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Objective: Automated seizure detection is a key aspect of wearable seizure warning

systems. As a result, the quality of life of refractory epilepsy patients could be improved.

Most state-of-the-art algorithms for heart rate-based seizure detection use a so-called

patient-independent approach, which do not take into account patient-specific data

during algorithm training. Although such systems are easy to use in practice, they lead to

many false detections as the ictal heart rate changes are patient-dependent. In practice,

only a limited amount of accurately annotated patient data is typically available, which

makes it difficult to create fully patient-specific algorithms.

Methods: In this context, this study proposes for the first time a new transfer learning

approach that allows to personalize heart rate-based seizure detection by using only

a couple of days of data per patient. The algorithm was evaluated on 2,172 h of

single-lead ECG data from 24 temporal lobe epilepsy patients including 227 focal

impaired awareness seizures.

Results: The proposed personalized approach resulted in an overall sensitivity of 71%

with 1.9 false detections per hour. This is an average decrease in false detection rate

of 37% compared to the reference patient-independent algorithm using only a limited

amount of personal seizure data. The proposed transfer learning approach adapts

faster and more robustly to patient-specific characteristics than other alternatives for

personalization in the literature.

Conclusion: The proposed method allows an easy implementable solution to

personalize heart rate-based seizure detection, which can improve the quality of life of

refractory epilepsy patients when used as part of a multimodal seizure detection system.

Keywords: epilepsy, transfer learning, seizure detection, personalization, heart rate analysis, SVM

1. INTRODUCTION

Epilepsy is one of the most common neurological disorders, which affects around 1% of the
population worldwide (1). Anti-epileptic drugs provide adequate treatment for about 70% of
epilepsy patients (2). The remaining 30% of the patients continue to have seizures, which drastically
affects their quality of life. This can be improved by an automated warning system that alarms the
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parents or caregivers when the patient experiences a seizure.
By using such a system, the patients and relatives feel more
at ease knowing someone will be able to help the patient out
when a seizure would occur. Quick intervention can then lead
to a decrease in injuries and avoid (post-)ictal complications,
including sudden unexplained death in epilepsy (SUDEP). In
addition, a seizure diary, automatically generated from the
alarms, can be used for a follow-up of the disease and evaluation
of the treatment. A seizure diary, kept by the patients or
their families, has proven to be unreliable, which leads to bad
treatment follow-up (3). An automatically generated seizure
diary could lead to a more objective seizure count and an
improved treatment selection.

The key element of such a warning system is the automated
seizure detection algorithm. In the literature, these algorithms
are typically based on full electroencephalography (EEG). EEG
recordings mostly require wet electrodes on the scalp, which is
uncomfortable for a long-term monitoring solution (4). More
easily obtainable biomedical signals used to detect epileptic
seizures include accelerometry (ACC), electromyography
(EMG), electrocardiography (ECG) and galvanic skin response
(5). The most suitable modality or combination of modalities
depends on the seizure type. ECG-based seizure detection, for
instance, is ideal for the detection of focal impaired awareness
seizures (FIAS) arising from the temporal lobe, as they are
not accompanied by typical motor components, but they are
associated with ictal tachycardia (6–8). Therefore, this study
focuses on patients with temporal lobe epilepsy, as for this type
of focal seizures, ECG-based seizure detection is of most added
value compared to other wearable modalities. It should however
be noted that ECG-based seizure detection algorithms can be
used for a wider range of seizure types, including focal seizures
with non-temporal seizure onsets and generalized tonic-clonic
seizures (9). It is also a very important modality for long-term
monitoring applications as it allows to assess the patient’s general
health status (e.g., sleep and general heart conditions).

Most ECG-based seizure detection systems from the literature
are based on patient-independent models (10–13). For this type
of models, no patient-specific data is required, making them
directly usable in practice. However, due to the large inter-patient
differences in heart rate characteristics, performance is too low
for practical use.

FIGURE 1 | Illustration of the learning procedure using (A) traditional machine learning and (B) transfer learning.

In order to increase the performance, models can be adapted
to the patient heart rate characteristics (14, 15). Different options
are possible. A first option is the manual setting of some
parameter thresholds per patient (15, 16). This requires manual
screening of previous patient data, and it only works well if
the parameters are easily understandable. Simple thresholding
approaches are however too simple to grasp the large complexity
of the problem. Automated personalization is therefore advised,
but it normally requires a lot of patient-specific data in order to
find a robust algorithm for a specific patient (17). Often, only
a limited amount of accurately annotated patient-specific data
is available, hence a lot of complex approaches are not useful
for making fully patient-specific classifiers. Heuristic automated
algorithms allow a low-complex and fast personalization, but
might lead to suboptimal results (9).

A more robust and optimal solution can be found through
transfer learning (18, 19). In transfer learning, the solution to
a classification problem is found by using the solution from a
similar problem (“source task”) as a starting point (see Figure 1).
This way, less data for the new problem (“target task”) is
required in order to get a robust solution as a part of the
knowledge is already contained in the reference model. In
this paper, a patient-specific heart rate-based seizure detection
model is trained through transfer learning by using a patient-
independent classifier as a reference model. Therefore, only a
limited amount of patient-specific heart rate data is required
in order to get a robust patient-specific model, obtained with a
relative limited complexity. This paper proposes a new enhanced
transfer learning solution that is also able to deal with the large
class imbalance and allows to give more importance to seizure
samples during classifier training for each individual.

