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A Novel Receiver Architecture for Single-Carrier
Transmission over Time-Varying Channels

Zijian Tang and Geert Leus

Abstract—In this paper, we present a single-carrier transceiver
for rapidly time-varying channels, where the equalization step
is implemented in the frequency domain. When the channel
abides with both fast fading and severe inter-block interference,
our equalizer relies on a band approximation of the frequency-
domain channel matrix to maintain low complexity. We will show
that the band approximation error can be associated in the time
domain to a critically-sampled complex exponential basis expan-
sion modeling error. Based on this property, we propose a novel
receiver architecture that extends the original data model by
inserting zeros at the receiver. The resulting effective channel can
be characterized by an oversampled complex exponential basis
expansion model, which has a considerably reduced modeling
error compared to the critically-sampled one. In other words,
the band assumption that is essential to the equalizer will be
made more accurate and thus the equalization performance can
be improved.

Index Terms—single-carrier, basis expansion model, time-
varying channels, inter-block interference

I. INTRODUCTION

IN A SINGLE-CARRIER transmission system over a
lengthy channel, it is more efficient to equalize the channel

in the frequency domain utilizing a simple one-tap equalizer
[1]. The underlying consideration is that the frequency-domain
(FD) channel is a diagonal matrix, i.e., the subcarriers remain
orthogonal to each other. However, this is only true if there
is no inter-block interference (IBI) present and the channel
stays invariant during at least one block. In the presence of
IBI, a sufficient number of redundant symbols (guard interval)
needs to be inserted between the blocks, which might not be
affordable in practice due to a stringent bandwidth constraint.
In a scenario of high-mobility, on the other hand, the channel
time variation within a block cannot be neglected, and induces
Doppler spread in the frequency domain. In these cases,
the orthogonality among the subcarriers is corrupted and the
FD channel becomes actually a full matrix. A reliable FD
equalizer for such a channel will be much more expensive,
which is the key issue considered in this paper.

To restore the orthogonality among the subcarriers, pre-
processing at the receiver is indispensable. For instance, a
channel shortening technique, in the form of a finite impulse
response (FIR) filter, is proposed in [2] for time-invariant
channels, with the aim of shortening the effective channel
within the given guard interval. In [3], an FIR filter is adopted
to “flatten” the channel’s fluctuation, which can be considered
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as the dual of channel shortening. In [4], both schemes are
combined. Such an approach works well for channels that are
moderately spread in delay and Doppler dimensions.

Often, a perfectly diagonal FD channel matrix is too difficult
to achieve. In a realistic transmission system, the Doppler-
induced channel has most of its power concentrated in the
vicinity of the diagonal in a circular sense, with those entries
that are far away from the diagonal decreasing fast [5], [6].
This implies that it is more practical to assume a banded FD
channel matrix1. Many equalizers exploit this banded (rather
than diagonal) structure to lower the complexity, e.g., the
block linear zero-forcing (ZF) equalizer in [7], the block linear
minimum mean square error (MMSE) equalizer in [8], [9], the
iterative serial MMSE equalizer in [10]–[12], the maximum
likelihood (ML) equalizer in [13]–[15], etc. It can be imagined
that to enhance the equalization performance, especially at
a moderate to high signal-to-noise ratio (SNR), the band
approximation error must be reduced as much as possible. One
solution can be the FIR filter of [4], but it generally requires a
multiple antenna assumption and can still be too complicated.
Since we need not to enforce a diagonal FD channel matrix
but a banded one, a reduced-order FIR filter with just a single
tap could be adequate. Such a filter is referred to as a receiver
window in [9]–[12], [15].

In this paper, we will present two receiver architectures in
combination with windowing to counteract the channel time
variation as well as the IBI for a single-carrier transmission
system. The first receiver will be based on the original data
model (ODM), which describes the actual channel input/output
(I/O) relationship. The second receiver will be based on the
so-called extended data model (EDM), which extends the
ODM by inserting zeros at the receiver. The advantage of
the EDM is that by inserting zeros at the receiver, we are
endowed with some extra design freedom to shape the Doppler
effect better. More specifically, we can choose freely the
part of the channel that corresponds to the inserted zeros.
In both data models, the full FD channel matrix will be
approximated by a banded matrix for the sake of complexity.
Note that unlike [9]–[12], [15] where the banded matrix
is obtained by extracting the significant diagonals from the
original FD channel matrix, the band approximation in this
paper is achieved in a different manner: we will device a
banded matrix that is close to the full FD channel matrix only
in terms of the Frobenius norm. For the ODM, where the
considered full FD channel matrix is the same as the original
one, these two approaches are the same. However, for the
EDM, where part of the considered full FD channel matrix

1Strictly speaking, we actually mean “circularly-banded” here. However,
we will use the term “banded” in the sequel for the sake of brevity.
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can be chosen freely and thus not completely corresponds to
the original one, the proposed approach has an advantage.
A more profound rationale is that we have translated the
band approximation error in the frequency domain into a
basis expansion modeling (BEM) error in the time domain.
Recall that the idea of the BEM is initially documented in
[16] to reduce the number of parameters of a time-varying
channel at the cost of a small modeling error. In this paper,
we can show that the band approximation error in the ODM
corresponds to a modeling error resulting from the critically-
sampled complex exponential BEM ((C)CE-BEM) [17], [18]2,
while the band approximation error in the EDM corresponds
to a modeling error resulting from the oversampled complex
exponential BEM ((O)CE-BEM) [19]–[21]. This idea will be
reflected in our window design. Since the (O)CE-BEM in
general can yield a much tighter fit to a realistic time-varying
channel than the (C)CE-BEM, as reported in [22], it is not hard
to understand that the equalizer for the EDM will be subject to
a much smaller band approximation error than for the ODM,
and could thus be able to render a better performance.

