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Abstract A problem occuring in radio astronomy is the detection
and cancellation of spatially correlated interfering signals entering
via the sidelobes of the telescopes in an array. A complicating fac-
tor is that the noise powers can be different at each telescope. For
the case that the sensors are uncalibrated, we formulate the detec-
tion problem as a test on the covariance structure, state the GLRT
for this problem, and relate it to a simpler ad-hoc detector. We de-
rive algorithms to estimate the noise powers and the subspace of
interferer signature vectors. Once the subspace is estimated, the
interference can be projected out. We compare this method to the
conventional multichannel subspace detector and show its robust-
ness to non-identical channels on data collected with the Wester-
bork radio telescope.

1. INTRODUCTION

In this paper we study the detection and suppression of spatially
correlated signals impinging on an array of uncalibrated non-
identical sensors, in the presence of spatially uncorrelated noise.
The noise covariance matrix is diagonal but otherwise unknown.

The motivation for this study comes from an application in ra-
dio astronomy, where we wish to detect and suppress man-made in-
terfering sources impinging on an array of telescopes. The output
of the receiver after processing is essentially a sequence of short-
term (∼10 second) sample correlation matrices, composed of the
contributions of astronomical sources in the pointing direction, the
additive receiver noise, and the interference. The receiver noise is
largely independent among the sensors, but the receiver gains are
not identical, with differences of up to a few dB. Until now, cali-
bration of this has been done separately and taken into account off-
line. An interfering source is usually in the near field and received
through the side-lobes of the parabolic dishes, hence the received
signals are correlated but with arbitrary unknown gains. Our aim
is to detect and cancel the interference online; this requires online
calibration processing as well.

Two types of interference play a role: intermittent signals (e.g.,
TDMA signals as in the GSM system, certain radar signals) and
continuously present signals (e.g., television signals, GPS). Our ap-
proach for intermittent signals is to detect their presence on-line on
milli-second periods, and discard those periods which are deemed
contaminated (temporal excision) [1]. For continuous interference,
we also wish to estimate the signature (direction) vector, so that
we can project out that dimension from the data. This is more am-
bitious, and also requires modifications to the way the astronomi-
cal data is processed after recording [2]. Note that the astronomi-
cal signals of interest are much weaker than the receiver noise and
hence it is necessary to detect interference even if it is much below
the noise power. The astronomical signals themselves are too weak
to be detected at these short time scales.

When the interferers are weaker than the system noise and the
receivers are non-identical, the change in eigenstructure of the sam-
ple covariance matrix is not detectable unless one of two steps is
taken. The first is pre-calibration and whitening. The second which
is easier to implement on-line is to use a different model where the
noise covariance matrix is assumed diagonal but not necessarily
equal to σ2I, and to detect deviation from this nominal model. This
is the approach taken here. The Generalized Likelihood Ratio Test
(GLRT) for this problem turns out to be the determinant of the sam-
ple correlation matrix, a fact which is not very well known in signal
processing but has been used for a long time in certain other disci-
plines.

We demonstrate the results of the excision using the GLRT
detector and compare it to a detector which assumes identical re-
ceivers. We also demonstrate the improvement in the estimate of
the spatial signature as compared to the usual eigendecomposition
technique.

2. PROBLEM FORMULATION

Assume that we have a set of q narrow-band Gaussian signals im-
pinging on an array of p sensors. The received signal can be de-
scribed in complex envelope form by
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is assumed to have independent gaussian entries with unknown di-
agonal covariance matrix Rn � diag{ν1 ��������� νp}.

We would like to detect the presence of signals satisfying the
above model, i.e., given data vectors x

�
1 � ��������� x � N � decide whether

q � 0 or q � 0. Secondly, if q � 0, we would like to detect q
and estimate the interfering subspace, i.e., span

�
A � , so that we can

project out this subspace from the data. We do not assume para-
metric knowledge of the array manifold (since the interferers enter
in the side lobes) or a calibration of the noise power in each chan-
nel. Under these assumptions the only way to distinguish between
signal and noise is to use the fact that the noise is spatially uncor-
related, hence has a diagonal covariance matrix.

The detection problem is thus given by a collection of hypothe-
ses ( ��� � 0 � R � denotes the zero-mean complex normal distribution
with covariance R)�
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where Rq is the covariance matrix of the model with q interferers,

Rq � AAH � D � where A : p × q � D diagonal

and
���

corresponds to a default hypothesis of an arbitrary (unstruc-
tured) positive definite matrix R

�
. (Without loss of generality, we

absorbed the interferer covariance matrix Rs in A.)
As it turns out, this problem has been studied in the psycho-

metrics, biometrics and statistics literature since the 1930s under
the heading of factor analysis (but usually for real-valued matri-
ces) [3, 4]. The problem has received much less attention in the
signal processing literature. Related recent work includes e.g. di-
rection estimation using two subarrays with mutually uncorrelated
noise [5, 6].

