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Abstract

OFDM suffers from inter-carrier interference (ICI) when the channel is time varying. This
article seeks to quantify the amount of interference resulting from wideband OFDM
channels, which are assumed to follow the multi-scale multi-lag (MSML) model. The
MSML channel model results in full channel matrices both in the frequency and time
domains. However, banded approximations are possible, leading to a significant reduction
in the equalization complexity. Measures for determining whether a time-domain or
frequency-domain approach should be undertaken are provided based on the interference
analysis, and we propose to use the conjugate gradient (CG) algorithm to equalize the
channel iteratively. The suitability of a preconditioning technique, that often accompanies
the CG method to accelerate the convergence, is also discussed. We show that in order for
the diagonal preconditioner to function properly, optimal resampling is indispensable.

Introduction

With many desirable properties such as a high spectral efficiency and inherent resilience to the
multipath dispersions of frequency-selective channels, the orthogonal frequency division
multiplexing (OFDM) technology shows attractive features to wireless radio applications [1].
OFDM relies on the assumption that the channel stays constant within at least one OFDM
symbol period. When Doppler effects due to temporal channel variation cannot be ignored,
this assumption does not hold any more since the communication channel becomes time
varying. The Doppler effects corrupt the orthogonality among OFDM subcarriers by inducing



non-negligible inter-carrier interference (ICI) [2], and can therefore severely deteriorate the
system performance. For traditional terrestrial radio systems, compensation of ICI in channel
equalization has widely been researched for narrowband systems. Due to the small relative
signal bandwidth (actual bandwidth divided by the center frequency) of narrowband systems,
the Doppler effects can be modeled primarily by frequency shifts [3, 4], in which case it is
reasonable to assume that each OFDM subcarrier experiences a statistically identical
frequency offset [2]. Consequently, the effective channel matrix of a narrowband OFDM
system in the presence of Doppler can be approximated as banded. Efficient equalization
schemes for such a banded channel matrix have been studied in, e.g., [5–7].

In a wideband system, where the relative signal bandwidth is large, the Doppler effects should
be more appropriately modeled as scalings of the signal waveform [3, 4]. Wideband systems
arise in, e.g., underwater acoustic (UWA) systems or wideband terrestrial radio frequency
systems such as ultra wideband (UWB). Due to multipath, a wideband linear time-varying
(LTV) channel can be more accurately described by a multi-scale multi-lag (MSML)
model [3, 8]. Many signaling schemes have been studied for wideband systems. For
instance, [9, 10] consider direct-sequence spread spectrum (DSSS). Recently, the use of
OFDM for UWA or UWB has received considerable attention. To counteract the scaling effect
due to Doppler, [11] proposes a multi-band OFDM system such that within each band, the
narrowband assumption can still be valid. More commonly, many works assume a single-scale
multi-lag (SSML) model for the wideband LTV channel. Based on the SSML assumption,
after a resampling operation the channel can be approximated by a time-invariant channel but
subject to a carrier frequency offset (CFO) [12, 13]. However, since the channel should be
more accurately described by an MSML model, determining the optimal resampling rate is
not trivial [14].

In this article, we consider OFDM transmission based on an MSML model. The resulting
channel, which is a full matrix in the presence of Doppler, will be equalized by means of the
conjugate gradient (CG) algorithm [15], whose performance is less sensitive to the condition
of the channel matrix than, e.g., a least-squares approach. On the other hand, the convergence
rate of CG is inversely proportional to the channel matrix condition number. This is especially
of significance if a truncated CG is to be used in practice, which halts the algorithm after a
limited number of iterations in order to reduce the overall complexity. Therefore, it is desired
that the channel matrix is well-conditioned to ensure a fast convergence. To this end,
preconditioning techniques can be invoked to enforce the eigenvalues of the channel matrix to
cluster around one [16]. To achieve a balance between performance and complexity, we
restrict the preconditioner to be a diagonal matrix, whose diagonal entries can be designed by
following the steps given in [17]. We notice that a circulant preconditioner in the time domain
was introduced in [18], which is equivalent to a diagonal preconditioner in the frequency
domain. This preconditioner is introduced based on a basis expansion model (BEM), which is
often used to approximate the channel’s time-variation for a narrowband system. For a
wideband system as considered in this article, it can be shown that this preconditioner in the
frequency domain is equal to the inverse of the diagonal entries of the frequency-domain
channel matrix.

What is not considered in [17, 18] is the resampling operation at the receiver, which is an
indispensable and crucial step for wideband LTV channels. Different from the trivial



resampling scheme for SSML channel models, an optimum resampling method is proposed
in [14] for MSML channels, which aims at minimizing the average error of approximating the
MSML channel by an SSML model. This article studies the resampling from a
preconditioning point of view. It is observed that if the major channel energy is located on the
off-diagonals of the channel matrix, a diagonal preconditioner will deteriorate the channel
matrix condition rather than improve it, thereby reducing the convergence rate of CG instead
of increasing it as opposed to the claim of [17]. The energy distribution of the channel matrix
is governed by the resampling. Different from [14], which only considers rescaling the
received signal, and [19], which considers both rescaling and frequency synchronization, this
article will show that for OFDM systems, all these three resampling parameters can have a
significant impact on the system performance (i.e., rescaling, frequency synchronization and
time synchronization). More specifically, we will extend the results of [19, 20] by jointly
optimizing these three resampling parameters both in the frequency domain and the time
domain.

Notation: Upper (lower) bold-face letters stand for matrices (vectors); superscripts T, H, and ∗
denote transpose, Hermitian transpose and conjugate transpose, respectively; we reserve j for
the imaginary unit, < k > and ⌈k⌉ for integer rounding and ceiling of a number k, ∥x∥2 for the
two norm of the vector x, ∥A∥Fro for the Frobenius norm of the matrix A, [ A]k,m for the
(k, m)th entry of the matrix A; diag(x) for a diagonal matrix with x on its main diagonal, and
⊙ for the Hadamard product of two matrices.

System model based on an MSML channel

Continuous data model

Suppose that the baseband transmit signal s(t) consists of K subcarriers, and can be written as

s(t) = 1√
KT

K−1∑
k=0

bkej2π fktu(t), −Tpre < t ≤ KT + Tpost (1)

where the data symbol bk is modulated on the kth subcarrier fk = k1f , for
k = 0, 1, . . . , K − 1, with 1f being the OFDM subcarrier spacing. With T = 1/(K1f ), KT is
the effective duration of an OFDM symbol. The cyclic prefix and postfix are given as Tpre and
Tpost, respectively. The cyclic prefix is assumed to be longer than the delay spread and the
cyclic postfix is long enough to ensure signal completeness in case of scaling, which will be
defined later on. The rectangular pulse u(t) is defined to be 1 within t ∈[ −Tpre, KT + Tpost]
and 0 otherwise. Prior to transmission, s(t) is up-converted to passband, yielding
s̄(t) = ℜ{s(t)ej2π fct}, where fc denotes the carrier frequency. With sufficient cyclic extensions,
the interference form adjacent OFDM symbols can be neglected and hence we are allowed to
consider an isolated OFDM symbol in this article without loss of generality. Although this
article discusses the scenario when cyclic extensions are used, the analysis can be directly
applied to zero padding OFDM (ZP-OFDM) with minor modifications.

The considered signal is transmitted over a wideband LTV channel, which is assumed to
comprise multiple resolvable paths. The lth path can mathematically be characterized by the



following three parameters: h̄l, the path gain; vl, the radial velocity which is uniquely
determined by the incident angle of this path; and τl, the delay due to the propagation time. In
compliance with the wideband assumption, the received signal resulting from the lth path is
given by h̄l

√
αls̄(αl(t − τl)), where αl = c+vl

c−vl
≈ 1 + 2vl

c is the scaling factor with c the speed
of the communication medium (normally c ≫ vl) and

√
αl is added as a normalization factor.

Depending on the sign of vl, the received signal waveform via this path can be either dilated (a
negative vl) or compressed (a positive vl).

