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Abstract
Synaptic dynamics is of great importance in realizing biophysically accurate neural behaviors and efficient synaptic

learning in neuromorphic integrated circuits. In this paper, we propose a current-based synapse structure with multi-

compartment receptors AMPA, NMDA and GABAa and a weight-dependent learning algorithm. The designed circuit

offers distinctive dynamic features of receptors as well as a joint synaptic function. A cross-correlation methodology is

applied to a two-layer RNN built by multi-compartment receptors to demonstrate the proposed synapse structure. An

increased computation efficiency is verified through temporal synchrony detection among the neural layers in a noisy

environment. The design implemented in TSMC 65 nm CMOS technology consumes 1.92, 3.36, 1.11 and 35.22 pJ per

spike event of energy for AMPA, NMDA, GABAa and the advanced learning circuit, respectively.

Keywords Neuromorphic design � Synapse � Receptor � Synchrony detection � Synaptic plasticity

1 Introduction

Neuromorphic electronic system is an innovative approach

in brain-like system development [1], which utilizes the

continuum physics of transistors to emulate biological

elements, e.g. the exponential behavior of transistors in

sub-threshold region is analogous to the relation between

ionic conductance and corresponding membrane voltage

[2]. Phenomenological models, a compromise between

high fidelity and computational feasibility, allow deeper

understanding of working principles underlying neuron

networks. Synapse is the connecting structure between

neurons with the presynaptic part located in axon terminals

and the postsynaptic receptors on dendrites. It experiences

synaptic state modifications based on incoming informa-

tion and current activities in neural networks. Meanwhile,

neurons convert resulting signals into spikes and pass them

to next layer of synapses. When stimulated by incoming

presynaptic spikes, synapses release vesicles, where neu-

rotransmitters are stored, as a way of signal transmission.

The binding of released transmitters and receptors at the

dendrites of postsynaptic neurons activates receptor chan-

nels and induces electrical activities in postsynaptic

neurons.

It should be noted that the synaptic state modification

induced by a mechanism, commonly called synaptic plas-

ticity, is an abstraction of synaptic learning. From a neu-

rological perspective, synaptic plasticity is influenced by

the quantity of transmitters, the synaptic weight carriers

emitted from axon terminals, and the efficiency of the

postsynaptic receptors [3]. Various types of receptors exist:

NMDA, AMPA, GABAa, and GABAb, each exhibiting

different temporal dynamics in response to neurotransmit-

ters [4]. For example, the speed or response of NMDA

receptor is considerably slower in comparison with AMPA.

A more rigorous condition should be satisfied to open the

receptor channel. Additionally, the unbinding of glutamate

and receptors for NMDA is relatively slow [5]. A generic

synapse structure does not capture diverse temporal

dynamics of different types of receptors in biological

synapses, which are essential for the realization of bio-

physically accurate neural behavior in spiking neural net-

works (SNN) [6]. In recent neural network studies [7],

synapse circuit implementation varies from simple constant

current sources activated by presynaptic spikes to more
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complex realizations of synaptic current dynamics. How-

ever, the receptor diversities have usually been ignored.

Most research includes single type of synapse in whole

neural system [8, 9] or they are partially mentioned in some

cases but not described comprehensively [7, 10]. A con-

ductance-based synapse configuration was proposed in [11]

which discusses various types of receptors. Although

robustness is highlighted, the switched-capacitor based

architecture occupies considerable silicon area which limits

the integration density. Ion-based model is employed in

[12] to simulate receptor-supported synapse structure.

Detailed ion dynamics are captured at the cost of high

energy consumptions caused by extra active blocks.