3. THE GLRT DETECTOR

In this section we give a short derivation of the GLRT for the de-
tection problem

�
q versus

���
. Note that both hypotheses are com-

posite and we have to derive maximum likelihood estimates of the
parameters for each of the hypotheses. Under

�
q, the likelihood

function is given by
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The ML estimate of Rq is found by maximizing L
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the parameters of the model Rq � AAH � D, or equivalently the
log-likelihood function� �
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Denote the estimate by R̂q � ÂÂH � D̂. Under
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the ML estimate of R
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is given by R̂, the sample covariance matrix.

The log-likelihood GLRT test statistic is thus given by
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If we generalize the results in [3,4] to complex data, we obtain
the following.
Lemma 3.1 If

�
q is true and N is moderately large (say N − q ≥

50), then 2Tq
�
X � has approximately a χ2

v distribution with v � � p−
q � 2 − p degrees of freedom.

In view of results of Box and Bartlett, a better fit is obtained by
replacing N in (3) by [3]
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corresponding
to a desired probability of false alarm PFA. The test replaces the
more familiar eigenvalue test on the rank of R̂ in the case of white
noise, D � σ2I. Note that before we can perform the test, we need
to compute the ML estimates of A : p × q and D (see section 5).

4. TEST FOR DIAGONALITY

Under
�

0 we can make the test more explicit. To estimate R̂0 � D̂,
we set the derivative of

�
with respect to the parameters of D to

zero, which immediately gives D̂ � diag
�
R̂ � . Therefore the GLRT

test statistic is given by
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where Ĉ is the sample correlation matrix given by Ĉ � WR̂W and
W � diag{r̂11 ��������� r̂pp}−1 & 2. Note that 0 ≤ |Ĉ| ≤ 1, where equality
to 1 is obtained asymptotically for N → ∞ if q � 0. Thus, for a
certain threshold γ � γ

�
N � between 0 and 1, the GLRT is

T1 ≡ |Ĉ| ' 0(
' 1

γ (5)

This result is identical to that in the real-valued case (see [4,
p.137]). The expression is rather satisfactory since in the absence
of sensor calibration data all the spatial information exists in the
spatial correlation coefficients between the different sensors, and
the GLRT suggests a proper way of combining these different cor-
relations. It is also quite easy to implement and does not involve
any eigenstructure computations. From lemma 3.1, under

�
0 we

know that −2N ln |Ĉ| has asymptotically a chi-square distribution
with p2 − p degrees of freedom. Again, a better asymptotic fit is
obtained by replacing N by N

� � N − 1
6

�
2p � 11 � .

A related ad-hoc detector to which we can compare is based
on the Frobenius-norm of the off-diagonal entries of Ĉ. Since the
diagonal entries are equal to 1, it is equivalent to take the norm of
Ĉ itself, i.e.,

T2 ≡ ) Ĉ ) F ' 1(
' 0

γ
�

(6)

In fact, it is straightforward to prove that, for weak signals, the per-
formance of this detector must be approximately equal to that of the
GLRT. Indeed, for weak signals, the eigenvalues of Ĉ are equal to
λi � 1 � εi, for small εi. Note that tr
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∑i εi � 0. We can write
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Since a monotonic transformation of a test statistic does not change
the outcome of the test if the threshold is modified accordingly,1

the two detectors are equivalent up to third order. Computing the
Frobenius-norm requires only , � p2 � operations, versus , � p3 � for
the determinant test (implemented via a Cholesky factorization of
Ĉ).

1Note that the decisions in (5) and (6) are opposite, hence the change of
sign in the second transformation.
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Figure 1. Time-frequency spectrum of channel 1, showing GSM
interference

5. PARAMETER ESTIMATION

To enable the GLRT, we have to find ML estimates of the factors
A : p×q and D, both dependent on the choice of q. The largest per-
missible value of q is that for which the number of degrees of free-
dom v � � p − q � 2 − p ≥ 0, or q ≤ p − / p. For larger q, there is no
identifiability of A and D: any sample covariance matrix R̂ can be
fitted. Even for smaller q, A can be identified only up to a q×q uni-
tary transformation at the right, i.e., we can identify span

�
A � . This

generalizes the white noise case (where span
�
A � would be given

by the eigenvectors of R̂), and is sufficient for our application of
interference cancellation.