With a collection of L + 1 paths, the actual received signal ȳ(t) is given by

ȳ(t) =
L∑

l=0

h̄l
√

αls̄(αl(t − τl)) + w̄(t), (2)

=
L∑

l=0

h̄l
√

αlℜ{s(αl(t − τl))ej2π fcαl(t−τl)} + w̄(t),

where w̄(t) stands for the passband noise. In the above, if there exist at least two paths l and l′,
for which αl ̸= αl′ and/or τl ̸= τl′ , the channel exhibits a multi-scale multi-lag (MSML)
character. For a practical channel, it is realistic to assume that αl ∈[ 1, αmax] and
τl ∈[ 0, τmax]a, where αmax ≥ 1 and τmax ≥ 0 determines the scale spread and delay spread,
respectively. Note that in many prior works [12, 13], the approximation αl ≈ αl′ for any l ̸= l′
is adopted for the sake of analytical ease, which gives rise to an SSML model.

The equivalent complex baseband received signal of ȳ(t) = ℜ{y(t)ej2π fct} is given by

y(t) = e−j2π fct
L∑

l=0

h̄l
√

αls(αl(t − τl))ej2παlfc(t−τl) + w(t), (3)

where w(t) stands for the baseband noise. By substituting (1) in the above, we can rewrite y(t)
as

y(t) =
L∑

l=0

h̄le−j2π fcαlτl
√

αl

(
1√
KT

K−1∑
k=0

bkej2π fkαl(t−τl)u(αl(t − τl))

)
ej2π(αl−1)fct + w(t)

= 1√
KT

K−1∑
k=0

bkhk(t)ej2π fkt + w(t), (4)

where

hk(t) =
L∑

l=0

h̄l
√

αle−j2π(fc+fk)αlτlej2π(αl−1)(fc+fk)tu(αlt − αlτl), (5)

which stands for the time-varying channel frequency response seen by the kth subcarrier.
From the definition of hk(t), we notice that the kth subcarrier experiences a frequency offset of
(αl − 1)(fc + fk) over the lth path.



Remark 1 The cyclic prefix is assumed to be longer than the delay spread and the cyclic
postfix has a duration long enough to ensure signal continuity in the observation window for
t ∈[ 0, KT]. Specifically, it is required that u(αlt − αlτl) = 1 within this window for all paths.
In other words, because u(αlt − αlτl) gives a time support on t ∈

[−Tpre+αlτl
αl

, KT+Tpost+αlτl
αl

]
, we

should then always satisfy −Tpre+αlτl
αl

≤ 0 and also KT+Tpost+αlτl
αl

≥ KT for any l ∈ {0, 1, . . . , L}.
It leads to

Tpre ≥ αmaxτmax (6)
Tpost ≥ (αmax − 1)KT . (7)

When the above conditions are satisfied, we are allowed to drop the notation of the rectangular
pulse u(t) embedded in hk(t) in the sequel for the sake of notational ease.

Discrete data model

For MSML channels, discretizing the received signal and achieving time/frequency
synchronization is not trivial [12, 14]. We illustrate such difficulty in Figure 1, where we
assume the transmit signal propagates via three paths. Since the received symbol is the
summation of these three paths, it invites the following questions:

1. Which point should we consider as the starting point of the OFDM symbol (time
synchronization)?

2. What sampling rate should we adopt to discretize the received signal over MSML
channels (rescaling)?

3. What frequency shift should we apply to remove the residual carrier frequency offset
(frequency synchronization)?

Figure 1 Illustration of the synchronization and resampling problem; αl stands for the
scaling factor due to the lth path, and β for the rescaling factor adopted by the receiver
during resampling

These problems can mathematically be described by determining β, ϕ and σ in the following
expression

r(β,ϕ,σ)(t) =
√

1
β

y(
t
β

− σT)ej2π fcϕt/β , (8)

where β is a positive number within [ 1, αmax] and βT represents the sampling rate at the
receiver; σ is the time shift factor, which is used to represent time synchronization; and
likewise, ϕ is the phase shift factor used for frequency synchronization.

√
1
β

is a normalization
factor. Later on, we will show that a different choice of (β, ϕ, σ) can influence the energy



distribution of the channel matrix significantly. For the moment, we leave the values of these
parameters open to allow for a general treatment of the problems. It is clear that when
(β, ϕ, σ) = (1, 0, 0), there is no resampling operation carried out.

After resampling, the noiseless sample obtained at the nth time instance in the time domain is
given by (see Appendix 2 for the detailed derivation)

r(β,ϕ,σ)
n = r(β,ϕ,σ)(nT)

=
L∑

l=0

h(β,σ)

l ej2πω
(αl−1+ϕ)

β
n
K ×

(K−1∑
k=0

bkej2π
αl
β

nk
K

)
e−j2παl(λl+σ) k

K , (9)

where we use
ω = fc

1f

to denote the normalized carrier frequency and

λl = τl

T

to denote the normalized delay of the lth path; and the discrete channel coefficient is given by

h(β,σ)

l =
√

αl

βKT
h̄le−j2π fc(αlτl+(αl−1)σT).

In (9), the term ej2πω
(αl−1+ϕ)

β
n
K corresponds to the residual CFO related with the lth path after

resampling; the term e−j2π f αl(λl+σ) k
K corresponds to the phase changes due to the time shift

along the lth path; and the summation
K−1∑
k=0

bkej2π
αl
β

nk
K is the adapted version of the transmitted

OFDM signal due to the channel time variation in the lth path.

Let us now stack the received samples r(β,ϕ,σ)
n , for n = 0, . . . , K − 1, into a vector

r(β,ϕ,σ)
T =[ r(β,ϕ,σ)

0 , . . . , r(β,ϕ,σ)

K−1 ]T , and similarly let b =[ b0, . . . , bK−1]T . In the noiseless case,
it follows that

r(β,ϕ,σ)
T =

L∑
l=0

h(β,σ)

l D(β,ϕ)

l FH
αl/β

3
(σ )
l b, (10)

where Fα denotes a fractional normalized discrete Fourier transform (DFT) matrix, whose
(m, k)th entry is defined as [

FH
α

]
m,k = 1√

K
ej2πα mk

K . (11)

Obviously, F1 reduces to a regular normalized DFT matrix. In addition,

3
(σ )
l = diag([ 1, ej2παl(λl+σ) 1

K , . . . , ej2παl(λl+σ) K−1
K ]T ), (12)

and
D(β,ϕ)

l = diag([ 1, ej2πω
αl−1+ϕ

β
1
K , . . . , ej2πω

αl−1+ϕ

β
K−1

K ]T ), (13)



where the superscript (β, ϕ) in D(β,ϕ)

l and (σ ) in 3
(σ )
l reflects the dependence on the specific

resampling parameters. This convention will hold throughout this article.

Interference analysis

Normally speaking, equalization of an OFDM channel is implemented in the frequency
domain. To this end, the received signal r(β,ϕ,σ)

T is first transformed into the frequency domain
by means of the DFT, which in the absence of noise yields

r(β,ϕ,σ)
F = F1r(β,ϕ,σ)

T = H(β,ϕ,σ)
F b, (14)

where H(β,ϕ,σ)
F stands for the frequency-domain (FD) channel matrix, which is defined as

H(β,ϕ,σ)
F =

L∑
l=0

h(β,σ)

l F1D(β,ϕ)
αl

FH
αl/β

3
(σ )
λl

=
L∑

l=0

h(β,σ)

l H(β,ϕ)

F,l 3
(σ )
λl

, (15)

with H(β,ϕ)

F,l = F1D(β,ϕ)
λl

FH
αl/β

being its lth component, whose (m, k)th entry is specified as

[
H(β,ϕ)

F,l

]
m,k

= 1
K

K−1∑
n=0

e−j2π mn
K ej2πω

αl−1+ϕ

β
n
K ej2π

αl
β

nk
K

= 1
K

K−1∑
n=0

e−jn 2π
K ((m−k)−(ξl,F1k+ξl,F2))

= e−j (K−1)π
K ((m−k)−(ξl,F1k+ξl,F2))×

sinc
(
(m − k) − (ξl,F1k + ξl,F2)

)
sinc( 1

K

(
(m − k) − (ξl,F1k + ξl,F2)

)
)
, (16)

where ξl,F1 = αl−β
β

and ξl,F2 = αl−1+ϕ
β

ω with sinc(t) = sin(π t)
π t .