We assume in this paper that the channel state information
(CSI) is known. Channel estimation for time-varying channels
has for instance been discussed in [18]. In the simulations
section, we will include some results using this channel
estimator.

Notation: We use upper (lower) bold face letters to denote
matrices (column vectors). (·)∗, (·)T and (·)H represent conju-
gate, transpose and complex conjugate transpose (Hermitian),
respectively. Ex{·} stands for the expectation with respect to
x. � represents the Schur-Hadamard (element-wise) product.
mod(a, b) gives the remainder of a divided by b. tr(X) and
‖X‖ denote the trace and Frobenius norm of X, respectively.
X† denotes the pseudo inverse of X. D{x} stands for a
diagonal matrix with x as the diagonal. We use [x]p to
indicate the (p + 1)st element of x, and [X]p,q to indicate
the (p + 1, q + 1)st entry of X. Further, we let IN denote an
N ×N identity matrix, 0M×N an M ×N all-zero matrix, and
1M×N an M × N all-one matrix. ek stands for a unit vector
with a one at the (k + 1)st position. FN denotes the unitary
N -point DFT matrix with [FN ]p,q = 1√

N
e−j 2π

N pq .

II. SYSTEM MODEL

Let us consider the discrete-time baseband model of a
communication system, where the channel is assumed to be
an FIR filter with order L, i.e., if we use hp,l to denote the
lth channel tap at the pth time index then hp,l = 0 if l < 0 or
l > L. Conform the FIR assumption, we can express the I/O
relationship as

yp = wp

L∑
l=0

hp,lsp−l + vp, (1)

where wp stands for the pth element of the window that is
deployed at the receiver; yp and vp denote the (windowed)
observation sample and noise at the pth time index, respec-
tively; and sp denotes the pth data symbol.

2As a matter of fact, such a link also underlies the equalizer design in [10],
[12], but is not straightforward to observe.

For this data model, we adopt the following assumptions.
Assumption 1: We deal in this paper with time-varying

channels, which implies that hp,l �= hq,l if p �= q. We assume
that the channel can be statistically characterized by a wide-
sense stationary uncorrelated scattering (WSSUS) model. To
be specific, we assume that

Eh{hp,lhp−m,l−n} = σ2
l γmδn, (2)

where δn denotes the Kronecker delta, σ2
l the variance of the

lth channel tap, and γm the normalized time correlation, i.e.,
γ0 = 1.

Assumption 2: We assume that the data symbols are zero-
mean white with unit variance, i.e., Es{sps

∗
p−m} = δm, and

the noise prior to windowing is zero-mean white with variance
σ2. With the window taken into account, this means that
Ev{vpv

∗
p−m} = σ2δmwpw

∗
p−m.

III. FD EQUALIZATION BASED ON THE ODM

A. Equalization Scheme

Suppose that the received samples are parsed into (possibly
overlapping) blocks of size N . For instance, let us define yt,N

as a vector collecting the observation samples from time index
0 to N − 1, yt,N := [y0, · · · , yN−1]T . Conform (1), the I/O
relationship for yt,N can be expressed in matrix/vector form
as

yt,N = D{w}H[sT
pre, s

T
N−L, sT

post]
T + vt,N , (3)

where vt,N is similarly defined as yt,N ; w is the N × 1 win-
dow vector, w := [w0, · · · , wN−1]T ; sN−L is an (N −L)×1
vector collecting data symbols, sN−L := [s0, · · · , sN−L−1]T ;
and spre and spost represent the L data symbols that are
contiguous to sN−L, spre := [s−L, · · · , s−1]T and spost :=
[sN−L, · · · , sN−1]T . The N×(N+L) matrix H stands for the
convolutive channel matrix with entries [H]p,n := hp,p−n+L.

In Fig. 1, it is shown how the relationship (3) can be re-
formulated as a quasi-circulant relationship3. In mathematics,
this leads to

yt,N = D{w}Ht,NsN + εt,N + vt,N , (4)

where
sN := [sT

N−L, sT
post]

T , (5)

and the N × N matrix Ht,N has entries [Ht,N ]p,n :=
hp,mod(p−n,N). The term εt,N represents the IBI, which can
be expressed as

εt,N := D{w}Hi,N (spre − spost), (6)

where Hi,N is an N × L matrix with entries [Hi,N ]p,n :=
hp,p−n+L. Transformed into the frequency domain, (4) be-
comes

yf,N := FNyt,N = Hf,NFNsN + εf,N + vf,N , (7)

where εf,N and vf,N are similarly defined as yf,N , and
Hf,N := FND{w}Ht,NFH

N stands for the FD channel
matrix. Since D{w}Ht,N is quasi-circulant, and not circulant
due to the channel time variation, Hf,N is not diagonal.

3We use the term “quasi-circulant” when dealing with a time-varying
circular convolution.
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sN−L

spost

spre

=

yt,N D{w}H

= +

D{w}Hi,NsD{w}Ht,N

sN−L

spost

−

(spre − spost)

+

vt,N

+

vt,N

Fig. 1. The original data model.

In (7), except for the windowing and the DFT, we did
not apply any other processing on the received samples, and
the data model is identical to what has actually happened in
reality. We therefore call this data model the original data
model (ODM). It is typical to the ODM that the DFT size
equals the number of observation samples. This will be in
contrast with the EDM scheme discussed in the next section,
where the DFT size is larger than the number of observation
samples.