In this paper, we propose a current-based phenomeno-

logical synapse model [13], consisting of efficient weight-

dependent synaptic learning algorithms and multi-com-

partment synapses, namely AMPA, NMDA and GABAa

receptors. The designed circuits [7, 9] offer distinctive

receptor dynamics with a compact and power-efficient

structure. We introduced a cross-correlation methodology

to demonstrate the computation efficiency of synapse in

small scale of recurrent neural networks (RNNs) which can

also be expanded to other synapse models. The paper is

organized as follows: In Sect. 1, the key biological features

of receptors and classic synaptic models are described, and

proposed multi-compartment circuit introduced. Section 2

discuss the cross-correlation methodology and test settings,

and presents the simulation results. Finally, Sect. 3 pro-

vides a summery and the main conclusions.

2 Synaptic receptors

The binding transmitter and receptor pairs results in either

positive current flow to postsynaptic neuron also termed as

excitatory postsynaptic current (EPSC) or negative current

flow to postsynaptic current also termed as inhibitory

postsynaptic current (IPSC). Different types of receptors

display different temporal dynamics due to their distinctive

conducting mechanisms. However, we have limited the

circuit implementation and simulation in this paper to two

main glutamate receptors, AMPA and NMDA, and one

GABAergic receptor, GABAa. The GABAb receptor is not

covered due to its complex conducting mechanism.

2.1 Biological receptors

2.1.1 AMPA receptor

The AMPA receptor is one of the most common receptors

in the nervous system. The AMPA receptor is mostly

permeable to sodium (Naþ) via ion channels. The posi-

tively charged Naþ enters the AMPA ion channels upon

binding of transmitters on AMPA receptors, which depo-

larizes the cell thus inducing action potentials. AMPA

receptor has a high conduction speed due to a straightfor-

ward mechanism of channel opening and closing, and are

thus responsible for fast signal transmission [14].

2.1.2 NMDA receptor

The ion channel in NMDA receptor is voltage-dependent,

which is distinctive compared with other glutamatergic

receptors. This dependency initially arises from the non-

selectivity of its ion channels. When ligand-binding occurs,

the non-selective ion channels are open to extracellular

magnesium (Mg2þ) and zinc (Zn2þ), which will bind to

specific sites on the receptor and block the channels for any

other ions. A certain level of depolarization of the cell is

necessary to eliminate this blockage through the influx of

Ca2þ [15]. Once cleared, the ion channels introduce both

Ca2þ and Naþ into the target cell. At the same time, in

response to the increased level of depolarization, more

AMPA receptors are inserted into the membrane, creating

higher possibility that ion influx occurs. Thus, the con-

ductance of NMDA receptor has a boost effect on the

postsynaptic current. To activate NMDA receptors, the

presynaptic activities introduce free transmitters to the

dendrites, while the postsynaptic depolarization opens the

receptor ion channels. This kind of dual function of

presynapes and postsynapses implies the role of NMDA

receptor in synchrony detection and biological emulation.

On the temporal aspect, the NMDA receptors are typically

three to six times slower than AMPA [4], which originates

from a more complicated binding mechanism and small

unchanneling speed.

2.1.3 GABAa receptor

The GABAa receptor is a primary inhibitory channel car-

rier in the nervous system. The GABAa receptor is per-

meable to chloride (Cl�). When activated, the GABAa

receptor conducts Cl� through the ion channels, causing

the hyperpolarization of the cell and a lower possibility of

neural firing. This inhibition function of the GABAa

receptor is reported to be a prerequisite for balancing

excitation and inhibition, thus stabilizing neural network

[16]. The GABAa receptors have similar temporal

dynamics as AMPA, i.e. both the rise and the fall time of

EPSCs are comparable. A brief summary of the dynamic

features of three receptors are listed in Table 1.
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2.2 Model extraction

2.2.1 Learning rules

Spike timing dependent plasticity (STDP), a temporally

symmetrical form of Hebbian’s theory [17], is a learning

process that can adapt the synaptic weight according to

temporal correlations between prespikes and postspikes of

a target synapse. These correlations should be within mil-

liseconds time range in accordance with biological tem-

poral features. If the prespike precedes the postspike, a

potentiation of the synaptic weight occurs. In contrast, a

depression is induced if a reversed sequence happens. A

repetition of one of the two patterns described above

evokes long-term memory effects which could be long-

term potentiation (LTP) and long-term depression (LTD).

