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Abstract—This paper presents the application of the least-
squares field integrated method based on hybrid linear finite
elements in time-domain electromagnetic (EM) problems with
high contrast interfaces. The method proposes the use of edge
based linear finite elements over nodal elements and edge
elements of Whitney form. It shows how the equations have to be
accommodated to yield a correct solution. It proposes a general
strategy to combine edge linear finite elements and nodal linear
finite elements. Numerical experiments show that the resulting
algorithms are stable and achieve high quality field interpolation
even in the presence of very high contrasts.

Index Terms—least-squares, Field Integrated Equations, time
domain computational electromagnetism, hybrid finite element,
high contrast

I. INTRODUCTION

In strongly heterogeneous media, the constitutive parame-
ters can jump by large amounts upon crossing the mater-
ial interfaces. On a global scale, the EM field components
are, therefore, not differentiable and Maxwell’s equations
in differential form cannot be used: one has to resort to
the original integral form of the EM field relations as the
basis for the computational method. The appropriate integral
form is provided by the classical interrelations between the
curl of the electric/magnetic field strength along a closed
curve and the time rate of change of the magnetic/electric
flux passing through a surface with the circulation loop as
boundary. For these to hold, only integrability of the field
is needed, which condition we impose in accordance with
the physical condition of boundedness of the field quantities.
To satisfy the constitutive relations (that are representative of
physical volume effects), a fitting continuation of the boundary
representations of the field components of an element into its
interior is needed. We construct a consistent algorithm that
meets all of these requirements, using a simplicial geometrical
discretization combined with piecewise linear representation
of the electric and magnetic field components along the
edges of the elements, piecewise linear extrapolations into
the interior of the elements and taking constant values of the
constitutive coefficients in these interiors. Furthermore, we use
NETGENTI8] to discretize the computational domain with a
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2D(triangular)/3D(tetrahedra) mesh. We use simple boundary
conditions (PEC, PMC) to truncate the computational domain.
After properly assembling the local matrices, we obtain a
symmetric positive definite system of algebraic equations,
which we solve with a preconditioned iterative method. We test
the accuracy of the method by implementing the four domain
problem treated analytically in [4] in the time domain using
our method. This experiment also documents the stability of
our approach.

II. FIELD REPRESENTATION

In this paper we consider a 2D situation (the method applies
perfectly well to 3D but the main effects can be demonstrated
effectively in 2D), we use ’finite elements’ consisting of
triangles, and approximate the fields by linear interpolation
inside the elements. Due to the nature of the interface condi-
tions, a straight-forward application of the linear expansion
function across boundaries would lead to large numerical
error or excessive mesh refinement. Applying these interfaces
conditions as constraints would result in semi-positive definite
system matrices which are difficult to solve (see [7], [1]).
It is advantageous to take them directly into account when
discretizing the field quantities. The key point we propose
is to approximate the field quantities, which are known to
be continuous, with nodal linear finite elements, and the
discontinuous ones are approximated with edge based finite
elements.

A. Geometrical quantities

Before introducing the linear expansion functions (shape
functions), we define a few geometrical quantities (see Fig.
D). Let A(r;,rj,7%) or A(4, j, k) be the triangle delimited by
three vertexes with coordinates r;, r;, 7 |A(4, j, k)| the area
in triangle A(i, j, k); ; the spatial coordinate of the vertex
05 e = |:j ::I the unit vector pointing from vertex i to j;
ar = i, X e;; the normal unit vector perpendicular to the
edge delimited by vertex i and j; ¢;(r) = %%,Vr €
A(r,75,7%) the linear shape function, which, by definition, is
equal to 1 on vertex ¢ and O on other vertexes in A(r;, 75, 7%).
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Fig. 1.
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Degrees of freedom on a two-dimensional consistently linear finite

B. Nodal linear finite element

In a homogeneous sub-domain, any field quantity - say v
- is continuous. To preserve continuity, the field quantity is
best approximated by continuous linear splines interpolating
between nodes (so called 'nodal elements’). We use linear
expansion functions to construct the local linear interpolation
v of v (we use boldface for approximated quantities)
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Both the tangential component and normal component of v
are continuous across the interface. For quantities belonging
to HY(Q) = {v € L3(Q);v’ € L?(Q)}, the approximation
error is of the order O(h?) (where h denotes the mesh size).