The IBI in the frequency domain εf,N can be mitigated
by the utility of a guard interval of length Lz , e.g., a cyclic-
prefix (CP), a zero-postfix (ZP) [23] or a non-zero postfix
(NZP) [24]. In the CP case, we let [s−Lz , · · · , s−1] =
[sN−L, · · · , sN−L+Lz−1], while in the ZP and NZP case, we
let [s−Lz , · · · , s−1]T = [sN−L, · · · , sN−L+Lz−1]T = p, with
p being a zero or non-zero pilot vector, respectively. When
Lz ≥ L, IBI is completely removed. When there is no guard,
i.e., Lz = 0, IBI is present and has to be dealt with. However,
it is in that case still possible to reduce the amount of IBI.
We can for instance apply a sliding window approach, which
only estimates Ns data symbols out of sN−L at the time.
After that, the equalizer shifts Ns observation samples forward
to estimate the next Ns data symbols. This implies that the
consecutive received sample blocks yt,N will overlap with
each other over N − Ns samples. This is beneficial because
the IBI usually undermines the reliability of the data symbols
at the edges of the block. Note that a similar approach has
been proposed in [12].

The non-zero off-diagonal elements of Hf,N prevent the
viability of a simple one-tap equalizer. To facilitate a low-
complexity equalizer, we will approximate Hf,N with a

banded matrix Ĥf,N , which has only non-zero entries on the
main diagonal, the first Q/2 upper and the first Q/2 lower
diagonals in a circular sense. Here, Q is a design parameter
that can be chosen to make a trade-off between complexity
and performance. The smaller Q, the cheaper the equalizer,
but the worse the performance. A good value for Q is related
to the maximum Doppler spread [11]. It is noteworthy that
the banded matrix Ĥf,N is not simply obtained by taking the
Q + 1 most significant diagonals of Hf,N in a circular sense.
We desire that Ĥf,N should be close to Hf,N in terms of the
Frobenius norm. Therefore, Ĥf,N is designed as

min
Ĥf,N

‖Hf,N − Ĥf,N‖2, s.t. Ĥf,N = Ĥf,N � TQ. (8)

where TQ is a matrix of proper dimensions, which has ones
on the main diagonal, the first Q/2 upper and the first Q/2
lower diagonals in a circular sense, and zeros on the remaining
entries.

Let us now make things more concrete by applying the
above ideas to a block linear MMSE equalizer. This is just one
possible option, and similar studies can for instance be made
for a serial linear MMSE equalizer or for the iterative versions
of these two MMSE equalizers. Note that a similar study for
the iterative serial MMSE equalizer has been presented in [10],
[12]. Suppose we want to estimate the middle Ns data symbols
of sN−L by applying a block linear MMSE equalizer on (7),
where we neglect the IBI and replace Hf,N by Ĥf,N :

ŝNs = ΩNFH
NĤH

f,N(Ĥf,NĤH
f,N + Rv,N )−1yf,N , (9)
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Fig. 2. The V-shape of GN .

with

ΩN :=
[
0Ns×N−L−Ns

2
INs0Ns×N+L−Ns

2

]
, (10)

Rv,N := Ev{vf,NvH
f,N}

= σ2FND{w}D{w∗}FH
N . (11)

Since Ĥf,NĤH
f,N is banded with bandwidth 2Q + 1 and

assuming that Rv,N is also banded with bandwidth 2Q + 1
(we come back to this issue later on), we can apply a Cholesky
factorization [25] on the covariance matrix in (9) such that

Ĥf,NĤH
f,N + Rv,N = GNGH

N , (12)

where the upper-triangular matrix GN will assume a sparse
V-shape structure as illustrated in Fig. 2 (note that a similar
structure was observed in [15]). Applying the inverse of
Ĥf,NĤH

f,N + Rv,N can then be implemented by applying
the inverses of GN and GH

N separately using, e.g., Gaussian
elimination. It can be shown that this approach inflicts a
complexity of O(NQ2), i.e., the complexity is linear in N
and square in Q.

It is worth mentioning that in a single-carrier system, the
channel can also be equalized in the time domain. For instance,
we can apply a block linear MMSE equalizer directly on
(3), for which the complexity can be shown to be O(NsL

2).
However, since N/Ns is generally much smaller than L/Q,
it is more appealing to equalize the channel in the frequency
domain than in the time domain.

From the above derivations, it can be understood that to
enhance the equalization performance of the ODM, we need
to design the window w and the banded matrix Ĥf,N such
that the IBI ‖εf,N‖2 as well as the band approximation error
‖Hf,N − Ĥf,N‖2 will be minimized in some average sense.
In addition, the window should also be able to make the
noise covariance matrix Rv,N banded. These issues will be
discussed next.

B. Window Design for the ODM

We begin the window design with its noise shaping behav-
ior. Considering Assumption 2, we adopt the approach of [9],

which is summarized in the following proposition (see [9] for
a proof).

Proposition 1: The noise covariance matrix Rv,N will be
banded with bandwidth 2Q + 1 if we let the window w be a
weighted sum of Q + 1 complex exponentials:

w = BNd, (13)

where BN is comprised of the first Q/2+1 and the last Q/2
columns of FN ; and d is a (Q + 1)× 1 vector containing all
the weighting coefficients.
It is worth mentioning that the matrix BN tallies with the
classical definition of the (C)CE-BEM, whose period equals
the BEM window size N [17], [18].

Next, to minimize the band approximation error ‖Hf,N −
Ĥf,N‖2, we need to design the window w and the banded
matrix Ĥf,N jointly. The following theorem proves to be
important (see Appendix A for a proof).

Theorem 1: The minimization of the band approximation
error ‖Hf,N − Ĥf,N‖2 in the frequency domain can be
transformed in the time domain as the minimization of the
(C)CE-BEM modeling error. In mathematics, this can be
expressed as

min
Ĥf,N

‖Hf,N − Ĥf,N‖2 = min
C

‖D{w}H − BNC‖2. (14)

In the above, H stands for the N×(L+1) matrix collecting all
the channel taps, [H]n,l = hn,l, and C for the (Q+1)×(L+1)
matrix collecting all the BEM coefficients, [C]q,l = cq,l.