It is obvious from (16) that in the absence of Dopper effects, i.e., αl = 1 for l = 0, 1, . . . , L, no
rescaling and frequency synchronization is necessary, hence β = 1 and ϕ = 0, which leads to
a diagonal H(1,0)

F,l with
[
H(β,ϕ)

F,l

]
m,k

= δm−k. In another special case where αl ≡ α for

l = 0, 1, . . . , L, we can also enforce a diagonal H(β,ϕ)

F,l by letting β = α and ϕ = 1 − α, a
scenario considered in, e.g., [13]. For a realistic wideband LTV channel, however, the channel
energy distribution in H(β,ϕ)

F,l is governed by a Dirichlet kernel, where the center of this
Dirichlet kernel is offset by

1
(β,ϕ)

F,l (k) =< ξl,F1k + ξl,F2 > . (17)

Clearly, such an offset is not only dependent on the Doppler spread α and the carrier



frequency fc, but also on the subcarrier frequency fk = k1f . The dependence of the signal
energy offset on the subcarrier index is unique to wideband channels, and is also referred to as
nonuniform Doppler shifts in [13]. In contrast, the frequency offset for narrowband channels
is statistically identical for all the subcarriers [2].

The Dirichlet kernel in (16) also suggests that the signal energy is mostly concentrated in
subcarrier k + 1

(β,ϕ)

F,l (k) and its nearby subcarriers, and decays fast in subcarriers farther away.

To appreciate how fast the signal energy decays, let us introduce B(β,ϕ)

F,l (k) to quantify the
number of subcarriers where most of the energy of bk is located, which can thus be viewed as
the bandwidth of H(β,ϕ)

F,l along its kth column. B(β,ϕ)

F,l (k) is obtained as the smallest B for which

k+1
(β,ϕ)

F,l (k)+B∑
m=k+1

(β,ϕ)

F,l (k)−B

∣∣∣[ H(β,ϕ)

F,l ]m,k

∣∣∣2 > γ

K−1∑
m=0

∣∣∣[ H(β,ϕ)

F,l ]m,k

∣∣∣2

⇔
k+1

(β,ϕ)

F,l (k)+B∑
m=k+1

(β,ϕ)

F,l (k)−B

∣∣∣∣∣ sinc(π
(
(m − k) − (ξl,F1k + ξl,F2)

)
)

sinc(π
K

(
(m − k) − (ξl,F1k + ξl,F2)

)
)

∣∣∣∣∣
2

> γ

K−1∑
m=0

∣∣∣∣∣ sinc(π
(
(m − k) − (ξl,F1k + ξl,F2)

)
)

sinc(π
K

(
(m − k) − (ξl,F1k + ξl,F2)

)
)

∣∣∣∣∣
2

, (18)

where γ is a positive threshold no larger than 1. In the left plot of Figure 2, the relationship
between maxkB(β,ϕ)

F,l (k) and γ for the case β = 1 and α = 0 (no resampling and frequency
synchronization) is plotted. It is clear that most of the signal energy of bk is captured within a
limited bandwidth. For example, with a bandwidth maxkB(1,0)

F,l (k) = 5, roughly 98 % of the
signal energy of bk is captured. Notably, this bandwidth is almost independent of ξl,F1 and
ξl,F2 as suggested by the left plot of Figure 2.

Figure 2 Bandwidth of H(β,ϕ)

F,l and H(β,σ)

T,l

Since each H(β,ϕ)

F,l is roughly banded, it is therefore reasonable to approximate H(β,ϕ,σ)
F , which

is a weighted sum of different H(β,ϕ)

F,l matrices, also as banded. As an example, we plot in

Figure 3 the structure of H(β,ϕ)

F,l , where we assume that there are in total two paths. Obviously,

the approximate bandwidth of H(β,ϕ,σ)
F at the kth column, denoted as B(β,ϕ)

F (k), is

B(β,ϕ)
F (k) =

max
l

(
k + 1

(β,ϕ)

F,l (k) + B(β,ϕ)

F,l (k)
)

− min
l

(
k + 1

(β,ϕ)

F,l (k) − B(β,ϕ)

F,l (k)
)

≈ max
l

(
1

(β,ϕ)

F,l (k)
)

− min
l

(
1

(β,ϕ)

F,l (k)
)

+ 2max
l

(
B(β,ϕ)

F,l (k)
)

, (19)

which is independent of σ . We refer the reader to Figure 3 for the physical meaning of the
notations. It is important to underscore that since the bandwidth B(β,ϕ)

F (k) is dependent on the



subcarrier index k, the boundaries of the band are not parallel to each other as in the
narrowband case. A banded approximation of the channel matrix is crucial to many
low-complexity equalizers, e.g., [5–7, 18]. The equalizer considered in this article will also
adopt this approximation to reduce the complexity. More specifically, we first define a matrix
B(β,ϕ)

F , whose (m, k)th entry is equal to 1 if

min
l

(
k + 1

(β,ϕ)

F,l (k) − B(β,ϕ)

F,l (k)
)

≤ m ≤ max
l

(
k + 1

(β,ϕ)(k)
F,l + B(β,ϕ)

F,l (k)
)

, and 0 otherwise,

and we then consider the matrix

H̄(β,ϕ,σ)
F = B(β,ϕ)

F ⊙ H(β,ϕ,σ)
F (20)

as the banded approximation of H(β,ϕ,σ)
F .

With the banded approximation, let us rewrite (14) as

r(β,ϕ,σ)
F = H̄(β,ϕ,σ)

F b + v̄(β,ϕ,σ)
F , (21)

where v̄(β,ϕ,σ)
F =

(
H(β,ϕ,σ)

F − H̄(β,ϕ,σ)
F

)
b.

Figure 3 Illustration of the FD matrix H(β,ϕ,σ)
F for two paths

The above analysis can also be applied in the time domain in an analogous manner. See
Appendix 3 for the details. Here we only want to highlight that, different from the energy
distribution in the FD channel matrix which is influenced by the rescaling factor β and the
phase-shift factor ϕ [c.f. ξl,F1 and ξl,F2 in (16)], the energy distribution in the TD channel
matrix is affected by the rescaling factor β and the time-shift factor σ [c.f. ξl,T1 and ξl,T2 in
(39)]. However, similarly as the FD channel matrix, we can also understand from the right
subplot of Figure 2 that H(β,σ)

T,l is roughly banded along the lth path in the time domain, and so

is the overall time-domain channel matrix H(β,ϕ,σ)
T .

Channel equalization scheme

Let us now focus on the channel frequency-domain equalization, which is depicted in
Figure 4. In this figure, it is clear that, prior to the equalization, we propose an optimum
resampling operation to achieve (β, ϕ, σ) = (βF,⋆, ϕF,⋆, σF,⋆), which is different from [14, 19]
as mentioned previously. Specifically, the resampling method proposed in [14] only considers
the rescaling parameter β while [19] ignores the time-shift parameter σ . Afterwards, the
banded matrix H̄(βF,⋆,ϕF,⋆,σF,⋆)

F is adopted to approximate H(βF,⋆,ϕF,⋆,σF,⋆)

F according to the
approach mentioned in the last section. Our banded method induces a non-parallel bandwidth
structure which is different from the banded approach used in narrowband OFDM
systems [5–7, 21]. In order to speed up the convergence of the iterative equalization, we then
design a diagonal preconditioner to improve the condition of this banded matrix. It is
noteworthy here that our preconditioner design is adapted from [17, 18] to enhance its
suitability for our MSML scenario. Finally, iterative equalization is proposed on the
preconditioned channel matrix. Although we choose the CG method in this article, other



iterative methods can also be applied, such as the LSQR algorithm [22].

