left HA, i.e., the coordinate of the FC is (1.4,2.5) m. The ATFs are gen-
erated using [121] with reverberation time T60 = 200 ms. We consider one target source
of interest which is located in front of the head. The target source signal is a 10 minute
long concatenation of speech signals originating from the TIMIT database [120]. Seven
speech shaped Gaussian interfering sources are present, and are placed at −30◦, 0◦, 30◦,
60◦, 120◦, 150◦ and 180◦, respectively. All the sources are distributed on a circle (radius
= 1 m) centered at the head and the elevation is set to be 0◦. All the signals are sampled
at 16 kHz. We use a square-root Hann window of 20 ms for framing with 50% overlap.
Microphone self noise is modeled at a signal-to-noise ratio (SNR) of 50 dB. The signal-to-
(total)interference ratio (SIR) is set to be 0 dB. Furthermore, the PSD of the communica-
tion channel noise sources Vk in (6.21) are assumed to be the same for all microphones.

For comparison, we use the model-driven BLCMV (MD-BLCMV) based microphone
selection [122] and a solution to (P2) based on exhaustive searching as reference meth-
ods. MD-BLCMV is an extension of [122] to our binaural setup. In order to validate the
optimality of the proposed method, the exhaustive search is employed to find out the
optimal rate distribution. For the maximum rate b0 = 16 bits and six microphones, there
are 176 combinations for the exhaustive search. Fig. 6.2 (right) shows the rate distribu-
tion obtained by (6.21) (i.e., the proposed method referred as RD-BLCMV), MD-BLCMV
and exhaustive search, respectively. The performance control parameter α for all meth-
ods is set to be 0.8. We observe that the proposed RD-BLCMV method is very close to the
optimal solution that is obtained by the exhaustive search, and if we post-process the
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Figure 6.3: Output noise power and energy efficiency in terms of α.

results from RD-BLCMV using randomized rounding, they are completely the same. For
RD-BLCMV, five sensors are activated, and the first one is allocated with highest rate (i.e.,
16 bits per sample), because it has no communication cost to the FC and has a higher
SNR. The rates of the other activated sensors obtained by RD-BLCMV are much smaller
than 16 bits, resulting in a saving of transmission costs. The MD-BLCMV method selects
only three microphones, but each operates at the maximum rate of 16 bits per sample.

Next, we compare the output noise power and energy usage ratio (EUR) in terms of
the performance control parameter α. The EUR is defined as the ratio between the en-
ergy used by RD-BLCMV or MD-BLCMV and the maximum transmission energy when
all sensors are involved and each quantizes at b0 bits. By inspection of Fig. 6.3, we see
that both RD-BLCMV and MD-BLCMV [122] satisfy the desired amount of noise reduc-

tion, but RD-BLCMV is much closer to the target performance 10log10
β
α , particularly

when 0.2 ≤ α ≤ 0.6. Actually, for these α-values, the two microphones at the ears and
the third microphone are chosen for MD-BLCMV, so that the output noise power and
energy efficiency of MD-BLCMV remains the same over this α-range. More importantly,
RD-BLCMV has much better energy efficiency compared to MD-BLCMV.

Fig. 6.4 shows the total preservation errors of the binaural cues (e.g., ILD and IPD) in
terms of the number of activated interferers3. The errors ∆ILD and ∆IPD are defined as

∆ILD =
J∑

j=1

∑
ω

(
ILD j (ω)− ˜ILD j (ω)

)2
, ∆IPD =

J∑
j=1

∑
ω

(
IPD j (ω)− ˜IPD j (ω)

)2
,

where ˜ILD j (ω) or ˜IPD j (ω) denotes the ILD or IPD of the j th interfering source contained
in the beamformer output. The RD-BLCMV method is compared to a BMVDR beam-

3In [47], it was shown that the binaural cues of at most 2M −2I −1 interferers can be preserved with M mi-
crophones using the BLCMV beamformer in (6.5). In our case with M = 6 microphones, I = 1 target source
and J = 7 interferers, the binaural cues of both the target source and all the interferers can be preserved
by BLCMV or RD-BLCMV because 2M − 3 > J , and the degree of freedom devoted to noise reduction is
2M −J −2 = 3.
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Figure 6.4: Preservation errors versus the number of activated interferers.

former [80], a BLCMV framework [47] and the MD-BLCMV beamformer. The BMVDR
method is the worst preserving algorithm, as it does partially consider binaural cue preser-
vation constraints which are associated with the target source. More specifically, for the
BMVDR method, the left and right MVDR beamformers can be formulated as

wL =
R−1

n+qaa∗
L

aH R−1
n+qa

, wR =
R−1

n+qaa∗
R

aH R−1
n+qa

(6.22)

for one target source that is identified by the ATF a. Clearly, we have ITFin
x = ITFout

x = aL
aR

using the BMVDR beamformers. However, ITFout
n j

= wH
L h j

wH
R h j

= aL
aR

= ITFin
x ,∀ j , which implies

that the output binaural cues of the interfering sources collapse to the binaural cues of
the target source. Hence, the BMVDR beamformer cannot preserve any binaural cues
of interferers. The BLCMV method shows the best performance. However, it does not
take the quantization into account and includes all microphones. This means it will be
able to keep the spatial cues of all present sources, however, at the high battery cost of
full-rate transmission. The MD-BLCMV method uses a hard selection, e.g., if it selects a
subset of microphones that is too small, it will not be able to preserve the spatial cues
of all sources. The RD-BLCMV approach applies the rate distribution and thus has a
soft decision of microphones. In that sense, it usually activates more microphones (at
the cost of more quantization noise), but this might lead to more degrees of freedom to
preserve more spatial cues, while still satisfying the target noise reduction performance.
In addition, all the methods can preserve the spatial cues of the target source because
of the constraint ΛH

1 w = f1 being taken into account. From Fig. 6.4, we see that with
an increasing number of interferers, the errors of RD-BLCMV or BLCMV only slightly
increase, but the errors of MD-BLCMV suddenly increase when there are more than 3
interferers. This is because the BLCMV beamformers can preserve the binaural cues
of up to 2M − 2I − 1 interferers using M microphones [47]. Using hard decisions on
microphone selection, the degrees of freedom are much lower than when we use the
rate allocation which is a soft decision. Therefore, the RD-BLCMV beamformer allows to
use more constraints to preserve interferers than the MD-BLCMV beamformer: 7 versus
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3 interferers in Fig. 6.2. Furthermore, similar to the BMVDR, the output binaural cues
of the {4,5,6,7}th interferer based on MD-BLCMV will also collapse to those of the target
source.

6.5. CONCLUSION
In this work, we studied rate-distributed BLCMV beamforming for wireless binaural hear-
ing aids. The proposed method was formulated by minimizing the energy usage and
constraining the noise reduction performance. Under the utilization of a BLCMV beam-
former, the problem was solved by semi-definite programming with the capability of
joint noise reduction and binaural cue preservation. The proposed method can achieve
better energy efficiency by distributing bit rates, and preserve more interferers’ spatial
cues by activating more sensors as compared to sensor selection approaches.





7
RELATIVE ACOUSTIC TRANSFER

FUNCTION ESTIMATION IN WASNS

This chapter is based on the article published as "Relative Acoustic Transfer Function Estimation in Wireless
Acoustic Sensor Networks" by J. Zhang, R. Heusdens, and R. C. Hendriks in IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 27, no. 10, pp. 1507–1519, 2019.
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7.1. INTRODUCTION

A COUSTIC transfer function (ATF) identification is required by many algorithms in
wireless acoustic sensor networks (WASNs), e.g., Wiener filtering [41, 64, 154] or

beamforming [129, 28, 95, 132] based noise reduction, or, sound source localization [155].
Often, instead of the ATF, algorithms use the relative acoustic transfer function (RTF) [28],
which is obtained by normalizing the ATF with its value at the reference microphone.
The RTF of a single desired source spans the signal subspace of interest and directly de-
termines the formation of the target spatial autocorrelation matrix.

Assuming a perfect voice activity detector (VAD) is available, the microphone record-
ings can be classified into noise-only segments and speech+noise segments. During
each of these periods, we can estimate the noise and speech+noise correlation matrices,
respectively, using sample correlation matrices. Given the estimated noise and noisy
correlation matrices and assuming that the target speech and noise signals are mutually
uncorrelated, the low-rank target spatial correlation matrix (more strictly, with a rank
equal to the number of target point sources of interest) can be obtained by subtract-
ing the noise correlation matrix from the noisy correlation matrix. Most existing RTF
estimation algorithms are based on the use of sample correlation matrices. Due to the
estimation errors in the sample correlation matrices, particularly in noisy and reverber-
ant environments, the autocorrelation matrix of the target sources will be full-rank in
practice [41]. The estimation errors on the correlation matrices will directly affect the
accuracy of the estimated RTFs.

In centralized WASNs, where all the network nodes are wirelessly connected to a fu-
sion center (FC), the nodes need to quantize and transmit their microphone recordings
to the FC. The quantization of the data is thus another source for inaccuracies when es-
timating the RTFs. Moreover, the number of quantization levels (i.e., the bit-rate) used
to transmit data to the FC is one-to-one related to the required transmission power. The
power usage is another point of concern in WASNs as typically the wireless sensors are
battery-driven with limited power budget. The transmission power can be assumed to
be exponentially related with the communication rate (e.g., in bits per sample) [36, 38].
Intuitively, the lower the rate, the less power is required, but the worse the RTF estima-
tion, leading to a trade-off between RTF estimation accuracy and power consumption.
In this paper, we investigate the relation between power usage required for data trans-
mission in WASNs and the estimation accuracy of the RTFs (due to quantization errors,
limited data when calculating samples covariance matrices and limited signal-to-noise
ratio). As a result, we obtain an algorithm to estimate the RTF at prescribed accuracy, at
low rate and low power usage.

