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Abstract—In multiple-input multiple-output (MIMO) systems,
the use of many radio frequency (RF) and analog-to-digital con-
verter (ADC) chains at the receiver is costly. Analog beamformers
operating in the RF domain can reduce the number of antenna
signals to a feasible number of baseband channels. Subsequently,
digital beamforming is used to capture the desired user signal.
In this paper, we consider the design of the analog and digital
beamforming coefficients, for the case of narrowband signals.
We aim to cancel interfering signals in the analog domain, thus
minimizing the required ADC resolution. For a given resolution,
we will propose the optimal analog beamformer to minimize the
mean squared error between the desired user and its receiver
estimate. Practical analog beamformers employ only a quantized
number of phase shifts. For this case, we propose a design tech-
nique to successively approximate the desired overall beamformer
by a linear combination of implementable analog beamformers.
Finally, an online channel estimation technique is introduced to
estimate the required statistics of the wireless channel on which
the optimal beamformers are based.

Index Terms—ADC power consumption, analog beamforming,
matching pursuit, passive RF phase shifters.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) and multi-
sensor communication systems employ multiple receive

antennas to exploit selection diversity and improve multiplexing
gains. The aim is to achieve reliable communication close to
theoretical limits [2]. However, the introduction of multiple an-
tennas at the receiver leads to separate radio frequency (RF)
front ends and analog to digital converter (ADC) units, i.e., in-
creased circuit size and power consumption.

The implementation of digital baseband algorithms follows
Moore’s law, resulting in a power reduction by a factor of 32
for every ten years. In contrast, ADC power was reduced only
by a factor of 10 in the past decade [3]. In existing multiantenna
receivers, an ADC operation requires the same power as that of
hundred thousands of logic gates [4]. To enable the full poten-
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tial promised by MIMO capacity theory to become reality, there
is a need for novel RF architectures with digital assistance. One
particular option is to consider a multiuser cellular/WLAN sce-
nario, where the bandpass RF signals contain contributions from
the desired user, noise and interfering users. In the presence of
strong interferers, the ADCs are forced to spend a significant
part of their dynamic range on digitizing the unwanted inter-
ferers and noise. If we are able to cancel most of the interference
before it reaches the ADC we can use lower resolution ADCs,
which directly translates into reduced power consumption.

If the number of receiver antennas is given, one well known
suboptimal technique to reduce the number of RF and ADC
chains is to use antenna/diversity selection. Basically, we select
the antenna with the highest signal energy [5]. This technique
does not enable interference cancellation before the ADC.

An advancement over antenna selection is the use of analog
preprocessing networks (APNs) for linearly combining the an-
tennas, i.e., beamforming. Current hardware developments offer
many possibilities. In [6]–[8], a phase shift preprocessor is im-
plemented, which uses active and passive weighting elements to
combine signals from the antenna array in the RF domain. Ha-
jimiri et al. [9] propose a design where the required phase delays
are implemented in the RF to baseband demodulation step, by
using a bank of several phase-shifted local oscillators. Typically
these designs provide about 16 possible phases (4-bit phase res-
olution) and no variable amplitude, thus implement a poorly
quantized set of possible beamformers. These papers focus on
the hardware design and only briefly touch upon the question
how these beamformer coefficients should be selected. E.g., in
[9], a set of beamforming vectors is precomputed to steer beams
in predefined directions, with a resolution of about 22 . This
only allows to select the direction with highest energy, which
does not necessarily result in the desired signal in the presence
of multipath and interference.

Improvements are possible by considering multiple output
streams. Shown in Fig. 1 is an architecture where an analog pre-
processing network (APN) directly operates on the RF signals,
mapping antenna array signals to receiver chains
(i.e., ADCs). A digital beamformer subsequently combines
the ADC outputs to generate the desired user estimate. Zhang et
al. [10] considered such an architecture, and proposed several
MIMO transmitter/receiver beam steering techniques.

Problem Statement: Our aim in this paper is to design an op-
timal APN beamforming matrix. Our focus is to minimize the
interference at the input of the ADCs, so that reduced resolution
is possible, leading to reduced power consumption. Some de-
sign issues are (1) to choose , (2) to select the beamforming
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Fig. 1. Proposed receiver architecture: the analog preprocessing network (RF beamformer) cancels interference and reduces the number of antenna signals to a
smaller number of ADC chains.

coefficients, and (3) to determine how many bits are needed in
each of the ADCs. A design constraint is the poor resolution
of the APN coefficients. Design criteria are the mean-square
error (MSE) at the output of the digital beamformer and the
ADC power consumption.

As an example, consider a wireless channel with one inter-
fering user transmitting signals with the same energy as that of
the desired user, with antennas and receiver
chains. It will be seen from the simulation results in Section VI,
that RF interference cancellation with an APN can reduce the
ADC power consumption by half for the same MSE at the re-
ceiver output.