A diagram of the STDP learning function is illustrated in

Fig. 1. Two factors of concern in this learning window are

time constants (s) and amplitudes (A). The time constant

indicates the temporal range where the correlation happens

while the amplitude controls the adaptation level. The

STDP rule is expressed as:

Dwþ ¼ Aþ � e�Dt=sþ Dt[ 0 ð1Þ

Dw� ¼ �A� � eDt=s� Dt\0 ð2Þ

where Dt is the temporal difference between a single pair of

postspike and prespike. Aþ and A� are the maximum

amplitude while sþ and s� are time constants of the

potentiation and the depression phase, respectively. These

parameters impact the area of the weight update curves

during potentiation and depression. It is observed that

stable learning is realized when the aggregate area of

depression exceeds that of potentiation in the weight

update function. However, weaker depression results in the

extreme potentiation of synaptic weights and the eventual

shorting of outputs to inputs. This behavior prevents the

realization of any practical network transfer function.

2.2.2 Synaptic dynamics

One of the basic and direct models describing the synaptic

conductance properties is the exponential decay model

where the rising phase of the synaptic conductance is

assumed to be instant [19]. This means the release of

transmitters, its corresponding diffusion across the cleft,

the receptor binding, and channel opening all happen very

fast. The conductance of the synapse at time t is then:

gsyn tð Þ ¼ �gsyn � e� t�t0ð Þ=s �H t� t0ð Þ ð3Þ

where �gsyn is the maximum conductance of the synapse, t0
is the onset time of the presynaptic spike while s is the

decaying time constant, and H xð Þ is the Heaviside step

function.

The exponential profile is a match with the relationship

between the ionic conductance of a neuron and its mem-

brane potential [2]. For some IPSCs, the exponential decay

model is validated to outline their activities because the

rising phase of these currents is much shorter compared

with the decaying phase, like the GABAa-induced currents

(see Table 1). The exponential decay model is also satis-

factory for AMPA receptors which are fast excitation

contributors. The model fails to simulate EPSCs induced

by NMDA receptors which have comparable temporal

dynamics in both rising and decaying phases. A more

detailed model with two separate exponential components

is introduced:

Fig. 1 The learning window of STDP learning rule. The hollow

circles are experimental data of EPSC amplitude percentage change at

20–30 min after repetitive stimuli of pre and post spikes at a

frequency of 1 Hz [18]. The spike timing is defined as the temporal

interval between post and pre spikes. An exponential fit of those data

points is outlined with two smooth curve (LTP and LTD). For LTP

and LTD respectively, A ¼ 0:777 and 0.273; s ¼ 16:8 and 33.7 ms

Table 1 Biological dynamics

for three receptors [4, 16]
Rise and fall times (ms) Conduction remarks

AMPA (?) 0.4–0.8, 5 1-step, fast EPSC

NMDA (?) 20, 100 2-step, voltage dependency, slow EPSC

GABAa (-) 3.9, 20 1-step, fast IPSC
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gsyn tð Þ ¼ �gsyn � f � ðe� t�t0ð Þ=sdecay � e� t�t0ð Þ=srise �H t � t0ð Þ
ð4Þ

The factor f is used to normalize the total amplitude of

the sum to �gsyn. sdecay and srise are the time constant for

decaying and rising phase, respectively. The neuromorphic

design for this model is more complex due to one extra

rising phase.