Given the target speech correlation matrix, the RTF can be estimated by simply ex-
tracting its normalized first column vector, i.e., covariance subtraction (CS) [39, 40, 41,
42, 43], or by calculating the normalized principal eigenvector [155, 41]. The idea behind
the CS method is that the true speech correlation matrix is rank-1 under the assumption
that only a single target speech point source is present. Alternatively, given the noise
and noisy correlation matrices, we can first whiten the noisy correlation matrix using
the noise correlation matrix, then the RTF can be estimated by taking the normalized
first column of the whitened noisy correlation matrix, or by computing the normalized
principal eigenvector of the whitened noisy correlation matrix, i.e., covariance whiten-
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ing (CW) [18, 29, 44, 45]. Using the technique of generalized eigenvalue decomposition
(GEVD) for a matrix pencil (i.e., noise and noisy correlation matrices), the CW method is
then equivalent to extracting the normalized principal generalized eigenvector. In this
work, we will only discuss the two extreme cases, i.e., 1) the CS method where the RTF is
obtained by extracting the normalized first column vector and 2) the CW method where
the RTF is obtained by calculating the normalized principle eigenvector of the whitened
noisy correlation matrix, as the presented results can easily be extended to the other
two cases. In the remainder of this work, we refer to these two cases as the CS and CW
method, respectively. In general, the CW method can achieve better performance than
the CS method, especially in severe noisy scenarios [42, 45]. However, the CS method
is more appealing from an implementation point of view, since it only requires to ex-
tract the first column vector of a matrix, while the other one requires computationally
more demanding matrix eigenvalue decompositions and/or matrix inversion. In [42]
and [45], Markovich-Golan and Gannot analyzed the performance of the CS and CW
methods using synthetic non-stationary Gaussian signals, respectively. We will take the
performance analysis of both methods as the basis of the energy-aware RTF estimation
procedures that are presented in this work.

7.1.1. CONTRIBUTIONS

The contributions of this paper can be summarized as follows. Firstly, we briefly an-
alyze the performance of the CS method and the CW method in a theoretical fashion,
with quantization noise being taken into account. This is based on the work presented
in [42, 45]. It is shown that the estimation errors of both methods are related to the
signal-to-noise ratio (SNR), the communication rate and the number of available seg-
ments which are used to estimate the second-order statistics (SOS). We show that the
CW always performs better than the CS method. This is because the performance of the
CW method depends on the output SNR of a minimum variance distortionless response
(MVDR) beamformer, while the CS method depends in a similar way on the input SNR,
which is always lower than the MVDR output SNR.

Secondly, based on the framework presented in [136], we develop for both the CS and
CW approach a model-driven rate-distribution algorithm for RTF estimation in WASNs,
referred to as MDRD-CS and MDRD-CW. The model-driven problems are formulated
by minimizing the total transmission costs between all microphone nodes and the FC
and constraining the expected RTF estimation performance. Using convex optimiza-
tion techniques, the MDRD-CS/CW problems are derived as semi-definite programs.
Through distributing bit rates optimally, the transmission cost in WASNs can be saved
significantly compared to a blind full-rate transmission strategy, meanwhile satisfying
the prescribed desired estimation performance on the RTF. Note that the MDRD-CS/CW
methods depend on the true RTF and noise SOS, which are unknown in practice. The
proposed model-driven methods are thus not practical from the perspective of imple-
mentation.

To make the model-based methods practical, we further propose two corresponding
data-driven methods (i.e., DDRD-CS and DDRD-CW), which are (performance-wise)
near-optimal and use a greedy rate distribution strategy, but only rely on realizations.
Since the microphone nodes send the quantized data to the FC frame-by-frame, we can
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estimate the RTF and noise SOS using the previously received segments, and then solve
the model-driven problems based on the estimated RTF and noise SOS. Then, each node
quantizes the new segment at the rate that is obtained by the model-driven method. As
such, the data-driven methods can avoid the dependence on the true RTF and noise SOS.

Finally, the proposed approaches are validated via numerical simulations in a sim-
ulated WASN. We find that both the MDRD-CS and the MDRD-CW satisfy the perfor-
mance requirement, and the DDRD-CS (or DDRD-CW) method converges to the MDRD-
CS (or MDRD-CW) method when increasing the number of available segments. We con-
clude that the sensors that are closer to the FC are more likely to be allocated with a
higher rate, since they are cheaper in transmission. Besides, we show that at higher
bit-rates, redundant information is transmitted, as the performance of CS/CW-based
methods does not gain much with increasing bit rate. Hence, the proposed methods can
reduce the redundant bits and save energy usage compared to the unnecessary full-rate
quantization. Furthermore, it is shown that given the same performance requirement,
the MDRD-CW (or DDRD-CW) method consumes much less transmission energy com-
pared to the MDRD-CS (or DDRD-CS) method.

7.1.2. OUTLINE AND NOTATION

The paper is structured as follows. Sec. 7.2 presents preliminaries on the signal model
and the estimation of sample correlation matrices. In Sec. 7.3, we theoretically ana-
lyze the performance of the CS/CW-based RTF estimators. Sec. 7.4 formulates the rate-
distributed RTF estimation problem and solves it in the context of the CS and CW meth-
ods, respectively. In Sec. 7.5, we show the proposed greedy methods. The proposed
methods are validated in Sec. 7.6 via numerical simulations. Finally, Sec. 7.7 concludes
this work.

The notation used in this paper is as follows: Upper (lower) bold face letters are used
for matrices (column vectors). (·)T or (·)H denotes (vector/matrix) transposition or con-
jugate transposition. (·)∗ denotes the conjugate of a complex number. diag(·) refers to a
block diagonal matrix with the elements in its argument on the main diagonal. IN and
ON denote the identity matrix and the N ×N matrix with all its elements equal to zero,
respectively. e1 is a column vector with 1 at the first entry and zeros elsewhere. 0N is an
N×1 all-zeros column vector. E{·} denotes the statistical expectation operation. Tr(·) and
rank(·) denote the trace and rank of a matrix, respectively. || · ||2 denotes the `2 norm.
A º B means that A−B is a positive semidefinite matrix. Furthermore, ¯ denotes the
Hadamard (elementwise) product. X̂ and X̃ denote the estimate of a random variable X
and the corresponding estimation error, respectively.

7.2. FUNDAMENTALS

7.2.1. SIGNAL MODEL

We consider K microphones that sample the sound field consisting of one target point
source, degraded by acoustic background noise. In the short-time Fourier transform
(STFT) domain, letting l and ω denote the index of time frame and angular frequency,
respectively, the noisy DFT coefficient at the kth microphone, say Yk (ω, l ),k = 1, · · · ,K , is
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given by

Yk (ω, l ) = Xk (ω, l )+Uk (ω, l ), (7.1)

where Xk (ω, l ) = ak (ω)S(ω, l ) with ak (ω) the ATF of the target signal with respect to the
kth microphone and S(ω, l ) the DFT coefficient of the target source signal at the source
location. In this work we assume that the ATF is time-invariant, i.e., the target source is
assumed static, during the time period of interest. Therefore, ak (ω) is not a function of l .
In (7.1), the term Uk (ω, l ) represents the total received noise at the kth microphone (in-
cluding interfering sources and sensor noise). In this work, the noise signals contained
in Uk (ω, l ) are assumed stationary during the time period of interest. This assumption is
not strictly necessary for the theory that we will derive. However, the expressions that we
present depend on the SOS that can only be estimated if the sources are stationary for a
fixed period of, say L time-frames. In a centralized WASN, we assume that a FC is em-
ployed to collect data and process the tasks at hand. In this case, the microphone nodes
need to transmit their recordings to the FC, and the recordings should be quantized at
specified communication rates. Taking the utilization of quantizers into account and
letting Qk (ω, l ) denote the quantization noise1 contained in the transmitted data from
the kth microphone node, the quantized version of the kth microphone measurements
that is received by the FC is given by

Ŷk (ω, l ) = Xk (ω, l )+Uk (ω, l )+Qk (ω, l ). (7.2)

Note that the quantization takes place in the STFT domain directly. Given a bit-rate, the
real and imaginary parts of Yk (ω, l ) are quantized separately, as the bit-rate is equally
distributed to the real and imaginary parts [49]. A more optimal but complicated rate
distribution for quantizing complex Gaussian random variables can be found in [156].
For notational convenience, the frequency variableω and the frame index l will be omit-
ted now onwards bearing in mind that the processing takes place in the frequency do-
main. Using vector notation, the quantized signals from the K microphones are stacked
in a vector ŷ = [Ŷ1, ..., ŶK ]T ∈CK . Similarly, we define K dimensional vectors y, x, u, q and
a for the microphone recordings, the target speech component, the received noises by
the microphones, the quantization noise and the ATFs, respectively, such that (7.2) can
be rewritten as

ŷ = aS +u+q, (7.3)

with the clean speech component given by x = aS. Furthermore, we define n = u+q
as the total noise at the FC including quantization noise. Without loss of generality, we
assume that the first microphone is taken as the reference microphone. The RTF can
then be defined as

d = a/a1, (7.4)

where a1 refers to the first entry of vector a.

1In real-life applications, Yk (ω, l ) is already quantized, since it is acquired by the analog-to-digital converter of
the kth sensor. In this case, Qk (ω, l ) would represent the error from changing the bit resolution of Yk (ω, l ).
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7.2.2. ESTIMATING SAMPLE COVARIANCE MATRICES
We assume that the quantization noise is uncorrelated with the microphone record-
ing2, and that the noise components and the target signal are mutually uncorrelated,
such that from the signal model (7.2), the SOS of the noisy microphone signals during
speech+noise segments are given by

Rŷŷ = E{ŷŷH } = Rxx +Ruu +Rqq. (7.5)

Further, the SOS of the noise are given by

Rnn = Ruu +Rqq. (7.6)

Assuming that the speech and noise signals are mutually uncorrelated, Rxx can be cal-
culated as

Rxx ,σ2
S aaH =σ2

X1
ddH

= Rŷŷ −Rnn, (7.7)

with σ2
S = E{|S|2} and σ2

X1
= E{|X1|2}, respectively, representing the power spectral den-

sity (PSD) of the target source and the PSD of the speech component at the reference
microphone. Obviously, we have the relation σ2

X1
= |a1|2σ2

S . Note that Rŷŷ and Rnn are

full-rank (positive definite) matrices, and rank
(
Rxx

) = 1 in a single speech point source
scenario. More importantly, both Rŷŷ and Rnn depend on Rqq, while Rxx does not. From
(7.5) and (7.6), we know that the communication rate affects Rŷŷ and Rnn by the addi-
tion of the matrix Rqq. Hence, in case Rnn and Rŷŷ are perfectly estimated (e.g., given
sufficiently long data measurements), Rqq can be eliminated by calculating Rxx with the
subtractive operation in (7.7).