The novelty of this study is threefold. First, a new transfer
learning procedure is proposed. An existing transfer learning
method is enhanced in order to deal with class imbalance and
allows to give increased importance to sensitivity rather than
specificity. The latter is a crucial aspect for automated seizure
detection. Secondly, the proposed transfer learning approach
is applied in order to efficiently personalize heart rate-based
seizure detection with a limited amount of patient data. To the
best of our knowledge, it is the first time transfer learning is
used to personalize automated non-EEG-based seizure detection.
Unimodal seizure detection systems based on heart rate typically

Frontiers in Neurology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 145

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


De Cooman et al. Personalizing Heart Rate-Based Seizure Detection

lead to inaccurate results that are insufficient to be used in
practice (20). In this context, the proposed methodology offers
a novel solution that can be used as part of a multimodal system,
which allows to adapt the detection system to each patient. As
a result, a more accurate and usable solution could be achieved
(21). These multimodal systems are currently getting close to
sufficiently high accuracy for practical usage, but are typically
restricted to a certain seizure type (22). The added value of
using heart rate in a multimodal system is that it is the ictally
most activated modality besides EEG, which allows detection of
a wide range of seizure types. Improving the unimodal heart
rate-based seizure detection using the proposed method will also
improve the multimodal seizure detection, closing the gap to
practical usage for a wide range of seizure types. Finally, an
in-depth analysis is performed in order to indicate the added
value of the proposed transfer learning approach compared to the
state-of-the-art literature of heart rate-based seizure detection.

2. MATERIALS AND METHODS

2.1. Data Acquisition
The dataset contains recordings from refractory epilepsy
patients, who underwent presurgical evaluation at the University

Hospitals Leuven (UZ Leuven), Belgium and had at least five
FIAS originating from the temporal lobe during the evaluation.
The patients were recorded with 10–20 scalp EEG with 1 bipolar
ECG channel (lead II) with a sampling frequency of 250 Hz
in a fully wired system. The data was recorded continuously
and contains both day and night data of the patients within
a hospital room. The single-lead ECG signal was continuously
unreadable due to noise during 4.6 (patient 13), 8.8 (patient 16),
and 7.4 (patient 18) hours. Those segments were removed from
the analysis. The remaining data consists of 24 patients with 2,172
h of data. In total, 228 seizures were recorded (see Table 1).

A clinical expert annotated the seizure onsets and offsets
with the use of video-EEG data, without considering the ECG.
Afterwards, a neurologist validated the annotations. The seizure
duration was defined as the time between EEG seizure onset and
offset. However, during 30% of the seizures, the offsets could
not be determined. The ethical committee of the UZ Leuven
approved the study (approval number S59662). All patients
signed the informed consent for their participation in this study.

2.2. Preprocessing
Single-lead ECG was used as input for the proposed seizure
detection algorithm. First, the heart rate was extracted from the

TABLE 1 | An overview of the dataset.

# RD Mean Range

Patient Seizures (h) Hemisphere Origin Age Gender SD (s) SD (s)

1 10 26 B T 49 M 31 [24–39]

2 9 63 L F-T 41 F 13 [13–13]

3 13 71 R T 27 M 71 [28–96]

4 10 25 B T 18 M 19 [14–26]

5 11 47 R T 29 F 50 [40–60]

6 7 148 L T 26 M 63 [32–116]

7 30 67 R F-T 19 M 50 [17–90]

8 11 114 L T 38 M 39 [19–75]

9 8 64 L T (7), O (1) 28 M 23 [11–31]

10 6 111 EEG not readable 35 M 126 [69–183]

11 6 100 B (5), R (1) T 67 F 26 [21 31]

12 9 91 R F-T 24 F 47 [33–85]

13 8 109 R T 32 M 46 [25–61]

14 5 100 L T 19 F 56 [29–83]

15 13 110 EEG not readable 49 M 16 [8 30]

16 5 96 L T 45 M 64 [11–95]

17 7 102 UC (4), R (3) UC (4), T (3) 18 F 33 [33–33]

18 5 84 L (3), R (2) T 62 M 125 [89–187]

19 15 113 UC 40 F 23 [6–52]

20 5 113 L T 41 F 74 [58 83]

21 8 103 L (3), R (5) T (3), F-T (5) 43 M 67 [29–99]

22 12 115 L (4), R (3), B (5) T 35 M 27 [17–38]

23 6 101 R T 23 F 80 [51–108]

24 8 99 R T (1), O-T (5) 24 F 42 [17–84]

Total 227 2172 [18–67] 14M/10F 50± 30 [6–187]

RD, Recording Duration; SD, Seizure Duration; L, Left; R, Right; B, Bihemispheric; UC, Unclear; T, Temporal; O, Occipital; F, Frontal.
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ECG using an approach that used a real-time R peak detection
algorithm. It detected the R peaks based on the derivative signal
and an adaptive threshold Tt that changed based on the maximal
derivatives Pt of the previously detected R peaks (Tt = 0.9 ∗

Tt−1 + 0.1 ∗ Pt). Next, strong heart rate increases (HRI) caused
by sympathetic activations were detected by automated slope
analysis on the tachogram. HRI extraction was performed on a
filtered tachogram, using a median filter with an order of 15 heart
beats. If a heart rate gradient was larger than 1 bpm/s, a strong
HRI was assumed. The beginning and end of this HRI was found
by analyzing when this heart rate gradient became negative again.
TheHRI was then assumed to be a strongHRI if thresholds on the
length of the HRI (> 8 s), the achieved peak heart rate during the
HRI (>60 bpm) and the (percentual) increase in heart rate during
the HRI were exceeded (>10 bpm absolute heart rate increase,
>25% percentual increase). These thresholds are based on the
findings presented in De Cooman et al. (10).

2.3. Feature Extraction
Features were extracted whenever such a strong HRI was
detected. InDeCooman et al. (10), it was shown that four features
extracted from the HRI led to optimal patient-independent
results: the peak heart rate, the heart rate at the start of the
HRI, the baseline heart rate (extracted from the minute before
the HRI) and the standard deviation of the baseline heart rate
period. As the primary goal of this study was to lead to optimal
patient-specific results with a limited amount of patient-specific
data, only the first two features were used in this study. The
reason for this was that most of the performance of the system
was already accomplished by those two features. Adding more
features to the system requires more training data for robust
personalization through transfer learning. Choosing these two
features led to an optimal balance between performance and
limited requirement of patient-specific data. These features were
then classified with either the patient-independent (PI) classifier
or the patient-specific (PS) transfer learning classifier.

