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Abstract—In this paper, a novel power efficient architecture
for detecting the spectral holes over a very high bandwidth is
proposed. Wideband spectrum sensing poses serious challenges
for low-power spectrum sharing radios (for e.g., cognitive radio)
which cannot afford to use high-rate Analog-to-Digital Convert-
ers (ADCs) to sample the signals at Nyquist rate and process them
digitally thereby spending a lot of power. Here we propose an
analog/mixed signal topology for wideband spectrum sensing that
replaces the conventional Nyquist ADCs and digital Fast Fourier
Transform (FFT) core with a bank of Sample and Hold (S/H)
circuits, each operating at sub-Nyquist rate, and an all-analog
FFT processor. The results show that even though sub-optimal
analog processing leads to worse spectral reconstruction com-
pared to conventional techniques, good detection performances
can be achieved along with a substantial reduction in the power
consumption.

I. INTRODUCTION

The frequency spectrum is a scarce resource and has to be
utilized efficiently to foster innovations in wireless commu-
nications. Spectrum sharing radios enable this by supporting
secondary spectrum usage, coexistence, and dynamic spectrum
access by sensing the spectral occupancy and adaptively using
the free frequency band for a certain duration without affecting
the performance of the primary radio link [1]. In case of low-
power radios, spectrum sensing is usually an overhead for the
radio and should consume minimal power. Normally spectrum
sensing in radios is achieved by,
• Narrowband sensing: Over a given wide band of interest,

spectrum sensing is performed over individual narrow
bands either sequentially or at random [2] until a free
channel is found. The disadvantage of this method is
the latency in finding a free band (which is high when
the spectrum is less sparse) and the inherent power
consumption as the full receiver chain has to be powered
each time a channel is sensed.

• Wideband sensing: The entire band of interest is pro-
cessed at once to find a free channel, with either a single
Nyquist rate Analog-to-Digital Converter (ADC) or a
bank of sub-Nyquist rate ADCs, both followed by digital
processing. These typically consume a lot of power, and
low-power radios cannot afford it. Compressive Sampling
or Compressed Sensing (CS), is a recently emerging

This work was supported in part by STW under FASTCOM project (10551)
and in part by NWO-STW under the VICI program(10382).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Number of busy Channels / Total Number of Channels

C
o

m
p

le
x
it
y
 o

rd
e

r

 

 

Nyquist rate sampling and FFT processing (all−digital)

OMP for l
1
 minimization

l
1
 minimization based on [4]

Random channel search at Nyquist rate (all−digital) [2]

Fig. 1: Complexity order of existing algorithms.

approach for wideband sensing [3], which samples the
signal at the information rate rather than at the Nyquist
rate. CS generally requires knowledge of the sparsity level
(ratio of the number of busy channels to the total number
of channels). Usually, detection with CS is preceded by
a coarse or a fine spectrum estimation. Estimating the
spectrum using CS generally requires `1 optimization
and is usually carried out using high-complexity recursive
algorithms (e.g., the interior point linear program solver
of [4]) or suboptimal algorithms such as Orthogonal
Matching Pursuit (OMP) may be used to solve this
convex problem. The performance of CS based methods
is similar to that of Nyquist rate sampling when the
spectrum is not so sparse.

The computational complexity order of existing sensing al-
gorithms for different sparsity levels is shown in Fig. 1.
Even though Nyquist rate sampling appears to be the best
compromise for wideband sensing, it requires high-rate ADCs
and outputs a large number of samples. Performing all-digital
processing on such a large number of Nyquist rate samples
consumes a lot of power. In [2], the complexity is reduced
by computing only the required frequency domain coefficient
instead of all the coefficients. Unfortunately this still needs a
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Fig. 2: Architecture for low-power wideband spectrum reconstruction and channel selection using an analog FFT.

high-rate ADC. Hence, there is a need for wideband sensing
algorithms with lower complexity or lower power consump-
tion.

A. Motivation

The idea of analog FFT processors was initially proposed
for low-power Orthogonal Frequency Division Multiplexing
(OFDM) receivers operating at Giga-samples per second [5]–
[8], to reduce the total information processed by the ADCs,
and make them power efficient. This motivates the proposed
architecture, pushing the conventional ADC and digital pro-
cessing to the analog domain, at the same time saving a
considerable amount of power. In addition, a periodogram
can be reconstructed in the analog domain using envelope
detectors, which in turn provides averaging for each energy
estimate and reduces the effect of fading.