C. Edge based consistently linear finite elements

For vectorial quantities that are (partially) discontinuous
across interfaces, we have to proceed differently. To keep
the tangential components of a vectorial field quantity o
continuous across a interface, we use only the well defined
continuous components (u;, where [,h € (4, j, k), l#h, see
Fig. 1) on vertexes to construct a linear interpolation over
the triangle A(i, 7, k) on which edge it is defined. Let (i)
specify the two-dimensional field quantity on vertex ¢. It can
be fully expressed in terms of the tangential components on
the incident edges:

y a; 3 ai
J
(i) = g + Uik = Z Uy

€iiel; €ikol €ilea
ijoety ikeUf le(i,j,k),l#i ileQ]

With # defined on each vertex, the linear shape function ¢;(r)
can be used to construct the local linear interpolation d(r) of
u(r),r € A(i, 3, k), as follows:

i) = ) alalr)

le(i,5.k)

Z Z — ¢u(r).
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Unlike the Whitney-1 elements, the consistently linear element
does not satisfy the divergence free condition. Therefore we
need to enforce this condition explicitly. On the other hand,
for quantities belonging to H(curl; Q) = {7 € [L*(Q)]™ :
V x ¥ € [L3(Q)]™}, the consistently linear expansion has a
local approximation error of the order O(h?) instead of O(h)
for Whitney edge elements. The consistently linear expansion
function was used first by Mur and de Hoop in [2].

Sub-domain 1 - Interface

D
DN

i

The allocation of the nodal- and edge- linear finite elements.

v

Fig. 2.

D. Combination of node- and edge- finite element expansions

To preserve the continuity properties of field quantities with-
out introducing too many unnecessary unknowns, we use edge
based consistently linear finite elements only on interfaces
between different materials and node linear finite elements in
homogeneous subdomains (see Fig. 2). Hereinafter, we refer
to this combination as hybrid linear finite elements.

III. TWO DIMENSIONAL ELECTROMAGNETIC PROBLEM:
THE PERPENDICULAR POLARIZATION CASE

In this section, we show how to utilize the hybrid linear
finite elements to solve 2D electromagnetic field problems.

A. Maxwell’s equations

In the computation domain €2 with boundary OS2, given a
(sufficiently smooth and small) surface S with boundary 0S5,
Maxwell’s equations in the surface integrated form are

H.dl
as

f Eo dl ==
as

where ¢¢(z,) is the electric conductivity, ¢™(z,) is the
magnetic conductivity. Let K% = ;B + ¢™H + K™P,
Jtt = 9,D+c¢E+J"P consider a volume V with its closed
surface 0V, The compatibility relations in their integrated

form are:
f JtOto ds = 0,
v

j{ K™.ds = 0.
oV

The computational domain is truncated by PEC and PMC
boundary conditions:

/ (0D +0°E + J™}ods, (&)
S

- / {0;B+0™H + K"™}.ds. (5)
S

(6)

(N

n X E=0o0n0Q,
n x H =0 on 09,

ne Kt = 0 on 9Q; (PEC boundary),
neJt = 0 on 9Qs (PMC boundary).

where 001 N 0Qs = ¢, 001 U 9Ny = 0€; Last but not the
least, the interface conditions are:
neK"™] =0onTy,
[neJ"] =0o0nT},

[nx H=0onT},
[nx E]=0o0nT;.
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where [A] = lim A(T") — lim A(T'~) denotes the jump of a
quantity A across the material interface I'. The constitutive
relations are:

D(x,,t) = e(x,)E(x,,t), B(x,,t) = plx,)H(x,t).

where £(x;) is the permittivity, p(x,) the permeability.