A. Connections

In the array signal processing literature, several types of
preprocessing matrices have been designed to reduce the
number of receiver chains. One related context is “beamspace
array processing,” where a preprocessing is done on the receive
antennas to reduce dimensionality; see, e.g., [11]. In earlier
work, this is called “partially adaptive beamforming,” where
the preprocessor is fixed and the digital beamformer is adaptive;
see, e.g., [12]. In this literature, the design of the beamspace
transformation matrix is based on prior knowledge of the loca-
tion of the signal of interest and/or on the interference scenario.
Reduced dimension transformations, to cancel interferers using
statistics from the desired user, have also been proposed [13].
In the present paper, we aim to design the APN using feedback
from the baseband processor, so that it can be optimized for the
actual situation on a block-by-block basis.

Transformation preprocessors have also been pursued in di-
rection-of-arrival (DOA) estimation problems, e.g., [14]. In that
paper, a set of preprocessors is applied over time, and the re-
sults are combined to estimate the DOA. In contrast, our aim is
to minimize interference and reconstruct the signal of interest;
however, we will apply techniques from [14] to estimate the re-
quired channel parameters.

In practice, the APN coefficients are quantized. There exists
a significant amount of literature on (adaptive) beamforming
using variable phase only (cf. equal gain combining). Most lit-
erature considers a single weight vector (with variable phases
only) that should be designed to match certain performance
criteria, e.g., [6], [15], and [16]. The paper [10] considers an
APN with multiple outputs, and it is shown that any desired
weight vector can always be obtained by linearly combining
two phase-only beamformers, thus is sufficient. The
work of [10] has generated some follow-up work, focusing on

phase shift beamforming at the transmitter and receiver to lin-
early combine the signals. However, these approaches do not
emphasize on interference cancellation nor on implementable
APN weights. We will consider a more restricted case where
the APN weights and ADC taps are severely quantized.

B. Contributions and Outline

In the paper, we progressively study various aspects of the
APN beamformer design. In Section II, the system setup and
the data model is specified. In Section III we consider the case
where the APN and ADC have sufficiently high resolution. We
will aim to design an preprocessing matrix that min-
imizes the MSE. This leads to a non-unique design. To make it
unique, we also take the ADC quantization error into account
and we design the APN to maximize the signal to quantization
noise ratio (SQNR). For an APN with infinite precision, we will
derive that it is sufficient to consider only output chain.

However, as mentioned earlier, in practice the APN is a pro-
grammable discrete phase shifter with a coarse quantization.
In this case, using allows us to extract different low
resolution streams, some representing the user of interest and
some the interferers, followed by digital combining. Thus, in
Section IV, we study the case where the APN quantization is
the limiting factor in the design. To minimize the MSE, we try
to match an optimal beamformer to a linear combination of
vectors from the set of available quantized beamformers; for this
we propose a quantized version of the matching pursuit (MP)
algorithm [17], [18]. All the above mentioned designs depend
on knowledge of the channel statistics: the antenna covariance
matrix and the antenna cross-correlation vector with the desired
user signal. Note that the digital receiver does not have direct
access to the antenna signals. In Section V, we provide an algo-
rithm to deduce this information from various observations of
beamformed outputs (the algorithm is related to that of Shein-
vald et al. [14]). The results are combined in the digital beam-
former to obtain a high resolution estimate and illustrated using
simulation results.

Notation: Vectors and matrices are represented in lower and
upper case bold letters. , , and represent transpose,
complex conjugate transpose and pseudo inverse, respectively.

and represent Kronecker product and Frobenius norm.
The operation transforms a matrix to a vector
by stacking its columns, while does the opposite.
Continuous time signals are represented with round braces as in

and sampled signals as .
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II. SYSTEM SETUP AND DATA MODEL

A. RF Data Processing

Consider an RF signal received at an antenna. Assuming
suitable bandpass prefiltering, only a narrow frequency band
around a carrier frequency is of interest, and we can write

where is the complex envelope or baseband signal. In the
receiver, the “RF to baseband” processing block recovers
using quadrature demodulation. This signal subsequently enters
the ADC unit. Here it is sampled at time instants (where

is the sampling period) leading to and quantized using
bits, leading to . We will always assume that the Nyquist
condition holds. The ADC unit includes an automatic gain con-
trol (AGC) that scales the input signal such that its amplitude
matches the range of the ADC without overload.

If the RF signal is delayed by , we obtain

The approximation is valid if for all fre-
quencies in the bandwidth of , i.e., the “narrowband con-
dition”. After RF to baseband conversion, the delayed baseband
signal is and the sampled signal is .

If we have an array with receive antennas, it will be con-
venient to stack all signals into vectors , , and

, respectively.

