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Abstract—The problem of choosing the best subset of sensors
that guarantees a certain estimation performance is referred to as
sensor selection. In this paper, we focus on observations that are
related to a general non-linear model. The proposed framework is
valid as long as the observations are independent, and its likelihood
satisfies the regularity conditions. We use several functions of the
Cramér–Rao bound (CRB) as a performance measure. We formu-
late the sensor selection problem as the design of a sparse vector,
which in its original form is a nonconvex -(quasi) norm optimiza-
tion problem. We present relaxed sensor selection solvers that can
be efficiently solved in polynomial time. The proposed solvers re-
sult in sparse sensing techniques. We also propose a projected sub-
gradient algorithm that is attractive for large-scale problems. The
developed theory is applied to sensor placement for localization.

Index Terms—Convex optimization, Cramér–Rao bound, non-
linear models, projected subgradient algorithm, sensor networks,
sensor placement, sensor selection, sparse sensing, sparsity.

I. INTRODUCTION

A DVANCES in sensor technology have enabled a large
spectrum of applications and services related to safety and

security, surveillance, environmental and climate monitoring,
to list a few. The sensor nodes are spatially deployed and op-
erate as a network, with each sensor node capable of sensing,
processing, and communicating to other nodes or a central pro-
cessing unit. As a network, their fundamental task is distributed
data sampling (i.e., to sense the environment) from which we
seek to extract relevant information. The sensors generate a pro-
hibitively large dataset, which is usually gathered at a fusion
center. This gathered data has to be optimally processed, re-
jecting the redundant, identical, or faulty measurements.
Sensor selection is a fundamental design task in sensor net-

works. The number of sensors are often limited either by eco-
nomical constraints (hardware costs), or the availability of phys-
ical or storage space. In order to reduce the hardware costs,
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as well as the resulting communications and processing over-
head, one would like to smartly deploy the sensors taking into
account the associated performance trade-off. Sensor selection
also enables the design of spatio-temporal samplers that guar-
antee a certain performance measure such as energy-efficiency,
information measure, estimation accuracy, or detection proba-
bility. For example, the sensor placement problem can be inter-
preted as a sensor selection problem in which the best subset
of the available sensor locations are selected subject to a spe-
cific performance constraint. Sensor selection is pertinent to
various diverse fields, especially to applications dealing with
large-scale networks like network monitoring [2], [3], location-
aware services like target localization and tracking [4]–[6], field
(e.g., heat, sound, precipitation) estimation [7], [8], and envi-
ronmental monitoring in general. The fundamental questions of
interest are:

q1. Where to deploy the limited sensors available?
q2. Do we need to process all the acquired measurements?

To this end, we focus on gathering only the most informative
data via sparse sensing for a general (non-linear) inverse
problem.

A. Related Prior Works

A large volume of literature exists on sensor selection [9, and
references therein]. The sensor selection problem is often for-
mulated as an optimization problem based on some well-known
performance measures from experimental design [9], [10], [11,
p. 384]. The sensor selection problem is expressed as the fol-
lowing optimization problem:

(1)

where is a selection vector of length , and is a
scalar cost function related to the error covariancematrix . The
error covariance matrix is optimized to select the best subset
of sensors out of available sensors. Different functions

can be used, and the typical choices for are
related to:
1) A-optimality: minimizes the sum of eigenvalues of with

.
2) E-optimality: minimizes the maximum eigenvalue of
with .

3) D-optimality: minimizes the determinant of with
.

All the above measures are equally reasonable, although neither
of them completely characterizes the error covariance. There is
no general answer to the question of how does one performance
metric compare with the other.
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The problem in (1) is a combinatorial optimization problem
involving searches, and it is clearly intractable even for
small-scale problems. To simplify this problem, the nonconvex
Boolean constraint is relaxed to a convex box con-
straint . The relaxed optimization problem has been
studied in [9] for additive Gaussian linearmodels, where thema-
trix can be expressed in closed form. More importantly, the
above listed performance measures for additive Gaussian linear
models are independent of the unknown parameter. Moreover,
in practice, the exact number of sensors to select might not
be known. Nevertheless, this number can always be tuned to
achieve a desired performance.
The above selection problem is applied to sensor place-

ment for power grid monitoring in [12]. Alternative greedy
approaches exploiting the submodularity of the objective func-
tion [13]–[17] are also proposed to solve the sensor selection
problem. Sensor selection for dynamical systems often referred
to as sensor polling or scheduling, is studied in [18]–[20].
In [21], the sensor placement problem for linear models is
addressed as the design of a sensing matrix that optimizes a
measure related to the orthogonality of its rows. All the above
literature (in general) deals with measurements that are related
to additive Gaussian linear models. Experimental design for
non-linear models within the Bayesian and sequential design
frameworks is discussed in [22]. In [18], sensor selection for
target tracking based on extended Kalman filtering has been
proposed, in which the selection is performed by designing
a sparse gain matrix. Moreover [18] is limited to an additive
Gaussian non-linear model, that is linearized around the (noisy)
past state estimate. This paper, on the other hand, deals with
general non-linear models, without an explicit linearization.
Sensor selection for detection problems is studied in [23]. In
[24], reliable sensor selection based on the actual measure-
ments to identify the outliers is presented. A different problem,
yet related to sensor selection, is the problem of identifying
source-informative sensors, which is studied in [25].