A transistor operating in the sub-threshold region not

only provides low power consumption, but also its expo-

nential relationship between the drain currents and the gate

voltages is analogous to the biological model. The drain

current of a transistor is:

Ids ¼ I0 � ejnVg=UT � ðe�Vs=UT � e�Vd=UT Þ ð5Þ

where I0 is the current scaling factor and is the value of

current when Vgs equals the threshold voltage of the tran-

sistor. jn represents the sub-threshold slope for n-type

MOSFET. Vg, Vd, Vs are the gate, drain, source voltages

relative to the bulk and UT is the threshold voltage of the

transistor. The exponential relationship between Vgs and Ids
is as follows when the transistors enters the saturation

region during sub- threshold conduction and satisfies the

condition Vds � 4UT � 100mV:

Ids ¼ I0 � ejnVgs=UT ð6Þ

2.3 Circuit implementation

The top-level of multiple receptor synapse architecture is

shown in Fig. 2. The synaptic weight, generated by STDP

learning block and transmitted through receptors, results in

a wide range of temporal dynamics of EPSCs or IPSCs.

Those overlapping responses are then integrated in inte-

grate and fire (I&F) neuron [16] generating further firing

spikes. The voltage dependent NMDA receptor receives

membrane voltages as a feedback from the I&F neuron.

The three receptors integrated with an advanced STDP

learning circuit [9] form a multi-compartment cluster

structure. The transistor level implementation is shown in

Fig. 3.

A differential-pair integrator [7] structure is applied to

simulate the fast rising and decaying dynamics of AMPA

receptor. The receptor generates biologically analogous

synaptic currents, which are modeled as a time-dependent

alpha function with finite duration in rising phase [20]. The

extra scaling factor Vthr and leakage rate adjustment Vtau1

offer flexibility to implement amplitude and time constant

control of AMPA EPSCs. Additionally, linear filtering

properties makes it possible to sum multiple currents from

identical synapses, yielding significant area savings.

Unlike the single exponential dynamics used for AMPA

receptor, the charging phase of NMDA receptor cannot be

ignored due to its relatively large portion in the whole

temporal range. Consequently, a double exponential func-

tion should be displayed in NMDA receptor design as well

as its distinctive weight dependence. The circuit for the

falling phase of NMDA receptor is derived from AMPA

receptor while the circuit for the rising phase is extended

via M26–M28. The presynaptic spike enables an instanta-

neous current influx into Cnmda1 in the rising phase, the

amplitude of which is mediated by Vw. The bias Vtau2

determines the discharge speed of Cnmda1. Capacitor Cnmda2

is charged when transistor M30 is conducting. After that,

capacitor Cnmda2 begins to discharge through M32 biased

by Vtau3, adjusting the falling time constant. In this way,

controllable double exponential dynamics are generated.

To incorporate the distinctive voltage dependence of

NMDA receptors, a differential pair is added to the circuit,

forming a comparison between the membrane voltage Vmem

and the threshold Vmth. When the postsynaptic neuron is

depolarized, Vmem surpasses Vmth, introducing valid current

flux into Cnmda2.

The GABAa receptor has analogous dynamics to AMPA

receptor except for the polarity. However, the inhibitory

synapses do not exhibit learning properties. Since the

inhibitory level is independent of the synaptic weight, it is

not necessary to have two control voltages over the inhi-

bitory level i.e., Vthr and Vw. A log-domain integrator [7] is

chosen for the implementation of GABAa receptor due to

its simplicity and linear dynamics.

The advanced STDP learning circuit [9] incorporates

presynaptic and postsynaptic spike trains, and conducts

Fig. 2 Top-level diagram of

multi-receptor mediated

synapse architecture. The blue

arrowed lines represent signal

transmissions while red ones

represent feedback signals. The

dashed block denotes the multi-

compartment synapse. Created

by OmniGraffle
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weight adaptation according to the STDP learning rule. The

potentiation and depression phases exhibit almost sym-

metrical structures, inducing charge influx and efflux from

the weight capacitor Cw depending on the relative timing of

prespike and postspike pairs. Note that the circuit in this

paper follows a complementary design, i.e. larger Vw rep-

resents smaller weight value. The time constants and

amplitudes of the learning window are tuned through Vbpot,

Vbdep and Ibpot, Ibdep, respectively. A weight dependence

feature is added to the potentiation domain via M1–M3 to

match with experimental observations obtained in [21]. Vr

is connected to a controllable voltage, inducing

adjustable weight dependence level. When synaptic weight

increases which corresponds to a decrease in Vw, a larger

current is subtracted from Ibpot through M5, resulting in

lower current influx to Cpot. The above circuits have low

power consumptions.