In practice, given L speech+noise segments, the SOS Rŷŷ can be estimated by average
smoothing, that is

R̂ŷŷ =
1

L

L∑
l=1

ŷ(l )ŷ(l )H . (7.8)

The SOS estimator in (7.8) is unbiased and the corresponding estimation error is denoted
by

R̃ŷŷ = R̂ŷŷ −Rŷŷ. (7.9)

Similarly, we can estimate Rnn by

R̂nn = 1

|T |
∑

l∈T

n(l )n(l )H , (7.10)

where T indicates a set of noise-only time segments. However, to make the analysis
on the CS and CW method consistent, we will assume that Rnn is known and can be
used to estimate the RTF vector. This could be argued for under conditions of relatively
stationary noise sources. In that case, Rnn can be estimated with relatively small error

2This assumption holds under high rate communication. At low rates, this can be achieved by applying sub-
tractive dither [70, 71].
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as sufficiently long time segments can be used. The assumption that Rnn is known is
required in the derivation of the CW-based RTF estimation accuracy. However, in the
derivation of the CS-based RTF estimation accuracy this assumption is strictly speaking
not necessary and expressions can also be derived taking estimation errors on Rnn into
account. In the derivation of the estimation accuracy under the CW approach it is not
trivial to take both estimation errors on R̃ŷŷ and Rnn into account. As such this is a dis-
advantage of the CW approach. However in order to make comparison of both methods
possible, we make the same assumption in both methods. From now on we therefore
assume R̃ŷŷ is estimated and Rnn is known. However, in Sec. 7.3, for completeness, we
will give the expressions for the CS estimation accuracy when also Rnn is estimated. With
R̂ŷŷ and Rnn at hand, using (7.7) we can obtain the estimate of R̂xx by

R̂xx , R̂ŷŷ −Rnn, (7.11)

which can be reformulated as

R̂xx = Rxx + R̃xx, (7.12)

with R̃xx = R̃ŷŷ. Although rank(Rxx) = 1, in practice we have rank(R̂xx) > 1 due to the
estimation error in R̂ŷŷ. The RTF estimators presented in the sequel are based on the
SOS Rxx, Rŷŷ and Rnn, whereas in practice these matrices are replaced by the sample
correlation matrices R̂xx, R̂ŷŷ and R̂nn.

For the SOS of the quantization noise, we assume that each microphone node em-
ploys a uniform quantizer for quantization, such that given bk bits per sample, the PSD
of the quantization noise is given by [68, 69]

σ2
qk

=∆2
k /12,∀k, (7.13)

where the uniform intervals have width ∆k = Ak /2bk with A /2 denoting the maximum
absolute value of the kth microphone measurement. Assuming that the quantization
noise across microphones is mutually uncorrelated, the correlation matrix of the quan-
tization noise across microphones reads

Rqq = 1

12
×diag

[
A 2

1

4b1
,
A 2

2

4b2
, ...,

A 2
K

4bK

] . (7.14)

7.3. PERFORMANCE ANALYSIS FOR RTF ESTIMATORS
In this section, we will theoretically analyze the RTF estimation performances of the CS
method and the CW method, which is based on the work presented in [42] and [45],
respectively, which we extend by taking quantization noise into account. The estimation
accuracy is defined as the ratio between the expected squared norms of the error vector
d̃ and the true RTF vector as [42]

ε, E[||d̃||22]/||d||22. (7.15)
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7.3.1. PERFORMANCE ANALYSIS FOR CS METHOD

The CS method takes the normalized first column of the matrix R̂xx as the RTF esti-
mate [39, 41], i.e.,

d̂CS ,
R̂xxe1

eT
1 R̂xxe1

, (7.16)

which is based on the rank-1 model for the clean-speech correlation matrix Rxx. The
denominator of (7.16) represents the signal power at the reference microphone, i.e.,

σ̂2
X1

, eT
1 R̂xxe1. (7.17)

In order to analyze the CS-based RTF estimator, we write the RTF estimate from (7.16)
as

d̂CS = d+ d̃CS. (7.18)

In [45], it was shown that the estimation error term d̃CS is given by

d̃CS = 1

|a1|2σ2
S

(
I−deT

1

)
R̃xxe1. (7.19)

Assuming the estimation error R̃ of the covariance matrix R of a Gaussian random vari-
able when estimated as in (7.8) obeys a complex Wishart distribution [157], it can be
shown (see [45]) that given the noise SOS Rnn, the RTF estimation error εCS of the CS-
based method from (7.15) is given by [42, 45]

εCS =
1+ 1

η

L||d||22σ2
X1

·Tr

((
I−deT

1

)
Rnn

(
I−deT

1

)H
)

, (7.20)

where η is referred to as the signal-to-(total)noise ratio at the reference microphone, i.e.,

η,
σ2

X1

eT
1 Rnne1

= eT
1 Rxxe1

eT
1 Rnne1

. (7.21)

Finally, taking the quantization noise into account as Rnn = Ruu+Rqq, and for readability,
defining

G =
(
I−deT

1

)(
Ruu +Rqq

)(
I−deT

1

)H
,

such that the final CS error model can be formulated as

εCS =
1+ 1

η

L||d||22σ2
X1

·Tr
(
G

)
. (7.22)

Note that (7.22) differs from the one in [42] by the facts that 1) quantization noise is taken
into account 2) similar as in [45] we assume Rnn to be known (estimated based on larger
data records), resulting in the term 1

η in (7.22).
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Further, in case Rnn is estimated based on a different number of frames, say T =
|T | frames, that are different (independent) from the L frames used to estimate Rŷŷ, we
obtain

εCS =
1
L + 1

η

(
1
L + 1

T

)
||d||22σ2

X1

·Tr
(
G

)
. (7.23)

If L = T , (7.23) will be identical to the error model derived in [42].

7.3.2. PERFORMANCE ANALYSIS FOR CW METHOD
The CW method takes the normalized principal eigenvector of the whitened noisy co-
variance matrix as the estimated RTF, which is given by

d̂CW = RH/2
nn ψ̂

eT
1 RH/2

nn ψ̂
, (7.24)

where ψ̂ is the principal eigenvector of the matrix R̂zz = 1
L

∑L
l=1 zzH with z = R−H/2

nn ŷ.
In [45], it was shown that the error vector of the CW method can be approximated by

d̃CW = θ

a1

(
I−deT

1

)
RH/2

nn ψ̃, (7.25)

where θ =
√

aH R−1
nna, and ψ̃ denotes the estimation error vector of the principal eigen-

vector, and its covariance matrix is given by [158]

Θψ = λ1

L(λ1 −1)2

(
I−ψψH

)
, (7.26)

where λ1 = aH R−1
nnaσ2

S +1 denotes the principal eigenvalue, and the true principal eigen-

vector is given byψ= R−H/2
nn a/θ. Hence, the covariance matrix of d̃CW can be formulated

as

Θ
(a)= |θ|2

|a1|2
(
I−deT

1

)
R

H
2

nnΘψR
1
2
nn

(
I−deT

1

)H

(b)=
1+ 1

σ2
X1

dH R−1
nnd

Lσ2
X1

(
I−deT

1

)
Rnn

(
I−deT

1

)H
, (7.27)

where (a) is obtained by substitution of (7.25) and (b) is due to the fact that (I−deT
1 )d =

0K . Finally, taking the quantization noise into account, we can formulate the CW-based
RTF estimation error as

εCW = Tr(Θ)

||d||22
=

1+ 1
σ2

X1
dH R−1

nnd

L||d||22σ2
X1

·Tr
(
G

)
. (7.28)

Note that in fact the term σ2
X1

dH R−1
nnd is the output SNR of an MVDR beamformer [122,

142, 133, 129].
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Remark 6. By inspection, the estimation errors of both the CS method and the CW method
are influenced by the SNR, frame length and communication rate, the signal power and
the location of source, i.e., ||d||22. The final expression in (7.22) or (7.28) differs from the one
derived in [42, 45] by the fact that the quantization noise is now also taken into account.
Comparing (7.28) to (7.22), the only difference lies in the SNR term. Since after the use of
an MVDR beamformer, the SNR can be improved, i.e., η ≤ σ2

X1
dH R−1

nnd, we can conclude
that the CW-based RTF estimator always achieves a higher accuracy than the CS method.

7.4. MODEL-DRIVEN RATE-DISTRIBUTED METHODS
In this section, we first present the transmission energy model, and then formulate the
general rate-distributed RTF estimation problem. Finally, we propose convex optimiza-
tion approaches for the resulting rate distribution problems for the CS-based and CW-
based methods.

7.4.1. TRANSMISSION ENERGY MODEL
In WASNs, the sensors transmit data to the FC via wireless links, and the communication
channels are inevitably corrupted by additive noise. Let us assume that the transmission
channel noise is white Gaussian with PSD Vk ,∀k. Given a transmitted power Ek from the
kth microphone node in the WASN, the received energy by the FC will be D−r

k Ek with Dk

and r denoting the transmission distance from the kth microphone to the FC and the
path loss exponent, respectively. Typically, 2 ≤ r ≤ 6 [36, 127]. We assume r = 2 through-
out this work without loss of generality. The loss in the received energy is caused by the
channel power attenuation. With these, the SNR of the kth channel can be formulated
as

SNRk = D−2
k Ek /Vk ,∀k, (7.29)

which is different from the acoustic noise or acoustic SNR that is mentioned before. As-
suming that the transmitted speech signals are Gaussian distributed in the STFT domain,
the capacity based on the Shannon theory [128] for Gaussian channels is then given by

bk = 1

2
log2

(
1+SNRk

)
,∀k, (7.30)

which is valid for one frequency bin. To achieve reliable transmissions, bk bits per sam-
ple at most can be transmitted from microphone k to the FC at each frequency bin.
Based on the channel SNR (7.29) and the capacity (7.30), we can formulate the trans-
mitted energy as [36, 37, 38, 136, 49]

Ek = D2
kVk (4bk −1),∀k. (7.31)

Notice that the above energy model holds under two conditions [36, 38]: 1) band-limited
input signals, and 2) the microphone recordings are quantized at the channel capacity.