B. Contributions

We consider general scenarios where themeasurements of the
unknown parameter follow a non-linear model (unlike [9] for
instance). Non-linear measurement models are frequently en-
countered in applications like source localization, tracking, field
estimation, or phase retrieval, to list a few. The error covariance
matrix for non-linear models is not always available in closed
form, and more importantly it depends on the unknown param-
eter. Our first contribution in the context of sensor selection is to
leverage the additive property of the inverse Cramér-Rao bound
(CRB) or the Fisher information matrix (FIM) for independent
observations, and thus to express the performance requirement
as a convex set. The CRB is a rigorous performance measure for
optimality, and it generalizes very well for non-linear measure-
ment models (not necessarily in additive Gaussian noise). More-
over, we do not need the actual measurements, and hence, our
framework is also well-suited for solving offline design prob-
lems. In addition to this, the number of sensors that have to be
selected, i.e., , is generally not known in practice. Hence, in-
stead of fixing as in (1), we pose sensor selection alternatively

as a cardinality minimization problem that provides the number
of selected sensors as a byproduct.
The proposed sensor selection framework is generic and can

be applied to any non-linear estimation problem (linear being a
special case). The selection problem is formulated as the design
of a sparse selection vector, which is an -(quasi) norm non-
convex Boolean optimization problem. The nonconvex sensor
selection problem is relaxed using standard convex relaxation
techniques that can be efficiently solved in polynomial time.
A sparsity-enhancing concave surrogate for the -(quasi)

norm is also proposed for sensor selection as an alternative to
the traditional best convex relaxation. This is particularly advan-
tageous when there are multiple (nearly) identical sensor mea-
surements.
To cope with large-scale problems, we further present a

projected subgradient algorithm. It is worth mentioning that
the projected subgradient algorithm allows a very easy dis-
tributed implementation. In essence, we seek a sparse vector
(i.e., a vector with many zeros and a few non-zero entries)
that determines the sensing pattern. Sparse sensing leads to
energy-efficient sampling schemes. We illustrate the sensor
selection problem using examples of sensor placement for
source localization.

C. Outline and Notations

The remainder of the paper is organized as follows. In
Section II, we present the non-linear measurement model. In
Section III, we show the problem formulation, and in Section IV
we present the algorithms that solve the relaxed optimization
problem. In Section V, we derive the Lagrangian dual problem,
and provide some extensions. In Section VI, the proposed
framework is applied to a number of different models related
to localization. The paper finally concludes with Section VII.
The notation used in this paper can be described as follows.

Upper (lower) bold face letters are used for matrices (column
vectors). denotes transposition. refers to a block
diagonal matrix with the elements in its argument on the main
diagonal. denotes the vector of ones (zeros).
is an identity matrix of size . denotes the expectation

operation. is the matrix trace operator. is the matrix
determinant. denotes theminimum (max-
imum) eigenvalue of a symmetric matrix . means that

is a positive semidefinite matrix. denotes the
set of symmetric (symmetric positive semi-definite) matrices of
size . denotes the cardinality of the set .

II. NON-LINEAR MEASUREMENT MODEL

In this paper, we consider a generic non-linear measurement
model

(2)

where is the th spatial or temporal sensor measurement,
is the unknown parameter, for , is

the noise process, and the regressors for ,
are (in general) non-linear functionals. Let the vector

collect the measurements.
The likelihood of the measurements is the probability
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density function (pdf) of parameterized by the unknown
vector .
We make the following assumptions:
a1. Regularity conditions: The log-likelihood of
the measurements satisfies the regularity condition

. This is a well-known condition
for the CRB to exist [26].
a2. Independent observations: The measurements for

, are a sequence of independent random
variables.

The proposed framework for sensor selection is valid as long as
the above two assumptions hold.
Assuming (a1) holds, the covariance of any unbiased estimate

of the unknown parameter satisfies the well-known
inequality [26]

where the Fisher information matrix (FIM) is given by [26]

(3)

and is the CRB matrix. An important property of the
Fisher information is that it is additive for independent obser-
vations, which follows from the fact that

(4)

where we assume that condition (a2) holds. Using (4) in (3), the
FIM can be alternatively expressed as

which can be further simplified to

(5)

where

(6)

is the FIM of the th measurement. In other words, (5)
means that every independent measurement contributes to the
information measure. Note that the FIM for non-linear models
depends on the unknown vector .
Assume for instance that the observations belong to the

family of exponential distributions. The log-likelihood of the
observations can then be expressed in the form

(7)

where and are known functions of the observations
only, while and depend only on the unknown param-
eter. The regularity conditions in general hold for observations
that belong to the family of exponential pdfs, and it already in-
cludes a large number of distributions.
One specific example that often occurs in practice is the

case where the observations , , are related
through the following additive Gaussian non-linear model

(8)

where is a non-linear function, and is a zero-mean
Gaussian random variable with variance . The log-likelihood
of is then given by (7) with

Assuming (a2) holds, it is then easy to verify that (6) simpli-
fies to

Remark 1 (Additive Gaussian Linear Model): As a special
case, when the measurement process is linear, we have

, , i.e.,
with being the regressor. The computation of the FIM
for a linear model is straightforward, and is given by

The CRB for linear models in additive Gaussian noise is equal
to the mean squared error (MSE), and more importantly it is
independent of the unknown vector .

III. PROBLEM FORMULATION

Our goal is now to select the best subset of the
available (or candidate) sensors such that a certain accuracy on
the estimate is guaranteed. We next mathematically formulate
this sensor selection problem.