Theorem 1 establishes the equivalence between the band ap-
proximation error in the ODM and the (C)CE-BEM modeling
error.

Regarding the IBI, the following theorem is needed (see
Appendix B for a proof).

Theorem 2: The average power of the IBI εf,N in the ODM
is a function of the window as

Eh,s{‖εf,N‖2} = 2wTRε,Nw∗, (15)

where Rε,N denotes a diagonal matrix with diagonal entries
given by

[Rε,N ]n,n =
{∑L

l=n+Lz+1 σ2
l if n ≤ L − Lz − 1,

0 otherwise.
(16)

Using Proposition 1 as well as Theorems 1 and 2, the design
problem of finding a fixed window that minimizes both the
average minimal band approximation error and the average
IBI can now be formulated as

min
w

Eh

{
min

C
‖D{w}H − BNC‖2

}
+ 2wTRε,Nw∗,

s.t. w = BNd and ‖w‖2 = N. (17)

Note that the constraint ‖w‖2 = N is imposed to avoid the
trivial all-zero window.

We first solve (17) for C leading to C = B†
ND{w}H.

Plugging this result into the first term of (17), we obtain

Eh

{
min

C
‖D{w}H− BNC‖2

}
= tr

(PBN D{w}RH,ND{wH}PH
BN

)
= wT

(N−1∑
n=0

D{PT
BN

en}RH,ND{PH
BN

en}
)
w∗, (18)
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where

PBN := IN − BNB†
N , (19)

RH,N := Eh{HHH}. (20)

Note that using Assumption 1, the entries of RH,N can be
expressed as [RH,N ]m,n =

∑L
l=0 σ2

l γm−n.
Substituting (13) and (18) in (17) finally leads to

min
d

dT X Nd∗, s.t. ‖d‖2 = N, (21)

with

X N := BT
N

(N−1∑
n=0

D{PT
BN

en}RH,N

× D{PH
BN

en} + 2Rε,N

)
B∗

N . (22)

As a result, d can be computed as the least significant
eigenvector of X ∗

N .
Remark 1: We can show that the banded matrix Ĥf,N that

is obtained after minimizing the band approximation error
actually corresponds to the Q + 1 most significant diagonals
of Hf,N in a circular sense, i.e., Ĥf,N = Hf,N � TQ (see
[26] for a proof). It is noteworthy that although this result
coincides with the canonical band approximation approach
in [9]–[12], [15], the underlying consideration [c.f. (8)] is
obviously different.

Remark 2: The windows designed in [10], [12] maximize
the signal to interference (band approximation error and IBI)
and noise ratio directly in the frequency domain. As a matter
of fact, the band approximation error considered in [10], [12]
can also be translated as the (C)CE-BEM modeling error just
like in this paper. Indeed, if there is no noise and IBI, and
the window length is restricted to be equal to the observation
block length, we can show that the window of [10], [12] will
admit the same expression as the window of the ODM (the
proof can be found in [26])4. As will become evident from
the simulations, the performance of the windowing strategies
of [10], [12] is very close to that of the ODM. It is thus not
difficult to understand that a possible drawback of the ODM
window, and that of [10], [12] as well, is associated with a
relatively large modeling error inherent to the (C)CE-BEM
as reported in [22]. For the case no guard band is present,
i.e., Lz = 0, this can partially be solved by taking Ns much
smaller than N − L, so that the edge effects of the (C)CE-
BEM are avoided. But this is more difficult to carry out when
a guard band is present. A more general approach to avoid
this problem consists of extending the data model, as will be
discussed in the next section.

IV. FD EQUALIZATION BASED ON THE EDM

In the previous section, we have shown that the band
approximation error in the ODM can be translated into the
(C)CE-BEM modeling error. While the (C)CE-BEM suffers
from a relatively large modeling error, it is proposed in [19],
[20] that a more generalized form, the (O)CE-BEM, can yield

4Note that [10] considers a CP with Lz ≥ L to remove the IBI and restricts
the length of the window to the observation block length as in the ODM. On
the other hand, [12] considers no guard, i.e., Lz = 0, but does not necessarily
restrict the length of the window to the observation block length.

a much better modeling performance [22]. The (O)CE-BEM
is achieved by simply enlarging the period of the (C)CE-BEM
from N to K with K > N , maintaining the BEM window
length at N . However, the (O)CE-BEM can not be straightfor-
wardly applied to the ODM, because the (O)CE-BEM channel
matrix, if transformed into the frequency domain by FN to
the left and FH

N to the right, will not be banded. We can solve
this problem by enlarging the data model from size N to size
K , meanwhile keeping the observation block length equal to
N . This is explained in more detail next.

A. Equalization Scheme

To derive a larger data model, let us first rewrite the ODM
given in (4) as

yt,N = D{w}H̄NsN−L + D{w}H̄i,N

[
spre

spost

]
+ vt,N , (23)

where H̄N is an N × (N −L) matrix with entries [H̄N ]p,n :=
hp,p−n, and H̄i,N stands for an N ×2L matrix constructed as

H̄i,N :=

⎡
⎣ A 0L×L

0(N−2L)×2L

0L×L B

⎤
⎦ , (24)

where the L ×L matrix A has entries [A]m,n = hm,L−n+m,
and the L×L matrix B has entries [B]m,n = hN−L+m,m−n.
The relationship (23) is illustrated in the upper part of Fig. 3,
which should be compared with the upper part of Fig. 1.