Here, we use an analog/mixed signal topology that replaces
the conventional Nyquist rate ADCs and digital Fast Fourier
Transform (FFT) core with a bank of Sample and Hold
(S/H) circuits, each operating at sub-Nyquist rate, and an all-
analog FFT processor. The proposed low-power cross-layered
system architecture is used for wideband coarse spectrum
reconstruction and free channel selection.

Typically in wideband spectrum sensing, detecting both
weak and strong signals (e.g., separated by 50 dB) requires
a large dynamic range for the ADCs, to accommodate strong
signals while still providing sufficient quantization perfor-
mance for the weak signals. The power consumption of an
ADC increases linearly with the sampling frequency and
exponentially with the resolution [9]. This makes the front-
end circuitry more complex or high-power (as in [10]) for
sensing signals with a large dynamic range. Processing in the
analog domain, using S/H circuits offers a low-complexity
solution to mitigate the ADC resolution issues associated with
the wideband occupancy detection.

B. Contributions

In this paper, we propose a low-power cross-layered system
architecture, for wideband coarse spectrum reconstruction and
free channel selection. The main contribution of the paper
is to use the analog/mixed-signal based FFT processors for
coarse spectral reconstruction and occupancy detection. This
architecture leads not only to significant power saving by doing
most of the processing in the analog domain and going to
digital domain only for low-rate operations. The proposed
architecture is based on a bank of Sample and Hold (S/H)
circuits, analog FFT processing, low-power envelope detectors
for spectrum reconstruction, and analog decision thresholds for
channel selection. An estimate of the power consumption for
both the proposed and the conventional all-digital processing
method is provided.

The remainder of the paper is organized as follows. We
present the proposed architecture is Section II. In Section III,
we discuss the system model and formulate the hypothesis
testing problem for occupancy detection. The performance of
the proposed technique in terms of spectrum reconstruction
and detection is discussed in Section IV, along with an estimate
of the power consumption. The conclusions are provided in
Section V.

Notation: We use bold upper and lower case letters for
matrices and column vectors, respectively. (i, j)th element of
a matrix A is denoted by [A]ij . (·)T stands for transpose
operation.

II. PROPOSED SYSTEM ARCHITECTURE

The block diagram of the proposed architecture is illustrated
in Fig. 2. The architecture comprises two stages, stage 1
for coarse spectrum reconstruction and stage 2 for channel
selection. The analog input baseband signal after the Low-
Noise Amplifier (LNA) is discretized using a bank of S/H
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circuits indicated by S/H bank 1 in the block diagram. The
S/H bank 1, consists of N S/H circuits respectively operating
at clock (clk) clk1, clk2, . . ., clkN . Each S/H circuit should
operate at a rate, 2×B

N to monitor a spectrum of B Hz. The
second bank of S/Hs indicated by S/H bank 2, also consists
of N S/H circuits and re-samples the data from the S/H bank
1, at clk(N +1). The two banks of S/Hs are used to achieve a
serial to parallel conversion, which is required for the N -FFT
analog processor. The output of the S/H bank 2 is scaled to
realize a time domain windowing (e.g., Hamming) to reduce
spectral leakage. The N -FFT analog processor is an analog
implementation of an N -point FFT. More details regarding
the implementation of an analog FFT processor can be found
in [5]. The outputs of the N -FFT analog processor are an
evolution of N discrete frequency bins in time. Each of these
N branches, are fed to N envelope detectors to compute the
energy in each frequency bin. An envelope detector can be
modeled as a squaring function followed by a low-pass filter.
The N branches viewed together would result in a coarse
spectrum reconstruction based on a modified periodogram. It
should be noted that the low-power envelope detector after the
analog FFT output helps reducing the multi-path and fading
effects associated with spectrum sensing.