A. Sparse Sensing

We model the sensing operation using a selection vector

where indicates that the th sensor measurement is
(not) selected. The measurement model including the selection
parameter is given as

(9)
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where the selection vector modifies the log-likelihood of the
selected measurements1 as

Furthermore, the additive property of the FIM matrix allows us
to introduce the selection variable in (5) to obtain

(10)

In other words, we use the Boolean selection parameter to
choose the most informative sensors (or measurements). The
entries of are designed to be as sparse as possible such that
the sensing cost is minimized, yet guaranteeing a certain esti-
mation quality. Hence, the resulting sensing scheme is referred
to as sparse sensing.

B. Performance Measures

We do not restrict ourselves to any specific estimator, how-
ever, we use the CRB as a performancemeasure. Themotivation
behind using the CRB is as follows:
1) The CRB is a measure for the (local) identifiability of the
problem [27]. More specifically, a non-singular FIM im-
plies (local) solvability and a unique estimate of , how-
ever, the converse is not necessarily true. The sensor se-
lection problem presented in this paper seeks a subset of
sensors for which the FIM has full rank in some domain
such that the solvability of the problem in that domain is
always ensured.

2) Typically, the subset of selected sensors that yields a lower
CRB also yields a lower MSE, and thus improves the per-
formance of any practical system.

The CRB also has a very attractive mathematical structure re-
sulting in a selection problem that can be efficiently solved using
convex optimization techniques.
We next use the consistency assumption of the estimator to

derive thresholds for the performance measures. We constrain
the estimation error to be within an origin-centered
circle of radius with a probability higher than , i.e.,

(11)

where denotes probability, and the values of and
define the accuracy required and are assumed to be known. A
higher accuracy level is obtained by reducing and/or in-
creasing . This metric is used in several occasions as an ac-
curacy measure (e.g., see [4], [28], [29]). We next discuss two
popular performance measures that satisfy the above require-
ment.
1) Trace Constraint: A sufficient condition to satisfy the ac-

curacy requirement in (11) is (see Appendix A)

1The pdf of the selected measurements is of reduced dimension, i.e., it does
not include the measurements that are set to zero.

This measure is related to the A-optimality or the average-vari-
ance criterion, which restricts the sum of the semi-axes of the
confidence ellipsoid to .
2) Minimum Eigenvalue Constraint: Another popular suffi-

cient condition that also satisfies the accuracy requirement in
(11) is

where is derived in [29] (see also Appendix A). This mea-
sure is related to the E-optimality or the worst-case error, which
restricts the semi-major axis of the confidence ellipsoid to .
The inequality constraint can be equivalently
expressed as the following linear matrix inequality (LMI):

(12)

In other words, we put a lower bound on each eigenvalue of the
matrix . The solution set of satisfying this LMI is convex as

, , and [11, p. 38].
The trace constraint has a larger feasible set as compared

to the minimum eigenvalue constraint. However, although the
trace constraint is a sufficient condition, the resulting sensor
selection problem is computationally less attractive compared
to the minimum eigenvalue constraint (as we show later on in
Section V-A). Moreover, LMIs can be used to also represent the
trace constraint. For these reasons, we focus on the minimum
eigenvalue (LMI) constraint from now on. However, either one
of the two performance constraints can be used.
The above performancemeasures depend on the unknown pa-

rameter . In practice, the unknown parameter has a physical
meaning and takes values within a certain domain denoted by
. For example, in the case of direction-of-arrival estimation,
is the sector where the source is expected or for target local-

ization it is the surveillance area where the target resides. Since
the FIM for non-linear models depends on the unknown , we
propose to constrain every point within the domain .

C. Problem Statement

Having introduced the selection vector as well as the perfor-
mance measure we can now formally state the problem.
Problem (Sensor Selection): Given the likelihoods of the

measurements, , , and a desired infer-
ence performance , find a vector that selects
the minimum number of most informative sensors satisfying
the performance measure ,

.
In order to reduce the hardware costs, storage, processing,

and communications overhead, we minimize the number of se-
lected sensors. This can be achieved by minimizing the number
of non-zero entries of the selection vector . Mathematically,
the sensor selection problem is formulated as the following op-
timization problem

(13a)

(13b)

(13c)
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where the -(quasi) norm refers to the number of non-zero en-
tries in , i.e., . The threshold
imposes the accuracy requirement. The threshold is also the
sparsity-inducing parameter, where implies a sparser
solution. Alternatively, the sensor selection problem can also be
expressed as in (1) when is known.
Suppose the domain consists of points, obtained by grid-

ding the entire domain at a certain resolution. The resulting mul-
tiple LMI constraints can be stacked together as a single LMI
constraint. Let us consider the domain
with . The constraints in (13b) can then be equivalently
expressed as a single LMI constraint written as

, where

for . Note that the FIM after gridding is inde-
pendent of . Henceforth, we denote this simply by (not ex-
plicitly as a function of ). The computational complexity of the
resulting solvers depends on the number of grid points, which
is due to the fact that we do not exactly know where the true pa-
rameter is located and because we are dealing with a non-linear
system model. We make the following remarks to indicate some
scenarios where the computational burden due to gridding can
be reduced.
Remark 2 (Worst-Case Constraints): If for every ,

there exists some such that

then it is sufficient to constrain the performance for only the
worst-case set instead of . This property can be used
as a guideline for gridding.
Remark 3 (Bayesian CRB Constraint): In a Bayesian setting,

when prior information of the unknown parameter is avail-
able, this additional knowledge can be incorporated in the CRB.
The related information matrix is often called the Bayesian in-
formation matrix (BIM) [30], and it is independent of the un-
known parameter (hence, gridding is not needed). The BIM is
given by , where is the prior

information matrix with the (log)

prior , and the expectation is under the pdf .
The LMI constraint in (12) for the Bayesian setting will then be

(14)

The prior information typically comes from the dynamics,
previous measurements, or combining other available measure-
ments.
Note that in order to optimize the Bayesian CRB, we need to

know the distribution of the unknown parameter.