2.4. Patient-Independent Classification
Let {xi, yi}

N
i=1 be the training data points extracted from patients

different than the ones used for testing the algorithm, with xi ∈
IR2 the data samples and yi ∈ {−1,+1} the corresponding
labels. Let class -1 correspond to seizure samples and class +1 to
non-seizure samples. Support vector machines (SVM) will map
data points to a higher dimensional space using a (non-)linear
transformation ϕ(x), so that the data points can be separated in
this space by the hyperplane wTϕ(x) + b, with w the unknown
weight vector and b an unknown constant.

The solution for weighted SVM can be found by solving the
following optimization problem

min
w,b,ξ

1

2
||w||2 + C

N∑

i=1

ciξi

s.t.

{
yi(w

Tϕ(xi)+ b) ≥ 1− ξi

ξi ≥ 0 ,∀i ∈ [1,N]
,

(1)

with ξi the error of the model on xi and C a tunable
hyperparameter. A modification of the typical SVM is used here
to remove the class imbalance from the dataset (23). The values
of ci are defined as

ci =

{
γ

(N++N−)
2N− : yi = −1

N++N−

2N+ : yi = +1
. (2)

The parameter γ gives more importance to the correct
classification of seizure samples compared to non-seizure
samples during classifier training. The Lagrangian of (1) becomes

L(w, b) =
1

2
||w||2 + C

N∑

i=1

ciξi −

N∑

i=1

νiξi

−

N∑

i=1

αi

(
yi

(
wTϕ (xi) + b

)
− 1+ ξi

)
(3)

with αi, νi ≥ 0 the Lagrange multipliers, leading to the
dual problem

min
α

=
1

2

N∑

i=1

N∑

j=1

yiyjαiαjK
(
xi, xj

)
−

N∑

i=1

αi

s.t.

{∑N
i=1 αiyi = 0

0 ≤ αi ≤ Cci ,∀i ∈ [1,N]
,

(4)

with K(xi, xj) = ϕ(xi)
Tϕ(xj) the kernel function. The values

of the hyperparameter C, γ and the Gaussian kernel parameter
σ are taken as reported to be optimal in De Cooman et al.
(10). The classifier is trained using the leave-one-patient-out
crossvalidation (LOPO-CV) approach, training the classifier on
all patients except the one used for evaluating the algorithm.

2.5. Personalized Classification Through
Transfer Learning
The goal of this study is to personalize the seizure detection
classification in order to get an optimal patient performance with
a limited amount of patient-specific data. One solution for this
is to use transfer learning (TL), which allows to train a new
classifier for a problem with a limited amount of data by using a
reference classifier that solves a similar problem. The previously
trained patient-independent classifier discussed in section 2.4
is used as the reference classifier. This way, the classifier can
be personalized with a limited amount of patient-specific data
by using the knowledge already incorporated in the patient-
independent classifier. An overview of the proposed procedure
for personalizing the heart rate-based seizure detection is given
in Figure 2.

The newly proposed transfer learning approach is based on
the concept described in Yang et al. (24). It states that the
weight vector of the new SVM solution should be sufficiently
similar compared to the weight vector of the reference SVM
solution, while also minimizing the misclassification error on
the data of the new problem. In this use case, it means that
the weight vector of the new patient-specific and reference
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FIGURE 2 | Overview of the proposed transfer learning approach for personalized heart rate-based seizure detection. HRI, heart rate increase; PI SVM,

patient-independent support vector machine; PS TL SVM, patient-specific transfer learning support vector machine.

patient-independent classifier should be sufficiently similar. The
minimization problem proposed in Yang et al. (24) is enhanced
here in order to also be able to deal with class imbalance and
the increased importance of the sensitivity in seizure detection
algorithms. The following minimization problem to create an
SVM classifier for the patient-specific data {̃xk, ỹk}

M
k=1

is proposed

min
w̃,b̃,ξ̃

1

2
||w̃− w||2 + D

M∑

k=1

c̃kξ̃k

s.t.

{
ỹk(w̃

Tϕ(x̃k)+ b̃) ≥ 1− ξ̃k

ξ̃k ≥ 0 ,∀k ∈ [1,M]

(5)

with ξ̃k the error of the model on data point x̃k and w the weight
vector obtained from the patient-independent classifier trained
using (1), defined as

w =

N∑

i=1

αiyiϕ(xi) (6)

by the original SVM optimization problem. The same
transformation function ϕ and corresponding kernel K
used in the reference classifier are used here. This minimization
problem contains weights c̃k for each x̃k, which allows to also
take care of the class imbalance and sensitivity importance in the
optimization. These weights are defined as

c̃k =

{
γ̃

(M++M−)
2M− : ỹk = −1

M++M−

2M+ : ỹk = +1
, (7)

withM+ andM− indicating the number of patient-specific non-
seizure and seizure data points. The introduction of these weights
c̃k are crucial as they ensure that the personalized classifier
is sufficiently stable and targets a sufficiently large sensitivity,
which is required for real-life seizure detection systems.
Hyperparameter D allows to balance between minimizing the
errors for the patient-specific data points and minimizing

the difference compared to the reference patient-independent
classifier (defined byw). Parameter γ̃ is experimentally initialized
to a value of 1.5. The initial value for hyperparameter D depends
on the amount of seizures available in the training set, and
is set to 0.1 for patients with less than 10 seizures and set
to 100 for patients with more than 10 seizures. These values
are based on the findings reported in De Cooman et al. (25).
Nevertheless, these parameters should ideally be optimized per
patient, based on their validation performance, but it is very
challenging to get robust hyperparameter optimization results
due to the low amount of patient training data. Therefore, a more
heuristic method is applied, which lowers the values of γ̃ (linear
decrease of 0.25) and D (exponential decrease by factor 1/10)
if the resulting classifier leads to 50% more false detections on
the patient training data than the available patient-independent
approach. This reduction is repeated until the false detection rate
(FDR) is dropped below this threshold or minimal values for γ̃

(=0.25) and D (=0.01) are reached. This procedure is required
to avoid that the personalized approach would overtrain on a
limited amount of abnormally small ictal heart rate increases,
which could lead to a drastic increase in FDR compared to the
reference patient-independent classifier.