7.4.2. GENERAL PROBLEM FORMULATION
The proposed model-driven rate-distributed RTF estimation method is formulated by
minimizing the total transmission costs while constraining the RTF estimation error,
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which can be expressed as the following optimization problem:

min
b

K∑
k=1

D2
kVk (4bk −1)

s.t. εCS/CW ≤ β

α
,

bk ∈Z+,bk ≤ bmax,∀k,

(P1)

where εCS/CW indicates the use of either εCS or εCW from (7.22) and (7.28), respectively,
Z+ denotes a non-negative integer set, bmax the maximum rate, and β the optimal per-
formance, which can be the RTF estimation error of the CS or CW-based method when
all the sensor measurements are quantized at the maximum bit rate, and α ∈ (0,1] is the
parameter to control the desired performance. In practice, β/α is just a number, which
can be assigned by users, not necessarily dependent on the optimal performance. By
solving (P1), we can determine the optimal rate distribution that the microphone nodes
can utilize to quantize their recordings, such that a desired RTF estimation accuracy is
achieved with minimum energy usage. One way to solve (P1) is exhaustive search, i.e.,
evaluating the performance for all (bmax +1)K possible candidate rate distributions, but
evidently this is intractable unless bmax or/and K are very small. Note that (P1) is formu-
lated per frequency bin. Also, (P1) is non-convex due to the facts that:

• the constraint εCS/CW ≤ β
α is non-linear in b;

• the bit-rate b is constrained to be integer valued.

Next, we will solve (P1) using convex optimization techniques in the context of the CS
and CW methods, respectively.

7.4.3. MODEL-DRIVEN RATE-DISTRIBUTED CS (MDRD-CS)
For the first constraint εCS ≤ β

α in (P1), using the expression εCS from (7.22), we can
rewrite it as

c1 ·
[

c2 +Tr

((
I−deT

1

)
Rqq

(
I−deT

1

)H
)]

≤ β

α
,

or rearranged as

Tr

((
I−deT

1

)
Rqq

(
I−deT

1

)H
)
≤ β

αc1
− c2, (7.32)

where the constants c1 and c2 are given by

c1 =
1+ 1

η

L||a||22σ2
S

=
1+ 1

η

L||d||22σ2
X1

, (7.33)

c2 = Tr

((
I−deT

1

)
Ruu

(
I−deT

1

)H
)

. (7.34)

Clearly, (7.32) is non-convex and non-linear in terms of the bit rates bk ,∀k. For lin-
earization, we equivalently rewrite (7.32) into two new constraints by introducing a new
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Hermitian positive semi-definite matrix Z ∈ SK+ with S+ denoting the set of Hermitian
positive semi-definite matrices, i.e.,

Tr(Z) ≤ β

αc1
− c2, (7.35)(

I−deT
1

)
Rqq

(
I−deT

1

)H = Z. (7.36)

Now, (7.35) is linear in the new variable Z, however, (7.36) is still non-convex in bk . To
convexify (7.36), we can relax it to

Z º
(
I−deT

1

)
Rqq

(
I−deT

1

)H
, (7.37)

since (7.37) and (7.35) are sufficient to obtain the original constraint in (7.32). By inspec-
tion, (7.37) can be written as a linear matrix inequality (LMI) using the Schur comple-
ment [108, p.650], i.e.,  R−1

qq I−deT
1(

I−deT
1

)H
Z

º O2K , (7.38)

where R−1
qq can be computed from (7.14) as

R−1
qq =12×diag

[
4b1

A 2
1

,
4b2

A 2
2

, ...,
4bK

A 2
K

] . (7.39)

Note that (7.38) is not an LMI in the unknown parameters b, but in 4bk ,∀k. Finally, we
define a constant vector f = [ 12

A 2
1

, · · · , 12
A 2

K
]T and introduce a variable change tk = 4bk ∈

Z+,∀k, such that R−1
qq = diag

(
f¯ t

)
and (7.38) are both linear in t. For the integer con-

straint bk ∈ Z+,∀k, we relax it to bk ∈ R+, i.e., tk ∈ R+,∀k. Altogether, we obtain a stan-
dard semi-definite programming (SDP) problem [108, p.128] as

min
t,Z

K∑
k=1

D2
kVk (tk −1)

s.t. Tr(Z) ≤ β

αc1
− c2,diag

(
f¯ t

)
I−deT

1(
I−deT

1

)H
Z

º O2K ,

1 ≤ tk ≤ 4bmax , ∀k.

(P2)

7.4.4. MODEL-DRIVEN RATE-DISTRIBUTED CW (MDRD-CW )
Applying the expression from (7.28) to (P1), one can consider the MDRD-CW problem.

Then, the first constraint εCW ≤ β
α in (P1) can be rewritten as

Tr

((
I−deT

1

)
Rqq

(
I−deT

1

)H
)
≤ β

αc ′1
− c2, (7.40)
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where c ′1 is defined by

c ′1 =
1+ 1

σ2
X1

dH R−1
nnd

L||d||22σ2
X1

, (7.41)

and R−1
nn can be calculated as

R−1
nn

(a)=
(
Ruu +Rqq

)−1

(b)= R−1
uu −R−1

uu

(
R−1

uu +R−1
qq

)−1
R−1

uu, (7.42)

where (b) is derived from the matrix inversion lemma [107, p.18]3. Similar to Sec. 7.4.3,
by introducing a matrix Z ∈SK++, (7.40) can equivalently be rewritten into two new con-
straints, e.g., (7.35) and (7.36), and the latter one can be relaxed to the LMI in (7.38).

Further, due to the fact that the unknown rates also sit in c ′1 and c ′1 is non-convex in
terms of the bit rate b, we relax (7.41) as

c ′1 ≥
1+ 1

σ2
X1

dH R−1
nnd

L||d||22σ2
X1

. (7.43)

With the substitution of the expression for R−1
nn from (7.42) into (7.43), we obtain

δ≥ dH R−1
uu

(
R−1

uu +R−1
qq

)−1
R−1

uud, (7.44)

where δ is given by

δ= dH R−1
uud−

1/σ2
X1

c ′1L||d||22σ2
X1

−1
. (7.45)

Using the Schur complement, (7.44) can be reformulated as the following LMI:[
R−1

uu +R−1
qq R−1

uud
dH R−1

uu δ

]
º OK+1. (7.46)

Note that (7.45) is non-convex in c ′1, which can be relaxed to

δ≤ dH R−1
uud−

1/σ2
X1

c ′1L||d||22σ2
X1

−1
, (7.47)

since (7.47) and (7.44) are sufficient conditions for obtaining (7.40). As a consequence,

3
(
A+CBCT

)−1 = A−1 −A−1C
(
B−1 +CT A−1C

)−1
CT A−1.
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the MDRD-CW problem can also be formulated as an SDP problem:

min
t,Z,c ′1,δ

K∑
k=1

D2
kVk (tk −1)

s.t. Tr(Z) ≤ β

αc ′1
− c2,diag

(
f¯ t

)
I−deT

1(
I−deT

1

)H
Z

º O2K ,

[
R−1

uu +diag
(
f¯ t

)
R−1

uud
dH R−1

uu δ

]
º OK+1,

1/σ2
X1

c ′1L||d||22σ2
X1

−1
−dH R−1

uud+δ≤ 0,

1 ≤ tk ≤ 4bmax , ∀k.

(P3)

Remark 7. Both the MDRD-CS problem in (P2) and the MDRD-CW problem in (P3) can
be solved in polynomial time using interior-point methods or solvers, like CVX [110] or
SeDuMi [111]. The computational complexity for solving both problems is of the order of
O (K 3). After (P2) or (P3) is solved, the allocated bit rates can be resolved by bk = log4 tk ,∀k.
Since the solution of (P2) or (P3) are continuous values, we need to further refine the rates.
We recommend to utilize randomized rounding, since this technique can guarantee that
the integer solution obtained in this way always satisfies the performance requirement.
The randomized rounding technique is detailed in [136, 53], the complexity of which is
linear in K .

7.5. GREEDY RATE-DISTRIBUTED METHODS
Strictly speaking, the MDRD-CS/CW estimators proposed in the previous section are not
practical, since the rate-distribution solver in (P2) or (P3) depends on the signal power
σ2

X1
, the true RTF d, SNR and noise SOS Ruu. Although we can estimateσ2

X1
, SNR and Ruu

in practice using the microphone measurements, we have no knowledge on d. However,
the model-driven methods can provide a lower bound on the optimal rate distribution
that we can achieve with the constraint on the RTF estimation performance. Based on
the model-driven estimators, we will propose two practical low-rate RTF estimators in
this section, which are referred to as the data-driven rate-distributed CS/CW methods
(i.e., DDRD-CS and DDRD-CW, respectively). In what follows, we will take the DDRD-CS
algorithm as an example to clarify the proposed greedy methods, because the updating
procedures for both methods are similar.

Due to the fact that the microphone nodes quantize and transmit their recordings
to the FC on a frame-by-frame basis, we can update the rate distribution at the FC end
using the previously received data and estimated RTF. In detail, for the first time frame4,

4Note that for the proposed rate distribution methods, we only need to transmit the speech+noise segments,
since the statistics of the acoustic noise is assumed known in this work. This is the assumption that we made
in Sec. 7.2.2 in order to make the analysis on the CS and CW methods consistent.
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we initialize the bit rates at the maximum rate, and the microphone nodes quantize data
at the initial rates. At the FC end, we can estimate the initial correlation matrices R̂qq,
R̂ŷŷ and R̂xx using (7.14), (7.8) and (7.11), respectively. Also, we can compute the signal
power σ̂2

X1
and the SNR at the reference microphone η̂ using (7.17) and (7.21), respec-

tively. Based on the estimate of R̂xx, we can extract its normalized first column as the
estimated RTF, i.e., d̂CS, using (7.16). Using this information, we can update the con-
stants c1 and c2 as

ĉ1 =
1+ 1

η̂

l ||d̂||22σ̂2
X1

, (7.48)

ĉ2 = Tr
(
(I− d̂eT

1 )(Rnn − R̂qq)(I− d̂eT
1 )H

)
, (7.49)

where l denotes the number of received segments by the FC, e.g., in the initial case l = 1,
and the estimate of the acoustic noise statistics is given by R̂uu = Rnn − R̂qq. Based on
these, we can update the rate distribution by solving (P2), i.e.,

min
t,Z

K∑
k=1

D2
kVk (tk −1)

s.t. Tr(Z) ≤ β

αĉ1
− ĉ2,diag

(
f¯ t

)
I− d̂eT

1(
I− d̂eT

1

)H
Z

º O2K ,

1 ≤ tk ≤ 4bmax , ∀k.