IV. SENSOR SELECTION SOLVERS

It is well known that the -(quasi) norm optimization is
NP-hard and nonconvex. More specifically, the original sensor
selection problem in (13) is NP-hard. The Boolean constraint
in (13c) is non-convex and incurs a combinatorial complexity.

It requires a brute-force evaluation over all the choices. For
example, with available potential sensors, there are
in the order of possible choices whose direct enumeration
is clearly impossible. We next present a number of solvers for
which the relaxed convex problem can be solved efficiently in
polynomial time.

A. Convex Approximation Based on -Norm

A computationally tractable (suboptimal) solution is to use
the traditional best convex surrogate for the -(quasi) norm,
namely the -norm heuristic. The -norm is known to rep-
resent an efficient heuristic for the -(quasi) norm optimiza-
tion with convex constraints especially when the solution is
sparse [31]. Such relaxations are well-studied for problems with
linear constraints in the context of compressed sensing (CS) and
sparse signal recovery [32]. The non-convex Boolean constraint
in (13c) is further relaxed to the convex box constraint .
The relaxed optimization problem is given as the following

SDP problem

(15a)

(15b)

(15c)

where denotes the -norm. Due to the
positivity constraint, the objective function will simply
be an affine function . The optimization problem in (15)
is a standard SDP problem in the inequality form, which can
be efficiently solved in polynomial time using interior-point
methods [11]. An implementation of the interior-point method
for solving SDP problems in the inequality form is typically
based onNewton’smethod using an approximating barrier func-
tion. A brief description of the projected Newton’s method is
provided in Appendix C, which is used to analyze the computa-
tional complexity of the relaxed sensor selection problem.
Remark 4 (Complexity per Iteration): The computa-

tional cost involved during each iteration is as follows
[11, p. 619]. The matrices , , have a
block-diagonal structure with blocks. Forming the matrix

costs flops; com-
puting via Cholesky factorization costs
flops; the Hessian matrix is computed via the inner product
of the matrices and , which costs

. Finally, the Newton step is computed via Cholesky factor-
ization costing flops, and the projection costs
flops. Assuming that , the overall computational
complexity per iteration of the projected Newton’s algorithm
is then .
Implementations of the interior-point methods are easily

available in the form of well-known toolboxes like Yalmip
[33], SeDuMi [34], and CVX [35].

B. Projected Subgradient Algorithm

The second-order Newton’s method (cf. Appendix C) is typ-
ically intractable when the number of candidate sensors is very
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large ( , for example). To circumvent this problem,
we propose a subgradient algorithm. The projected subgradient
algorithm is a first-order method which is attractive for large-
scale problems as each iteration is much cheaper to process.
The subgradient method is typically used for optimizations

involving non-differentiable functions [36], [37]. The subgra-
dient method is a generalization of the gradient method for non-
smooth and non-differentiable functions, such as, the -norm
and the minimum eigenvalue constraint functions. We next de-
rive the projected subgradient algorithm.
The relaxed sensor selection problem in (15) can be equiva-

lently expressed as

(16a)

(16b)

(16c)

where is the constraint func-
tion in (15b), and the set

denotes the box constraints in (15c).
The objective is affine, so a subgradient of the objective

is the all-one vector . Let denote a subgra-
dient of the constraint function evaluated at .
Here, the set denotes the subdifferential of
towards evaluated at . To compute , we express
the constraint function as

The computation of a subgradient is straightforward, and is
given by

where is the eigenvector corresponding to the minimum
eigenvalue . The minimum eigenvalue
and the corresponding eigenvector can be computed using a
low-complexity iterative algorithm, for example, the power
method (see Appendix D) or using the standard eigenvalue
decomposition [38]. Let the projection of a point onto the set
be denoted by , which can be expressed elementwise as

if ,
if ,
if .

(17)

The projected subgradient algorithm then proceeds as follows:

if ,
if .

(18)

In other words, if the current iterate is feasible (i.e.,
), we update in the direction of a negative

objective subgradient, as if the LMI constraints were absent; If
the current iterate is infeasible (i.e., ), we
update in the direction of a subgradient associated with
the LMI constraints. After the update is computed, the iterate is
projected onto the constraint set using . When the th

Algorithm 1: Projected subgradient algorithm

1. Initialize iteration counter , , ,
, , and .

2. for to

3. compute

4. update

5. if

6.

7. elseif

8.