An optimal solution for (5) is found for the saddle point in the
Lagrangian L

max
α̃,β̃

min
w̃,b̃,ξ̃

L(w̃, b̃, ξ̃ ; α̃, β̃)

= max
α̃,β̃

min
w̃,b̃,ξ̃

1

2
||w̃− w||2 + D

M∑

k=1

c̃kξ̃k −

M∑

k=1

β̃kξ̃k

−

M∑

k=1

α̃k

(
ỹk

(
w̃Tϕ(̃xk)+ b̃

)
− 1+ ξ̃k

)

(8)

with α̃k, β̃k ≥ 0 the Lagrangian multipliers. This leads to





∂L
∂w̃

= 0 → w̃ = w+
∑M

k=1 α̃kỹkϕ (̃xk)
∂L

∂ b̃
= 0 →

∑M
k=1 ỹkα̃k = 0

∂L

∂ξ̃k
= 0 → α̃k + β̃k = Dc̃k,∀k ∈ [1,M]

(9)
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so that the dual problem of (5) is defined as

min
α̃

N∑

i=1

M∑

k=1

yĩykαiα̃kK (xi, x̃k)−

M∑

k=1

α̃k +
1

2

M∑

k=1

M∑

l=1

ỹk̃ylα̃kα̃lK (̃xk, x̃l)

s.t.

{∑M
k=1 α̃k̃yk = 0

0 ≤ α̃k ≤ Dc̃k , ∀k ∈ [1,M]
.

(10)

Note that

w̃ = w+

M∑

k=1

α̃kỹkϕ(x̃k) (11)

indicates that the patient-specific w̃ is a combination of patient-
independent and patient-specific information. A new data point
x̃n is then classified using

y(x̃n) = sign

(
M∑

k=1

α̃kỹkK(x̃k, x̃n)+b̃+

N∑

i=1

αiyiK(xi, x̃n)

)
. (12)

The TL classifier is trained and tested using a 5-fold crosstesting
scheme, in which 4 folds of patient-specific data are used for
training and 1 for testing. This is then repeated 5 times so that
each fold is used once as test set.

2.6. Alternative Automatic Personalization
Solutions
The proposed transfer learning approach is also compared to
two different alternatives for personalization. The first alternative
includes a fully PS approach which is trained with only PS data
using the SVM classifier defined by (1) as in De Cooman et al.
(14). The other alternative is a so-called mixed model, in which
both PI and PS data are used for training an SVM classifier
defined by (1), but adapting the values of ci in (2) into cMIX

i :

cMIX
i =

{
siγ

N++N−+M++M−

2(N−+M−)
: yi = −1

si
N++N−+M++M−

2(N++M+)
: yi = +1

(13)

with

si =

{
4 : i ∈ PSdata
1 : i /∈ PSdata

(14)

such that misclassification of PS data is more critical during
training than misclassification of non-PS data. The value 4 is
chosen as recommended in De Cooman et al. (14).

2.7. Algorithm Evaluation
In order to compare the different seizure detection algorithms,
four performance metrics were used. The first two metrics
correspond to the sensitivity (Se, percentage of detected seizures)
and false detection rate (FDR, expressed in false positives/hour,
FP/h). A seizure is detected if a detection is generated between
1 min prior to the seizure onset and 2 min after the seizure
onset. All other detection were classified as false detections. False

detections within 1 min of each other were counted as one false
detection. In order to combine the Se and FDR in one metric, the
Fβ-score with β = 3 is defined as:

Fβ =
(1+ β2)TP

(1+ β2)TP + β2FN + FP
(15)

with TP, FN, and FP the number of true positives (detected
seizures), false negatives (missed seizures) and false positives
(false detections). The F3-score is chosen for this application
because it gives more importance to Se compared to FDR. As
last metric, the detection delay was determined, which indicates
the time difference between the moment of detection and the
EEG seizure onset. Average measures over the entire dataset
can be expressed as patient average performance (Pat.-Av.),
which is the average of the performance of each patient, or
overall average (Tot.-Av.), computed on the total number of
seizures or recording duration. The first average measure is used,
unless specificallymentioned. To prove the significant differences
between the algorithms, paired t-tests were performed. All results
were obtained retrospectively in a simulation which replicated a
real-time setting.

2.8. Impact of Number of Seizures in
Training
One of the advantages of transfer learning is that it allows
to train a new classifier with a relative limited amount of
data by using a reference classifier (18). In this simulation,
the number of required training seizures needed to gain
sufficient added value in seizure detection performance was
evaluated. Instead of using the full training set, only a few
seizures (0–4) from the patient-specific training set were
used for training (using the crosstesting scheme described
in section 2.5). A model trained with zero seizures is
equivalent to a patient-independent model. These training
seizures were chosen randomly in 100 simulations for each
selected amount of training seizures. This simulation was done
for the proposed transfer learning approach and the alternatives
for personalization.

2.9. Comparison With the Literature
In order to compare the proposed algorithms against the state-
of-the-art literature, three algorithms (11, 15, 26) were also
implemented and evaluated on the same dataset. The algorithms
were implemented based on the corresponding publications.
Both Osorio (11) and van Elmpt et al. (15) were based on
an algorithm that requires two moving windows: one short
window indicating the current heart rate behavior and one
longer window indicating the reference/baseline heart rate. Both
approaches were described to be patient-independent algorithms,
but no preferred threshold values were described in the papers.
Therefore, optimal patient-independent threshold values leading
to the highest F3-score were automatically chosen using a LOPO-
CV procedure on each training set. The algorithm described in
Jeppesen et al. (26) was originally designed to be a patient-specific
algorithm (based on non-seizure patient data), but also a patient-
independent variation of the algorithm is evaluated here. The
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used threshold on the parameter value is also optimized in a
LOPO-CV procedure.