We now want to extend the data model in (23) from size
N to size K , with K ≥ N . This can be done as shown in the
bottom part of Fig. 3, where the K × (K − N + L) matrix
U, the (K − N + L) × 1 vector svir, and the (K − N) × 1
vector vvir are subject to design, and where we have further
included the K × 1 vector yvir, which equals

yvir = Usvir + [01×N ,vT
vir]

T . (25)

In compact form, we get the following expression:[
yt,N

0(K−N)×1

]
+ yvir︸ ︷︷ ︸

yt,K

=
[( D{w}H̄N

0(K−N)×(N−L)

)
U

]
︸ ︷︷ ︸

Ht,K

[
sN−L

svir

]
︸ ︷︷ ︸

sK

+
[D{w}H̄i,N

0(K−N)×2L

] [
spre

spost

]
︸ ︷︷ ︸

εt,K

+
[
vt,N

vvir

]
︸ ︷︷ ︸

vt,K

. (26)

Note that in contrast to what we were saying before, we
do not only add zeros at the receiver, but we possibly also
include an additional known vector yvir. In any case, we have
introduced some redundancy only at the receiver, which is
completely transparent to the transmitter. Hence, the data rate
is not compromised. A direct implication is that the ODM in
(23) remains valid: it simply becomes a part of the larger data
model in (26). For this reason, we will refer to the resulting
relationship as the extended data model (EDM).

The second term on the RHS of (26), εt,K , is due to the
IBI. Removing its last K − N zero elements, we obtain

ε̄t,N = D{w}H̄i,N

[
spre

spost

]
. (27)
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spre

spost

sN−L

svir

+=

U

+

D{w}H̄N

+=

yvir

D{w}H̄i,N

D{w}H̄i,N

spre

spost

sN−L

D{w}H̄N

yt,N

0(K−N)×1 0(K−N)×2L0(K−N)×(N−L)

+
yt,N vt,N

vt,N

vvir

+

Fig. 3. Derivation of the extended data model.

Note that it can only be eliminated by the ZP or the NZP,
which is in contrast to the ODM, where we could also
eliminate the IBI using a CP.

Transformed into the frequency domain, the EDM in (26)
becomes

yf,K := FKyK = Hf,KFKsK + εf,K + vf,K , (28)

where εf,K and vf,K are similarly defined as yf,K , and
Hf,K := FKHt,KFH

K stands for the FD channel matrix,
which is again a full matrix. Like in the previous section, we
use a banded matrix Ĥf,K to replace Hf,K , with Ĥf,K having
non-zero entries only on the main diagonal, the first Q/2
upper and the first Q/2 lower diagonals in a circular sense.
Let us focus again on the block linear MMSE equalizer, and
let us choose svir to contain some random symbols that have
the same distribution as sN−L such that Es{sKsH

K} = IK .
Estimating the middle Ns data symbols of sN−L, where we
neglect the IBI and replace Hf,N by Ĥf,N , we then obtain

ŝNs = ΩKFH
KĤH

f,K(Ĥf,KĤH
f,K + Rv,K)−1yf,K , (29)

where

ΩK :=
[
0Ns×N−L−Ns

2
INs0Ns× 2K−N+L−Ns

2

]
, (30)

Rv,K := Ev{vf,KvH
f,K}

= FK

[
σ2D{w}D{w∗}

E{vvirvH
vir}

]
FH

K . (31)

As explained in the previous section, since Ĥf,KĤH
f,K is

banded with bandwidth 2Q + 1 and assuming that Rv,K is
also banded with bandwidth 2Q + 1 (we come back to this
issue later on), the required complexity to carry out (29) is
O(KQ2).

In summary, to enhance the equalization performance, the
window of the EDM should take a three-fold task: 1) to make
the noise covariance matrix Rv,K banded; 2) to minimize the
IBI ‖εf,K‖2 in some average sense; and 3) to minimize the
band approximation error ‖Hf,K − Ĥf,K‖2 in some average
sense.

B. Window Design for the EDM

Regarding the noise-shaping behavior of the window, we
have the following proposition (the proof is similar to the
proof of Proposition 1).

Proposition 2: The noise covariance matrix Rv,K will be
banded with bandwidth 2Q + 1 if the window can be con-
structed as a weighted sum of Q + 1 complex exponentials:

w = B̄(0)
N d, (32)

where B̄(0)
N is an N × (Q+1) matrix with entries [B̄(0)

N ]p,q =
1√
K

ej 2π
K p(q− Q

2 ); and d is a (Q + 1)× 1 vector containing all
the weighting coefficients. In addition, the virtual noise vvir

must be designed such that

E{vvirvH
vir} = σ2D{B̄(N)

K−Nd}D{B̄(N)
K−Nd}H , (33)

where B̄(N)
K−N is a (K − N) × (Q + 1) matrix with entries

[B̄(N)
K−N ]p,q = 1√

K
ej 2π

K (p+N)(q− Q
2 ).

The notations B̄(0)
N and B̄(N)

K−N stem from a more general

notation B̄(l)
M , which is defined next. Let us first define BK as

a K× (Q+1) matrix, which is comprised of the first Q/2+1
and the last Q/2 columns of the K-point DFT matrix FK .
Then B̄(l)

M will denote an M × (Q + 1) matrix consisting of
the lth until (l + M − 1)st row of BK . In mathematics, this
means that B̄(l)

M has entries

[B̄(l)
M ]p,q =

1√
K

ej 2π
K (p+l)(q−Q

2 ). (34)

Note that if we stack the two matrices B̄(0)
N and B̄(N)

K−N

from Proposition 2 on top of each other, then we obtain
BK , i.e., [B̄(0)T

N , B̄(N)T
K−N ]T = BK . That is why the proof

of Proposition 2 can easily be derived from the proof of
Proposition 1. The matrix B̄(l)

M tallies with the definition of the
(O)CE-BEM, which uses an exponential period K and a BEM
window size M with K > M [19], [20]. The (O)CE-BEM
plays an important role in minimizing the band approximation
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error ‖Hf,K − Ĥf,K‖2 as is evident from the following
theorem (see Appendix C for a proof).