B. Two-dimensional electromagnetic problems and spatial-
temporal- discretization

The 2D problem is characterized by invariance in the z
direction. And we consider perpendicular polarized field only.
In this case, the electric field strength is interpolated with nodal
linear finite elements, since this field is always tangential to
the material interfaces. The magnetic field strength, however,
is approximated by hybrid linear finite elements as mentioned
in Section II-D. This means that the magnetic field strength is
interpolated by edge based linear finite element at the material
interfaces and by nodal linear finite element in homogeneous
sub-domains. Our discretization procedure is similar to that in
[5], except that the discretized Maxwell’s equations are derived
there for static problems, while we work with the full Maxwell
system in the time-domain. To implement a time stepping
scheme for the spatially discretized Maxwell’s equations, we
introduce the time instance t; = idt, where 6t > 0 is the
time step, and integrate Maxwell’s equations from ¢t = ¢;_; to
t = t;. All integrals that can not be computed analytically are
discretized using the trapezoidal rule. To maintain accuracy in
the time-domain and avoid computing too many unnecessary
time-steps, we choose the time-step dt corresponding to a CFL
number between 1 and 2 for the smallest element (see [3]).

C. Normalization

Before formulating the system of equations, it is important
to normalize these equations so that the system has better
spectral properties. Let L be a problem related reference
length. We normalize the spatial coordinate, time coordinate,
field quantities, EM sources and matter parameters as follows:

T Ho t Timp (7

H(ZII’, ) = gH(LZII’, C_O), J p({l)’,t) =1L
imp > 7\ imp /oy L? ~erN HO e/ p~

K" (z,t) = LK (La:,c—), c’(z) =L,/ —c°(Lx),

0

(@) = L\/;—T;am(LE), 27) = e(L7), A[) = u(L7).

We implement the least-squares field integrated method using
the normalized Maxwell system.

D. The algebraic linear system and iterative solution methods

After the spatial and the temporal dicretization, a linear
system of algebraic equations is to be solved. In view of very
large system matrices are involved, an efficient and fast linear
system solver is needed.

1) The linear system: After the linear system of integral
equations has been discretized in the space domain, we express
the time update by using the trapezoidal rule (this is a di-
cretization in the time domain that is consistent with the space
domain discretization, and also preserves system stability - a
conservative system will stay conservative, and a dissipative
system will stay dissipative.) After all discretizations have
been executed, the system has been reduced to a recursive
set of algebraic equations summarized by the formula:

Agui = —Alui_l + Gi. (8)

where u;_; collects the solution of the time instant ¢;_j,
u; = [ Hy E; ]T collects the solution at the current time
instant, and G; collects the source and boundary terms. Finally,
ug collects the initial field strength. This system is actually
(slightly) over-determined due to the additional formulation
of the divergence equations. We use a direct weighted least
squares solution method as is customary in linear algebra
when an over-determined system is encountered. This can
always be done in a numerically stable way (the compatibility
equations may be provided with weighting factors to tune their
influence, if desired). An alternative approach would consist in
expressing the original set of integral equations in discretized
form as a collection of equations that must be solved in least
squares sense, given a set of weights that tune the relative
importance of each contributing equation. We prefer the direct
method just discussed for its simplicity. It can be argued that
this approach actually achieves the same objective.

2) The preconditioned CG method: the symmetric positive
definite system can now be solved with any preconditioned
Krylov space iterative solver. The preconditioner we use is
the incomplete Cholesky factorization (/C') with dropping
threshold 10=3 (IC(1072)). However, direct application of
IC(1073) on the matrix Ay introduces a lot of fill-ins in
the incomplete Cholesky factor. Applying the approximate
symmetric minimum degree ordering [6] to the matrix Ao
significantly reduces the fill-ins in the incomplete Cholesky
factor . After this pre-processing step, preconditioned Krylov
space iterative solvers can be used to solve the discrete
Maxwell’s system (which is symmetric positive definite). The
solution method normally takes less than 10 iterations to reach
an accuracy 1075, Fewer iterations are needed if the solution
of the previous time instant is taken for the initial guess of the
current time instant.