Figure 4 Depiction of our equalization scheme

Additionally, we would like to highlight that just as a single-carrier channel can be equalized
in the frequency domain, it is also possible to equalize an OFDM channel in the time domain.
Due to the similarity, we again refer the reader to Appendix 3 for a detailed mathematical
derivation of the time-domain method. The question in which domain the wideband channel
should be equalized, shall be addressed in the following section.

Iterative equalization

To better motivate the other components of our equalization scheme, we first introduce the
channel equalization method itself. A zero-forcing equalizer in the frequency domain is
considered, given by

b̂ =
(

H̄(β,ϕ,σ)H

F H̄(β,ϕ,σ)
F

)−1
H̄(β,ϕ,σ)H

F r(β,ϕ,σ)
F , (22)

where b̂ is the obtained estimate of b. Because the original channel matrix H(β,ϕ,σ)
F is a full

matrix, its inversion inflicts a complexity of O(K3) and is thus not desired for a practical
system. To lower the complexity, H(β,ϕ,σ)

F has been replaced by the banded approximation
H̄(β,ϕ,σ)

F in (22).

Besides, the matrix inversion in (22) will be implemented iteratively using the CG algorithm.
An advantage of using CG rather than inverting the matrix directly is that the resulting data
estimates yielded by CG are always constrained in the Krylov subspace, making its
performance less susceptible to the spectral distribution of H̄(β,ϕ,σ)

F . In practice, a truncated
CG, which halts the algorithm after a limited number of iterations, is desired to further reduce
the complexity. It is well-known that the convergence of the CG algorithm can be accelerated
by applying preconditioning on H̄(β,ϕ,σ)

F [16, 17, 23]. With CF denoting such a preconditioner,
the I/O relationship given in (21) in the noiseless case can be rewritten as

r(β,ϕ,σ)
F =

(
H̄(β,ϕ,σ)

F CF

) (
C−1

F b
)

= H̄(β,ϕ,σ)

FC bC (23)

from which an estimate of bC = C−1
F b is first obtained by applying CG on the preconditioned

matrix H̄(β,ϕ,σ)

FC = H̄(β,ϕ,σ)
F CF. Afterwards, b̂ = CFb̂C is computed to obtain the final data

estimates. For details about our CG equalization, see Appendix 4.

The optimal design of CF can be exhaustive [23]. Inspirited by [17], we find our
preconditioner by minimizing a cost function based on the Frobenius norm, which clusters
most of the eigenvalues of H̄(β,ϕ,σ)

F CF around 1 with the exception of a few outliers. Further,
observing that the design of CF itself, as well as the operation of H̄(β,ϕ,σ)

F CF, inflicts an



additional complexity, a common approach is to impose a sparse structure on CF, e.g.,
diagonal [17] as

CF = diag{[ cF,0, cF,1, . . . , cF,K−1]T }. (24)

Diagonal preconditioning

In this section, we will show that the normal approach to design the diagonal preconditioner
as described in [17] will not necessarily cluster eigenvalues around one. To realize this, let us
consider the diagonal preconditioner CF,⋆ that minimizes the cost function in the Frobenius
norm [17] given by

CF,⋆ = arg min
CF

∥∥∥H̄(β,ϕ,σ)
F CF − IK×K

∥∥∥2

Fro

which leads to

cF,k,⋆ = arg min
cF,k

∥H̄(β,ϕ,σ)
F cF,kek − ek∥2

2,

= [ H̄(β,ϕ,σ)
F ]∗k,k

∥H̄(β,ϕ,σ)
F ek∥2

2

, (25)

where ek is the kth column of the identity matrix.

One problem of the above diagonal preconditioner designed by (25) is that the eigenvalues
may, in some situations, tend to cluster around zero instead of one, with the consequence that
the condition number of the preconditioned channel matrix increases considerably. To
understand this, assume there exists a ϵ1 > 0 such that

∥H̄(β,ϕ,σ)
F ekcF,k − ek∥2

2 ≤ ϵ2
1 , (26)

for k = {0, 1, . . . , K − 1}. At the same time, assume there exists a ϵ0 > 0 such that

∥H̄(β,ϕ,σ)
F ekcF,k∥2

2 ≤ ϵ2
0 (27)

for k ∈ {0, . . . , K − 1}.

If we denote the kth eigenvalue of the preconditioned channel matrix H̄(β,ϕ,σ)
F CF as µk, (27)

indicates that (for details see Appendix 5)

K−1∑
k=0

|µk|2 ≤ Kϵ2
0

which means that all µk’s lie inside a disk of radius
√

Kϵ0 centered around zero. Similarly,



from (26) we have

K−1∑
k=0

|µk − 1|2 ≤ Kϵ2
1

which implies that all µk’s at the same time lie inside a disk of
√

Kϵ1 centered around one. It

is clear that if ϵ0 < ϵ1, then minimizing
∥∥∥H̄(β,ϕ,σ)

F CF − IK×K

∥∥∥2

Fro
will at the same time

minimize the Frobenius norm
∥∥∥H̄(β,ϕ,σ)

F CF

∥∥∥2

Fro
itself, making the eigenvalues more clustered

around zero rather than one.

With cF,k,⋆ defined in (25), we can show that

ϵ1 = max
k

∑K−1
m=0 | [ H̄(β,ϕ,σ)

F ]m,k |2 − |[ H̄(β,ϕ,σ)
F ]k,k |2∑K−1

m=0 |[ H̄(β,ϕ,σ)
F ]m,k |2

, (28)

and

ϵ0 = max
k

|[ H̄(β,ϕ,σ)
F ]k,k |2∑K−1

m=0 |[ H̄(β,ϕ,σ)
F ]m,k |2

. (29)

Obviously, if |[ H̄(β,ϕ,σ)
F ]k,k |2 <

∑K−1
m=0 | [ H̄(β,ϕ,σ)

F ]m,k |2, for k = 0, . . . , K − 1, then the
optimal diagonal preconditioner will cluster the eigenvalues in a “wrong” area. This case
arises when the sum of the off-diagonal power in each column is higher than the power on the
diagonal. Such a situation could occur in multi-scale channels where significant channel
power is located on off-diagonal entries as we argued in the previous section (see Figure 3 for
instance). In the upper-left plot of Figure 5, the eigenvalues of such a matrix, with and without
preconditioning, are displayed on a complex plane. It can be seen that diagonal
preconditioning indeed clusters the eigenvalues around zero rather than one.

Figure 5 Left plots: eigenvalues with and without preconditioning; Right plots:
convergence performance with and without preconditioning; FD matrix for top two plots
corresponds to the original channel, FD matrix for bottom two plots is obtained after
our optimum resampling; The MSML channel is set according to Table 1

To evaluate the impact of such a preconditioner on the convergence of CG, we compute the
mean squared error (MSE) as

MSE = ∥b − b̂
(i)∥2

∥b̂∥2
, (30)

with b̂
(i)

being the result obtained at the ith iteration of our CG equalization as mentioned in
Appendix 4. In the top-right plot of Figure 5, it is clear that the CG convergence with such a
diagonal preconditioner is even worse than without any preconditioning. This illustrates that
the diagonal preconditioning defined in (25) may not always yield a better performance than
without preconditioning, as opposed to what is claimed in [17, 18]. Using a more complex
structured preconditioner can avoid this, which is, however, not desired due to complexity and



Table 1 Channel I: a frequency-domain case
Channel I path scale αl delay λl path gain h̄l
(T = 0.2 ms l = 0 1.0150 0.00 0 dB
ω = 256 l = 1 1.0154 10.15 −3 dB
K = 128) l = 2 1.0201 20.40 −5 dB
Resampl. Orig. (β, ϕ, σ) = (1, 0, 0)

Para. Resampl. (βF,⋆, ϕF,⋆, σF,⋆) = (1.0150, −0.0150, −15.00)

Orig./no precond. 4.26 × 105

Cond. Num. Orig./with precond. 1.19 × 106

for FD Resampl./no precond. 23.36
Resampl./with precond. 7.17

FD Orig. ρ
(1,0,0)
F = 0.0021

Ratio Resampl. ρ
(βF,⋆,ϕF,⋆,σF,⋆)

F = 0.9279

implementation considerations.