The transistors in above circuits are set in sub-threshold

region except the switch transistors M6, M9, M11, M16,

M20, M26 and M34. The initial value of Vw is set to VDD/

2. The current fluxes from Cw are adjusted that the weight

control transistors M19 and M27 always operate in sub-

threshold region. The circuit conducts only in the presence

of the presynaptic or postsynaptic spikes, which lasts for no

more than 2 ms.

3 Simulation results

3.1 Synaptic receptors

3.1.1 Single receptor

The EPSC amplitude is determined by the width of pre-

spike signal and the synaptic weight value. In our experi-

ments, pulse width of spike trains is set to 100 ls. The time

constants of receptors are regulated by transistor control

voltages Vtau1–Vtau4 to cover wide temporal range. The

time constant ranges from several to tens of milliseconds

for AMPA receptors. Similarly, the time constants for

NMDA receptor in both rising and falling phases are

adjustable via two separate transistors M28 and M32.

The weight dependence of NMDA receptor is demon-

strated through a comparison of Vmem and a reference

voltage Vmth. A sequence of presynaptic spikes are intro-

duced to synapse. The Vmem is a step signal from 0 to

500 mV at the onset time of 40 ms larger than Vmth. The

membrane voltages are in spike forms in reality. We

specifically examine the threshold function of NMDA

receptor in this setting. It can be observed in Fig. 4(a) that a

growing current output appears from the onset of Vmem. A

linear increase of EPSC amplitudes can be found at each

stimuli. When stimuli are densely distributed, single

NMDA EPSC fails to return to resting line before the next

stimuli comes due to large decaying time constants, which

results in summation of previous activities.

In Fig. 4(b), AMPA currents are introduced at the onset

time of 5 ms, and NMDA currents are injected at different

times. Two cases need to be discussed individually. In the

first case where AMPA stimuli precedes NMDA, the

excitatory function of NMDA receptors can be demon-

strated by the increase of Vmem (Dt ¼ 2; 5; 8ms). As

NMDA stimuli approaches AMPA stimuli, larger Vmem is

detected by NMDA synapse, which gives a greater voltage

amplification. However, if delivered in reversed sequence

(Dt ¼ �1ms), no modification is observed. This can

principally be explained by the cooperation mechanism of

those two receptors; AMPA receptors usually act as pre-

liminary depolarization with post neurons by inducing

small amount of ions (Naþ) into cells. When depolarization

threshold is surpassed, NMDA receptors are activated,

which allows substantial incursion of Naþ and Ca2þ ions.

Fig. 3 The cluster structure including an advanced STDP learning

circuit with three receptors. Different color dashed blocks denote

different functional unit: yellow—advanced STDP learning, red—

AMPA receptor, blue—NMDA receptor, green—GABAa receptor.

The synaptic weight value is transmitted through node Vw between

component circuits. Created by Microsoft Visio (Color figure online)
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Bigger electrical stimuli are produced. Thus, it is implied

that NMDA receptors are not self-initiated. However, the

NMDA receptors act as major contributions to electrical

signal transmission once they are activated in neuron

system.

In Fig. 4(c), the contribution of inhibitory synapses to

synapse integration is identified. Various levels of inhibi-

tion are applied to the system while the setting of excita-

tory synapses are maintained. When inhibition behavior is

larger than certain level (Vinh � 0:65V), neuron system

operates normally. Conversely, if the inhibition level

decreases, excitation prevails, which drives membrane

state to the upper boundary and consequently loss of

information may occur during this process. This result

suggests that inhibitory synapses are of great importance in

balancing membrane activities, especially in the case of

NMDA receptors where long-term summation of multiple

receptors may exist.