9. end

10. end

11.

iterate is feasible, a diminishing non-summable step size
is used. When the iterate is not feasible Polyak’s step size

is used, where we adopt the optimal value for

when is known (i.e., the number of sensors
to be selected is known). If this is not known, then we approx-
imate it with , where , and

[36]. The algorithm is terminated
after a specified maximum number of iterations . Finally,
the estimate is denoted by .
The convergence results of the subgradient method for the

constrained optimization (i.e., without the projection step) are
derived in [36]. Since the projection onto a convex set is non-
expansive [37], it does not affect the convergence. The projected
subgradient algorithm is summarized as Algorithm 1.
Remark 5 (Complexity per Iteration): We first form the

matrix , which costs flops. The
minimum eigenvalue and the corresponding eigenvector can
be computed using the power method at a cost of
flops [38]. Forming the vector costs flops, com-
puting its norm costs flops, and the update and projection
together cost flops. Assuming that as earlier,
the computational cost of the projected subgradient algorithm
is , which is much lower than the complexity of the
projected Newton’s method.
A distributed implementation of the projected subgra-

dient algorithm is very easy. A simple distributed averaging
algorithm (e.g., [39]) can be used to compute the sum of
matrices . The minimum eigenvalue and the
corresponding eigenvector can then be computed using power
iterations at each node independently. The update step (18),
the subgradient vector , and the projection are computed
coordinatewise and are already distributed.
Subgradient methods are typically very slow compared to

the interior-point method involving Newton iterations, and
subgradient methods typically require a few hundred iterations.
Newton’s method typically requires in the order of ten steps.
On the other hand, unlike the projected subgradient method,
Newton’s method cannot be easily distributed, and incurs a
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Algorithm 2: Sparsity-enhancing iterative algorithm

1. Initialize the iteration counter , the weight vector
, , and .

2. for to

3. solve the weighted -norm minimization problem

(19a)

(19b)

(19c)

4. update the weight vector , for

each .

5. end

6. .

relatively high complexity per iteration due to the computation
and storage of up to second-order derivatives. Depending on the
scale of the problem and the resources available for processing
one could choose between the subgradient or Newton’s algo-
rithm.

C. Concave Surrogate Based on Sum-of-Logarithms

The -norm is customarily used as the best convex relaxation
for the -norm. However, the intersection of the -norm ball
(or an affine subspace) with the positive semi-definite cone (i.e.,
the LMI constraint) is not always a unique point as shown in the
following Theorem.
Theorem 1 (Uniqueness): The projection of a point

onto a convex LMI constraint set
under the -norm is not always unique.

Proof: The proof follows from the fact that the -norm
is not strictly convex, and from the linearity of the constraint
set. Let us consider an example with (w.l.o.g.), and

. In other words, the observations are iden-
tical. In this case, the extreme points of the -norm ball, i.e.,

and are two example solutions. More-
over, since the solution set of a convex minimization problem is
convex, is also a solution for any ,
which gives an infinite number of solutions to the relaxed opti-
mization problem (15). For such cases, the -norm relaxation
will typically not result in a sparse solution.
To improve upon the -norm solution due to its non-unique-

ness following from Theorem 1, we propose an alternative re-
laxation for the original sensor selection problem which also re-
sults in fewer selected sensors. Instead of relaxing the -(quasi)
norm with the -norm, using a nonconvex surrogate function
can yield a better approximation. It is motivated in [40] that the
logarithm of the geometric mean of its elements can be used as
an alternative surrogate function for linear inverse problems in

CS. Adapting this to our sensor selection problem, we arrive at
the optimization problem

(20a)

(20b)

(20c)

where is a small constant that prevents the cost from
tending to . The cost (20a) is concave, but since it is smooth
w.r.t. , iterative linearization can be performed to obtain a
local minimum [40]. The first-order approximation of
around results in

Here, denotes the iteration index. Instead of minimizing the
original cost, the majorizing cost (second term on the right-hand
side of the above inequality) can be optimized to attain a local
minimum. More specifically, the optimization problem (20) can
be iteratively driven to a local minimum using the iterations

(21a)

(21b)

(21c)

The iterative algorithm is summarized as Algorithm 2. Each iter-
ation in (21) solves a weighted -norm optimization problem.
The weight updates force the small entries of the vector
to zero and avoid inappropriate suppression of larger entries.
The parameter provides stability, and guarantees that the zero-
valued entries of do not strictly prohibit a nonzero estimate
at the next step. Finally, the estimate is given by ,
where is the specified maximum number of iterations.

Remark 6 (Sparsity-Enhancing Projected Subgradient Algo-
rithm): The projected subgradient algorithm can be adapted to
fit into the sparsity-enhancing iterative algorithm as well. The
optimization problem (19) is then replaced with the following
update equations:

if ,
if ,

where we solve a number of iterations (inner loop) of the pro-
jected subgradient algorithm within the th iteration (outer loop)
of Algorithm 2. Here, the th iterate of the inner loop in the th
outer loop is denoted as .
From the solution of the relaxed optimization problem, the

approximate Boolean solution to can be obtained
using randomization techniques, as described next.
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Algorithm 3: Randomized rounding algorithm

1. Generate candidate estimates of the form
with a probability (or

with a probability ) for .

2. Define and the index set of the
candidate estimates satisfying the constraints as

3. If the set is empty, go back to step 1.

4. The suboptimal Boolean estimate is the solution to the
optimization problem

D. Randomized Rounding

The solution of the relaxed optimization problem is used
to compute the suboptimal Boolean solution for the selection
problem. A straightforward technique that is often used is the
simple rounding technique, in which the Boolean estimate is
given by , , where we define

, and the operator rounds
its arguments towards the nearest integer. However, there is
no guarantee that the Boolean estimates obtained from the
rounding technique always satisfy the performance constraints.
Hence, we propose a randomized rounding technique, where
the suboptimal Boolean estimates are computed based on
random experiments guided by the solution from the SDP
problem (15) or the iterative version in (21). The randomized
rounding technique is summarized as Algorithm 3.