For q � 0, there is no closed form solution to the estimation of
the factors A and D in the ML estimation of R̂q � ÂÂH � D̂. There
are several approaches for this:

– Suppose that the optimal ML-estimate D̂ has been found. We
can then whiten R̂ to R̃ � D̂−1 & 2R̂D̂−1 & 2, and similarly the
model, giving R̃q � ÃÃH � I. Note that |R̂−1

q R̂| � |R̃−1
q R̃|,

which is the usual problem for white noise, solved via an
eigenvalue decomposition of R̃. This is equivalent to solv-
ing min ) R̃ −

�
ÃÃH � I �0) 2F . Since D̂ is not known, this leads to

an iteration where Ã is plugged back, D̂ is estimated, etc.
A related technique is alternating least squares, where we al-
ternatingly minimize ) R̂−AAH � D ) 2F over A keeping D fixed,
and over D keeping A fixed. (This is not equivalent to the de-
terminant cost function unless a weighting by D−1 & 2 is used.)
Both iterative techniques tend to be very slow.

– Gauss-Newton iterations on the original (determinant) cost
function, or on the (weighted) least squares cost. This require
an accurate starting point.

– Ad-hoc techniques for solving the least squares problem, pos-
sibly followed by a Gauss-Newton iteration. These techniques
try to modify the diagonal of R̂ such that the modified matrix
is low-rank q, hence can be factored as AAH. For this we can
exploit the fact that submatrices away from the main diagonal
with q � 1 columns have rank q. See [7] for an example with
q � 1.

More details on estimation algorithms will appear in an extended
version of this paper.

6. APPLICATION TO RADIO ASTRONOMY

The main motivation for the detection and subspace estimation
problem stems from applications to interference mitigation in radio
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Figure 2. Computational structure of the blanking process

astronomy. We give two illustrations.
We first apply the detector for

�
0 to sample data collected with

the Westerbork radio telescope. The data was recorded using the
8-channel NOEMI project data recorder [1]. We selected a band-
width of 2 MHz, around 899 MHz, with a duration of 3 seconds.
This band is contaminated with various GSM mobile telephony sig-
nals. Such signals are intermittent, occupying time slots of length
0 � 577 ms in frames of 4 � 6 ms. A segment of the data is shown in
figure 1. The received data channels were split into subbands of
83 kHz by means of windowing and short-term FFTs, and subse-
quently correlated per frequency bin. Each covariance matrix is an
average based on 21 samples and covers a period of 0.24 ms.

Our aim is to test for the presence of interference in each co-
variance matrix. Only if no interference is detected, the block is
passed to a long-term correlator. Two detectors have been applied.
The first is the detector of (4), and the other one is given by

T3 ≡
|R̂|	 1p tr
�
R̂ ��� p � (7)

This detector is a GLRT assuming identical channels (or D � σ2I)
[4].

Since N � 21 is small, we have not used the theoretical thresh-
olds. Instead, we have excised the worst 10 percent of the data at
each frequency channel and generated spectral estimates by further
averaging the covariance matrices of the remaining 90 percent of
the data. The processing structure is shown in figure 2.

Figure 3 shows the power spectrum of channel 1 and the cross-
spectrum of channels 1 and 3, respectively, before and after blank-
ing. Without excision, we can see that several interfering signals
are present, most weak but one rather strong. We can clearly see
that while both detectors excised properly the strong interference,
the detector based on the D � σ2I assumption failed to excise the
weak features of the interference.

In a second application, we wish to spatially filter out contin-
uously present interference. The approach is to estimate span

�
A � ,

and to apply a projector P⊥
Â

onto the orthogonal complement of the
span. Here, we describe only a limited-scope simulation on syn-
thetic data, where we estimate a rank-1 subspace

�
i � using factor

analysis, and for comparison
�
ii � using eigendecomposition assum-

ing that D � σ2I, or
�
iii � using eigendecomposition after whitening

by D−1 & 2, assuming the true D is known from calibration. The al-
gorithm used for factor analysis is a non-iterative ad hoc technique
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Figure 3. Power spectra and cross-spectra of channels 1 and 3, be-
fore and after interference excision

used to obtain a consistent initial estimate, followed by a Gauss-
Newton optimization of the weighted least squares cost function
(3 iterations). The weighting is by D̂−1 & 2 as obtained from the ad
hoc technique. We have generated covariance matrices based on
the model (1) with q � 1, and show the residual interference power
after projection, i.e., ) P⊥

â a ) as a function of number of samples N,
mean noise power, and deviation in noise power. The noise pow-
ers are randomly generated at the beginning of the simulation, uni-
formly in an interval. Legends in the graphs indicate the nominal
noise power and the maximal deviation. All simulations use p � 8
sensors and q � 1 interferer, and a nominal interference to noise
ratio per channel of 0 dB.

The results are shown in figure 4. The first graph shows the
residual interference power for varying maximal deviations, the
second graph shows the residual for varying number of samples N,
and a maximal deviation of 3 dB of the noise powers. The figures
indicate that already for small deviations of the noise powers it is
essential to take this into account. Furthermore, the estimates from
the factor analysis are nearly as good as can be obtained via whiten-
ing with known noise powers.
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