B. Received Data Model

Consider now a communication setup, where user signals
are transmitted over the same carrier

, propagate over a multipath channel, and are received by the
array with antennas. Without loss of generality, let
is the desired user signal, and the other signals are considered
interferers. Assume that the narrowband condition holds for all
propagation delays (except for a bulk delay that we will ignore
here) so that they can be represented by phase shifts. We can
write the equivalent discrete time data model as

where is an vector of
user signals, and is an vector of noise signals.
is a matrix denoting the MIMO channel response with
complex entries , representing the channel coefficients for
the propagation of the th user signal to the th receive antenna,
which includes the transmit/receive filters, array response, am-
plitude scalings, and phase delays.

Throughout the paper, we will make the following standard
assumptions on this model.

• The user signals are modeled as random processes
that are zero mean, independent, wide-sense stationary,
with equal powers normalized to 1.

• The noise signal vector is sampled from an i.i.d.
Gaussian process, zero mean, with unknown covariance
matrix .

Fig. 2. (a) Proposed receiver architecture with RF beamformer. (b) Discrete
time equivalent.

C. High-Resolution Digital Beamforming

Given observations , our goal is to obtain an estimate
of the desired user signal . We will consider linear

beamforming and a minimum mean-square error (MMSE) cri-
terion. Thus, let be an weight vector, then the digital
beamforming output is

and the MMSE beamformer is obtained as the solution of

(1)

As is well known, the solution is given by the Wiener beam-
former [19]

(2)

where and . Esti-
mates of and are obtained from the sample covariance
matrix and sample cross-correlation vector; this requires access
to all antenna signals and the availability of a reference signal
(training sequence) for the desired user.

The above solution (2) will serve as our reference design.
In its derivation, the effect of the quantizer operator was
ignored.

D. Analog Preprocessing Network

As mentioned in the Introduction, it is expensive to insert a
complete RF receiver chain and high-rate high-resolution ADC
unit for each antenna. We thus consider an APN inserted in
the RF domain immediately after the low-noise amplifiers and
bandpass filter [see Fig. 2(a) and its discrete time equivalent
Fig. 2(b)]. Although there are various implementations, we will
model the APN as an analog beamformer that constructs linear
combinations of slightly delayed antenna signals . This re-
sults in output signals , , where the number
of outputs . As before, the output signals are stacked
into vectors , downconverted (leading to baseband
signals ), sampled and quantized (leading to ). The th
ADC has resolution bits.

The effect of the APN on the baseband signal is modeled
using a discrete time equivalent matrix operation
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where is a matrix of size and
is a vector. Each entry cor-

responds to the phase delay introduced by the APN for the th
receive antenna and the th output signal. Practical implemen-
tations limit to a small set of possible phase shifts, perhaps
8 to 16 choices (3 to 4 bits). Amplitude changes are usually not
possible. The weights can be controlled by the baseband
processor but note that is not directly available at the pro-
cessor, making the design of a challenge.

The digital baseband signals are subsequently combined
using a digital beamformer , resulting in
the output signal

To obtain an estimate of , can be designed as the MMSE
beamformer solving

(3)

leading to a Wiener beamformer specified in
terms of correlations of where and

. For given , is known and this
problem can be solved, hence is a function of .

E. Problem Formulation

Our aim in this paper is to design the APN . After that,
is fixed and the design of is relatively straightforward. For the
design, there are a number of side conditions or assumptions:
[A1] The APN circuits consist of a limited number of phase

shift combinations, hence the elements of are se-
lected from a finite set, denoted as a dictionary .

[A2] Each ADC performs uniform quantiza-
tion with a resolution of bits, hence

.
The ADC power consumption can be approximated as

, where is the sampling frequency (in our
case the Nyquist rate) and is the ADC resolution in bits.
We wish to minimize the number of bits in the ADC, since
this is directly related to the power consumption in the analog
section of the receiver. The number of bits is determined by the
required dynamic range, which is partially controlled by .
Indeed, if more interference cancellation is performed, fewer
bits are needed for the same MSE performance.

Design objectives are 1) minimizing the MSE at the output
of the digital beamformer, including the quantization noise, and
2) minimize the energy consumption in the ADCs, represented
by . Several problems can be formulated using these
objectives, but they do not all have feasible solutions.

We therefore approach the APN design in the following order:

[P0] We initially relax [A1] and [A2] and assume a perfect
and continuous APN, and high resolution ADCs.
What are then the constraints on the design of ? (It
will follow that is not unique.)

[P1] Assuming low-resolution ADCs, each with
bits, how does the design change? Can we compute a
unique ?

[P2] Now considering the discrete nature of the APN, select
from a fixed set of discrete phase shifts present in

, such that the overall MSE is minimized. Here it is
assumed that the ADC resolution is not limiting.

The above design problems [P1] and [P2] form the core of this
paper and are covered respectively in Sections III and IV.

The design techniques will assume knowledge of the
antenna array covariance matrix and a

cross covariance vector . Note that
the introduction of the APN implies that this covariance matrix
is not available in the digital part of the receiver. In Section V,
we explain a technique to estimate and from a set of low-
rate beamformers in digital baseband, assuming that a training
sequence of the desired user is available.