Also new patient-specific versions of these algorithms from
the literature were constructed in an automated fashion.
This is done using 5-fold crosstraining, where the threshold
values are automatically chosen based on the optimal F3-score
found in the 4 folds of training. Also the test mentioned
in section 2.8 is performed for the different state-of-the-
art algorithms to compare how fast these can adapt to a
patient’s characteristics.

3. RESULTS

The preprocessing procedure discussed in section 2.2 identified
84.7% of the seizures, which gives an indication of the amount
of seizures with ictal heart rate increases. Table 2 gives an
overview of the results of the patient-independent (PI), fully
patient-specific (PS), mixed (MIX) and transfer learning (TL)
approaches. The PI algorithm results in an average Se of 75%
with 3.0 FP/hour and an F3-score of 0.22. By adapting the
model to the patient characteristics with the TL algorithm,
a similar Se is observed (71%) with 37% less false positives
(1.9 FP/hour). The average F3-score is increased to 0.30.
Figure 3 shows the results of the proposed TL approach and
the reference PI approach for each patient. It illustrates that
personalization allows to strongly increase the performance for
most patients.

The alternative mixed approach results in a similar Se,
but with on average 0.7 FP/h more than the proposed TL
approach. The fully PS approach results in a decreased Se,

TABLE 2 | Results for the patient-independent (PI), fully patient-specific (PS),

mixed (Mix) and transfer learning (TL) approach.

Se (%) FDR (FP/h) F3-score

P-Av T-Av P-Av T-Av P-Av T-Av

Proposed method

PI 75± 22 76 3.0± 1.3 3.0 0.22± 0.14 0.20

PS 58± 27 59 2.2± 1.7 2.3 0.24± 0.20 0.19

MIX 72± 24 74 2.6± 1.5 2.5 0.25± 0.17 0.22

TL 71± 27 73 1.9± 1.1 2.0 0.30± 0.22 0.26

Jepessen (26)

PI 51± 32 52 2.8± 1.6 3.0 0.16± 0.17 0.13

PS 46± 23 49 2.0± 1.5 1.9 0.23± 0.21 0.18

Osorio (11)

PI 71± 25 72 2.8± 1.2 3.0 0.22± 0.15 0.19

PS 75± 23 76 2.3± 0.8 2.3 0.27± 0.18 0.24

Vanelmpt (15)

PI 59± 35 61 3.4± 2.4 3.5 0.17± 0.15 0.14

PS 76± 20 77 4.9± 3.4 5.2 0.19± 0.17 0.13

Both patient average (P-Av) ± standard deviation and overall average (T-Av) are shown in

the table.

Bold values indicate the best result for all proposed algorithms for a specific metric.

with a slightly increased FDR (2.2 FP/h) compared to the TL
approach. The TL approach did not only result in a decreased
average FDR, but also decreased FDR variability over the
different patients compared to the personalization alternatives
(see Figure 4).

By performing a two-sided paired t-test, the sensitivity of
the PI and MIX algorithm were found to be not statistically
different from the TL algorithm [p = 0.29 (PI vs. TL) and p
= 0.82 (MIX vs. TL)]. However, the FDR of the PI and MIX
algorithm are different compared to the TL algorithm [p< 0.001
(PI vs. TL), p= 0.03 (MIX vs. TL)]. The fully PS approach has
a lower Se than the TL algorithm (p= 0.01), whereas the FDRs
are not significantly different (p= 0.29). The F3-score of the PI,
fully PS and MIX algorithm are lower than the TL algorithm
[p< 0.001 (PI vs. TL), p= 0.01 (PS vs. TL), p< 0.01 (MIX vs.
TL)]. This shows that the proposed transfer learning method is
indeed statistically better than the other evaluated approaches
for personalization. The average detection delay for the proposed
transfer learning approach was 21 s.

Table 2 also shows the results of both the patient-independent
and personalized versions of the algorithms from the literature.
The algorithms from van Elmpt et al. (15) and Jeppesen et al.
(26) result in clearly lower sensitivity with a comparative FDR
as the proposed patient-independent approach. The algorithm
from Osorio (11) leads to nearly the same average result as the
proposed patient-independent approach, with a slightly lower
sensitivity, FDR and F3-score. Both algorithms from Osorio (11)
and Jeppesen et al. (26) show an increase in performance by
personalizing the thresholds, but result in a lower performance
than the proposed TL approach. The personalized version of van
Elmpt et al. (15) leads to a strongly increased sensitivity, but also
the FDR increases.

As explained in section 2.8, the influence of the number
of training seizures on the TL algorithm performance was
investigated. Figure 5A shows the impact on the F3-score
performance in function of the number of seizures available
during training. The F3-score for the TL approach strongly
improves compared to the PI performance if only one patient-
specific seizure is available in the training set. When two seizures
are available, the variation between the results decreases, while
the average performance increases. The performance further
increases by including additional seizures to the training set,
while still maintaining a similar variation in results. Figure 5A
also shows the effect of the number of seizures in the training
set for the other personalization methods, which results in clearly
lower performances for each number of available seizures.

The same simulation results for the state-of-the-art algorithms
are shown in Figure 5B. The algorithms from Osorio (11) and
van Elmpt et al. (15) lead to a decent increase with one available
patient-specific seizure, but only increases in accuracy slowly
by adding more seizures. This increase is stronger for Jeppesen
et al. (26) by adding more seizures, although the results with
four available seizures are still worse than the proposed patient-
independent algorithm. Although the algorithm from Osorio
(11) had a similar patient-independent F3-score, the proposed
personalized TL approach outperforms the personalized version
of Osorio (11).
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FIGURE 3 | Sensitivity, FDR and F3-score per patient with patient average (P-Av) and overall average (T-Av) performances for the patient-independent (PI) and transfer

learning (TL) algorithm.