(7.50)

Note that (7.50) is an instantaneous optimization problem of (P2) for one specific frame,
as ĉ1, ĉ2 and d̂ need to be updated frame-by-frame and they get more accurate with more
frames received by the FC.

Subsequently, the microphone nodes quantize the next frame at the recently ob-
tained bit rates. The FC then updates the SOS and the parameters required by (7.50)
using the past segments together with the newly received measurements in a similar
way. This procedure will continue until all the frames at the microphone end have been
transmitted. This data-driven approach is summarized in Algorithm 35, where we also
include the DDRD-CW method. The proposed DDRD-CW method is obtained by replac-
ing the CS-steps using the CW-steps, e.g., d̂ is the normalized eigenvector of the matrix
pencil (R̂ŷŷ,Rnn) corresponding to the maximum eigenvalue. Note that when the num-
ber of frames l ¿ L, it is possible that (7.50) is infeasible due to insufficient segments for
estimating the SOS. To circumvent the infeasibility, we can relax β in (7.50) using

β̂= Lβ/l , (7.51)

such that the constraint Tr(Z) ≤ β̂
αĉ1

− ĉ2 gradually becomes tighter when increasing the
number of frames, resulting in an increase in the bit-rates per frame that are required for

5The current setup assumes the sources to be stationary in both time and space. For non-stationary sources,
e.g., moving sources, Algorithm 1 should be modified as R̂ŷŷ = 1

P
∑l
ι=l−P ŷιŷH

ι , where P denotes the number
of frames from the past that we want to include. If the sources are completely stationary, then P = l −1.
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Algorithm 3: DDRD-CS/CW methods

Require: Ruu;
Initialize: bk = bmax,∀k;
for l = 1 : L do

Transmit the l th noisy segment using bk bits;

R̂qq = 1
12 ×diag([

A 2
1

4b1
,

A 2
2

4b2
, ...,

A 2
M

4bM
]);

R̂ŷŷ = 1
l

∑l
ι=1 ŷl ŷH

l ;

R̂xx = R̂ŷŷ −Ruu − R̂qq;
σ̂2

X1
= |a1|2σ̂2

S = eT
1 R̂xxe1;

η̂= σ̂2
X1

eT
1 (R̂qq+Ruu)e1

;

Case 1: DDRD-CS
d̂CS = σ̂−2

X1
R̂xxe1;

ĉ1 =
1+ 1

η̂

l ||d̂||22σ̂2
X1

;

ĉ2 = Tr((I− d̂CSeT
1 )Ruu(I− d̂CSeT

1 )H );
update bCS by solving (P2);

Case 2: DDRD-CW
d̂CW = R̂H/2

nn ψ̂

eT
1 R̂H/2

nn ψ̂
;

ĉ2 = Tr((I− d̂CWeT
1 )Ruu(I− d̂CWeT

1 )H );
update bCW and c ′1 by solving (P3);

end for
return bCS,bCW, d̂CS, d̂CW

quantization. To this end, we can conclude that the complexity of the greedy approaches
for each frame is the same as the model-driven methods, i.e., O (K 3), and the complexity
for all the frames is of the order of O (LK 3).

7.6. EXPERIMENTAL RESULTS
In this section, we evaluate the RTF estimation performance of the proposed methods
using synthetic data and natural speech data. Note that in simulations, the matrix Rnn is
already estimated using sufficiently long noise-only segments.

7.6.1. SIMULATIONS ON SYNTHETIC DATA
Fig. 7.1 shows the experimental setup, where K = 20 candidate microphones are placed
in a 2D room with dimensions (3×3) m. The microphones are distributed uniformly on a
circle with the origin at (1.5,1.5) m and a radius of 0.5 m. The FC (black solid square) is as-
sumed to be at the first microphone node, i.e., (2,1.5) m. As the first node is considered to
be the FC, it can be assumed that it always quantizes at the maximum rate, since it does
not cost any transmission energy. The sensors are indexed in an anti-clockwise order.
One target source (red solid circle) and one interfering source (blue star) are positioned
at (2.1,0.9) m and (0.6,2.4) m, respectively. We assume that the positions of all sources
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Figure 7.1: An illustration of experimental setting with 20 microphones. The FC and the first microphone are
placed at the same position.

and microphones do not change. In this section, the simulations are performed directly
in the STFT domain at a single frequency bin using a synthetic non-stationary Gaussian
source signal and synthetic ATFs. The target source is modelled as S(ω, l ) ∼C N (0,σ2

S (l ))
(i.e., the real and imaginary parts of S(ω, l ) are both zero-mean Gaussian distributed with
varianceσ2

S (l )). The non-stationarity is realized by varying the variance asσ2
S (l ) ∼ 0.5e0.5

(which is a scaled exponential random variable with an average of one, i.e., σ2
S = 1), such

that the resulting average variance of the target source is one. The interference consists
of a stationary coherent source and spatially-white sensor noise. We employ the SNR
to measure the ratio between the variances of the target source and the sensor noise.
Signal-to-interferer ratio (SIR) is used to measure the ratio between the variances of the
target source and the interfering sources. The ATFs of the sources are modelled as a sum-
mation of a direct-path component and reflection components modelled as a complex
Gaussian random variable6. The ratio between the power of the direct-path component
and the reflections power is denoted as direct-to-reverberation ratio (DRR). The simula-
tion parameters are set as follows: bmax = 16 bits per sample, SNR = 20 dB, SIR = 0 dB,
DRR = 30 dB and the number of frames L = 8000. The channel noise PSD is set to be
Vk = 1,∀k. Note that the level of SNR or SIR is averaged over time, since the variance of
the target source is time-variant. We set β in (P1) to the estimation error of the classical
CS method when each sensor quantizes at the maximum bit rate. The presented results
are averaged over 100 Monte-Carlo trials. In order to focus on the rate-distributed RTF
estimation problem, we assume that the internal clocks of the sensors are synchronized.

6The direct path is characterized by the gain and delay values. The gain can be viewed as the reciprocal of the
distance from the source to the sensors, and the delay (in number of samples) is caused by the propagation
of the source. Using the power of the direct-path component and the DRR parameter, we can calculate the
power (or variance) of the reflection components. Then, the reflection components can be generated as zero-
mean complex Gaussian random variables.
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Figure 7.2: RTF error and transmission cost of the model-based methods in terms of α. The cost function in
x-axis means the total transmission power per frame. The “total" refers to the summation of transmission costs
over microphones and “per frame" indicates the average over L frames.

EVALUATION OF MDRD-CS/CW METHODS

To study the performance of the rate distribution, we compare the proposed MDRD-
CS/CW methods to the CS/CW methods using a uniform rate allocation (referred to as
uni.CS and uni.CW, respectively). For instance, given the rate distribution bk obtained
by the MDRD-CS method, the uni.CS method distributes round(

∑K
k=1 bk /K ) bits to each

sensor and estimates the RTF using the classic CS method. Similarly, the uni.CW method
is based on the rate distribution that is obtained by the MDRD-CW method. In addi-
tion, we also compare uni.PowerCS/CW methods, which distribute the total transmis-
sion powers that are consumed by the MDRD-CS/CW methods uniformly to all the sen-
sors, respectively. As such, the uni.PowerCS (or uni.PowerCW) method uses the same
amount of transmission energy as the proposed MDRD-CS (or MDRD-CW) approach,
but most likely with different bit-rate distributions. Fig. 7.2 shows the RTF estimation
error and transmission cost parameterized by α. Clearly, the better the accuracy, the
more transmission cost is required. Hence, the proposed methods can trade-off the per-
formance and energy usage by controlling the parameter α. From the simulations it
follows that the proposed MDRD-CS/CW methods always satisfy the performance re-
quirement. Moreover, their transmission costs are always much lower compared to the
full-rate quantization (i.e., when α = 1) or uniform rate allocation. Given the same RTF
performance requirement, the MDRD-CW method consumes much less transmission
energy than the MDRD-CS method. In other words, given the same power budget, the
CW method always performs better than the CS method.

Fig. 7.3(a) shows the rate distributions obtained by the proposed MDRD-CS/CW from

Fig. 7.2 at α= 0.8. Clearly, to fulfil a desired RTF estimation performance εCS/CW ≤ β
α , we

do not need full-rate quantization for all the sensors, as the optimal rate distributions
are far below the maximum rate bmax per sensor. Given the same performance require-
ment, the MDRD-CW method needs less bit rates than the MDRD-CS method. Sensor
one is allocated the maximum number of bits, as this is the FC and no additional trans-
mission energy is required. Further, we see that in order to save transmission energy,
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Figure 7.3: (a) An example for rate distribution when α= 0.8 and (b) RTF accuracy in terms of rate increment.

the sensors that are closer to the FC are allocated with a higher rate. In Fig. 7.3(b), we
show an example on how the RTF accuracy changes by further increasing the rate, start-
ing from the optimal distributions given in Fig. 7.3(a). The resulting RTF accuracy is
plotted as a function of the rate increment ∆b. For ∆b = 0, we use the optimal rate dis-
tribution given in Fig. 7.3(a). Then, for ∆b > 0, we increase each bk ,∀k by ∆b bits per
sample. The resulting rate is upper-bounded by bmax, i.e., the bit rates are increased to
bk = min

(
bmax,bk +∆b

)
,∀k. Obviously, by increasing the bit-rate, we do not gain signif-

icantly in the RTF accuracy of the MDRD-CS method, which reveals that many bits are
redundant and it is unnecessary to use full-rate quantization. Notably, the performance
gain (e.g., 8 dB) in the MDRD-CW method is caused by the fact that β is set as the best
performance of the classic CS method.
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Figure 7.4: RTF error and transmission cost of model-driven methods in terms of the number of available
segments for α= 0.8. The cost function in x-axes means the total transmission power per frame.