III. PREPROCESSOR DESIGN-APN NOT QUANTIZED

In this section, we consider problem [P1]: design the APN
considering only the quantization by the ADCs, and design the
number of bits which each ADC should use. We do not consider
the limited choice of phase shifts for the APN—this case is de-
ferred to Section IV.

A. Conditions on to Minimize the MSE

Let us also ignore the quantization operation by the ADCs
for the moment, i.e., consider problem [P0]. The problem is to
design

We have , and the output should
be close to the desired signal in MMSE sense, i.e., we
require

Thus, implements a rank reduction on the space spanned
by . Some common but suboptimal designs based on rank
reduction are listed in Appendix I.

Instead, we will now consider which conditions has to sat-
isfy such that we can optimize the MSE. Note that, once is
specified, we know , and if we want to mini-
mize the MSE of the output , we know we will
select

where

(4)

Thus, the MSE is a function of only. We can see immediately
that will not be unique: e.g., we could choose

(for ), or (for
), among many other possibilities.

Define the “whitened” correlation matrices

(5)

The following lemma characterizes all solutions that lead to
MMSE-optimal beamformers .

Lemma 1: Consider the scenario [P0]: the APN is not quan-
tized, and the quantization error of the ADCs is ignored. Then
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all beamformers that lead to the MMSE-optimal solution
are characterized by the condition

Proof: implies that is in
the column span of . Hence, a necessary and also sufficient
condition on is .

An alternative proof is as follows. Define the orthogonal pro-
jection matrix

For any , and corresponding optimal
, the MSE is given by

(6)

Thus, the MMSE solution satisfies

(7)

Clearly, this only specifies that , and there
can be many solutions.

B. Maximizing the SQNR

The next question is whether we can narrow down the set of
available solutions for , by satisfying additional design ob-
jectives. Our approach is to incorporate the power consumption
or ADC resolution in (7), and minimize the MSE while max-
imizing the signal to quantization noise ratio (SQNR) of the
output estimate. This leads to a design for , and also to cri-
teria on the number of bits which each ADC should use.

We thus consider problem [P1]. Incorporating the effect of
the ADC on the signal at the output of the analog beamformer,
we have

The effect of the quantizer will be modeled by an addi-
tive noise vector , i.e.,

As usual, is modeled as uniformly distributed noise, entry-
wise independent, and uncorrelated to . The corresponding
covariance matrix of is [replacing (4)]

(8)

where is a diagonal matrix whose diagonal entries represent
the quantization noise variance. Suppose that the th ADC has

a resolution of number of bits. We assume that an automatic
gain control (AGC) is used such that the dynamic range of the
ADC is optimally used. The quantization noise variance

will then depend on the signal variance at the
input of the ADC, with some abuse of notation1 denoted as .
Using the well-known Lloyd–Max equation [20], we have

where is an AGC scaling factor that models the difference
between the average input power and the peak input power.

To reach a feasible optimization problem, we will limit our-
selves to the case where all ADCs use an equal number of bits,

. The noise covariance matrix can then be expressed as

Given , the optimal digital beamformer, acting on , is still
. At the output of the beamformer, the average

energies of the desired user signal and quantization noise are,
respectively

and the corresponding SQNR of the output signal is

(9)

where and are functions of as specified in (8). The
objective is to design , first of all, to minimize the MSE as
discussed in the previous subsection, and this leads to design
freedom, which is used to maximize the SQNR.

Regarding the minimization of the MSE, we can follow the
derivation that led to (6), however, is now slightly different
since it also involves the quantization noise . For a reasonable
number of bits, we will have that

. In that case, we can ignore the influence of
on , (6) still holds, and the MMSE is obtained for any
satisfying (7),

(10)

Using the whitened quantities (5), the numerator of the SQNR
expression can be written as

and the denominator (up to scaling by ) as

1since � ��� denotes the signal at the output of the ADC in this subsection.
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where . Subject to (10), the numerator
is equal to , which is a constant independent of . It
suffices to minimize the denominator. It further follows from the
expression of the SQNR that the scaling of is not important.

The SQNR optimization problem (subject to optimal output
MSE) becomes

(11)

We will solve this problem in closed form for the case .
Theorem 1: Consider the scenario [P1]: the APN is not quan-

tized, the ADCs are quantized at bits. Assume . Then
the optimal APN that minimizes the MSE and maximizes the
SQNR (subject to optimal MSE) is obtained if all columns of

are equal to the MMSE beamformer, , up to scaling
and certain linear transformations.

Proof: To solve (11), we first parametrize such that the
constraint is satisfied. Thus, let

where is a 2 2 unitary matrix since , and
is an matrix such that

Further define

(Note that .) Then

Introduce a sufficiently general parametrization for
as

(12)

where , and are in the range . (A completely
general parametrization would also have two complex phase
factors at the right, but one phase can be absorbed in , and
the other can be extracted to multiply the complete matrix ;

Fig. 3. ���� as a function of � � �� � and �.

the form of the cost function shows that that phase will cancel.)
Then

where ; note that . The cost function
(11) becomes

Since , minimizing the cost function will require
choosing at extremes,

Subsequently, optimal values for will follow as well, as a func-
tion of . The location of the minima of is
shown in Fig. 3. The value of the minimum is 0.5. Although
there are multiple minima, in any case, we will have :
the correlation coefficient between and has absolute value
1, which implies that and are equal, up to a scaling and
phase rotation.