FIGURE 4 | Boxplots of sensitivity, FDR and F3-score for the

patient-independent (PI), fully patient-specific (PS), mixed (MIX) and transfer

learning (TL) algorithm.

4. DISCUSSION

4.1. Performance Comparison of the PI and
TL Approach
Table 2 and Figure 4 show that the mean and median sensitivity
of the PI and TL approaches are similar, whereas the FDR
decreases and the F3-score increases. By looking at the patients
individually (Figure 3), it can be observed that the TL approach
clearly reduced the FDR for some patients without decreasing the

sensitivity (e.g., patients 2, 5, and 20). The transfer learningmodel
adapts well to the patient-specific heart rate characteristics.
In these patients, the ictal heart rate changes are often very
stereotypical, showing little intra-patient variability, which leads
to a strong decrease in FDR. Figure 6 illustrates the impact of
the number of seizures on the performance for some patients.
For patient 5, the personalized approach already gets most
performance increase by only including 1 patient-specific seizure.
There is also limited variability in the results of the different
simulations, showing that the model is accurate and robust for
this patient, and little intra-patient variability is found in the
ictal HRIs. For patient 2, also a fast personalization can be
obtained, but more variability is found between the results of the
simulations. This is due to a larger intra-patient ictal variability,
so that the selection of seizures in training has a bigger impact on
the performance. This impact however reduces if more patient-
specific seizures are added to the model, leading to a more
robust personalized model. Patient 15 had a lot of seizures during
the recording, but these seizures showed a large intra-patient
variability in terms of ictal HRIs. This intra-patient variation
was mostly caused by the variation of seizure duration, which
were typically to short to be strongly differentiable from non-
epileptic HRIs. The ictal HRIs are also harder to differentiate
from non-ictal HRIs compared to patients 2 and 5, leading
to a slower learning curve than those from patients 2 and 5.
In general, the steepness of the learning curve and amount of
seizures before convergence depend on both ictal and inter-ictal
heart rate behavior of each patient.

For some patients, however, the sensitivity dropped slightly.
This is due to the fact that the model adapts to the patient
characteristics. However, the heart rate characteristics during

Frontiers in Neurology | www.frontiersin.org 8 February 2020 | Volume 11 | Article 145

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


De Cooman et al. Personalizing Heart Rate-Based Seizure Detection

FIGURE 5 | Impact of the number of seizures on the F3-score performance for different alternatives. (A) Effect for the different proposed personalization approaches,

including the full patient-specific (PS) approach, mixed approach (mixed) and transfer learning (TL) approach. In case 0 seizures are available for training, the

performance of the patient-independent algorithm is shown. (B) Effect for the different algorithms implemented from the literature, compared to the proposed transfer

learning approach.

FIGURE 6 | Impact of the number of seizures on the average F3-score

performance (including standard deviations for the performed simulation test)

for the proposed personalized transfer learning approach for patients 2, 5,

and 15.

some seizures were atypical (different from other seizures) for
that patient. Less severe seizures were typically accompanied with
smaller heart rate increases. Those seizures were sometimes not
detected with the TL model. An example of a smaller ictal heart
rate increase compared to normal ictal heart rate behavior for
a particular patient is illustrated in Figure 7. The proposed TL
approach adapts to the majority of seizures, and therefore might
lead to a missed detection of these atypical seizures. However,
this small decrease in sensitivity is often accompanied with a
strong decrease in FDR for those patients. The reverse also
occurred in some patients, where borderline seizures that were
missed by the PI approach are detected by the proposed TL

FIGURE 7 | Example of an ictal small heart rate increase (HRI) and 3 normal

ictal heart rate increases for patient 8. The vertical line indicates the seizure

onset of the different seizures. The shown tachogram signals are filtered using

the median filter discussed in section 2.2.

approach (e.g., patient 24). The results above show that, although
personalization in general allows to improve the performance,
it still has difficulty to counter unpredictable intra-patient
variability in seizure behavior. If five seizures within a patient are
stereotypical and used for training, an atypical sixth seizure will
not be detected accurately using supervised personalization. This
is however typically not the case for stronger seizure type (e.g.,
focal to bilateral seizures), as they are typically easier to detect
with heart rate-based seizure detection, even if the algorithm is
not specifically trained for this seizure type.

This increase in performance was, however, not achieved for
all patients, for example in patient 1. For those patients, rather
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atypical ictal HR increases are observed, or the HRIs are too
weak in magnitude, making it difficult to differentiate them
from non-epileptic heart rate activity. If the seizure activity is
too similar to non-seizure activity for that patient, the model
cannot be improved by means of personalization. Other ECG-
based features or features from other modalities might have to
be included then in order to achieve better performance for
these patients.

Only 84.7% of seizures had ictal HRIs in the analyzed
dataset, which is a similar percentage as in the literature (6–8).
Personalizing the algorithm will not help to detect these seizures
without ictal heart rate changes. Also false detections or missed
seizures caused by too strong ECG noise cannot be avoided by
the personalization as they can occur both ictally and inter-ictally
(27). Other approaches should be used to further improve the
performance, such as improved noise removal techniques.