Fig. 7.4 compares the RTF accuracy and the energy usage parameterized by the num-
ber of segments L for α= 0.8. Clearly, the more segments for estimating the correlation
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matrices, the more accurately the CS/CW-based estimators perform and the more trans-
mission costs required. To achieve the same RTF estimation performance, the proposed
methods consume much less transmission cost.
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Figure 7.5: Rate distributions of the proposed model-driven methods for the scenario where the FC is located
at the center of the room and α= 0.8.

For further studying other influence factors on the proposed model-driven rate dis-
tribution approaches, we place the FC in Fig. 7.1 at the center of the room, such that all
the microphone nodes have the same distance from the FC. The locations of the target
source and the noise source are fixed, that is, only the SNRs across microphones vary
from each other. Fig. 7.5 shows an example of the resulting rate distributions for such a
scenario. We can clearly see that the SNR does affect the rate distributions, as roughly
the sensor having a higher SNR (e.g., sensor 18 which is closest to the target source) is
allocated with a higher rate. This reveals that the cleaner the microphone measurements
are, the more bits are required for quantization. Comparing the ranges of the distributed
rates between Fig. 7.5 and Fig. 7.3(a), it can be concluded that the distance between a
sensor and the FC is more relevant than the SNR for the proposed rate optimization
problems.

EVALUATION OF DDRD-CS/CW METHODS

Fig. 7.6 compares the proposed DDRD-CS/CW methods to the model-driven versions,
uni.CS/CW and uni.PowerCS/CW. For each segment, the uni.CS/CW methods use uni-
form rate allocation, and uni.PowerCS/CW use uniform power allocation as before. Clearly,
by increasing the number of available segments, the DDRD-CS method and the DDRD-
CW method converge to the MDRD-CS method and the MDRD-CW method in terms of
performance, respectively. The proposed DDRD-CW method converges faster. Note that
the final rate distributions of the MDRD-CS (or MDRD-CW) method and the DDRD-CS
(or DDRD-CW) method are not necessary to be the same. Fig. 7.7 shows the transmission
cost per frame of the data-driven methods as a function of the number available frames.
The cost of the DDRD-CS/CW methods gradually increases, which is caused by the re-
laxation β̂ = Lβ/l for overcoming the infeasibility of (7.50) when l ¿ L. Since the con-

straint Tr(Z) ≤ β̂
αĉ1

− ĉ2 gradually gets tighter by increasing the number of frames, more
and more bits are needed to fulfill the performance requirement. More importantly, the
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DDRD-CS/CW methods use much less transmission energy than the uni.CS/CW meth-
ods.
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Figure 7.6: RTF accuracy of the data-driven methods for α = 0.8. The total number of received frames (i.e.,
x-axis) increases from 1 to L = 8000.
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7.6.2. SIMULATIONS ON NATURAL SPEECH DATA
In this section, we will show the performance of the proposed methods using natural
speech data in a simulated WASN. The experimental setup is same as Fig. 7.1. The single
target source is a speech signal originating from the TIMIT database [120]. The coherent
interfering source is a stationary Gaussian speech shaped noise signal. The microphone
self noise is modeled as uncorrelated noise at an SNR of 50 dB. All signals are sampled at
16 kHz. We use a square-root Hann window of 100 ms for framing with 50% overlap. The
real RTFs are generated using [121] with reverberation time T60 = 200 ms.

At first, we show the RTF estimation performance of the proposed methods in Fig. 7.8
for α = 0.8. This is a similar comparison as in Fig. 7.6, but now using real speech sig-
nals. The total number of segments is L = 500. We can see that similar to the synthetic
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Figure 7.8: RTF estimation performance of the proposed methods using the real speech recordings for α= 0.8.
The total number of received frames (i.e., x-axis) increases from 1 to L = 500.
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data case in Fig. 7.6, the DDRD-CS and DDRD-CW methods converge to MDRD-CS and
MDRD-CW in the sense of RTF accuracy, respectively. Both methods satisfy the perfor-
mance requirement. Similarly, the transmission cost per frame is shown in Fig. 7.9.

Secondly, we validate the application of the proposed methods in multiple rever-
beration conditions. The performance is examined for different values of T60, selected
from {0,200,400,600,800} ms. The RTF estimation accuracy and the average transmis-
sion power per frame of the proposed methods and the reference methods are shown in
Fig. 7.10 forα= 0.8. Note that in reverberant environments, the early and late reverbera-
tions of the source signal might fall into different frames, since the frame length is fixed.
When estimating the noisy correlation matrix and updating the RTF estimate frame-by-
frame, the late reverberation of the interfering source will thus be regarded as another
source of noise. Increasing the level of reverberation will lead to a lower long-term SIR.
As Fig. 7.5 shows that the sensors with a lower SNR should be allocated with a higher rate,
the proposed methods need to distribute more bits to the sensors, i.e., more transmis-
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sion power, in a more reverberant environment. Also, that is why with an increase in the
reverberation time, both the RTF estimation error and the transmission power increase
in Fig. 7.10.
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Figure 7.10: RTF estimation accuracy and transmission cost of the proposed methods for multiple reverbera-
tion conditions with α= 0.8. The cost function in x-axes means the average transmission power per frame.

Finally, since the RTF performance is also affected by the source location (e.g., see
Eqs. (7.22, 7.28)), we further evaluate the RTF performance for different positions of the
target source. To do so, we randomly place the target source on the diagonal of the room,
i.e., on the line from the bottom-left corner to the top-right corner. The RTF estimation
performance in terms of the distance from the target source to the center of the sensor
array is shown in Fig. 7.11. The proposed CS/CW-based methods obtain a similar per-
formance variation in terms of the source location. Clearly, the proposed approaches
achieve a better RTF estimation performance when the sources are located in the near-
field, since the SNR is higher in this case.

7.7. CONCLUSION
In this work, we investigated the RTF estimation problem using the CS/CW methods un-
der low bit-rate. Taking quantization noise into account, we showed that the estimation
errors of both methods are influenced by the SNR, the number of available frames and
the bit rate. Motivated by this, we formulated to minimize the energy usage for data
transmission between sensors and the FC by constraining the RTF estimation perfor-
mance, such that the optimal rate distribution can be found for the sensors to quantize
their measurements. The problem was first solved by semi-definite programming, which
was called MDRD-CS/CW. Since the proposed model-based methods are not practi-
cal (they depend on the true RTF), we further proposed two corresponding greedy ap-
proaches (i.e., DDRD-CS/CW). We can conclude that

• Both the model-based methods and the greedy methods satisfy the performance
requirement on the RTF estimation, more importantly, with a significant saving of
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Figure 7.11: RTF error of the proposed methods in terms of the distance from the target source to the center of
the room, i.e., (1.5,1.5) m, for α= 0.8.

transmission cost compared to the full-rate quantization or uniform rate alloca-
tion;

• The performance of the greedy method converges to that of the model-based method
with increasing the number of available frames;

• Given the same performance bound, the proposed CW-based methods need less
bit rates, resulting in less energy consumption compared to the CS-based meth-
ods;

• The resulting rate distributions are affected by the distance, the SNR, etc. In gen-
eral, the sensors that are closer to the FC are allocated with a higher rate because
they are cheaper in data transmission, and the sensors that have a higher SNR
should be allocated with a higher rate.

The benefits of the proposed approaches can be concluded as

• The considered methods can provide an effective strategy for saving the energy
consumption over WASNs through distributing the quantization rates.

• The proposed methods can remove the redundant bits contained in the raw mi-
crophone measurements and be applied in noisy/reverberant environments.



8
CONCLUSION AND FUTURE

RESEARCH

Throughout this thesis, we have presented several energy-efficient multi-microphone
noise reduction algorithms for wireless acoustic sensor networks (WASNs) to minimize
the energy consumption while achieving a prescribed noise reduction performance. In
this chapter, we will conclude this dissertation by discussing the considered research
questions that were posed in Chapter 1. Also, we will discuss some assumptions and
restrictions that were made throughout the thesis, which need to be taken into account
in future work.

8.1. CONCLUSIONS AND DISCUSSIONS
In this section, the research questions that were proposed in Sec. 1.4 will be discussed.

8.1.1. MICROPHONE SUBSET SELECTION
As discussed in Chapter 1, the devices that form the WASNs are equipped with a lim-
ited battery resource. It is therefore essential to save the power consumption in order to
prolong the network lifetime. We therefore proposed the following research question.

Q1: Given a prescribed performance, can we design an effective strategy for saving the
power consumption over WASNs?

In order to answer this question, we considered two strategies: sensor selection and
rate distribution, since the total power consumption in terms of data transmission is di-
rectly affected by 1) the number of sensors that are involved in multi-microphone noise
reduction and 2) the transmission rate that is used for quantizing the microphone mea-
surements.

At first, we investigated in Chapter 3 microphone subset selection. Typically, some
sensors are closer to the target source(s) than others. This yields differences in the local

125
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signal-to-noise ratios (SNRs) as observed by each device. At the same time, some devices
are closer to the fusion center (FC) than others, which affects the required transmission
power. It was therefore proposed in Chapter 1 to investigate the following sub-research
question of Q1:

Q1.1: Given a certain expected performance, can we choose a subset of microphone
nodes that minimizes the power consumption for beamforming?

To answer this research question, we proposed in Chapter 3 a microphone subset
selection strategy for minimum variance distortionless response (MVDR) beamforming
based noise reduction in WASNs. The considered sensor selection problem was formu-
lated by minimizing the total transmission cost between all the sensors and the FC under
a constraint on the expected output noise power. This problem formulation differs from
the classic sensor selection problem, like [52, 53], which constrains the cardinality of
the subset of the selected sensors, in the sense that in large-scale WASNs the cardinality
of the selected subset is not of interest, but the desired noise reduction performance.
The considered sensor selection problem was first solved by using convex optimization
techniques. This method was called model-driven sensor selection, since it leverages the
noise second-order statistics (SOS) of the complete sensor network. However, in prac-
tice the SOS of the whole network is not given beforehand, which needs to be estimated,
making the model-based method impractical. To overcome this drawback, we further
proposed a greedy method, which is an online data-driven method.