To find an empty channel in the spectrum, the output
of the branches of the envelope detectors are compared to
a threshold. The thresholds are set to achieve a maximum
probability of detection Pd (to detect a channel as busy, when
the channel is indeed busy) subject to a probability of false
alarm Pfa (decision that a channel is occupied, when the
channel is in fact free) constraint. The noise power estimation
and threshold updates are controlled via digital logic and
could be performed during the initialization stage. When the
threshold has to be updated, the output of the envelope detector
is quantized whenever a channel is detected as free. This
quantized output is used in the digital logic to compute a new
threshold. The threshold can be different or can be the same for
all the frequency bins. The blocks used to set the threshold are
i) S/H + quantize and ii) Digital-to-Analog Converter (DAC),
can be reused in a time interleaved manner for all the N
branches to conserve power. The output of the digital logic
at stage 2 will be the indices of the free channels. It should
be noted that, only in stage 2 for computing the threshold, we
go to the digital domain, since both the number of samples to
be processed and the frequency of processing (e.g., during the
initialization) are small.

III. DETECTION

A. System model

The signal at the kth branch (indicating the kth frequency
bin) before the envelope detector during time m is denoted by
ykm. These are collected for M time instances in the M × 1
vector yk given by yk = [yk1, yk2, . . . , ykM ]T. At time
m and frequency k, the signal is denoted by xkm ∼ N (0, σ2

x)
and the noise by vkm ∼ N (0, σ2

v). The device mismatch for
the N -FFT analog processor is modeled as Gaussian noise as
illustrated in Fig. 3 with a variance δ2

N and is denoted at time

Ideal N -FFT
Input Output

wkM ∼ N (0, δ2N )

Fig. 3: Mismatch model for CMOS based analog FFT [5].

m and frequency k by the Random Variable (RV) wkm. The
mismatch model accounts for the noise propagation from stage
to stage in the analog circuitry which is very sensitive to the
radix size (full-radix FFT being less sensitive to the device
mismatch) [5]. The mismatch model at the kth branch during
time m will result in wkmvmk for the noise and in wkmxmk
for the signal. These are collected for M time instances in the
M × 1 vectors q and r respectively given by

q =
[
wk1v1k, wk2v2k, . . . , wkMvnk

]T
,

r =
[
wk1x1k, wk2x2k, . . . , wkMxnk

]T
.

Let fk be the 1 × N vector indicating the kth row
of a Discrete Fourier Transform (DFT) matrix, [F]kn =

exp(− 2πι(k−1)(n−1)
N ), with k, n = 0, . . . , N−1 and ι =

√
−1.

Let [X]mk = xmk and [V]mk = vmk, with m = 1, . . . ,M and
k = 1, . . . , N , be the M × N signal and noise matrices, re-
spectively, representing M (number of time snapshots) vectors
of N values discretized by the S/H bank.

The spectrum sensing engine decides on the occupancy of
the channel by solving the binary hypothesis testing problem
between the hypothesis H0 indicating the channel is free and
hypothesis H1 which indicates that the channel is occupied.
The hypothesis testing problem is given by

H0 : yk = VfTk + q,

H1 : yk = XfTk + VfTk + r + q.
(1)

This system model can also be viewed as a detection problem
with multiplicative Gaussian noise.

B. Probability of false alarm and detection threshold

In this paper, the Neyman-Pearson criterion is considered,
where we set a constraint on the probability of false alarm Pfa
and determine the detection threshold γth. The corresponding
probability of detection Pd for different Signal to Noise
Ratios (SNRs) is shown through simulations. To determine
the threshold for a certain Pfa, we next derive the distribution
of the signal at the kth branch after the envelope detector
(indicating its energy, E =

∑M
m=1 (ykm)2) under the H0

hypothesis.
The entries of q have a normal product distribution, i.e.,

qi ∼ N (0, δ2
N ) · N (0, σ2

v), with i = 1, . . . ,M . To simplify
the derivation, we approximate the normal product distribu-
tion with a sum of two Gaussian functions denoted by the
Probability Density Function (PDF) fU . The normal product
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Fig. 4: Normal product distribution vs. the best fit with a sum
of two Gaussian functions.

distribution after the approximation by a sum of two Gaussian
functions is given by the PDF

fU (u) =
1√

π(a1σ1 + a2σ2)
(a1 exp−(

u

σ1
)2 + a2 exp−(

u

σ2
)2),

(2)
and the PDF of the noise is given by

fV (v) =
1√
π(σ3)

exp−(
v

σ3
)2, (3)

where a1 and a2 are the weights, and σ1 and σ2 are the
standard deviations of the Gaussian functions in (2); and
σ3 =

√
2σv is just a scaled standard deviation of the noise.