In summary, we derived that, given a specific resolution of the
ADCs and the number of ADCs, the optimal approach to mini-
mize the MSE and maximize the SQNR is to choose the columns
of all parallel to . Translated to , it means that each
beamformer in the APN is parallel to the Wiener beamformer

. In actuality, they should differ by at least a phase shift
such that the quantization noise on the beamformer outputs
becomes uncorrelated. The digital beamformer will simply av-
erage the results, i.e., average out the additive noise and quanti-
zation noise.

The result was obtained for ; however, it seems rea-
sonable that it generalizes to larger . Also, the result was ob-
tained for all ADCs having the same resolution , but the
same result will follow also for unequal resolutions. In this case
the diagonal terms in in will have unequal scaling,
but it can be seen that the optimization still leads to , so
that the same conclusion follows.
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Finally, let us consider the effect of the APN on the power
consumption by the ADCs. It is clear that by inserting an APN,
interference cancellation becomes possible, leading to reduced
requirements on ADC resolution and hence enabling power re-
duction. As function of the interference power, the benefits can
be arbitrarily large compared to a setup without APN.

Next, we compare to , while keeping a
constant output MSE after digital beamforming. For the optimal
APN, the digital beamformer will simply be averaging the out-
puts of the ADCs, so that the quantization noise power at the
output is halved. Quantization noise of one channel is propor-
tional to . Thus, for and the same SQNR, each
ADC needs half a bit less than for . However, power
consumption is also proportional to . For two ADCs, each
with half a bit less, the total power consumption is constant.
Thus, there is no particular advantage to choose from
this perspective.

More generally, allows us to use multiple ADCs with
lower resolution in situations where high rate high resolution
ADCs cease to exist due to fundamental limitations [3].

IV. PREPROCESSOR DESIGN-APN WITH

DISCRETE PHASE SHIFTS

In the previous section, we did not take the quantization of the
APN coefficients into account. In practice, the elements of
can only be selected from a discrete alphabet, usually only from
a set of possible phase shifts. We will now study this case, mean-
while ignoring the quantization of the ADCs, i.e., assuming their
resolution is high enough such that it does not dominate the
design.

A. Matching the Cross-Correlation Vector

Since the elements of are quantized, let represent the
set of all possible phase shift vectors that a column in
can take. The entries of are denoted as , where

is the size of the dictionary. If the APN taps are quantized by
bits then . Typically, would be 2 to 4 bits.

Similarly, call the set of all possible APN matrices .
The APN design is now transformed into a problem of se-

lecting such that the MSE distortion is kept at a
minimum,

(13)

Lemma 2: The MMSE beamformer solving (13) is obtained
as , where

(14)

and where .
Proof: Following (7), solving (13) is equivalent to solving

This is equivalent to

which is equivalent to (14), since for given the optimal
choice for is .

Thus, the problem becomes to match in least squares
sense to linear combinations of columns of , each of which
can assume only values in a discrete set. Equivalently, the
columns of should span a subspace to which is close.
The selection complexity is exponential in , , and .

B. Quantized Matching Pursuit

To reduce the complexity, the columns of are selected
one-by-one. The matching pursuit (MP) technique [17] is a
greedy technique that recursively chooses the dictionary ele-
ments to obtain the best approximation of an input vector, in
this case . Indeed, write

In the greedy approach, we first solve

(15)

Given , the optimal solution for is
, so that the problem reduces to

The solution requires a search in the dictionary, at a complexity
exponential in and . To facilitate the search, we can first
normalize the vectors in to unit norm, and then search for the
vector with maximal correlation to .

After selecting and , we compute the residual vector
and proceed similarly as (15),

where

After selecting and , we could continue the process
with the residual vector

However, and are not orthogonal, and better coefficients
and can be computed at this point, leading to a smaller

residual. This requires to solve

(16)
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TABLE I
QUANTIZED MATCHING PURSUIT (QMP) ALGORITHM

Define and introduce a QR factorization

(17)

where is a orthonormal matrix and a 2 2
upper triangular matrix. The solution to (16) is

and the corresponding (smaller) residual is

which is the projection onto the orthogonal complement of the
column span of . The recursion follows in an obvious way.
Note that the QR factorization (17) is easily updated once new
vectors are added, and that, in fact, it is not necessary to ex-
plicitly compute at intermediate steps. The algorithm is sum-
marized in Table I.

Further refinements of this algorithm are possible. The update
of the QR factorization and the computation of the residual
can be integrated into a single update step. In principle, a better
selection of could be obtained by computing the residuals
for all possible from the dictionary and selecting the one
that gives smallest residual; however, the complexity of this is
probably too high.