Simulation results showed that the proposed methods can choose a better subset of
microphones in the sense that the total transmission cost is minimized and the expected
noise reduction performance is guaranteed compared to other reference approaches.
For the proposed methods, the sensors that are close to the target source, those close to
the FC and some close to the coherent interfering sources are more likely to be selected,
as they have a higher SNR for enhancing the target signal, are cheaper in transmission
and are informative for suppressing the noise sources, respectively. In addition, the prac-
tical greedy approach converges to the model-based method in terms of noise reduction
performance, while the final selected sets of both methods might be different.

Although the proposed sensor selection problem was solved under the assumption
that only a single target source is present, the derived methods can also be applied to
the scenario with multiple target sources, e.g., see Chapter 4 and 6. Note that for the
multiple source case, a linearly constrained minimum variance (LCMV) beamformer has
to be used rather than an MVDR beamformer [136, 49, 159]. Also, it is worth noting that
although the proposed model-based method is impractical, it can still suggest how to
place the sensors optimally when the SOS of the noise field are given, which is known as
sensor placement [160].

8.1.2. RATE DISTRIBUTION
In Chapter 3, we answered the question how to optimize the transmission cost over a
WASN with a satisfactory noise reduction performance from the perspective of sensor
selection. As a more practical case, in a centralized WASN the devices need to quan-
tize their raw data measurements and then send them to the FC via a wireless link. For
quantization, a certain bit-rate budget is used. The sensor selection problem proposed
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Figure 8.1: The cardinality of the activated sets of rate distribution and sensor selection in terms of the perfor-
mance controller α and normalized microphone self-cost c0/(4b0 −1).

in Chapter 3 did not take quantization into account, that is, each considered sensor is
only allowed to operate at full rate (when selected) or zero rate (when not selected) im-
plicitly. Since the transmission energy from a sensor to the FC is an exponential function
in terms of bit-rate, it is possible that if we take quantization into account and optimize
the transmission cost in terms of bit-rates, the total energy consumption could further
be reduced compared to that of the sensor selection method. That led in Chapter 1 to
the following sub-question of research question Q1, that is,

Q1.2: Given a certain expected performance, how to efficiently distribute the bits for
signal quantization in order to reduce power consumption?

This question was answered in Chapter 4. To formulate this problem, we first wrote
the transmission energy from a sensor to the FC as a function of the bit-rate using the
channel coding theory. Similar to the sensor selection problem, we then minimized
the total transmission cost under a constraint on an expected level of the output noise
power. The considered rate distribution problem was solved by using convex optimiza-
tion techniques, which resulted in a rate-distributed LCMV (RD-LCMV) beamformer.
Furthermore, the relationship between sensor selection and rate distribution was de-
rived in a theoretical fashion, as rate distribution is a generalization of sensor selection.
Specifically, rate distribution allows sensors to have multiple (i.e., soft) decisions, while
sensor selection makes a binary (i.e., hard) decision in terms of bit-rates. The optimal
microphone subset of the sensor selection method can be found by thresholding the
rate distribution of the proposed rate allocation method, and this threshold can be de-
termined by using, e.g., the bisection method.

Simulation results showed that the proposed RD-LCMV method distributes higher
bit-rates to the more informative sensors, e.g., those close to the target sources, those
close to the FC and some close to the coherent interfering sources. Also, the relationship
between these two energy-efficient approaches can clearly be observed from the rate
distributions. It was shown in Chapter 4 that rate distribution is always more efficient
in energy usage than the sensor selection method by ignoring the microphone self-cost,
e.g., the cost for having a sensor activated. However, the comparison of energy efficiency
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will not always be the case if the microphone self-cost, say c0, is taken into account.
For instance, considering the experimental setup in Fig. 4.7, we show the cardinality of
the activated sets of the two approaches in Fig. 8.1, where the microphone self-cost is
normalized by 4b0 − 1 with b0 denoting the maximum bit rate. It can be seen that the
rate distribution method always has more activated sensors, i.e., the sensors whose allo-
cated rate is non-zero, then depending on the microphone self-cost, the rate distribution
method might consume more transmission cost. To see this, we show a more fair com-
parison between the two methods in Fig. 8.2, where both the total power consumption
and the microphone self-cost are normalized by 4b0 −1. It is clear that in case the cost
for have a sensor activated is smaller than a certain threshold, rate distribution is more
energy efficient; otherwise sensor selection consumes less power.

All the aforementioned sensor selection and rate distribution approaches are derived
in a centralized fashion. That is, an FC is required to collect data measurements and
conduct all the computations, and all other devices are only allowed to communicate
with the FC. The disadvantage of such a centralized configuration is obvious. If the FC
is disconnected from the WASN, the whole network collapses. If the FC is far away from
a node in large-scale WASN, the long communication distance will lead to a large power
consumption. Therefore, it is worth rethinking the proposed energy-efficient algorithms
in a distributed way. This led to the next research question posed in Chapter 1, that is,

Q2: Given a prescribed noise reduction performance, how to design an efficient data
transmission strategy between nodes to reduce the power consumption for dis-
tributed beamforming?

In order to answer this question, we extended the proposed rate distribution method
in a decentralized WASN in Chapter 5. In the decentralized setup, the nodes are con-
nected with other close-by nodes and the calculations as well as transmissions are dis-
tributed over nodes. For the distributed implementation, we first reformulated the orig-
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Figure 8.3: Output noise power g (w,x) and power consumption f (w,x) in terms of α for the centralized and
decentralized rate-constrained methods.

inal rate optimization problem in a node-separable form and found a rate distribution
using local calculations, which yet satisfies the performance requirement. The resulting
rate distribution was then used for quantizing the relevant parameters within an optimal
LCMV beamforming scheme. Simulation results showed that both the centralized RD-
LCMV method and the distributed approach can satisfy the requirement on the noise
reduction performance, while the distributed method consumes less transmission en-
ergy than the centralized method if the FC is further away from the WASN.

Notably, it is possible that the centralized method is more energy efficient if the FC
is close to the WASN. To see this, we further consider the scenario in Fig. 5.1, where the
FC is assumed to be located at the 9th node (i.e., approximately at the center of the net-
work). The corresponding energy usage versus noise reduction performance tradeoff is
shown in Fig. 8.3. In this case, it is obvious that now the centralized method consumes
less energy compared to Fig. 5.3 where the FC is located at the last node, and the superi-
ority of the distributed method in energy consumption becomes smaller. However, the
decentralized implementation is more robust against the network variation compared
to the centralized counterpart, since the FC is not always available.

Furthermore, we applied the proposed energy-efficient algorithms to a more general
WASN, where wireless hearing-aid (HA) devices are a part of the larger WASN. For the
HA users, not only noise reduction for improving the speech intelligibility is required,
but also preserving the spatial cues of the interfering sources. These spatial cues, in-
cluding interaural phase difference (IPD) and interaural level difference (ILD) are useful
for localizing the corresponding sources. This is related to the third research question
posed in Chapter 1, that is,

Q3: For the hearing-aid devices, how to efficiently make use of the measurements from
external devices to jointly achieve noise reduction and binaural cue preservation?

This question was answered in Chapter 6, where a rate-distributed binaural LCMV
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(RD-BLCMV) beamformer was proposed. The problem formulation is identical to the
original rate distribution that was considered in Chapter 4, i.e., minimizing the total
transmission cost and constraining the output noise power. The main difference lies in
the fact that in this binaural context, we used a binaural LCMV (BLCMV) beamformer [47]
for jointly suppressing the existing noise sources and preserving their spatial cues, while
the classic LCMV beamformer was used for only enhancing the target sources in the gen-
eral rate distribution problem in Chapter 4. Following the derivations of the RD-LCMV
problem, the proposed RD-BLCMV beamforming problem was also solved using convex
optimization techniques. Theoretically, the more sensors that are involved in the de-
sign of the BLCMV beamformer, the more degrees of freedom (DOF) that are available
for preserving the spatial cues, i.e., more spatial cues can be preserved. On the other
hand, if more DOF are spent on preserving the spatial cues, less DOF are left for noise
reduction, leading to a trade-off between the two goals [47]. To clearly see this trade-off,
we compared the proposed RD-BLCMV method in the binaural context to the sensor se-
lection method that was proposed in Chapter 3. Simulation results showed that given
the same expected noise reduction performance, the RD-BLCMV method can preserve
more spatial cues of the interfering sources compared to the sensor selection method,
since usually the rate distribution method activates more sensors, resulting in a higher
amount of DOF.

8.1.3. LOW-RATE RELATIVE TRANSFER FUNCTION ESTIMATION
To perform the beamforming based noise reduction algorithms, e.g., MVDR and LCMV,
the acoustic transfer function (ATF) or relative (acoustic) transfer function (RTF) is re-
quired for the design of beamformers. The sensor selection and rate distribution algo-
rithms presented in Chapters 3-6 are based on the assumption that the ATF or RTF of the
target source(s) with respect to the acoustic devices is known. Therefore, in order to ap-
ply the proposed sensor selection or rate distribution method, it is necessary to estimate
the RTF information beforehand. Also, the RTF estimation accuracy will certainly affect
the performance of other subsequent algorithms, e.g., sensor selection, rate distribution
and beamforming. Noting that throughout this dissertation, our focus is on saving the
total transmission cost over the WASN, it is thus interesting to investigate the following
research question in the context of estimating the RTF.

Q4: Given a prescribed RTF estimation accuracy, can we design an effective data trans-
mission strategy for saving the power consumption over WASNs?

