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Ionospheric Calibration

C. Lonsdale

The most difficult ionospheric calibration problem
arises when both the field of view and the array
aperture are larger than the ionospheric
irregularity scale. The complex gains depend on
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Current Calibration Schemes

The current approach can be summarized as:

1. Create a deterministic data model of the form

x = f(θ) + w,

where x are the observation, f() is the Measurement
Equation, θ are the unknowns, and w is the noise.

2. Use a Least Squares solver to find

θ̂ = arg min
θ

‖x − f(θ)‖2,

where θ̂ is an estimate of θ.
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Rationale behind Least Squares I

Estimation theory tells us that best estimator for
a deterministic data model is the Minimum
Variance Unbiased (MVU) estimator. Its variance
is given by the Cramer-Rao bound.

Unfortunately the MVU can be hard to find or
does not even exist. An estimator that is
asymptotically efficient and always exists is
Maximum Likelihood

θ̂ = arg max
θ

p(x,θ)
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Rationale behind Least Squares II

In the case of Gaussian noise, Maximum
Likelihood simplifies to a (Weighted) Least
Squares fit

θ̂ = arg max
θ

p(x,θ) = arg max
θ
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In radio astronomy we usually deal with a large

number of samples and Gaussian noise. In that

case Least Squares is an efficient estimator.
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Ionospheric Modeling

In absence of (traveling) disturbances, the dynamics of the
ionosphere can be described by turbulent flow. A
deterministic model of turbulence will be too complex for
calibration purposes.

A far simpler, yet effective model of turbulence is that of a
random process.

Stochastic model for ionosphere

Estimators for solving stochastic models
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Structure Function

A random process is specified by first and
second order moments.

First order moment is the mean

Second order moments can be specified as
covariance, structure function or power spectral
density

The structure function is defined as

Dx(|x1 − x2|) = E[(x(r1) − x(x2))
2]
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Kolmogorov Turbulence

By means of a dimensional analysis, Kolmogorov has
derived the 3-D power spectral density of turbulent flow. It
obeys a powerlaw with exponent β = −11/3.

The fluctuations of ionospheric electron density follow the
same spectral density. Integrating out the vertical
dimension leads to the Singel Layer Model. The structure
function of the Total Electron Content is

DTEC(r) ∼ r5/3
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Results GPS measurement

The following estimates of the structure function are based
on GPS data measured in The Netherlands, last January.
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Frozen flow

v
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Frozen flow –> Correlations

From the structure function in combination with the frozen
flow model we can derive the autocorrelation function of
the phase difference

κ(τ) =
1
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Estimation based on stochastic model

The correlation function is a quantitative measure of smoothness.
We can use it to find the optimal basis. The eigenvalue decompos-
tion of Cθ is given by
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The Karhunen-Loève transformation is given by

θ = Up, p = U
T

θ

The correlation matrix of the tranformed data is

Cp = Λ
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Karhunen-Loève basis
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Now we can apply LS as before, but even using the KL
basis the result is not optimal.
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MMSE estimator

The estimator with the lowest Mean Square Error
is the Bayesian MSSE

θ̂ = arg min

θ̂

E[|θ̂ − θ|2]

The solution of this minimization problem is given
by

θ̂ = E[θ|x]

This is the expected value of θ with respect to the

A Posteriori PDF.
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A Posteriori PDF

The A Posteriori PDF is found using Bayes rule

p(θ|x) =
p(x|θ)p(θ)

∫

p(x|θ)p(θ)dθ

Evaluation of the expected value is usually too
complex. Instead we can search for the
maximum of the a posteriori pdf.

θ̂ = arg max
θ

p(θ|x)
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Maximum A Posteriori Estimator

The MAP is very similar to ML

θ̂ = arg max
θ

p(x,θ)

= arg max
θ

1

(2π)
k

2 |Cw|
1

2

exp

[

−
1

2
(x − f(θ))T

C−1

w
(x − f(θ))

]

1

(2π)
n

2 |Cθ|
1

2

exp

[

−
1

2
(θ

T

C−1

θ
θ)

]

⇒

θ̂ = arg min
θ

‖C
− 1

2

w (x − f(θ))‖2 + ‖C
− 1

2

θ
θ‖2

Using the Karhunen Loève transform this becomes

p̂ = arg min
p

‖C
− 1

2

w (x − f(Up))‖2 + ‖Λ− 1

2p‖2

θ̂ = Up̂
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Simulations I
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Simulations II
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Simulations III

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  10  20  30  40  50  60  70  80  90  100

P
ha

se
 (

ra
d)

Time (s)

Phase plot

True phase difference
Angle of (complex) visibility

SNR = 0dB

N = 1000

v = 100m/s

b = 3000m

D(3000) = 1

Calibration and Imaging Workshop 2006 – p.19/21



Simulations IV
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Conclusions

Advantages of stochastic modeling and MAP
estimation are

Performance close to theoretic optimum (MMSE).

No major changes to the software needed

Minor impact on computational complexity

Increasing model order always reduces error

Future work

Complete the stochastic model of the ionosphere to include
space, time and frequency correlations

Improve stochastic model using LOFAR measurements

Extension to TID?
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