In practical implementations, the beamforming weights are
usually quantized phase shifts with unit amplitude. In this case,
it may be more accurate to first split a desired weight vector
into two weight vectors and , each with entries on the unit
circle, such that a linear combination of them gives the desired

. Zhang et al. [10] showed that such a partitioning is always
possible. Subsequently, the phase vectors and are each
quantized into discrete phase shifts, resulting in the “greedy”

Fig. 4. (a) Architecture 1, where each antenna has its own ADC. (b) Architec-
ture 2, containing time varying beamformers � � � � ��� � � � � �� for different
training periods. (c) Architecture 3 with � low resolution beamformers.

selection, now consisting of a pair of vectors. The process con-
tinues as before to recursions.

In this section, APN has been designed from (13) assuming
that the ADC quantization is negligible. It is later shown using
simulations in Section VI that for a small (as is the case in
practice) and bits, the MSE is dominated by the quanti-
zation of the .

V. ONLINE CORRELATION ESTIMATION

The APN phase shift design requires the knowledge of
and . However, since the digital baseband processor has only
access to the beamformed outputs and not to the individual
antenna signals , it is not possible to directly compute these
correlations from the available observations (and, in the case of

, a training signal ). In the context of direction of arrival
estimation, a similar problem was studied by Sheinvald et al.
[14] and Tabrikian et al. [21].

Regarding system architectures, there are a number of options
as enumerated in Fig. 4.

1) Each antenna has its own ADC, operating at a low rate and
low resolution. In this way, full (but noisy) information
is available and estimates of can be computed
straightforwardly.

2) During a training phase, a range of beamformers
are applied instead of the optimal , resulting

in output sequences , for .
Here is a matrix with and is a

vector denoting the beamformer output during the
training phase. The corresponding correlation statistics of

are computed and the statistics of are
inferred, as discussed below. Note that the automatic gain
controls may have to readjust because the interfering sig-
nals will not be suppressed during the estimation phase.

3) A separate APN and bank of low-rate/low-resolution
ADCs is used to monitor the inputs, resulting in output
sequences , for . We refer
to this setup as low resolution beamformers (LRB’s) and
the quantization is typically with 1–2 bit ADCs. This is
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quite similar to case 2, except that there is more flexibility
in the number of APN outputs (can be different than )
and ADC resolutions. The APN could simply be a set of
switches, making a selection of the antennas towards a
low number of ADCs.

The choice of system architecture depends on various criteria,
such as avaliable space for additional hardware, the station-
arity of the received signals, and the duration and density of
the training periods in the desired signal. Regarding the training
signal, there are also issues related to acquisition and synchro-
nization to the desired signal; we will not discuss this further.

Without loss of generality, we will consider case 3 and dis-
cuss how and are inferred. Let be the number of
APN outputs (dimension of each ). From the LRB output
sequences , we will be able to form esti-
mates of , of size , with model

As in [14], we subsequently stack the columns of each of these
matrices into vectors , with model

where the identity was used.
Stacking these vectors results in the model

...
...

(18)

Assuming has a left inverse, we can estimate the data co-
variance matrix using Least Squares2 as .
The complexity of this step is in the order of .

The Hermitian property of can be exploited by intro-
ducing a vectorization operator “ ” that separately
stacks the real and imaginary components of the upper tri-
angular (respectively, strictly upper triangular) part of its
argument. Similar to [14], [22], this refinement reduces the
computational complexity and ensures that the resulting esti-
mate is Hermitian.

A necessary condition for the left invertibility of is that
this is a “tall” matrix, or . Once this condition is sat-
isfied, simple designs for the are already sufficient to obtain
invertibility. E.g., for , , , matrices of the
form

with distinct and , lead to a full rank . Such low
complexity selection matrices have also been used for DOA ap-
plications in [21].

2The paper [14] proposes to use a weighted Least Squares, but it can be shown
that, for this unparametrized estimate of � , the weight does not change any-
thing.

If only switches are used, then (for ) each gives
access to one cross-correlation entry in . For there
are 6 such entries, and a minimal design is

The vector can be estimated in a similar way from esti-
mates of via the model equations

...
...

This requires the matrix in the RHS to be tall and
full column rank, which is a milder condition than what we had
for the estimate of . As mentioned, we need the desired user
to be synchronized to the receiver and the receiver must have
knowledge of the training sequence transmitted at the start of
the packet.

VI. SIMULATION RESULTS

To assess the performance of the proposed algorithms, we
have applied it to a multiuser/antenna setup and computer gen-
erated data. We present simulation results that incorporate the
impairments, discrete design and channel parameter estimation
as covered in Sections III–V.