V. EXTENSIONS

A. Scalar Constraints

In this section, we will discuss the relaxed sensor selection
problem based on the optimization criteria related to A-opti-
mality and D-optimality.
1) Trace Constraint: The relaxed sensor selection problem

with the scalar trace constraint is given as follows

(22)

The trace constraint in (22) is convex in ; this is easier to verify
when the above trace constraint is expressed as an LMI [11, p.
387]. Let denote the auxiliary

variable and denote the th unit vector in . The optimiza-
tion problem (22) is a convex problem, and can be cast as an
SDP:

(23)

In addition to the box constraints, the optimization problem
(23) has LMI constraints (of size ) for every point in
and inequality constraints, while (15) has only one LMI
constraint (of size ) for every point in . Hence, solving (23)
is computationally more intense than solving (15).
2) Determinant Constraint: Another popular scalar perfor-

mance measure that quantifies the estimation accuracy is the
determinant (product of eigenvalues) constraint. This measure
is related to the D-optimality. The relaxed sensor selection
problem with the determinant constraint is given as follows

(24)

where the threshold specifies the mean radius of a
confidence ellipsoid (see Appendix A). The log-determi-
nant constraint is a concave function of for ,
for . Note that although the constraint

is an indication of the
performance of the estimator, it is not a sufficient condition
for (11).
The relaxed sensor selection problem with the scalar (trace

or determinant) constraints can be solved with either one of the
two proposed approximations of the cardinality cost, i.e., the
-norm or log-based concave surrogate.

B. The Lagrangian Dual Problem

The Lagrangian dual of the relaxed primal optimization
problem (15) has an interesting relation to the diameter of the
confidence ellipsoid, and is closely related to the dual of the
E-optimal design [11, p. 388]. The Lagrangian dual problem of
(15) is given as follows

(25)

where and are the dual variables, and we use
with
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For a detailed derivation of the Lagrangian dual problem, see
Appendix B. The dual problem can be interpreted as the problem
of maximizing the (average) diameter of the confidence ellip-
soid. If we set , , the optimal solution
to the problem (25) is also the solution to the dual of the E-op-

timal design problem [11, p. 388], which maximizes the diam-
eter of the confidence ellipsoid centered around the origin.
The dual formulation is often easier to solve and can be solved

using Yalmip, SeDuMi, or CVX as earlier.

VI. EXAMPLES: SENSOR PLACEMENT FOR LOCALIZATION

Localization is an important and extensively studied topic
in wireless sensor networks (WSNs). Target localization can
be performed using a plethora of algorithms [4]–[6] (and
references therein), which exploit inter-sensor measurements
like time-of-arrival (TOA), time-difference-of-arrival (TDOA),
angle-of-arrival (AOA), or received signal strength (RSS). The
performance of any location estimator depends not only on the
algorithm but also on the placement of the anchors (sensors
with known locations). Sensor placement is a key challenge in
localization system design, as certain sensor constellations not
only deteriorate the performance, but also result in ambiguity
or identifiability issues [1].
The sensor placement problem can be interpreted as the

problem where we divide a specific sensor area into grid
points and select the best subset of locations from these grid
points. Here, the selected sensors are deemed the best, if they
guarantee a certain prescribed accuracy on the location esti-
mates for a target within a specific target area . We consider a
two-dimensional network with one target located in the target
area and possible sensors located at the grid points.
The absolute positions of the sensor grid points are known,

hence, the considered sensors are commonly referred to as an-
chor nodes. Let the coordinates of the target and the th an-
chor be denoted by the 2 1 vectors and

, respectively. Here, is assumed to be unknown,
but known to be within . We next illustrate the developed
theory with a number of examples based on different measure-
ment models.

A. Distance Measurements

Let the pairwise distance between the target and the th an-
chor be denoted by . In practice, the pairwise
distances are obtained by ranging and they are noisy. The range
measurements typically follow an additive Gaussian non-linear
model, as given by

(26)

where is the noise with . Here,
is the nominal noise variance, and is the path-loss expo-

nent. Using (10), we can now write the FIM for the localization
problem as , where using
(6) we can compute

B. Received Signal Strength

Received signal strength is the voltage measured by a
sensor’s received signal strength indicator circuit. Received
signal strength is often reported as the measured power. The
ensemble mean received power at the th sensor can be
expressed as

where is the received power (dBm) at a reference distance .
However, due to shadowing, the difference between a measured
received power and its ensemble average is random. The ran-
domness due to shadowing is typically modeled as a log-normal
process, which is Gaussian if expressed in decibels [6]. More
specifically, the received power (dBm) at the th sensor
follows a Gaussian distribution, i.e., .
The FIM related to the th measurement is then given by

C. Bearing Measurements

Another popular target localization technique is based on
bearing measurements from a set of direction finding (DF)
sensors [41]. The bearing measurement of the th DF sensor
is given by

where , , and
is the noise. Defining a 2 2 permutation matrix

we can then compute the FIM contribution from the th DF
sensor as

D. Field Estimation

In applications related to field estimation, (active/passive)
radar, and sonar, it is important to estimate the location of a point
source that emits or reflects energy. Suppose the sensors mea-
sure the energy generated by a point source. The measurements
are given as

(27)

where is the known field intensity emitted or reflected by the
point source, the known propagation function for some gain
is modeled as an isotropic exponential attenuation

, and is the noise. The FIM related
to the th measurement is then given by
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Fig. 1. Sensor placement for target localization with candidate sensor positions. The thresholds are computed using , and
(except for (d)). (a) Selection based on sparsity-enhancing iterations with minimum eigenvalue constraints. The Boolean solution is recovered using randomized
rounding. (b) Minimum eigenvalue constraints with -norm and concave surrogate based relaxations. Randomized rounding is applied on the concave surrogate
based solution. (c) -norm based selection with the trace constraints. (d) -norm cost function for different values of and a fixed .