The simulations in Fig. 4 show that the sum of two Gaussian
functions is a good approximation for a normal product
distribution. The RVs u1, u2, . . . , uM are independently and
identically distributed (i.i.d.) with PDF fU . Hence, the RV
qi ≈ ui, with i = 1, . . . ,M . The RVs v1, v2, . . . , vM are i.i.d.
with the PDF fV . E can be modeled as a process defined by
the RV, z =

∑M
i=1(qi + vi)

2 ≈∑M
i=1(ui + vi)

2.
Next, we derive the PDF fZ(z). To do this, we first derive

the PDF fZ(z) for M = 1. Using the convolution and square
law property, we can write

fZ(z|M = 1) =
1√

πz(a1σ1 + a2σ2)

(
a1σ1√
σ2

1 + σ2
3

exp(
−z

σ2
1 + σ2

3

) +
a2σ2√
σ2

2 + σ2
3

exp(
−z

σ2
2 + σ2

3

)).

(4)
The characteristic function of the RV z for M = 1 will be

Ω̄Z(ω) =

∫ ∞
−∞

exp(izω)fZ(z|M = 1)dz =
1√

a1σ1 + a2σ2

(
a1σ1√

1− i(σ2
1 + σ2

3)ω
+

a2σ2√
1− i(σ2

2 + σ2
3)ω

).

(5)
Hence, the characteristic function of the RV z for any M will
be ΩZ(ω) = (Ω̄Z(ω))

M .
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Fig. 5: Spectrum with four IEEE 802.11g/WiFi nodes and 1
IEEE 802.15.4/Zigbee node.

The PDF fZ(z) can be then written as

fZ(z) =
1

2π

∫ ∞
−∞

exp(−izω)ΩZ(ω)dω. (6)

Using binomial theorem, [11], and after some mathematical
manipulations, the PDF fZ(z) is given by

fZ(z) =
exp(−zα )z( M

2 −1)

Γ(M2 )(ϕ1 + ϕ2)M

M∑
k=0

(
M

k

)
(
ϕ1√
α

)M−k
(
ϕ2√
β

)k
1F1

(
k

2
;
M

2
;

(β − α)z

αβ

)
.

(7)
where, Γ(θ) =

∫∞
0
τθ−1 exp(−τ)dτ is the Gamma func-

tion, and 1F1(a; b; z) = Γ(b)
Γ(b−a)Γ(a)

∫ 1

0
expzt t(a−1)(1 −

t)(b−a−1)dt is the confluent hypergeometric function of the
first kind.

Then, the probability of false alarm can be written as

Pfa = Pr(E ≥ γth|H0) =

∫ ∞
γth

fZ(z)dz. (8)

The integral (8) can be solved numerically and the threshold
for a certain Pfa can be obtained by solving the lower tail
probability using Newton’s method and can be computed off-
line.

IV. PERFORMANCE EVALUATION AND ANALYSIS

A. Simulations

A network in the 2400 MHz ISM band with 86 frequency
bins of 1 MHz resolution centered at fc = 2400, 2401, . . . ,
2485 MHz is simulated. The simulated scenario has four
WiFi (IEEE 802.11g) nodes centered at 2412, 2432, 2452,
2472 MHz respectively and one Zigbee (IEEE 802.15.4) node
centered at 2440 MHz. An illustration is provided in Fig. 5,
which is constructed with a high resolution FFT (FFT length =
183430). The signals considered are present at all times with
a fixed transmit power.
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Fig. 6: Spectrum reconstruction using both the conventional
and proposed method with a 128-point FFT.

The proposed system architecture is simulated such that the
resolution of the samples mimic the analog signal, and the all-
analog FFT is realized using the mismatch model as in Fig. 3
with δ2

N = 52.3 for the 128-point FFT processor. The spectrum
reconstruction with the conventional (all-digital) method using
a Nyquist rate ADC and a 128-point digital FFT, as well as the
spectrum reconstruction obtained at stage 1 of the proposed
architecture are shown in Fig. 6. It can be seen that using
the proposed architecture a coarse spectrum estimate can be
obtained, where the losses in dynamic range compared to the
conventional method can be traded for a considerable power
saving. It should also be noted that the ultimate goal is to
detect occupancy of the spectrum.

Fig. 7 shows the spectrum reconstruction performance in
terms of the Mean Squared Error (MSE) between the high
resolution FFT and the digital 128-point FFT for the conven-
tional method and between the high resolution FFT and the
128-point analog FFT for the proposed method. The analog
processing results in a deterioration of the signal strength, and
introduces some noise between the stages.