Theorem 3: The minimization of the band approximation
error ‖Hf,K − Ĥf,K‖2 in the frequency domain can be
transformed in the time domain as the minimization of the
(O)CE-BEM modeling error. More explicitly, we can write

min
U,Ĥf,K

‖Hf,K−Ĥf,K‖2 =
L∑

l=0

min
cl

‖D{Υlw}hl−B̄(l)
N−Lcl‖2,

(35)
where Υl stands for an (N −L)×N selection matrix, Υl :=
[0(N−L)×l, IN−L,0(N−L)×(L−l)]; hl for the (N − L) × 1
vector collecting the lth channel tap from time index l to
N − L + l − 1, hl := [hl,l, · · · , hN−L+l−1,l]T ; and cl for
the (Q+1)×1 vector collecting the BEM coefficients for the
lth channel tap, cl := [c0,l, · · · , cQ,l]T .

In Theorem 3, we use for each channel tap hn,l a slightly
different (O)CE-BEM matrix B̄(l)

N−L to approximate the time
variation of that channel tap in the time interval from time
index l to N −L+ l−1. Adding the resulting BEM modeling
errors for all channel taps accounts for the band approximation
error.

Next, to minimize the IBI, the following theorem is useful
(see Appendix D for a proof).

Theorem 4: The average power of the IBI εf,K for the
EDM is related to the window as

Eh,s{‖εf,K‖2} = wT R̄ε,Nw∗, (36)

with R̄ε,N denoting an N ×N diagonal matrix with diagonal
entries given by

[R̄ε,N ]n,n =

⎧⎨
⎩

∑L
l=n+Lz+1 σ2

l if n ≤ L − Lz − 1,∑n−N+L−Lz

l=0 σ2
l if N − L + Lz ≤ n ≤ N − 1,

0 otherwise.
(37)

The window design problem that jointly minimizes the
average minimal band approximation error and the average
IBI can then be formulated as

min
w

L∑
l=0

Eh

{
min

cl

{‖D{Υlw}hl − B̄(l)
N−Lcl‖2}

}
+wT R̄ε,Nw∗,

s.t. w = B̄(0)
N d and ‖w‖2 = N. (38)

We solve the above first for cl resulting into cl =
B̄(l)†

N−LD{Υlw}hl. Plugging this result into the lth term of
(38), and using the property D{Υlw} = ΥlD{w}ΥH

l , we
obtain

Eh

{
min
cl

{‖D{Υlw}hl − B̄(l)
N−Lcl‖2}

}
= tr

(P
B̄

(l)
N−L

ΥlD{w}ΥH
l Rhl,N−LΥlD{w∗}ΥH

l PH

B̄
(l)
N−L

)

= wT
(N−L−1∑

n=0

ΥT
l D{PT

B̄
(l)
N−L

en}Rhl,N−L

× D{PH

B̄
(l)
N−L

en}Υ∗
l

)
w∗, (39)

where

P
B̄

(l)
N−L

:= IN−L − B̄(l)
N−LB̄(l)†

N−L (40)

Rhl,N−L := Eh{hlhH
l }. (41)

Note that using Assumption 1, the entries of Rhl,N−L can be
expressed as [Rhl,N−L]m,n = σ2

l γm−n. Substituting (32) and
(39) in (38), finally results into

min
d

dT X̄ Nd∗, s.t. ‖B̄(0)
N d‖2 = N, (42)

with

X̄ N := B̄(0)T
N

( L∑
l=0

N−L−1∑
n=0

ΥT
l D{PT

B̄
(l)
N−L

en}Rhl,N−L

× D{PH

B̄
(l)
N−L

en}Υ∗
l + R̄ε,N

)
B̄(0)∗

N . (43)

To resolve (42), we note that the columns of B̄(0)
N are not

orthonormal to each other. Therefore, we have to compute d
as the least significant generalized eigenvector of the matrix
pair (X̄ ∗

N , B̄(0)H
N B̄(0)

N ) [25].
Remark 3: For the EDM, the band approximation error is

minimized by tuning not only the banded matrix Ĥf,K itself
but also the matrix U as part of Hf,K [c.f. (35)], instead of
tuning only the banded matrix Ĥf,N as in the ODM case. This
already shows that the EDM has a better band approximation
error than the ODM. Related to this, for the EDM, we are
able to transform the band approximation error to the (O)CE-
BEM modeling error [c.f. (35)], instead of to the (C)CE-BEM
modeling error as in the ODM case. Since the (O)CE-BEM
is much tighter than the (C)CE-BEM [22], this also explains
why the EDM has an improved band approximation error over
the ODM.

V. NUMERICAL RESULTS

We test the proposed algorithms over a time-varying channel
following Jakes’ Doppler profile [27] using the time-varying
channel generator given in [28]. The channel is assumed to
have L+1 = 31 channel taps with the lth tap having variance
σ2

l = e−
l
10 . The Jakes’ Doppler profile is characterized by

the normalized time correlation γm = J0(2πνm), where J0(·)
denotes the zeroth-order Bessel function of the first kind, and ν
stands for the normalized Doppler spread, which is obtained as

ν =
vf

c
T , where v denotes the vehicle velocity, f the carrier

frequency, T the data symbol duration, and c the speed of
light. We will test two types of time-varying channels, ν =
0.002 and ν = 0.004, through which QPSK data symbols are
transmitted.