Although the examples illustrated so far are related to passive
sensing, we underline that the proposed sensor selection frame-
work is not limited to passive sensors.
Remark 7 (Active Sensor Selection): The sensor selection

problem can also be formulated for active sensing. In active
sensing, the sensors transmit probing signals (e.g., radar, sonar,
remote sensing). The selection parameter for active sensing
is a soft parameter used for joint selection and resource allo-
cation [1], i.e., is a resource (e.g., transmit energy)
normalized to themaximum prescribed value, and hence, it is di-
mensionless. The relaxed active sensor selection problem takes
the same form as in (15). In fact, minimizing the -norm in ac-
tive sensor selection minimizes the overall network resources
(e.g., overall transmit energy).

E. Simulations

We apply the proposed sensor selection problem to sensor
placement design for target localization. To test the proposed
algorithms, we use CVX [35]. CVX internally calls SeDuMi
[34], a MATLAB implementation of the second-order interior-
point methods.

We consider the scenario shown in Fig. 1(a) with
sensors to illustrate the sensor selection problem. Recall that
the problem here is to choose the best sensor positions out of

available ones, such that a certain specified localization
accuracy is achieved. The domain for this example will be
the target (or surveillance) area where the target resides, and
to avoid having infinitely many constraints the area consists
of grid points at a certain resolution. We grid the target area of

uniformly with a resolution of 1.75 m along both
horizontal and vertical directions as shown in Fig. 1(a).
The original non-convex sensor selection problem is relaxed

to an -norm optimization problem. Alternatively, a concave
surrogate function can be used to further enhance the sparsity.
The optimization problem with the concave surrogate cost func-
tion is iteratively solved by affinely scaling the objective based
on the solution from the previous iteration. For the sparsity-en-
hancing iterative Algorithm 2, we use and .
The number of randomizations used in the randomized rounding
Algorithm 3 is . As observed in the simulations, a so-
lution is typically found in the first batch itself, and a few tens
of candidate entries are sufficient. We use the following param-
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Fig. 2. (a) The projected subgradient algorithm used to solve (15). (b) Performance of the projected subgradient algorithm. The thresholds are computed using
and .

eters for the simulations: , ,
square-degrees, , , , ,
and (except in Fig. 1(d)).
Fig. 1 shows the sensor selection for the distance (range)

measurement model. The thresholds are computed with
and . The selection shown in Fig. 1(a) is based

on Algorithm 2 with randomized rounding to recover the ap-
proximate Boolean solution. The selection results based on the
-norm cost with the minimum eigenvalue constraint is shown

in Fig. 1(b). Fig. 1(b) also shows that the solution based on the
concave surrogate cost function with the minimum eigenvalue
constraint leads to a sparser solution. The selection results based
on the trace constraint obtained by solving (22) are illustrated
in Fig. 1(c). The sensors from the same region (close to the red
filled boxes in Fig. 1(a)) are selected with either one of the two
constraints. Fig. 1(d) shows a zero duality gap (gap between the
cost of the primal problem in (15) and the dual problem in (25))
for different values of . Larger values of result in a larger

, and subsequently more sensors are selected. The suffi-
cient trace constraint has a larger feasible set compared to the
stronger sufficient minimum eigenvalue constraint. As a result,
for the considered scenario, the minimum eigenvalue constraint
leads to a slightly larger -norm compared to the trace con-
straint.
The optimization problem (15) is also solved using the

projected subgradient method summarized in Algorithm 1
with iterations. The solution of the projected
subgradient is shown in Fig. 2(a). The performance of the
projected subgradient algorithm is compared to the solution
of the interior-point methods (implemented using SeDuMi)
denoted by (obtained via SeDuMi), i.e., the convergence

is shown in Fig. 2(b). Even though the
convergence of the projected subgradient algorithm is very
slow, the estimated support after a few hundred iterations can
be used along with randomized rounding to further refine the
solution. The computation time on the same computer for the
projected subgradient algorithm that solves (15) is around 8.84

seconds for 1000 iterations while SeDuMi takes around 4.03
seconds to solve the SDP problem in (15).
A practical estimator does not meet the CRB in some cases

(for instance at low SNRs or finite data records). Therefore,
the sensors selected with a specific would lead to an un-
derestimate of the desired MSE. We can account for this gap
by choosing appropriately. To this end, we give the en-
tire solution path of the selected sensors for different values
of in Fig. 3(a). The solution path can be efficiently com-
puted by increasing . The sensors corresponding to some
can then be used to meet the desired MSE requirement. The
non-linear model in (26) is solved in the least-squares sense it-
eratively using Gauss-Newton’s method with 10 iterations [26].
The maximum root-MSE (RMSE), maximum root-CRB, av-
erage RMSE, and average root-CRB of the location estimates
of a target within the target area using the selected sensors (as
shown in the solution path) for different values of are shown
in Fig. 3(b). For the considered scenario, both the maximum and
average root-CRB satisfy the performance constraint which is
given by the inequality in (28). The performance constraint is
shown as a red solid line in Fig. 3(b). The maximum RMSE
does not satisfy the accuracy requirement specified by a certain
, and this can be corrected by using an appropriate (lower)
. Moreover, for the considered scenario, the gap between the

average RMSE and the performance constraint is still reason-
able. We also show the maximum RMSE on top of Fig. 3(a).
The proposed framework can be applied to a variety of data

models as long as (a1) and (a2) are valid. To illustrate this we
next consider a few more measurement models. The sensor se-
lection based on bearing measurements are illustrated in Fig. 4.
Here, we use and . The selection results
for the RSS based measurement model are shown in Fig. 5. We
use , , and m. Sensor selec-
tion results based on energy measurements are shown in Fig. 6,
where we use , and . An illustration of the
field generated by a point source at location with
unit amplitude is also shown here.
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Fig. 3. (a) Solution path of the sensors selected for different values of and . Maximum RMSE based on selected sensors can be seen on the top of
this plot. (b) Maximum and average RMSE of the location estimates based on Gauss-Newton’s method, the corresponding maximum and average root-CRB, and
the performance constraint in (28) for different values of , and .