An example of the obtained classifier boundaries for patient
11 are illustrated in Figure 8. The seizure and non-seizure data
points are shown together with the PI, PS and TL boundary
for two different values of hyperparameter D (0.01 and 1), with
a fixed γ̃ value of 1.5. The PI boundary gives a good general
indication, but lacks adaptation to the patient characteristics. The
TL approach adapts to these characteristics with a limited amount
of available patient-specific data. By choosing a low value for D
(i.e., 0.01) the TL model will be similar to the PI model because a
relative low weight is given to the errors obtained for the patient-
specific data compared to the first term in (5), which quantifies
how different the new model is to the original one. With a higher
value ofD themodel adaptsmore to the patient-specific data (and
the corresponding errors ξ̃k) and shows less similarity to the PI
boundary. The PS boundary is less optimal, compared to the TL
solution. It can be seen from the TL boundary that it still contains
information gathered in the PI classifier (especially for low values
of D), indicating the added value of this approach. This way, the
FDR is strongly decreased, without affecting the sensitivity.

FIGURE 8 | Visualization of SVM boundary of the patient-independent (PI),

fully patient-specific (PS), and personalized transfer learning (TL) classifier for

different D-values (0.01 and 1).

4.2. Comparison of Alternative
Personalization Solutions
Different alternatives for personalization were implemented and
evaluated in order to compare with the proposed transfer
learning approach (see Table 2 and Figure 4). The naive
approach only uses patient-specific data points for training a
normal SVM classifier. Despite all patients had at least 5 seizures,
this was still an insufficient amount of data for most patients in
order to get a robust patient-specific classifier. In Cogan et al.
(17), it was mentioned that at least 6–8 seizures were required in
order tomake a personal algorithm, and the reason for this was to
better include the inter-seizure variability of autonomic changes
within a patient. Due to the relative low amount of patient-
specific data, it often occurred that the classifier was overtrained
on a limited amount of seizure data, not taking into account
potential fluctuations between different seizures from a patient.
This led to a strong decrease in sensitivity, although the FDR
was not so much higher than the proposed TL approach. The
TL approach is able to better take this inter-seizure variation
into account by holding on to the knowledge described by the
reference PI classifier.

The mixed model (MIX) uses a mixture of patient-specific
data with data from other patients in the training set of a
standard SVM training procedure. It produced more robust
results than the fully patient-specific approach without strong
negative outliers. However, it generated, on average, around 0.5
FP/h more than the proposed TL approach. Applying transfer
learning to the reference classifier allows to better take over the
information of the PI classifier and translate it to the patient-
specific model, whereas the mixed approach would try to create
a new model without this prior model knowledge. The proposed
transfer learning method not only leads to a better performance,
but is also trained faster with an optimization problem which
contains less data to analyze.

4.3. Impact of Number of Seizures on
Personalization
Transfer learning allows to train a personalized classifier for heart
rate-based seizure detection. It is however important to have an
idea of how much data is actually needed for this. In seizure
detection, the amount of seizures is often the restricting factor
as some patients have a low seizure frequency. In section 2.8,
a simulation study was described to evaluate the impact of the
number of seizures in training on the personalized performance
(see Figure 5).

The proposed TL approach already leads to a strong increase
in F3 performance by only including 1 seizure in the training set.
This shows that with only 1 seizure, the algorithm can already
be personalized. There is a lot of variation in the results, which
is caused by the heterogeneity of the seizures in the training set.
There is also a lot of variation in ictal heart rate changes between
different seizures within a patient, so if an atypical seizure is used
in training, this will lead to suboptimal results for that patient.
By using 2 seizures during training, the F3 performance increases
slightly, and also the variability between results of different
simulations decreases. However, from 3 seizures onwards, the
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variability is no longer strongly decreased with the proposed
method. The average performance increases further up until 4
available seizures, and is expected to increase further if more
seizures are included in training (17). From a certain amount of
seizures, it is however expected that the fully PS approach would
lead to a better performance than the proposed TL method.
Nevertheless, it is currently not known how many seizures are
required for this with the proposed procedure.

Figure 5 also shows the effect of the number of seizures on
the alternative personalization approaches. It can be seen that
by only having 1 patient-specific seizure in the training data,
the TL performance strongly increased, whereas this increase
is less evident for the other approaches. For the PS approach,
the median performance is increased, but a large portion of the
results were actually worse than for the reference PI approach.
This is due to the fact that the PS method is often strongly
overfitting on data from 1 seizure, which is not a robust way
for training a classifier. The average F3 scores for the fully PS
approach increase by adding more seizures, and the variation on
performance decreases. The results however remain lower than
those from the proposed TL approach when using 4 seizures. The
mixed model is more robust than the fully PS approach for a
limited amount of seizures, but it slightly loses its added value
when more seizures are added to the training set.

4.4. Comparison to the Literature
Different algorithms from the literature were also implemented
both patient-independently and patient-specifically and
evaluated on the dataset described in section 2.1. Table 2 shows
that the patient-independent version of the proposed algorithm
clearly outperforms the algorithms from van Elmpt et al. (15)
and Jeppesen et al. (26), but has a similar result as Osorio (11).
A simplified patient-independent algorithm from De Cooman
et al. (10) is used here as described in section 2.3, which has
shown to outperform the literature. Due to the simplification,
the added value of this algorithm over (11) is reduced, but its
added value compared to van Elmpt et al. (15) and Jeppesen et al.
(26) remained similar.

However, when patient-specific alternatives for these three
algorithms were made using the automatic procedure described
in section 2.9, the proposed personalization procedure clearly
outperforms all these algorithms (see Figure 5B and Table 2).
The algorithm from Osorio (11) shows a big increase by
personalizing the algorithm, even for only one available seizure,
but the added value is much smaller compared to the proposed
transfer learning approach. Smaller increase in performance
is found in the algorithm of van Elmpt et al. (15), with
only a very slow learning curve with increasing number of
annotated seizures per patient. A much steeper learning curve
is found for the algorithm from Jeppesen et al. (26). Although
the algorithm has the lowest patient-independent performance,
the performance increases very fast with increasing number
of seizures. The algorithm was originally meant for patient-
specific evaluation. However, even with four seizures available
per patient, it performs worse than the proposed personalized
transfer learning method. The proposed personalization method
using transfer learning thus not only performs more accurately
in general, it also allows a much faster training if only a limited

amount of patient-specific seizures are available. This is crucial in
practice as some patients have a very low seizure frequency, and
thus the personalized algorithm can reach much faster a desired
level of accuracy than state-of-the-art algorithms.