Test case 1. Without IBI. In the first test case, we let the
observation block length in the ODM and EDM be N = 128,
and a sufficiently long ZP of length Lz = L = 30 is used
such that the IBI is completely removed. As a result, we can
estimate the first Ns = 98 data symbols in one shot. Further,
we set Q = 4 for the ODM, while Q = 2 and K = 256 for
the EDM. With those parameters chosen, the complexity of
the ODM O(NQ2) is higher than that of the EDM O(KQ2).
For the sake of simplicity, we will set svir = 0 and vvir = 0
for the EDM. Although this breaks some conditions that we
assumed to hold, we have seen that this simplification only
brings small performance differences (not shown here).

The windows of the ODM and EDM are depicted in Fig. 4,
where we can see that the windows of the ODM take on a
bell-shape with the edges tending to zero, which is beneficial
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Fig. 4. The windows in the absence of IBI.

to the modeling performance of the (C)CE-BEM. In contrast,
the windows of the EDM are almost flat, suggesting that the
(O)CE-BEM itself is quite accurate in modeling the channel
time variation.

The bit error rate (BER) is compared in Fig. 5 and Fig. 6 for
ν = 0.002 and ν = 0.004, respectively. For comparison, we
have also plotted the performance of the same block linear
MMSE equalizer but using the window of [10], which has
the same length as the window of the ODM. Besides, we
also show the performance of the ODM without windowing
and the performance of the block linear MMSE equalizer
applied in the time domain, as discussed at the end of
Section III-A. Note that the latter does not suffer from any
band approximation errors. From Fig. 5 and Fig. 6, we can see
that the ODM without windowing performs the worst while the
time-domain approach performs the best. It is obvious that the
band approximation error plays a significant role. For the same
reason, the EDM renders a better performance than the ODM
even with a lower complexity. This performance lead is larger
at a higher Doppler spread, where the band approximation
error is more pronounced. As we have predicted, the window
of [10] yields a performance that is very close to that of the
ODM. Note though that [10] focuses on an iterative serial
MMSE equalizer, whereas we only implement block linear
MMSE equalizers.

The above equalizers are constructed based on perfect
channel state information (CSI). The performance of the equal-
izers of the ODM and EDM based on estimated CSI is also
exhibited in Fig. 5 and Fig. 6. The channel is estimated in the
time domain with the aid of pilots, which are interleaved with
data symbols as described in Fig. 7. We refer the interested
reader to [18] for more details about the considered channel
estimation scheme. Note that the proposed training scheme is
not very spectrally efficient, but this is the price we have to pay
for estimating such highly time-varying channels. The spectral
efficiency could be somewhat improved by using iterative
channel estimation schemes.

Test case 2. With IBI. Here, we examine the performance
when no guard interval is embedded. To combat the impact of
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Fig. 5. BER in the absence of IBI, ν = 0.002.
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Fig. 6. BER in the absence of IBI, ν = 0.004.

the IBI, we adopt the sliding window approach, where in each
time only the middle Ns = 64 data symbols of a block of N−
L data symbols are estimated, and afterwards, the equalizer
moves forward to estimate the next Ns = 64 data symbols.
The final BER is an average of all these data estimates. In an
effort to present a complete picture, we compare four different
schemes for the ODM and EDM, respectively. The parameters
for these schemes are summarized in Table I and Table II. Note
that the third column represents the order of magnitude of the
complexity per estimated data symbol. For comparison, we
also include the performance of the window proposed in [12],
which only has a slightly longer window length as the ODM
(N + L instead of N ). The windows of the ODM and EDM
for this test case are depicted in Fig. 8, where we can see that
the windows of the EDM are not flat anymore but also take
on a bell-shape to account for the IBI. The windows of the
ODM still have their typical bell-shape.

The performance for channels with ν = 0.002 is plotted
in Fig. 9, where we find that the EDM actually performs
worse than the other methods. Compared with Test Case 1,
the advantage of the EDM due to a better band approximation
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N = 128

17 131

Fig. 7. An illustration of the pilot structure: the black boxes represent data;
the blank boxes zero pilots; and the hatched boxes non-zero pilots.

TABLE I
ODM PARAMETERS

N Q NQ2/64
ODM-I 128 2 8
ODM-II 128 4 32
ODM-III 256 2 16
ODM-IV 256 4 64

is now nullified by the presence of IBI. Indeed, for the same
DFT size, the observation block length of the EDM is chosen
to be much shorter than for the other methods, and thus the
EDM is more susceptible to the impact of IBI.

A different story is depicted in Fig. 10 where the perfor-
mance is shown for channels with ν = 0.004. For such a
high Doppler spread, the band approximation error is more
prominent while the impact of IBI remains unchanged. In this
case, the ODM degrades, and the EDM regains its lead in
some cases.

From Fig. 9 and Fig. 10, it can also be remarked that the
window of [12] renders a performance that is similar to that
of the ODM.

Test case 3. With Partial IBI. In a practical system, it
is reasonable to assume that the IBI from the previous block
can be completely removed by perfectly estimating spre. Then
only the IBI resulting from spost needs to be combatted and the
window design can be adapted accordingly. In this case, we
can see from Fig. 11 that the windows of the EDM are only
bended to zero at the right edge where the IBI is still present,
while the windows of the ODM keep their typical bell-shape.
With less influence from the IBI, the EDM is able to produce
a better performance than the ODM in all situations, as we
can observe from Fig. 12 and Fig. 13.