The input SNR is the signal to noise power ratio for the de-
sired signal and the noise as received at antenna 1; it is the
same for all antennas. The input SIR is the signal to interference
power ratio for the desired signal and the sum of all interference
signals as received at antenna 1; it is the same for all antennas.
All users transmit QPSK signals, with zero mean and unit vari-
ance as assumed in Section II-B and the interferers have equal
powers. The performance indicators are usually as follows:

1) SINR at the first ADC input—a high SINR indicates that
less power is spent in quantizing the interferers for a given
ADC resolution;

2) MSE—observed at the output of the digital receiver.
All results are obtained by averaging 100 Monte Carlo runs,

each with independent Rayleigh fading channel realizations
and independently generated data signals. Each run transmits
data packages of size 8192 symbols, as in a WLAN transmis-
sion packet. The QMP algorithm we proposed in Table I and
Section IV is used to design the APN weights from the training
sequence. Unless specified otherwise, we used 4 trans-
mitters, 4 receive antennas, and 2 ADC receiver
chains. The ADC resolution is 10 bits and transmit SIR
is 5 dB. The APN is represented by a dictionary with
4 bits. In the cases where the receiver is based on estimated
channel coefficients, these are estimated from a training se-
quence of length 256 symbols incorporated in the data packet.
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Fig. 5. Performance comparison of the APN setup for different � and � �

�� as function of transmit SNR: (a) SINR at the input of first ADC; (b) MSE at
the output of baseband receiver.

A. Finite Sized APN Dictionaries

Fig. 5(a) and (b) shows the SINR at the input of the first
ADC and the MSE at the receiver output respectively. A
training sequence of length 256 is used for the design of the
APN. We show curves for varying dictionary size , and
fixed ADC resolution of 10 bits. Consider the SINR plot
[Fig. 5(a)], curve 1 corresponds to a case with no APN and

4 ADCs operating with float precision and curves 2–6
show the performance of the APN setup for increasing .
Comparing curves 1–4, the results show that the introduction
of the APN with dictionary size bits improves the
SINR at the first ADC input up to a factor of 20 dB. For
increasing SNR, the performance saturates: it is limited by the
residual interference power. The performance can be further
improved by increasing . Consider Fig. 5(b) comparing the
MSE at the receiver. For an MSE 0.05, the setup with
4 bits and 2 ADCs each with 10 bits (curve 4)
performs 2 dB worse than the optimal Wiener beamformer
with ADCs and float precision (curve 1).

Fig. 6. MSE performance comparison at the output of the baseband receiver
as a function of transmit SNR (a) for varied � and (b) for various numbers and
resolutions of ADCs.

B. Effect of the ADC Resolution

Fig. 6(a) and (b) shows the MSE performance at the receiver
for a similar setup as in Section VI-A, where the APN resolution
is 4 bits. In Fig. 6(a), curve 1 corresponds to a case with

4 ADCs, with float precision and curves 2–5 correspond
to 2 ADCs and varying ADC resolution bits.
The transmit SIR is 5 dB. We observe that for 6 bits,
MSE curves overlap and the finite precision APN leads to an
error floor. In other words, for higher resolution ADCs, the APN
resolution is the limiting factor.

Fig. 6(b) gives an idea of ADC power savings with the intro-
duction of an APN, for an APN designed with 5 bits and
varying ADC resolution . Comparing curves 2–3 and 4–5, re-
spectively, we see that the introduction of an APN with
2 ADCs operating with and 6 bits results in a sim-
ilar MSE values as that of a receiver without APN, 4
ADCs with precision 4 and 6 bits followed by op-
timal Wiener beamformer. Since ADC power consumption is
related to , this suggests that the use of an APN can
reduce the ADC power consumption by half.
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Fig. 7. MSE performance comparison at the output of the baseband receiver
for different � .

C. Effect of the Number of APN Outputs

Fig. 7 shows the MSE performance at the output of the base-
band receiver for a similar setup as in Section VI-A, where the
number of ADCs is varied, 4–5 bits and ADC reso-
lution . Typically, for APN with perfect interference
cancellation, . However, fixed precision APN
and interfering users limit the performance gains. From curve 3,
we see that even with , the MSE curves lead to an error
floor and this suggests that the APN with might be
ill-conditioned. Increasing the APN Resolution to bits
leads to improved MSE performance as is obvious from curves
4 and 5. However, to limit the APN circuit size it is suggested
to choose and .

D. Effect of Source Spacing

Fig. 8(a) and (b) shows the SINR and MSE performance as
a function of the spacing between two adjacent sources. The
simulations consider line of sight simulations without multipath,
and results are observed for with the desired user
transmitting from an angle say 0 . The MSE is a function
of transmit 20 dB, transmit 5 dB, and angular
spacing between the desired user and interferers. We consider
two interferers equidistant from the desired user and in opposite
directions transmitting from angles and .
From Fig. 8(a) we see that for 20 , the APN improves the
SINR at the first ADC by a factor of 15 dB. In both the cases,
we see that the APN performs poorly for angular spacing 5 ,
and the performance can be improved by increasing the number

of the antennas.