To alleviate this problem, we adapt the diagonal preconditioner in (24) and (25) as follows

cF,k,⋆ =


[H̄(β,ϕ,σ)

F ]∗k,k∥∥∥H̄(β,ϕ,σ)

F ek

∥∥∥2

2

, if ζ
(β,ϕ,σ)

FC (k) ≥ 1

1, otherwise
(31)

where

ζ
(β,ϕ,σ)

FC (k) =

∣∣∣∣[H̄(β,ϕ,σ)
F

]
k,k

∣∣∣∣2
K−1∑

m=0,m̸=k

∣∣∣∣[H̄(β,ϕ,σ)
F

]
m,k

∣∣∣∣2
. (32)

In Section ‘Optimal resampling’, we will show how to enhance (32) with a higher probability
by means of optimal resampling.

Optimal resampling

From the previous subsections, we understand that the effectiveness of a diagonal
preconditioner depends on the energy distribution of the channel matrix. It is desired that the
channel matrix should have most of its energy concentrated on the main diagonal. The
analysis in Section ‘Discrete data model’ learns that the resampling operation (β, ϕ, σ) plays
an important role in governing the energy distribution of the channel matrix, and so far we
have left (β, ϕ, σ) open for choice. Recall that resampling is a standard step taken in many
wideband LTV communication systems to compensate for the Doppler effect. For example,
optimizing β is considered in [14], while β and ϕ are jointly optimized in [21]. In this sense,
the optimal resampling proposed in this article can be considered as a generalization
of [14, 21].

Next, we shall discuss how to jointly optimize the resampling parameters (β, ϕ, σ). Focusing



on the FD matrix H(β,ϕ,σ)
F , we desire

∣∣∣∣[H(β,ϕ,σ)
F

]
k,k

∣∣∣∣2 >
∑

m ̸=k

∣∣∣∣[H(β,ϕ,σ)
F

]
m,k

∣∣∣∣2 for all

k ∈ {0, 1, . . . , K − 1}. However, satisfying the above condition for each index k individually is

expensive. As a relaxation, we practically seek
∑
k

∣∣∣∣[H̄(β,ϕ,σ)
F

]
k,k

∣∣∣∣2 >
∑
k

∑
m̸=k

∣∣∣∣[H̄(β,ϕ,σ)
F

]
m,k

∣∣∣∣2.

To this end, let us denote the diagonal energy ratio as

ρ
(β,ϕ,σ)
F =

K−1∑
k=0

∣∣∣∣[H(β,ϕ,σ)
F

]
k,k

∣∣∣∣2
K−1∑
k=0

K−1∑
m=0

∣∣∣∣[H(β,ϕ,σ)
F

]
m,k

∣∣∣∣2
, (33)

and define our resampling operation by solving

(βF,⋆, ϕF,⋆, σF,⋆) = arg max
β,ϕ,σ

ρ
(β,ϕ,σ)
F , (34)

which leads to the maximal ratio ρ
(βF,⋆,ϕF,⋆,σF,⋆)

F . One can also explain this resampling as
minimizing the total amount of ICI in the frequency domain.

Since the energy governing mechanism is determined by the sinc function as indicated in (16),
we can equivalently rewrite (34) by only maximizing the diagonal energy of H(β,ϕ,σ)

F as

(βF,⋆, ϕF,⋆, σF,⋆) = arg max
β,ϕ,σ

K−1∑
k=0

∣∣∣∣[H(β,ϕ,σ)
F

]
k,k

∣∣∣∣2

= arg max
β,ϕ,σ

K−1∑
k=0

∣∣∣∣∣
L∑

l=0

h(β,σ)

l e−j (K−1)π
K (ξl,F1k+ξl,F2)×

sinc
(
ξl,F1k + ξl,F2

)
sinc( 1

K

(
ξl,F1k + ξl,F2

)
)

× ej2π(λl+σ) k
K

∣∣∣∣∣
2

, (35)

where again ξl,F1 = αl−β
β

and ξl,F2 = αl−1+ϕ
β

ω. It is noteworthy that all three parameters, β , ϕ

and σ , play a role in (35), indicating that separately considering one or two parameters as
in [14, 21] might lead to a local maximum.

To illustrate our resampling approach in the frequency domain, we consider the channel
example specified in Table 1, where we also compare the properties of the resampled FD
channel (i.e., the condition number and diagonal power ratio of the channel matrix) with the
original MSML FD channel. A geometric interpretation may help to understand our
resampling operation since β rotates the FD matrix through ξl,F1 = αl−β

β
, ϕ shifts the FD

matrix through ξl,F2 = αl−1+ϕ
β

ω in (16), and σ influences the phase of each element in (35).
The joint effect of these actions maximizes the matrix diagonal energy. The yielded
resampling (βF,⋆, ϕF,⋆, σF,⋆) = (1.015, −0.015, −15.00) corresponds to a maximal diagonal
power ratio ρ

(βF,⋆,ϕF,⋆,σF,⋆)

F = 0.9279. We underscore that the condition number is already



significantly reduced, solely by the optimum resampling, from 4.26 × 105 to 23.36. In
comparison, the resampling method proposed in [14] yields (β, ϕ, σ) = (1.016, 0, 0) and
ρ

(1.016,0,0)
F = 0.3623. Its corresponding condition number is 432.78, which is larger than our

condition number after resampling. This is not surprising since the criterion adopted in [14]
focuses only on minimizing the aggregate errors between the multi-scale channel and its
single-scale approximation, which is different from our criterion.

In the lower plots of Figure 5, we show the effectiveness of diagonal preconditioning applied
to the resampled channel in Table 1. It is clear that, after our resampling procedure, the
diagonal preconditioner clusters the eigenvalues of the preconditioned FD channel matrix
closer to one than without preconditioning, which further reduces the condition number from
23.36 to 7.17. In contrast, without optimal resampling, the preconditioner “wrongly” pushes
the eigenvalues closer to zero. In this case, the matrix condition number increases from
4.26 × 105 to 1.19 × 106, and hence the CG equalizer performs even worse than without
preconditioning as shown in the top two plots of Figure 5.

Similarly, we can show that optimal resampling can also improve the performance of the CG
in the time domain, for which we just provide Table 2 and Figure 6 here due to space
limitations. From them, we can make the same observations as from Table 1 and Figure 5 for
the frequency domain case.

Table 2 Channel II: a time-domain case
Channel II path scale αl delay λl path gain h̄l
(T = 0.2 ms l = 0 1.0161 1.00 0 dB

ω = 640 l = 1 1.0180 0.80 −3 dB
K = 128) l = 2 1.0244 3.00 −5 dB
Resampl. Orig. (β, ϕ, σ) = (1, 0, 0)

Para. Resampl. (βT,⋆, ϕT,⋆, σT,⋆) = (1.0160, −0.0210, −1.00)

Orig./no precond. 2.54 × 104

Cond. Num. Orig./with precond. 7.37 × 104

for TD Resampl./no precond. 50.78
Resampl./with precond. 15.03

TD Orig. ρ
(1,0,0)
F = 0.0021

Ratio Resampl. ρ
(βF,⋆,ϕF,⋆,σF,⋆)

F = 0.9168

Figure 6 Left plots: eigenvalues with and without preconditioning; Right plots:
convergence performance with and without preconditioning; TD matrix for top two
plots corresponds to the original channel, TD matrix for bottom two plots is obtained
after our optimum resampling; The MSML channel is set according to Table 2.