IV. NUMERICAL EXPERIMENT

We test our method on a special example for which an
analytic solution is available. The solution is a ’steady state’
solution at a single frequency, containing a source term that
continuously injects current. Since we look for a time-domain
solution, we use the steady solution at ¢ = 0 as initial state, and
then start integration in the time-domain. Our solution should
follow the actual theoretical steady state solution faithfully. We
show that the solution stays stable and the error divergence of
our method is much lower than with the classical nodal method
using the same coarsely discretized mesh. The configuration is
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TABLE 1
CONFIGURATION OF THE FOUR SUB-DOMAINS

€); | Definition of sub-domains Ly o™ e | o°
Q1 | 0<2x<050<y<05 | 125 0 1.0] 0
Qo [ 05<2<10<y <05 2.5 0 1.0] 0
Q3 | 0<2<0505<y<1 1 0 1.0] 0
Q1 | 05<2<105<y<1 [ 1000 0 1.0] 0

a square domain = {0 < x < 1,0 <y < 1} consisting of
four sub-domains Q;, {i = 1,2,3,4} with different medium
properties (See Table I). Let

_ o™ Hw .
h(t) COEEE cos(wt) + (COEEE sin(wt),
g(t) = 0°cos(wt) — ewsin(wt).

and the source density distributions is given by:

Jmr = [—272h(t) — g(t)] sin(rz) sin(ry),  (9)
K" =0, (10

The exact field strengths are then:

E, = sin(mx)sin(my) cos(wt), (12)
H, = —7h(t)sin(rz)cos(my), (13)
H, = =h(t)cos(mx)sin(my). (14)

The angular frequency w is chosen to be 7 x 10%rad/s. The
same test configuration in the frequency domain was used by
Jorna in [4]. Let the Root Mean Square Error for the field
strength F in §2 at time ¢ be:

fQ |F(T‘, t) - Femact(rv t)|2
fQ | maXgeo,1] Feract (’l", t)|2

W=

RMSE(F,t) = ( x 100%.

(15)
With an interface conforming mesh (consists of 289 points
and 512 triangular elements), the RM SEs in € are plotted in
Fig. 3. Note that all RM S E's start with 0 at ¢ = 0 because the
exact solution is taken as the initial value. Experiments have
shown that the field strengths computed with mixed elements
stay stable and reasonably accurate for this coarse mesh; while
the field strengths computed with nodal elements along are
unstable and inaccurate. Note that p,, = 1000 in €y, since the
mesh we used is not fine, any method would produce large
numerical errors in €4. However, with our method, the error
in Q4 does not contaminate the numerical solutions in other
regions. A snapshot of the field strength computed by hybrid
finite elements is shown in Fig. 4.

)

V. CONCLUSION

The Least-squares field integrated method based on hybrid
linear finite elements holds considerable promise to model
electromagnetic effects in integrated circuits, where high con-
trasts between different types of materials is the rule and
complex structures are present.

Root Mean Square Error Vs Time
30, T

—+-RMSE(H) computed with nodal elements !

~e-RMSE(E) computed with nodal elements
——RMSE(H) computed with mixed elements
o5/~ RMSE(E) computed with mixed elements|

3 4
Time(s) x10°

Fig. 3. The root mean square error in the electric field strength (£) and the
magnetic field strength (H) in © X [0, T']. 100 time steps have been computed
and plotted. The RMSE Vs time plot of the electromagnetic field strengths
computed with field integrated method based hybrid linear finite elements
indicates that the method is accurate and stable.

Electric field strength pointing to z Magnetic field strength on xy—plane

Yy 1yl et

o o

Fig. 4. The snapshot of the electric and magnetic field strengths at ¢t =
1.667 x 10710(s) computed with the least-squares field integrated method
based on hybrid linear finite elements. The upper right sub-domain is 4
(i = 1000). Errors in €24 do not contaminate the solutions in other regions.
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