This question was answered in Chapter 7. Assuming that a single target speech source
is present, the cross power spectral density matrix of the speech component, say Rxx, is
a rank-1 matrix, which in practice can be estimated by subtracting the noise correla-
tion matrix, say Rnn from the noisy correlation matrix, say Ryy. Given a perfect voice
activity detector (VAD), the microphone signals can be classified into speech-plus-noise
segments and noise-only segments, and during these two periods the noisy and noise
correlation matrices can be estimated, respectively. Taking the quantization noise into
account and assuming that the quantization noise and the microphone measurements
are mutually uncorrelated, both Rnn and Ryy at the FC end will include the quantization
noise statistics. Due to the subtraction operation, the statistics of the quantization noise
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will be eliminated in estimating Rxx if the quantization noise affects Rnn and Ryy in the
same manner. This means that independent of the quantization rate that is used for
transmission, Rxx can be estimated perfectly given sufficiently long segments. However,
due to the errors in estimating Rnn and Ryy, the quantization rate will affect the estima-
tion of Rxx. This is the motivation for the proposed RTF estimation approaches under a
low communication rate.

In order to find the optimal rate distribution for estimating the RTF, we first analyzed
the performance of two often-used RTF estimation approaches, i.e., covariance subtrac-
tion (CS) and covariance whitening (CW) [45] in terms of bit-rate. The CS method takes
the normalized first column vector of the estimate of the matrix Rxx as the estimated
RTF. The CW method extracts the normalized principal eigenvector of the correlation
matrix of the whitened microphone signals by the noise correlation matrix as the esti-
mated RTF. Based on the performance analysis, it is shown that the performance of both
methods is influenced by the SNR, as the higher the SNR is, the more accurately the RTF
is estimated. Specifically, the CS method is related to the prior SNR of the microphone
signals, while the CW method is affected by the posterior SNR, which is the output SNR
of an MVDR beamformer and always higher than the prior SNR. This reveals that the CW
method can always achieve a higher RTF estimation accuracy.

Followed by the problem formulation of the rate distribution approach, we then op-
timized the rate distribution by minimizing the total transmission cost and constraining
the RTF estimation error. The considered rate distribution problem can be solved by ap-
plying convex optimization techniques under the utilization of either the CS method or
the CW method, which we referred to as model-driven approaches. However, the model-
based methods rely on the noise statistics and the true RTF, which need to be estimated
in practice. This makes the model-based methods impractical. To overcome this draw-
back, we further proposed a greedy (data-driven) strategy, which is a practical method.
Due to the fact that the sensors send data to the FC frame-by-frame, we can estimate the
required parameters by the model-based methods using previously received frames and
then solve the model-driven rate optimization problem to find the optimal rate distribu-
tion that will be used for quantizing the next frame.

The proposed approaches were validated using both synthetic data and natural speech
signals. Simulation results showed that given the same expected RTF accuracy, the rate-
distributed CW method always consumes less transmission cost compared to the rate-
distributed CS method. To achieve the same RTF accuracy, the proposed methods con-
sume less transmission cost compared to the uniform rate distribution or uniform power
distribution methods. In fact, many bits in the sensor measurements are redundant, as
increasing the rate distribution does not lead to a distinct decrease in the RTF error. It
was also shown that the performance of the proposed greedy approach converges to
that of the model-based method with increasing number of received frames. In general,
the sensors that are closer to the FC and the sensors that have a higher SNR should be
allocated with a higher rate, and the distance between the sensors and the FC is more
relevant to the considered rate optimization problem than the SNR.

Altogether, the contributions of this thesis can be combined to form a complete
energy-aware noise reduction system for WASNs. This system is depicted in Fig. 8.4,
which is built in the short-time Fourier transfer (STFT) domain. Note that from the per-
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Figure 8.4: Energy-aware noise reduction scheme for WASNs based on contributions of this thesis.

spective of implementation, prior to applying the sensor selection or rate distribution
based energy-aware noise reduction algorithms, the proposed energy-efficient RTF esti-
mation approaches should be employed.

8.2. FUTURE RESEARCH
Based on the conclusions that we have drawn and the assumptions that we made in this
thesis, we now give some suggestions that are worth studying for future research.

SENSOR SCHEDULING

The microphone subset selection method proposed in Chapter 3 is based on the as-
sumption that the target source(s) is static, although the scenario with a moving FC was
considered. This is not always the case in a realistic environment. It is more natural that
the target, i.e., a speaker, is moving slowly in the environment, e.g., a speaker in a lecture
room. In this case, the target source signal is not time invariant any more and the ATF of
the source with respect to the WASN is changing over time. For one observation time slot,
the best microphone subset that is obtained by the proposed sensor selection method
might not be optimal for the next time slot. As a result, the microphone subset selec-
tion problem in this time-varying scenario should be treated as a continuous selection
scheme or sensor scheduling problem, as Fig. 8.5 shows. For such a sensor scheduling
problem, if the target is moving slowly, in each time slot we can use the classic CS or CW
method to estimate the RTF information, which will then be applied to the proposed
sensor selection method to find the best microphone subset for the current time slot. It
means that the proposed sensor selection method will be repeated for every time slot.
If the target moves faster, some lower-complexity algorithms should be considered, e.g.,
the sensor scheduling problem is cast as a partially observable Markov decision process
as in [161]. In general, these algorithms follow the procedure of prediction-correction,
i.e., using the previous measurements together with the previous solution to predict the
current solution and then using the current measurement to correct the current solution
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Figure 8.5: An illustration of sensor scheduling in large-scale WASNs for a moving target.

at each time step.

OPTIMAL RATE DISTRIBUTION

Strictly speaking, the rate distribution method proposed in Chapter 4 is not optimal, be-
cause it only takes the noise statistics into account. In general, the measurements across
sensors are highly correlated. If we take the correlation between sensor measurements
into account, the rate distribution of the proposed method can further be optimized,
leading to more savings of the energy consumption for the WASNs. In [82], Roy and Vet-
terli proposed an optimal rate-constrained collaborative noise reduction algorithm for
wireless binaural HAs. Specifically, they took the signals at one HA as the side informa-
tion and encoded the signals at the other HA based on the side information, such that
the minimum quantization rate can be found. This is the optimal rate allocation solution
for two devices, however, it is not straightforward to extend the algorithm to a more gen-
eral WASN consisting of a large number of sensors. Therefore, optimal rate distribution
in WASNs is still an open research question. Nevertheless, some near-optimal solutions
have been proposed recently by using sequential coding, e.g., [162], or asymmetric cod-
ing, e.g., [163].

JOINT SENSOR SELECTION AND RATE DISTRIBUTION

From a more consolidated point of view, neither the proposed microphone subset selec-
tion nor rate distribution is the optimal strategy for minimizing the power consumption
over WASNs, because they are independently considered. One way to further reduce the
power consumption of the proposed sensor selection or rate distribution method is by
cascading the two strategies, e.g., the bit-rates of the selected sensors of the sensor se-
lection method can be optimized using the proposed rate distribution method, or in the
other way around. However, this is still sub-optimal in terms of power consumption, as
the sensor selection variables and the bit-rates are not independent. Ignoring the chan-
nel noise power spectral density (PSD) in the power model that was used throughout
this dissertation, the minimum power consumption should be jointly optimized over
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the sensor selection variables and the bit-rates. In [164], a joint sensor selection and
power allocation strategy for energy harvesting wireless sensor networks was proposed,
which could be borrowed to the considered WASN scenario.

SAMPLING RATE OFFSET ESTIMATION

In WASNs the sensor nodes usually capture acoustic sources asynchronously, since each
device has an independent oscillator for timing, resulting in a sampling rate offset (SRO)
inevitably compared to the global sampling rate. The SRO can be viewed as a combi-
nation of clock offset and clock skew. Using the unsynchronized measurements directly
will degrade the performance of audio processing algorithms [165]. It is thus required
to take the estimation of the SRO (or resynchronization) into account before designing
the noise reduction filters. The methods of synchronization in the context of WASNs
can be classified into two categories: correlation maximization (CM) [166, 97] and least-
squares coherence drift (LCD) [167]. The CM method treats the SRO as a time scaling in
the (wideband) correlation function and the SRO is determined by globally searching the
peak of the correlation function. The CM can achieve a good SRO estimation accuracy,
while it is very time consuming. The LCD method proposed in [167] is based on the fact
that the SRO leads a phase drift to the coherence between the asynchronous microphone
signals and builds a linear phase model by considering two successive speech segments.
Compared to CM, the complexity of the LCD method is much lower. Hence, it is worth
investigating an accurate and low-complexity SRO estimation approach.
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136 LIST OF ABBREVIATIONS

WASN wireless acoustic sensor network
FC fusion center
ADC analog-to-digital converter
CPU central processing unit
MVDR minimum variance distortionless response
BMVDR binaural minimum variance distortionless response
LCMV linear constrained minimum variance
BLCMV binaural linear constrained minimum variance
DOF degrees of freedom
MWF multichannel Wiener filter
SD-MWF speech distortion weighted multichannel Wiener filter
GSC generalized sidelobe canceler
MSE mean square-error
MMSE minimum mean square-error
SNR signal-to-noise ratio
MSE mean squared error
MCCC multichannel cross-correlation coefficient
DFT discrete Fourier transform
STFT short-time Fourier transform
ATF acoustic transfer function
RTF relative (acoustic) transfer function
PSD power spectral density
VAD voice activity detector
LMI linear matrix inequality
SDP semi-definite programming
MD-MVDR model-driven minimum variance distortionless response
MD-BLCMV model-driven binaural linear constrained minimum variance
DD-MVDR data-driven minimum variance distortionless response
RD-MVDR rate-distributed minimum variance distortionless response
RD-LCMV rate-distributed linear constrained minimum variance
RD-BLCMV rate-distributed binaural linear constrained minimum variance
EUR energy usage ratio
HA hearing aid
ITF interaural transfer function
ILD interaural level difference
ITD interaural time difference
IPD interaural phase difference
ADMM alternating direction method of multipliers
PDMM primal-dual method of multipliers
CS covariance subtraction
CW covariance whitening
SOS second-order statistics
EVD eigenvalue decomposition
GEVD generalized eigenvalue decomposition
MDRD-CS model-driven rate-distributed covariance subtraction
DDRD-CS data-driven rate-distributed covariance subtraction
MDRD-CW model-driven rate-distributed covariance whitening
DDRD-CW data-driven rate-distributed covariance whitening
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