Frequency-domain or time-domain equalization?

In the previous sections, we showed that the equalization of an OFDM channel can be
implemented in either the frequency or the time domain. With the CG algorithm specified in
Appendix 4, it is clear that the cost of equalization in the frequency domain will be



upper-bounded by O(B(β,ϕ)
F K) with B(β,ϕ)

F = maxk B(β,ϕ)
F (k) for each CG iteration. Likewise,

the cost of equalization in the time domain will be upper-bounded by O(B(β,σ)
T K) with

B(β,σ)
T = maxm B(β,σ)

T (m). By assuming that the number of CG iterations is predetermined and
identical in both domains, we can use the ratio B(β,ϕ)

F /B(β,σ)
T as a criterion to choose in which

domain the equalization will be realized in order to minimize the complexity.

However, the evaluation of B(β,ϕ)
F /B(β,σ)

T is cumbersome and lacks the insight of the channel
physics. For simplicity reasons, we equivalently consider the proportion given by

ϵ = B(β,ϕ)
F − 2Brul

B(β,σ)
T − 2Brul

=
max

k

(
max

l
(1

(β,ϕ)

F,l (k)) − min
l

(1
(β,ϕ)

F,l (k))
)

max
m

(
max

l
(1

(β,σ)

T,l (m)) − min
l

(1
(β,σ)

T,l (m))

) , (36)

where we reasonably assume Brul = max
l,k

BF,l(k) ≈ max
l,m

BT,l(m) [see Figure 2]. One may argue

that the above evaluation is still cumbersome. However, if a realistic channel allows us to
assume, for all l ∈ {1, 2, . . . , L}, that

|αl − βF,⋆|/βF,⋆ ≪ 1/(K − 1),
|αl − βT,⋆|/βT,⋆ ≪ 1/(K − 1),

which indicates that the Doppler scale spread is well-limited, it follows that max
l,k

(|ξl,F1|k) ≪ 1

and max
l,m

(|ξl,T1|m) ≪ 1. In other words, 1
(βF,⋆,ϕF,⋆)

F,l (k) ≈ ⟨
ξl,F2

⟩
and 1

(βT,⋆,σT,⋆)

T,l (m) ≈ ⟨
ξl,T2

⟩
,

both of which are independent of the symbol index. With these assumptions, ϵ can further be
simplified as

ϵ ≈ maxl(
⟨
ξl,F2

⟩
) − minl(

⟨
ξl,F2

⟩
)

maxl(
⟨
ξl,T2

⟩
) − minl(

⟨
ξl,T2

⟩
)

=

⟨
(max

l
(αl) − 1 + ϕF,⋆)

ω
βF,⋆

⟩
−
⟨
(min

l
(αl) − 1 + ϕF,⋆)

ω
βF,⋆

⟩
⟨
max

l
(αl(λl + σT,⋆))

⟩
−
⟨
min

l
(αl(λl + σT,⋆))

⟩
which suggests that if the maximum difference between the Doppler shifts of each path (i.e.,
αl−1

β
ω) is smaller than the maximum difference between the time shifts of each path (i.e.,

αlλl), then equalization should be realized in the frequency domain; otherwise, a time-domain
approach will be preferred. A similar conclusion has been made for narrowband systems [24],
though its extension to wideband systems is not straightforward as shown above.

To illustrate the above idea, we again use the channel examples specified in Tables 1 and 2,
respectively. We use Brul = 5 to roughly capture γ = 98 % of the channel energy in both
domains where γ is introduced in (18). In this way, we have ϵ ≈ 0.10 < 1 for the channel in
Table 1, while for the channel in Table 2, we have ϵ ≈ 2.00 > 1.



For both channels, we compare the equalization performance in different domains. OFDM
with K = 128 subcarriers using QPSK is transmitted and the receiver is assumed to have
perfect channel knowledge. We examine the bit error rate (BER) results of our CG
equalization with a fixed CG iteration number (e.g., iF,max = iT,max = 100). We use different
bandwidths for the banded approximation H̄(βF,⋆,ϕF,⋆,σF,⋆)

F and H̄(βT,⋆,ϕT,⋆,σT,⋆)

T during the
equalization and the values for (βF,⋆, ϕF,⋆, σF,⋆) and (βT,⋆, ϕT,⋆, σT,⋆) have also been given in
Tables 1 and 2, respectively. After our optimal resampling in either domain, the CG
equalization is carried out using the appropriate preconditioner design.

The left subplot of Figure 7 plots the BER performance as a function of signal-to-noise ratio
(SNR) for Channel I. Note that (βF,⋆, ϕF,⋆, σF,⋆) = (1.015, −0.015, −15) and
(βT,⋆, ϕT,⋆, σT,⋆) = (1.015, −0.016, 0.00) for this channel. It can be seen that the performance
of the FD equalizer (FDE) based on H̄(βF,⋆,ϕF,⋆,σF,⋆)

F outperforms the TD equalizer (TDE) based
on H̄(βT,⋆,ϕT,⋆,σT,⋆)

T using the same bandwidth B(βF,⋆,ϕF,⋆)

F = B(βT,⋆,σT,⋆)

T . In other words, FDE is
more attractive than TDE in this case.

Figure 7 BER versus SNR for the two channels given in Tables 1 and 2

The BER performance for Channel II is illustrated in the right subplot of Figure 7, where the
optimal resampling parameters are (βT,⋆, ϕT,⋆, σT,⋆) = (1.016, −0.021, −1) and
(βF,⋆, ϕF,⋆, σF,⋆) = (1.016, −0.016, −3). In this case, it is evident that the TD equalizer is
more appealing.

These observations made for the channels in Tables 1 and 2 confirm our metric ϵ for
determining which domain is more suitable for channel equalization. Additionally, we like to
point out that, in either domain, with a larger bandwidth the BER performance of our CG
equalization will be increased.

Numerical results

In this section, we randomly generate two different types of wideband channels as specified in
Table 3: ϵ < 1 (Case I) represents wideband LTV channels where the Doppler differences
among the multipath are more pronounced than the delay differences; and ϵ > 1 (Case II) is
the case where the Doppler differences among the multipath are less pronounced than the
delay differences. For all simulations, OFDM with K = 128 subcarriers is considered with
QPSK. The wideband channels are assumed to have L = 5 paths, whose channel gains (i.e.,
h̄l’s) are modeled to be identically and independently distributed. The path delay (τl) is chosen
as a random variable that has a uniform distribution within the range [ 0, τmax]. Likewise, the
path scale (αl) is chosen as a random variable that obeys a uniform distribution within the
range [ 1, 1 + αsp] with αsp the scale spread. For both cases, the receiver is assumed to have
perfect channel knowledge and the cyclic extensions at the transmitter are Tpre = 32T and
Tpost = 10T which satisfy (6) and (7). In all simulations, a banded approximation of the
channel matrix is adopted in both domains with the same bandwidth (e.g.,



B(βF,⋆,ϕF,⋆)

F = B(βT,⋆,σT,⋆)

T = 11).

Table 3 Channel parameters.
Case 1: ϵ < 1 Case 2: ϵ > 1

K = 128, ω = 256 K = 128, ω = 640
L αsp τmax/T L αsp τmax/T
5 0.008 30.00 5 0.010 4.00

In Figure 8, the convergence of the CG equalization is plotted in terms of the bit error rate
(BER) against the number of iterations at SNR = 30 dB for Case I. Since ϵ < 1,
frequency-domain equalization (FDE) is carried out. It is clear that the receiver, which simply
adopts a diagonal preconditioner in (25) without resampling, performs worst. The
performance is already considerably improved if optimal resampling is applied. Moreover the
use of our preconditioner given by (31) boosts the performance even further.

Figure 8 BER versus number of iterations for Case I channels at SNR = 30 dB.