3.1.2 Joint function

Input spikes are introduced to synaptic learning circuit at a

rate of 100 Hz with prespikes preceding postspikes for

1 ms which induce consecutive depression to synaptic

weight. In the presence of three receptors, ten membrane

spikes are generated as shown in Fig. 4(d). A gradually

sparser distribution of the spikes is observed along with the

decline of synaptic weight. When synaptic weight reaches

lower bound, the network fails to produce any spike trains.

In absence of AMPA receptor, no postspike trains are

observed. This result is analogous to biological experi-

ments observed in hippocampal region [5]. Synapse with

only NMDA receptors, also called silent synapse, will only

transmit information when the postsynaptic neuron is

depolarized due to synchrony pairing of other synapses

with AMPA receptors. When NMDA receptor is inhibited,

the temporal intervals to generate equal number of spikes

are larger, while the amount of spike clusters is lower due

to a lack of long-term dynamics. If GABAa receptor is

inhibited, a burst of postspikes is produced even though the
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Fig. 4 a Weight dependence of NMDA receptors. b NMDA receptor

mediated potentiation function on membrane voltage. AMPA currents

are induced at an onset time of 5 ms while the time for NMDA

receptor varies (labeled with red vertical lines). Dt represents the

interval between NMDA and AMPA activations, ranging from - 1 to

8 ms. c The role of GABAa receptor in synaptic integration. Due to a

complementary design, larger inhibitory weight voltage means a

smaller function of GABAa receptor. d The membrane voltage

dynamics with different receptor configurations. From top to bottom,

the strips represent configurations with three receptors, without

AMPA, without NMDA and without GABAa, respectively. e Weight

dependence of the advanced STDP circuit. In this example, the

presynaptic and postsynaptic signals are of 50 Hz frequency with

1 ms delay. Vr determines the weight dependence level. f Sample

synaptic weight evolvement and the membrane voltage distribution in

the advanced STDP circuit. From top to bottom, the strips represent

synaptic weight, membrane voltage, presynaptic spikes and postsy-

naptic spikes, respectively. Created by Matlab (Color figure online)
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spike dynamics should decline with a decreasing synaptic

weight. Consequently, the network fails to transmit learn-

ing information carried by synapses. Hence, GABAa

receptor is essential to create stable signal transmission in

SNNs. The average energy consumptions in a typical cor-

ner are 1.92, 3.36, 1.11 and 35.22 pJ per spike event for

AMPA, NMDA, GABAa and the advanced learning cir-

cuit, respectively.

3.2 Advanced learning circuit

Figure 4(e) demonstrates the functionality of the weight

dependence block in the advanced STDP circuit. The input

signal pairs induce a stable increment of the synaptic

weight value. The increment in Vr becomes less effective

designating a unimodal weight distribution [6] as the

weight adjustment level decreases. An example weight

evolvement and the corresponding membrane voltage dis-

tribution with Poisson distributed presynaptic and postsy-

naptic input signals of 200 Hz are displayed in Fig. 4(f).

3.3 Synchrony detection

The method used in synchrony detection experiments is

called cross-correlograms. It is a visualization of cross-

correlation between two spike trains, i.e. the similarity of

two series as a function of the temporal displacement of

one relative to the other. In cross-correlograms, the tem-

poral differences between every single pair of spikes are

summed for certain temporal bin. A peak present in the

cross-correlogram indicates a correlated relation at this

certain temporal bin between target spike groups. For

discrete signals, the cross-correlation is defined as [22]:

fHgð Þ n½ �def
X1

m¼�1
f � m½ �g mþ n½ � ð7Þ

where f � denotes the complex conjugate of f and n rep-

resents the displacement bins, which correspond to the

temporal difference between two target spikes.