4.5. Limitations of the Study
There are however some limitations to the performed study
that have to be taken into account. First of all, the data is
recorded in the hospital, where the patients were restricted to
move within their room. This leads to a limited activity of the
patient, which can lead to an underestimation of the amount of
false detections in practice. However, it is compared to state-
of-the-art algorithms from the literature on the same dataset,
and has proven to outperform these on this dataset. However,
currently no study in the literature has shown results of such
heart rate-based algorithms for full day-and-night monitoring in
a real home environment.

Furthermore, during the presurgical evaluation, drug
treatment can be altered or completely removed. This can
influence the results in two ways. First, certain drugs can alter
the heart rate variability of the patient, which might lead to
different (stronger) ictal and inter-ictal heart rate changes during
the presurgical evaluation compared to the home situation. In
some patients, indeed small changes in heart rate variability
could be found during the first and last day of monitoring.
However, the ictal heart rate changes between the first and last
day of monitoring were found to be limited compared to the
variability that has to be taken into account for the circadian
fluctuation of the heart rate features. Therefore, this did not lead
to extra missed seizures or a large increase in false detection
rate in this study. A second influence is the fact that stronger
seizures can occur during the presurgical evaluation compared
to the typical home situation. However, only a couple of focal
to bilateral seizures were found in our dataset, and the large
majority of seizures were perceived to be typical seizures for that
patient in their home environment. Other drugs not applied in
this study could however have stronger influence on the heart
rate variability and the ictal changes. This should be further
investigated in future work, as it could influence the usability of
data from the presurgical evaluation as training data for such
algorithms when used in a home environment.

No dedicated wearable ECG derived device is used in this
study. Currently, a large portion of false detections and a small
percentage of missed seizures is caused due to poor ECG quality,
largely due to the wiring. A previous study has shown that better
performance can be obtained by using a wearable ECG device
rather than the standard wired hospital ECG (27). This would
however be the case for all evaluated algorithms in this study,
including those from the literature tested in this study on the
discussed dataset.

4.6. General Discussion and Future Work
The proposedmethod allows a fully automated personalization of
heart rate-based seizure detection. In literature, personalization
was often reached after adjusting thresholds manually after visual
inspection of the data (15, 16). This is however a very costly and
non-scalable solution. In Jeppesen et al. (26), the personalization
was done automatically by adjusting the threshold per patient
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based on data from a non-epileptic segment of 30 min. Although
this is a more scalable solution, only 30 min of non-seizure
data does not contain sufficient information to grasp the full
complexity of the heart rate variability of that patient (e.g., the
circadian rhythm). The proposed solution does take into account
much more complexity in a fully automated way, which allows a
better implementation in practice.

Despite the increased performance caused by personalization
through transfer learning, still a too high FDR is obtained for
usage in practice. Personalization allows to solve some of the
issues leading to a too high FDR, but is not able to solve
all issues related to heart rate-based seizure detection. Some
seizures do not contain ictal heart rate changes, and still a
large portion of non-epileptic heart rate changes cannot be
differentiated from epileptic HRIs with the current techniques.
The proposed method should, however, be used as part of
a multimodal algorithm, where it is combined with another
modality. Such multimodal combination has shown to lead
to FDR decreases with factors 5–10 compared to unimodal
performance (21). Similar to the seizure detection algorithms,
also the used modalities should be chosen for each individual
patient based on its typical ictal changes and seizure type.
Accelerometers and EMG sensors could lead to an increased
performance for the detection of motor seizures (21, 28). For
the detection of non-motor focal seizures, behind-the-ear EEG
could be used (29). The advantage of heart rate-based seizure
detection over other modalities is that ECG is often monitored as
well during video-EEG monitoring in the hospital, which allows
to get accurately annotated heart rate data to personalize the
algorithm. It is also ictally the most activated modality (apart
from full EEG), so it is ideal to increase the detection performance
of a wide range of seizure types. If a late integration approach
is used for combining information from different modalities,
the proposed personalized method can be easily integrated and
further improve the multimodal performance with a similar
accuracy increase as in an unimodal setting.

The proposed transfer learning approach is a supervised
approach, which means that annotated data was required. In
practice, these annotations can be made in the hospital during,
for example, presurgical evaluation, but they could also be
made by the patient or their caregivers/family. Extra procedures
should then be added to avoid a too big impact of incorrectly
annotated data as patients are not always aware about whether
they actually had a seizure or not (3, 14). Ideally, an unsupervised
approach could be used (9, 25, 26), which indicates that epileptic
heart rate activity can be seen as an outlier to normal heart
rate activity. This is however only the case during the night
(30) or in certain severe seizure types, which makes this
approach only sufficiently successful for nocturnal monitoring
of severe seizures. Supervised approaches are thus still required
for personalizing full day monitoring applications. Due to the
supervised approach, still at least one patient-specific seizure
is required in order to adapt to the patient characteristics. In
patients who have a very low seizure frequency, this might still
be a problem for a fast personalization. For these patients, it is
then advised to have a large pool of patients, and seizures from
patients with similar HRV parameters as the test patient. Then,

these seizures could be added to the patient-specific data in order
to be able to apply this method.

5. CONCLUSION

Transfer learning allows to personalize heart rate-based
seizure detection in a fast and robust way by using only
a limited amount of annotated patient-specific data. The
false detection rate dropped by 37% compared to the
patient-independent approach while maintaining a similar
sensitivity. The novel automated personalization approach
proposed in this study outperforms the state-of-the-art
patient-independent algorithms while also being less prone
to overfitting than manual state-of-the-art patient-specific
approaches. The proposed method can be used as part of a
multimodal algorithm in order to increase the performance
and make real-time epileptic seizure warning systems
clinically feasible.
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