An actual channel occupancy of around 80% with a fre-
quency resolution of 1 MHz shown in Fig. 8, is used to
evaluate the detection performance. The detection performance
in terms of Pfa and Pd for different SNRs is shown in Fig. 9.
The threshold is set so as to maintain a Pfa below 5%, so
that the Pd of the two methods can be compared. With the
proposed architecture, a detection performance comparable to
that of the conventional method can be achieved, with losses
below 1 dB in the observed SNR range.

B. Power consumption comparison: conventional vs. proposed

In this section, we compare the power consumption of
the conventional all-digital approach, which involves sam-
pling at Nyquist rate using a high-rate 8-bit ADC, with the
application of an FFT using an 8-bit 128-point digital FFT
processor. An 8-bit ADC based on 90nm CMOS technology
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Fig. 7: Mean squared error of the spectrum reconstruction.
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Fig. 8: Smoothed periodogram indicating 86 frequency bins,
with 1 MHz frequency resolution.
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is considered. The power consumption of the ADC is approxi-
mately 27µW/10 Megasamples/second, i.e., 2.7pJ/conversion
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step [12]. The 8-bit state-of-the-art energy aware digital FFT
processor proposed for low-power sensor nodes [13] consumes
around 33nJ/FFT (a scaling factor of 0.663 [14] for scaling the
energy from 180nm to 90nm CMOS technology is used).

The proposed method uses S/H circuits which can be esti-
mated to consume 10% of the ADC’s power on average [15].
The analog 128-point FFT processor requires 512 differential
inputs and 7 stages for a radix-2 implementation of the
butterfly structure, and the number of multipliers from the
128-FFT stage to the 8-FFT stage would be about 576 [5].
With a bias current of 100nA and Vdd = 1.2V (for 90nm
CMOS technology), the power consumption would be of the
order of (512×7+576)(0.12µW ) = 0.5mW , and considering
an FFT processor speed of 1 MHz, the energy/FFT will be
500 pJ/FFT. A summary of the comparison of the estimated
power between the proposed and conventional method is given
in Table I. In this example, it can be clearly seen that with
the proposed architecture, the power consumption could be
reduced by a factor of 50, compared to the conventional all-
digital approach.

TABLE I: Estimated energy and power consumption for 128-
point FFT systems.

Estimated Conventional Proposed
pJ/conversion (ADC) 2.7 (S/H) 2× 0.27 = 0.54

pJ/FFT (Digital) 33000 (Analog) ≈500
Power (mW) (ADC + Digital FFT) 33.7 (S/H + Analog FFT) ≈0.64

In the proposed architecture, to realize the periodogram
estimate and channel selection, additional power is consumed.
Envelope detectors can consume a power below 1.5µW for
state-of-the-art designs [16]. On the other hand, for the con-
ventional method, these steps are done digitally using different
algorithms with different complexity orders, as discussed in
Section I.

In the proposed architecture we choose energy detector,
since it is simple and of low-complexity. As any energy
detector, this system also suffers from noise uncertainty and
SNR wall issues. To enhance the performance in the low-SNR
regimes, a two-stage sensing can be performed as suggested
in the literature [17]. Typically, the second stage performs
feature detection (e.g., cyclostationarity, pilot-tone detection)
on the detected free narrowband channels, to improve the
performance at low SNRs.

V. CONCLUSIONS

In this paper, we have proposed an architecture for low-
power wideband spectrum sensing. With the proposed ar-
chitecture a large portion of the spectrum (e.g., 128 MHz)
can be sensed at once to obtain a coarse estimate of the
spectrum and/or search for an empty channel. The major
high-power consuming processes are pushed to the analog
domain which include the high-rate ADC and the digital FFT
operations, which are replaced by a bank of S/H circuits and an
analog FFT processor, respectively. We do this to avoid digital
processing of a large number of Nyquist rate samples and

instead perform the majority of the processing in the analog
domain. We only go to the digital domain for the computation
of the threshold, when both the number of samples to be
processed and the processing intervals are relatively small. The
simulation results show that even though analog processing
leads to worse spectrum reconstruction compared to the con-
ventional method, a good detection performance can still be
achieved with a substantial reduction in power consumption.
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