Fig. 4. (a) Sensor selection based on bearing measurements with available sensors. (b) Sensor selection solved with minimum eigenvalue constraints
using -norm and log-based heuristics. The thresholds are computed using , and . The noise variance is square-degrees.

The FIM for all the considered measurement models has a
common structure, and it decreases as the distance increases.
However, the rate at which it decreases is different for different
models. As a result of this decrease, the optimization problem
leads to a sensor placement that is close to the target area (in the
Euclidean distance sense) for all the considered models.

VII. CONCLUSIONS

Sensor selection can be described as the problem of choosing
the best subset of sensors that guarantees a certain desired infer-
ence performance. Sensor selection enables space-time sensing
design, which is crucial for gathering only the most informa-
tive data. We solved the sensor selection problem by designing
a sparse sensing operator that leads to possible reductions in
the hardware, communications, and other processing costs. In
particular, we focussed on observations that follow a non-linear

model. We used a number of scalar functions related to the FIM
to determine the sensor selection. The original nonconvex opti-
mization problem is relaxed using convex relaxation techniques
which can then be efficiently solved in polynomial time. To
handle large-scale problems, we have also presented a projected
subgradient algorithm. The proposed framework is applied to
sensor placement design for a number of different models re-
lated to localization.

APPENDIX A
PERFORMANCE THRESHOLDS

Trace and Minimum Eigenvalue Constraints

We can relate the accuracy requirement and CRB using
Chebyshev’s inequality [28]
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Fig. 5. (a) Sensor selection based on RSS with available sensors. (b) Sensor selection solved with minimum eigenvalue constraints using -norm and
log-based heuristics. The thresholds are computed using , and . We use .

Fig. 6. Sensor selection for field estimation. (a) Illustration of a field generated by a unit amplitude point source at location according to (27).
Out of available sensors , 16 sensors indicated by are selected. The source domain is indicated by . (b) Sensor selection solved with minimum
eigenvalue constraints using -norm and log-based heuristics. The thresholds are computed using , and . We use , and

.

which can be equivalently expressed as
. Combining this inequality together with
in (11) results in the following sufficient condition

(28)

Each eigenvalue of is greater than , and as a re-
sult, . Hence, a stronger sufficient condi-
tion (with a smaller feasible set) is ,
or equivalently [29]

Determinant Constraint

The determinant constraint is related to the volume or the
mean radius of the confidence ellipsoid that contains

with probability . Such a confidence ellipsoid can be ex-
pressed as

where is a constant that depends on . Assuming has or-
dered eigenvalues , the length of the
th semi-axis of the ellipsoid will be . The geometric
mean radius of the confidence ellipsoid given by

which gives a quantitative measure of how informative the ob-
servations are. For the estimates to be within the confidence el-
lipsoid , we use the constraint
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where and specify the required accuracy, and are as-
sumed to be known. A typical choice for is .

Here, is the cumulative distribution function of a
chi-squared random variable with degrees of freedom.
This performance measure is related to the D-optimality.

APPENDIX B
DERIVATION OF THE LAGRANGIAN DUAL PROBLEM

Consider the optimization problem (15) as the primal
problem. To this problem, we then associate the following dual
variables or Lagrangian multipliers: with the LMI
constraint; and with the and
constraints, respectively. The Lagrangian is

The Lagrange dual function is given as

if ,

otherwise.
(29)

The dual problem which is also an SDP can therefore be ex-
pressed as

where (we use the fact that is self-dual),
and

are the dual variables. By eliminating , the dual problem is
simplified to

(30a)

(30b)

(30c)

APPENDIX C
PROJECTED NEWTON’S METHOD

In order to analyze the complexity of the interior point
methods, we briefly describe the projected Newton’s method.
The Newton’s method for an SDP problem in the inequality
form is adapted to suit our problem [11, p. 619].
The optimization problem in (15) can be approximated using

the log-determinant barrier function which is given as

where is a parameter to tune the approximation. The
projected Newton’s update equation is given by

(31)

where the th entry of the Hessian matrix is given by

and the th entry of the gradient vector is given by

Here, we have introduced the matrix
, and recall the projector operator defined in

(17). The step-length is chosen by line-search.

APPENDIX D
POWER ITERATIONS FOR COMPUTING THE MINIMUM

EIGENVALUE

We briefly describe the power iterations [38] to compute the
minimum eigenvalue of a matrix . Assuming has or-
dered eigenvalues , the power iterations

converge to the eigenvector corresponding to the maximum
eigenvector , and the maximum eigenvalue , respec-
tively, as . Here, we use . By forming
a matrix which has the dominant eigenvalue

, we can apply the above power iterations on
to compute and , and thus the minimum
eigenvalue of and it’s corresponding eigenvector.
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