VI. CONCLUSIONS

In this paper, we have discussed how a single-carrier system
that is plagued by fast fading and IBI can be effectively
equalized in the frequency domain. For the sake of complexity,
the FD channel matrix is approximated to be banded. Two
data models have been discussed that can both reduce the
band approximation error: 1) the original data model (ODM);
2) the extended data model (EDM). We have established a
link between the band approximation error in the ODM and
the modeling error of the (C)CE-BEM, and a link between
the band approximation error in the EDM and the modeling
error of the (O)CE-BEM. The (O)CE-BEM is known to yield
a much tighter fit than the (C)CE-BEM. It has been shown in
the simulations that although the EDM is not really effective
in combating the IBI, its superior band approximation perfor-
mance makes it still an appealing alternative for equalizing a
fast varying channel in the frequency domain.

APPENDIX A
PROOF OF THEOREM 1

It can be shown that for the banded Ĥf,N , its time-domain
counterpart Ĥt,N := FH

NĤf,NFN can be uniquely expressed

TABLE II
EDM PARAMETERS

N K Q KQ2/64
EDM-I 94 128 2 8
EDM-II 94 128 4 32
EDM-III 158 256 2 16
EDM-IV 158 256 4 64

as

Ĥt,N =
Q∑

q=0

D{BNeq}Cq, (44)

where Cq stands for a circulant matrix with
[cq,0, · · · , cq,N−1]T as its first yet-to-be-designed column.
Hence, the band approximation error in the frequency domain
can be expressed in the time domain as

‖Hf,N − Ĥf,N‖2 = ‖D{w}Ht,N − Ĥt,N‖2. (45)

If we want to minimize (45) it is clear that since D{w}Ht,N

has zeros outside its first L + 1 lower diagonals in a circular
sense, we should also design Ĥt,N to have zeros outside its
first L + 1 lower diagonals in a circular sense (note that the
main diagonal is assumed to be included here), which can be
realized by taking cq,L+1, · · · , cq,N−1 = 0. So, D{w}Ht,N

and Ĥt,N are different only in these L + 1 diagonals, which
for D{w}Ht,N can be written as D{w}H and for Ĥt,N can
be written as BNC. This concludes the proof.

APPENDIX B
PROOF OF THEOREM 2

By the definition of εt,N in (6) and using Assumption 2,
we understand that

Eh,s{‖εf,N‖2} = Eh,s{‖D{w}Hi,N (spre − spost)‖2}
= 2tr

(D{w}Eh{Hi,NΦLHi,N}D{wH}
)
,

(46)

where an L×L diagonal matrix ΦL is introduced to account
for a possible guard interval in spre and spost:

ΦL := D{[11×(L−Lz),01×Lz ]T }. (47)

It can be shown that under Assumption 1, we obtain

Eh{Hi,NΦLHH
i,N} = Rε,N , (48)

with Rε,N defined as in (16). Substituting the above in (46)
concludes the proof.

APPENDIX C
PROOF OF THEOREM 3

Similar to Appendix A, we can show that for the banded
Ĥf,K , its time-domain counterpart Ĥt,K := FH

KĤf,KFK can
be expressed as

Ĥt,K =
Q∑

q=0

D{BKeq}Cq, (49)

where Cq stands for a circulant matrix with
[cq,0, · · · , cq,K−1]T as its first yet-to-be-designed column.
As a result, the band approximation error in the frequency
domain can be transformed in the time domain as

‖Hf,K − Ĥf,K‖2 = ‖Ht,K − Ĥt,K‖2. (50)
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Fig. 8. The windows in the presence of IBI.
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Recall from (26) that Ht,K contains the K × (K − N + L)
matrix U, which is subject to design. Hence, if we want to
minimize (50), we should take U equal to the last K−N +L
columns of Ĥt,K . In this way, Ht,K and Ĥt,K will be different
only in their first N − L columns. Moreover, since Ht,K

has zeros outside its L + 1 most significant diagonals of
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Fig. 10. BER in the presence of IBI, ν = 0.004.

its first N − L columns, we should also design Ĥt,K to
have zeros outside its L + 1 most significant diagonals of
its first N − L columns, which can be realized by taking
cq,L+1, · · · , cq,K−1 = 0. This way, we come to a point
where Ht,K and Ĥt,K are different only in their L + 1 most
significant diagonals of their first N − L columns.
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Fig. 11. The windows in the presence of partial IBI.
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The lth diagonal of the first N − L columns of Ht,K

corresponds to the lth channel tap from time index l to
(N − L + l), which can thus be expressed as

[wlhl,l, · · · , wN−L+lhN−L+l,L]T = D{Υlw}hl. (51)

From (49), it can further be derived that the lth diagonal of
the first N − L columns of Ĥt,K can be expressed as

[
[Ĥt,K ]l,0, · · · , [Ĥt,K ]N−L−1,N−L−l−1

]T = B̄(l)
N−Lcl.

(52)
Hence, if we want to minimize (50) over both U and Ĥt,K , we
have to minimize the norm squared of the difference between
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Fig. 13. BER in the presence of partial IBI, ν = 0.004.

(51) and (52) over cl for every l = 0, 1, · · · , L. This is
quivalent to (35), which concludes the proof.

APPENDIX D
PROOF OF THEOREM 4

By the definition of ε̄t,N in (27) and using Assumption 2,
we understand that

Eh,s{‖εf,K‖2} = Eh,s{‖D{w}H̄i,N

[
spre

spost

]
‖2}

= tr
(D{w}Eh{H̄i,NΦ̄NH̄H

i,N}D{wH}
)
,

(53)
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with

Φ̄N := D{[11×(L−Lz),01×2Lz ,11×(L−Lz)]T }, (54)

which is introduced to account for the presence of a guard
interval (ZP or NZP). Under Assumption 1, it can be shown
that

Eh{H̄i,NΦ̄NH̄H
i,N} = R̄ε,N , (55)

with R̄ε,N defined as in (37). Substituting the above in (53)
concludes the proof.
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