The magnitude of the correlation in the cross-correlo-

gram indicates the causality level between sequential

neural units. If two spike trains are strongly correlated, a

large correlation amplitude displays in the cross-correlo-

gram. It is an efficient way to characterize the computation

efficiency of artificial neural network, and especially the

SNN where the weight update information is encoded into

the temporal difference between spikes. When valid

learning updates happen, the spikes generated are more

closely distributed regardless of the transmission delay,

which leads to a higher cross-correlation between two

spike trains.

A two-layer RNN consisting of the cluster structures is

utilized to explore the parallel and hierarchical synchrony

detection and amplification function of the multi-com-

partment synapse layers as described in [13] shown in

Fig. 5. The system detects the spike-timing synchrony

between spike trains embedded in a noisy environment and

amplify this correlation from layers.

The same simulation environment (network configura-

tion, input and noise patterns) is applied to three receptor

settings: multi-receptor, AMPA receptor and NMDA

receptor as shown in the dashed blocks in Fig. 5. Each

setting consists of three neural clusters, which includes one

classic I&F neuron and four functional synapses with either

multiple or single receptor implementations. A correlated

Poisson distributed spike train C1 is introduced to the first

two synapses out of four in cluster N1, N4 and N7 while

another correlation C2 is added to the first two synapses in

cluster N2, N5 and N8, which adds an additional correla-

tion between N1 and N2, N4 and N5, N7 and N8. The rest

of the synapses obtain Poisson distributed spike trains as

noise. The Poisson distributed spike trains are generated

from Matlab. The correlated spike trains are more likely to

coincide in the defined learning window of STDP, which

will increase valid weight update events. The cross-cor-

relogram is used to demonstrate the temporal synchrony

between two output spike patterns in whether the same or

different layers of neurons.

Noise has a great impact on the response dynamics of

neural system. The synaptic noise is the main contributor

among many other sources of noise existing in neurons

[23]. The chemical synapses release packets of neuro-

transmitter at the axon terminals depending on the proba-

bilistic firing history of both the presynaptic and

postsynaptic neurons. However, the learning induces long-

term effect on the postsynaptic neurons, which transmit the

resultant spike trains to every spatial location they can

reach and further form a recurrent network. This non-uni-

directional transmission may pass on those spikes to a cell

as noise. The summation of the thousands of synaptic

inputs of one neuron forms irregular fluctuations on the

neural response, ranging from completely random Poisson

inputs to periodic inputs [23]. The probability of k events in

an interval is given by:

P k events in intervalð Þ ¼ e�kkk

k!
ð8Þ

where k is the average number of events per interval, k

ranges from 0 to the total event amount. The Poisson dis-

tribution with five different k values are illustrated in

Fig. 6.

The learning width is chosen as 100 ms [21], which

corresponds to a frequency of 10 Hz. The average input

signal frequency should range from 10 to 1000 Hz (the
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refractory period is 1 ms) in order to induce valid learning

process. We applied 15 and 40 Hz Poisson distributed

signals to demonstrate the functionality of the system.

The correlated input spikes induced by C1 and C2 cor-

relation can be in several forms. It can be perfectly

simultaneous or one precedes the other or one leads the

other. The spike trains within the same cluster are perfectly

simultaneous for our case while a delay is added to C2 to

form correlation with C1 between the clusters. An example

of cross-correlation is shown in the form of graphs with

different delay values in Fig. 7. Larger delay time

decreases the possibility of coincidence between two spike

trains within target time range, thus reducing the peak

correlation amplitude. In addition, a temporal shift is

generated, and is proportional to the delay introduced to

C2. As we want to compare the synchrony detection and

amplification of different receptor configurations, the exact

magnitudes of the correlation levels are of no interest.

Therefore, any time delay is possible for simulation as long

Fig. 5 Top-level diagram of the

two-layer recurrent testing

network. The symbol

interpretations are listed in the

box on the right. Each neuron Ni

is connected with four synapses

si1–si4, forming a cluster unit.