E. Communication Setup and Channel Estimation With LRB’s

The previous sections have given indications on the improve-
ments in SINR, power consumption and MSE for phase shifter
based APN as functions of and . Here we focus on
channel estimation using LRBs as specified in Section V. We
select the architecture type 3 in Section V and choose 6
LRBs with 2 outputs. As specified in that section, switches

are used to estimate .

Fig. 8. Performance comparison for � � � setup as a function of spacing
between desired user and two interferers: (a) SINR at the input of the first ADC;
(b) MSE at the output of the baseband receiver.

Fig. 9(a) and (b) compares the MSE and BER performance
of the fixed precision 4, 2 APN estimated using
LRBs as a function of training lengths. The results are compared
with the reference 4 ADC case and beamformer designed
using true channel parameters. The ADC resolution is kept at

6 bits.
In Fig. 9(a), the curves 1 and 3 show that going from

4 to 2 ADCs leads to performance degradation of 2 dB
at MSE of 0.05. For the sake of completeness, we also show the
BER performance between the transmitted and received QPSK
signals and see that curves 1 and 3 in Fig. 9(b) show that going
from to 2 ADCs APN leads to performance
degradation of 2 dB at BER .

Considering that the above setup reduces the interferer con-
tributions at the ADCs, these results suggest that architectures
with reduced RF chains, limited by RF imperfections can per-
form close to theoretical MIMO while consuming a fraction of
the power.

VII. CONCLUDING REMARKS

In this paper, we have proposed a MIMO receiver employing
an analog preprocessing network (APN) or multichannel
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Fig. 9. Performance comparison, when � and � are estimated for 2-bit
LRBs and varied channel lengths: (a) MSE; (b) BER.

beamformer in the RF domain, followed by a digital beam-
former in baseband. The prime advantage of this architecture
is that it reduces the number of antenna elements to a smaller
number of mixers and ADC chains. Further, it can reduce the
interference at the inputs of the ADC, so that less dynamic
range and fewer bits are required. Overall, significant power
savings are possible.

An optimal preprocessor to minimize the MSE and maximize
the desired user SQNR at the digital baseband was derived. It
was shown that, if the APN quantization is very fine, it is suffi-
cient to consider only 1 analog beamforming output. In
practice the quantization is poor, and a larger number of out-
puts is required such that the cross-correlation vector is
well approximated. Further research is needed in the following
directions.

• In practice, the APN coefficients have poor accuracy; im-
plementation errors of up to 7% of phase have been re-
ported [23]. This affects both the channel estimation and
the APN design. How can this effect be modeled and in-
corporated into the design?

• Initially, we are not synchronized to the source of interest.
It may then be complicated to estimate and design the
APN; subsequently, the interference may overwhelm the

ADCs and make acquisition impossible. What is a good
initialization strategy?

An alternative to using an APN to reduce ADC power, is
to exploit spatial and temporal oversampling with a predictive
Sigma-Delta ADC as in [24].

APPENDIX

APN DESIGN USING CROSS SPECTRAL PROJECTIONS

To obtain some intuition on the APN design problem [P0] as
specified in Section III-A, we first consider a few suboptimal
techniques before deriving a closed form APN in Section III-B.
Introduce an eigenvalue decomposition of :

where is an unitary matrix con-
taining the eigenvectors, and is a diagonal matrix containing
the eigenvalues of , sorted from large to small. can be
chosen as the dominant eigenvectors, corresponding to the

largest eigenvalues, . This is somewhat
similar to one of the approaches proposed in [10]. In this way,
computation of retains the components with
the largest energy and drops the components with less power.
However, this does not distinguish between desired and inter-
fering users. If the interferers are strong, the desired user could
be projected out.

This is avoided in the following design, based on “cross spec-
tral projections.” Instead of selecting dominant eigenvec-
tors, selecting the eigenvectors that contain a large correlation
with the desired user array response given by results in a
better approximation. This approach is similar to one technique
in [25] where the authors sort the basis vectors based on the
cross spectral norm, defined as

More precisely, let with . Then
we can write

and obtain the energy of the output signal

where and is the -th eigenvalue in
. Selecting the columns of corresponding to the largest

(weighted) cross spectral norm terms, i.e., the largest terms
among

would lead to the “best” representation of the desired
user signal, in the sense of maximizing the output energy of the
desired user.

Collect the selected columns of into a matrix , and
likewise for . Although it seems natural to choose
and , the above technique does in fact not prescribe a
partitioning of into and . Moreover, by selecting columns
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of we have also limited our choice: is projected on a
subspace of eigenvectors. This is not necessarily optimal.

It will be shown later in Lemma 1 that the APN leading to
MMSE has to satisfy the condition .
Choosing equal to the dominant eigenvectors of is
optimal if is in this subspace, which occurs only if there are
at most sources in white noise. This also implies that, for
the same scenario, the solution from cross spectral projections,
where consists of eigenvectors maximizing the cross
spectral norm would be optimal only if the dominant eigen-
vectors are selected.
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