The proposed resampling and preconditioning method can also benefit from other
Krylov-based algorithms. For instance, the LSQR algorithm exploiting a full channel matrix
is studied in [18]. Note that [18] focuses on a narrowband LTV system where no resampling is
required. Further, the preconditioner given in [18] is based on a truncated basis expansion
model (BEM) which is usually used for the approximation of a narrowband time-varying
channel. Because it is not clear whether such a truncated BEM is still suitable for a wideband
LTV channel, in order to emulate a similar approach as in [18] for constructing the
preconditioner, we utilize a (trivial) full-order critically-sampled complex exponential BEM
(the CCE-BEM [25]) in the simulation. The preconditioner in [18] then boils down to the
inverse of the diagonal of the frequency-domain channel matrix, which is obviously
sub-optimal in the Frobenius norm sense. Consequently, it is no surprise that directly applying
the equalizer of [18] to wideband LTV channels yields a bad performance as shown in
Figure 8. In comparison, the LSQR algorithm benefiting from the optimal resampling and our
preconditioner renders the fastest convergence rate and lowest BER amongst all the
equalization schemes. Of course, such an improved BER performance is achieved by
leveraging the full channel matrix at the cost of a higher complexity, compared to our
proposed method using banded matrices.

Figure 9 exhibits the BER versus SNR for the CG-based equalization schemes, where a
truncated CG is used which halts at the 5th iteration. It can be seen in the figure that the
equalizer leveraging the full channel matrix gives the best BER performance but inflicts more
complexity. When using a banded channel matrix approximation, the frequency-domain
approach performs much better than the time-domain approach because we have ϵ < 1 for
this type of channel. Additionally, the equalization approach in [14] is carried out and its
performance is also shown in Figure 9. As we discussed earlier, the resampling operation
in [14] is solely focused on the rescaling parameter ignoring the impact of frequency and time
synchronization, which is therefore sub-optimal. Besides, the equalizer in [14] approximates
the channel matrix to be diagonal (i.e., using a bandwidth of one for the banded matrices), and
thus its performance becomes inferior in the presence of higher scale differences among the



multipath as in the tested channel here.

Figure 9 BER versus SNR for Case I channels.

The performance of the equalizers for Case II is depicted in Figure 10, where the significance
of optimal resampling and our adapted preconditioner is again illustrated just like in Figure 8.
Similarly, we can see that the LSQR algorithm in [18] also works well for this type of channel
if optimal resampling and preconditioning are included.

Figure 10 BER versus number of iterations for Case II Channels at SNR = 30 dB.

Different from Case I, the channels of Case II are subject to a larger delay spread than a
Doppler spread (i.e., ϵ > 1). In this case, a time-domain equalizer will be more effective than
its frequency-domain counterpart as validated in Figure 11. The equalizer in [14] yields a
much worse performance than ours since the Doppler scale spread differences in this case are
even higher than for Case I.

Figure 11 BER versus SNR for Case II channels.

Conclusion

In this article, we have discussed iterative equalization of wideband channels using the
conjugate gradient (CG) algorithm for OFDM systems. The channel follows a multi-scale
multi-lag (MSML) model, and suffers therefore from interferences in both the frequency
domain and time domain. To lower the equalization complexity, the channel matrices are
approximated to be banded in both domains. A novel method of optimal resampling is
proposed, which is indispensable for wideband communications. A diagonal preconditioning
technique, that accompanies the CG method to accelerate the convergence, has also been
adapted to enhance its suitability. Experimental results have shown that our equalization
scheme allows for a superior performance to those schemes based on a single-scale resampling
method, without any resampling operation, or using a traditional preconditioning procedure.
In addition, we gave a simple criterion to determine whether to use a frequency-domain or
time-domain equalizer, depending on the channel situation, to obtain the best BER
performance with the same complexity. Such a criterion is also validated by experiments.



Appendix 1

Detailed derivation of the discrete data model

Here we give the derivation of (9), assuming no noise is present. We start from (8) given by

r(β,ϕ,σ)
n = r(β,ϕ,σ)(nT)

= 1√
βKT

K−1∑
k=0

bkhk(
nT
β

− σT)ej2π(ϕfc+fk) nT
β e−j2π fkσT

where hk(t) is defined in (5) and the embedded u(t) in hk(t) is considered to be one for the
concerned observation window as clarified in Remark 1.

Now, we substitute hk(t) to obtain

r(β,ϕ,σ)
n = 1√

βKT

K−1∑
k=0

bk ×
L∑

l=0

h̄l
√

αle−j2π(fc+fk)αlτlej2π(αl−1)(fc+fk)( nT
β

−σT)

× ej2π(ϕfc+fk) nT
β e−j2π fkσT

= 1√
βKT

K−1∑
k=0

bk ×
L∑

l=0

h̄l
√

αl ×
(

e−j2π fcαlτlej2π(αl−1)fc( nT
β

−σT)ej2πϕfc nT
β

)
×
(

e−j2π fkαlτlej2π(αl−1)fk( nT
β

−σT)ej2π fk nT
β e−j2π fkσT

)
=

L∑
l=0

(√
αl

βKT
h̄le−j2π fc(αlτl+(αl−1)σT)

)
ej2π fc

(αl−1+ϕ)nT
β

(K−1∑
k=0

bkej2π fk
αlnT

β

)
e−j2π fkαl(τl+σT)

=
L∑

l=0

h(β,σ)

l ej2π fc
(αl−1+ϕ)nT

β ×
(K−1∑

k=0

bkej2π fk
αlnT

β

)
e−j2π fkαl(τl+σT),

where the channel coefficient is given by

h(β,σ)

l =
√

αl

βKT
h̄le−j2π fc(αlτl+(αl−1)σT)

Now, if we denote

ω = fc
1f

for the normalized carrier frequency and

λl = τl

T



for the normalized delay of the lth path, we have

r(β,ϕ,σ)
n =

L∑
l=0

h(β,σ)

l ej2πω
(αl−1+ϕ)

β
n
K ×

(K−1∑
k=0

bkej2π
αl
β

nk
K

)
e−j2παl(λl+σ) k

K

which gives (9).

Appendix 2

System model in the time domain and time-domain equalization

To derive the time-domain model, let us rewrite (10) as

r(β,ϕ,σ)
T = H(β,ϕ,σ)

T s, (37)

where s = F−1
1 b, and H(β,ϕ,σ)

T stands for the time-domain (TD) channel matrix

H(β,ϕ,σ)
T =

L∑
l=0

h(β,σ)

l D(β,ϕ)
αl

H(β,σ)

T,l (38)

with H(β,σ)

T,l = FH
αl/β

3
(σ )
λl

F1 being its lth component. The (m, k)th entry of H(β,σ)

T,l is given by

[
H(β,σ)

T,l

]
m,k

= 1
K

K−1∑
n=0

ej2π
αl
β

mn
K ej2παl(λl+σ) n

K e−j2π nk
K

= e−j (K−1)π
K ((k−m)−(ξl,T1m+ξl,T2))×

sinc(π
(
(k − m) − (ξl,T1m + ξl,T2)

)
)

sinc(π
K

(
(k − m) − (ξl,T1m + ξl,T2)

)
)
, (39)

where ξl,T1 = αl−β
β

and ξl,T2 = αl(λl + σ).

Observing the analogy between (16) and (39), a similar interference analysis can be made on
HT. By defining

1
(β,σ)

T,l (m) =< ξl,T1m + ξl,T2 >, (40)



we can introduce the symbol B(β,σ)

T,l (m) defined as [c.f. (18)]

B(β,σ)

T,l (m) = min{B},

s.t.

m+1
(β,ϕ)

T,l (m)+B∑
k=m+1

(β,σ)

T,l (m)−B

∣∣∣∣∣ sinc(π
(
(k − m) − (ξl,T1m + ξl,T2)

)
)

sinc(π
K

(
(k − m) − (ξl,T1m + ξl,T2)

)
)

∣∣∣∣∣
2

> γ

K−1∑
k=0

∣∣∣∣∣ sinc(π
(
(k − m) − (ξl,T1m + ξl,T2)

)
)

sinc(π
K

(
(k − m) − (ξl,T1m + ξl,T2)

)
)

∣∣∣∣∣
2

, (41)

which determines the index set of the data symbols that contribute the most to the mth
received signal [ r(β,ϕ,σ)

T ]m via the lth path. Note that B(β,ϕ)

F,l (k) in (18) depends on the

resampling factor β and the frequency shift factor ϕ, whereas B(β,σ)

T,l (m) in (18) depends on the
resampling factor β and the time shift factor σ .