Clusters belonging to different

dashed block includes different

types of synaptic receptor

configurations. Input C1 is a

Poisson distributed spike train

of 40 Hz. Input C2 is correlated

with C1, and this correlation can

be in any correlation form. Here

a delay of 2 ms is used. The rest

of the synapses receive Poisson

distributed spike trains of

15 Hz. Created by OmniGraffle
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Fig. 6 The Poisson distribution with five different k values. Created

by Matlab
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as the magnitude of correlation peak is above the noise

horizon. In our experiments, the decay time is set as 2 ms.

Figure 8 shows the normalized cross-correlogram

results from the two-layer recurrent testing network

described above. It compares the synchrony level of three

different receptor configurations: multi-receptor, AMPA

receptor and NMDA receptor. In every plot, the temporal

range of interest is 0.1 s, which covers the range of the

learning window reported in [18]. The shift of correlation

spikes as observed in Fig. 7 implies the temporal difference

between two spike trains. Similarly, the amplitude of the

correlation peak denotes the correlation level, i.e. the total

amount of the coincidence occurring at this target lag point.

The histograms in Fig. 8(a, d) evaluate the cross-corre-

lations between parallel and hierarchical clusters. In both

cases, a large level of correlation is observed at a point

close to zero time. This indicates a strong synchrony

between parallel and hierarchical spike trains after synaptic

learning process with multi-receptor settings. The syn-

chrony level is decreased almost by half in Fig. 8(b, d), the.

Similarly, the background noise as well as sub-peaks

occurring near the origin is observed in the hierarchical

relations, which implies a relatively poor stability perfor-

mance. A peak shift occurs along with the amplitude decay.

The delay between the inputs to the clusters is passed

through layers while that of the multi-receptor synapses is

mitigated. Finally, Fig. 8(c, f) characterize the synchrony

detection function of NMDA-receptor network. Both par-

allel and hierarchical pairs have similar correlation plots as

multiple receptor network but with reduced amplitudes
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Fig. 7 The effect of delay of spike trains on cross-correlation.
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Fig. 8 Normalized cross-correlogram results from the two-layer

recurrent testing network. a–f are the parallel and hierarchical

cross-correlation plots for multi-receptor, AMPA receptor and

NMDA receptor configurations, respectively. The annotation above

each figure tells ‘‘receptor configuration and correlation source type’’.

For example, ‘‘Multi-parallel’’ means the parallel correlation of multi-

receptor settings. Created by Matlab
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which are approximately 60 to 70% of multiple receptor

configuration.

The detection and amplification level of the cross-cor-

relation function of various spike train pairs using both

single and multiple receptors is shown in Table 2. The

maximum amplification level of multiple receptor config-

uration is about 2 times as compared to single receptor

ones.

The circuit shows an efficient learning ability as the

consecutive neural clusters generate almost synchronized

output spike patterns in the presence of delay in the inputs

signals. It takes shorter time for system with multiple-re-

ceptor to achieve synchrony. Analysis indicate that this

ability originates from the NMDA receptor as NMDA

receptor displays similar correlations except for a decre-

ment in the amplitude of correlation level. AMPA and

NMDA receptors have a collaborate relation in inducing

efficient synchrony detection and amplification for synapse

structures. A performance comparison of the existing

research work with previous references is summarized

below in Table 3.

4 Conclusion

In this paper, we have proposed a synaptic circuit with

biologically-accurate temporal dynamics. The receptors

within the synapse structure operate in a collective way: the

AMPA receptor works as the preliminary trigger to signal

transmission, the NMDA receptor enhances the learning

efficiency, while the GABAa receptor balances the

membrane voltage. The collaboration of receptors offers

high efficiency in synchrony detection and amplification.

The synaptic design, built in TSMC 65 nm CMOS tech-

nology, consumes extremely low energy in picojoule level

per spike event.
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