Similarly as in the frequency domain, we obtain a banded approximation of H(β,ϕ,σ)
T by

introducing

B(β,σ)
T (m) ≈ max

l

(
1

(β,σ)

T,l (m)
)

− min
l

(
1

(β,σ)

T,l (m)
)

+ 2max
l

(
B(β,σ)

T,l (m)
)

(42)

and a selection matrix B(β,σ)
T , whose (m, k)th entry is equal to 1 if

min
l

(
m + 1

(β,σ)

T,l (m) − B(β,σ)

T,l (m)
)

≤ k ≤ max
l

(
m + 1

(β,σ)(m)

T,l + B(β,σ)

T,l (m)
)

, and 0 otherwise.

Then the banded approximation of H(β,ϕ,σ)
T is obtained by

H̄(β,ϕ,σ)
T = B(β,σ)

T ⊙ H(β,ϕ,σ)
T . (43)

We can then rewrite (37) as

r(β,ϕ,σ)
T = H̄(β,ϕ,σ)

T s + v̄(β,ϕ,σ)
T , (44)

where v̄(β,ϕ,σ)
T =

(
H(β,ϕ,σ)

T − H̄(β,ϕ,σ)
T

)
s.

The time-domain equalization can be presented in an analogous manner as in the frequency
domain. Similar to its FD counterpart in (23), we here rewrite the noiseless case for (44) as

r(β,ϕ,σ)

TC = CTr(β,ϕ,σ)
T =

(
CTH̄(β,ϕ,σ)

T

)
s

= H̄(β,ϕ,σ)

TC s = H̄(β,ϕ,σ)

TC FH
1 b (45)

where s = FH
1 b, CT is the preconditioner applied in the time domain and

H̄(β,ϕ,σ)

TC = CTH̄(β,ϕ,σ)
T . We first estimate s by applying the CG algorithm on r(β,ϕ,σ)

TC to invert
H̄(β,ϕ,σ)

TC iteratively, and afterwards we obtain b̂ = FH
1 ŝ.



We highlight that the adopted diagonal preconditioner
CT,⋆ = diag{[ cT,0,⋆, cT,1,⋆, . . . , cT,K−1,⋆]T } is defined in a similar manner as in the frequency
domain. Specifically, we use

cT,m,⋆ =
 [H(β,ϕ,σ)

T ]∗m,m

∥eT
mH(β,ϕ,σ)

T ∥2
2
, if ζ

(β,ϕ,σ)

TC (m) ≥ 1

1, otherwise
(46)

where

ζ
(β,ϕ,σ)

TC (m) =

∣∣∣∣[H(β,ϕ,σ)
T

]
m,m

∣∣∣∣2
K−1∑

k=0,k ̸=m

∣∣∣∣[H(β,ϕ,σ)
T

]
m,k

∣∣∣∣2
. (47)

To enhance the suitability of the preconditioner, the optimal resampling operation is needed as
given by

(βT,⋆, ϕT,⋆, σT,⋆) = arg max
β,ϕ,σ

K−1∑
m=0

∣∣∣∣∣
L∑

l=0

h(β,σ)

l ej2πω
αl−1+ϕ

β
m
K ×

e−j (K−1)π
K (ξl,T1m+ξl,T2) × sinc

(
ξl,T1k + ξl,T2

)
sinc( 1

K

(
ξl,T1m + ξl,T2

)
)

∣∣∣∣∣
2

. (48)

Appendix 3

Equalization using the conjugate gradient algorithm

If we consider to solve the preconditioned system in (23) in a similar manner as (22), we have

b̂C = M̄(β,ϕ,σ)−1

FC H̄(β,ϕ,σ)H

FC r(β,ϕ,σ)
F

where M̄(β,ϕ,σ)

FC = H̄(β,ϕ,σ)H

FC H̄(β,ϕ,σ)

FC , and b̂C is the estimate of bC = C−1
F b.

Its implementation using CG is described in the frequency domain as follows

1. Define dF = H̄(β,ϕ,σ)H

F r(β,ϕ,σ)
F and i = 0;



2. Perform the following iterations:

Loop

g(i) = dF − M̄(β,ϕ,σ)

FC b̂(i)
C ,

a(i) = ∥g(i)∥2
Fro

∥g(i−1)∥2
Fro

a(i−1) + g(i),

u(i) = ξ (i)

a(i)H M̄(β,ϕ,σ)

FC a(i)
, (49)

b̂(i)
C = b̂(i−1)

C + u(i)a(i)

End Loop;

where a(0) = g(0) = dF, u(0) = ∥dF∥2

dH
F M(β,ϕ,σ)

FC dF
and b̂(0) = u(0)dF;

3. Perform b̂(i) = CFb(i)
C , which is the ith output of the equalization process, and the index

i is incremental from 0 to imax where imax is the iteration number when the stopping
criterion of the CG is satisfied.

Notably, the optimal stopping criterion for CG can be case dependent, e.g., as discussed
in [23], and is not included in this article. When our CG iterations stop, we finally have
b̂ = b̂(imax), which is the data estimate.

It is worthy to note that the computational complexity of each CG iteration above is
determined by the complex multiplication (CM) of M̄(β,ϕ,σ)

FC with a vector (e.g. b̂(i) or a(i)),
e.g., as in (49). When C(β,ϕ,σ)

F is a diagonal preconditioner as considered in this article, the
bandwidth of the preconditioned H̄(β,ϕ,σ)

FC equals that of H̄(β,ϕ,σ)

C , and consequently M̄(β,ϕ,σ)

FC is
banded with a bandwidth 2B(β,ϕ)

F where B(β,ϕ)
F = maxk B(β,ϕ)

F (k) with B(β,ϕ)
F (k) defined in

(19). In this case, the computational complexity of each iteration is upper-bounded by
O(B(β,ϕ)

F K) which is linear in the vector size K.

One can also repeat the above derivations using the TD notations for the TD CG equalization.

Appendix 4

Eigenvalue locations

We consider the diagonal matrix CF = diag{[ cF,0, cF,1, . . . , cF,K−1]T }, and denote the
eigenvalues of H̄(β,ϕ,σ)

FC = H̄(β,ϕ,σ)
F CF as {µ1, µ2, . . . , µK−1}.

Let UWU be a Schur decomposition of H̄(β,ϕ,σ)

FC such that UUH = IK×K and the diagonal



elements of W equal {µ1, µ2, . . . , µK−1}. Then

K−1∑
k=0

|µk|2 = ∥diag{W}∥2
2 ≤ ∥W∥2

Fro

= ∥H̄(β,ϕ,σ)

FC ∥2
Fro = ∥H̄(β,ϕ,σ)

F CF∥2
Fro.

Note that H̄(β,ϕ,σ)
F ekcF,k = H̄(β,ϕ,σ)

F CFek, where ek stands for an all-zero vector except for its
kth entry which equals 1, as defined in (25) for k = 0, 1, . . . , K. We then recall (27), which
holds for any k ∈ {0, 1, . . . , K − 1}, and thus upper-bounds the above expressions as

K−1∑
k=0

|µk|2 ≤ K∥H̄(β,ϕ,σ)
F ekcF,k∥2

Fro ≤ Kϵ2
0 .

Similarly, we can also prove that
∑K−1

k=0 |µk − 1|2 ≤ Kϵ2
1 associated with (26).
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a As a matter of fact, the case where αl < 1 or τl < 0 can be converted to the current situation
by means of proper resampling and timing at the receiver. This justifies the assumption of a
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