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Purpose: Design of a preconditioner for fast and efficient parallel imaging (PI) and
compressed sensing (CS) reconstructions for Cartesian trajectories.

Theory: PI and CS reconstructions become time consuming when the problem size
or the number of coils is large, due to the large linear system of equations that has to
be solved in ‘1 and ‘2-norm based reconstruction algorithms. Such linear systems can
be solved efficiently using effective preconditioning techniques.

Methods: In this article we construct such a preconditioner by approximating the
system matrix of the linear system, which comprises the data fidelity and includes
total variation and wavelet regularization, by a matrix that is block circulant with cir-
culant blocks. Due to this structure, the preconditioner can be constructed quickly
and its inverse can be evaluated fast using only two fast Fourier transformations. We
test the performance of the preconditioner for the conjugate gradient method as the
linear solver, integrated into the well-established Split Bregman algorithm.

Results: The designed circulant preconditioner reduces the number of iterations
required in the conjugate gradient method by almost a factor of 5. The speed up
results in a total acceleration factor of approximately 2.5 for the entire reconstruction
algorithm when implemented in MATLAB, while the initialization time of the pre-
conditioner is negligible.

Conclusion: The proposed preconditioner reduces the reconstruction time for PI and
CS in a Split Bregman implementation without compromising reconstruction stability
and can easily handle large systems since it is Fourier-based, allowing for efficient
computations.
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1 | INTRODUCTION

The undersampling factor in parallel imaging (PI) is in theory
limited by the number of coil channels.1-4 Higher factors can
be achieved by using compressed sensing (CS) which esti-
mates missing information by adding a priori information.5,6

The a priori knowledge relies on the sparsity of the image in
a certain transform domain. It is possible to combine PI and
CS, for example, Refs. 7 and 8 achieving almost an order of
magnitude speed-up factors in cardiac perfusion MRI and
enabling free-breathing MRI of the liver.9

CS allows reconstruction of an estimate of the true image
even in the case of considerable undersampling factors, for
which the data model generally describes an ill-posed prob-
lem without a unique solution. This implies that the true
image cannot be found by directly applying Fourier trans-
forms. Instead, regularization is used to solve the ill-posed
problem by putting additional constraints on the solution.
For CS, such a constraint enforces sparsity of the image in a
certain domain, which is promoted by the ‘0-norm.6,10,11

However, practically the ‘1-norm is used instead as it is the
closest representation that is numerically feasible to imple-
ment. The wavelet transform and derivative operators, inte-
grated in total variation regularization, are examples of
sparsifying transforms that can be used in the spatial direc-
tion8,12-16 and temporal dimension,9 respectively.

Although CS has led to a considerable reduction in
acquisition times either in PI applications or in single coil
acquisitions, the benefit of the ‘1-norm regularization con-
straint comes with the additional burden of increased recon-
struction times, because ‘1-norm minimization problems are
in general difficult to solve. Many methods have been pro-
posed that solve the problem iteratively.12,14,17-20,22,23,50 In
this work, we focus on the Split Bregman (SB) approach
because of its computational performance, and its well-
established track record.14,24-28 SB transforms the initial min-
imization problem, containing both ‘1 and ‘2-norm terms,
into a set of subproblems that either require solving an
‘2-norm or an ‘1-norm minimization problem, each of which
can be approached using standard methods.

The most expensive step in SB, which is also present in
many other methods, is to solve an ‘2-norm minimization
problem, which can be formulated as a linear least squares
problem.29 The system matrix of the least squares problem
remains constant throughout the SB iterations and this fea-
ture has shown to be convenient for finding an approxima-
tion of the inverse system matrix as is done in for example,
Ref. 30. This approach eliminates the need for an iterative
scheme to solve the ‘2-norm minimization problem, but for
large problem sizes the initial computational costs are high,
making it less profitable in practice.

An alternative approach for eliminating the iterative
scheme to solve the ‘2-norm minimization problem was

demonstrated in Ref. 31. In this approach, extra variable
splitting is introduced to separate the coil sensitivity matrices
from the Fourier transforms, such that all individual subpro-
blems can be solved directly in the case of Cartesian sam-
pling. This can lead to a considerable reduction in
reconstruction time, provided that the reconstruction parame-
ters are optimized. Simulations and in vivo experiments
showed significant improvements in convergence compared
to nonlinear conjugate gradient and a monotone fast iterative
shrinkage-thresholding algorithm. The extra variable splitting
introduces penalty parameters, however, and unstable behav-
ior can occur for certain parameter choices due to nontrivial
null-spaces of the operators.31-33 This can be seen as a draw-
back of this approach. Furthermore, determining the extra
parameters is obviously nonunique. Considering the fact that
each image slice would be reconstructed optimally with pos-
sibly different reconstruction parameters, we prefer the more
straightforward SB scheme. Moreover, for non-Cartesian tra-
jectories, direct solutions are no longer possible and iterative
schemes are needed.

Alternatively, to keep the number of reconstruction param-
eters to a minimum and to minimize possible stability issues,
preconditioners can be used to reduce the number of iterations
required for solving the least squares problem.34 The incom-
plete Cholesky factorization and hierarchically structured mat-
rices are examples of preconditioners that reduce the number
of iterations drastically in many applications.35,36 The draw-
back of these type of preconditioners is that the full system
matrix needs to be built before the reconstruction starts, which
for larger problem sizes can only be done on a very powerful
computer due to memory limitations. Although in Refs. 37-39
a penta-diagonal matrix was constructed as a preconditioner,
solving such a system is still relatively expensive. In addition,
before constructing the preconditioner, patient-specific coil
sensitivity profiles need to be measured, which often leads to
large initialization times. In Refs. 31 and 40, the extra variable
splitting enables building a preconditioner independent of coil
sensitivity maps, resulting in a preconditioner for non-
Cartesian reconstructions, but one that is not applicable for the
more stable SB scheme.

In this work, we design a Fourier transform-based pre-
conditioner for PI–CS reconstructions and Cartesian trajecto-
ries in a stable SB framework, that takes the coil sensitivities
on a patient-specific basis into account, has negligible initial-
ization time and which is highly scalable to a large number
of unknowns, as often encountered in MRI.

2 | THEORY

In this section we first describe the general PI and CS prob-
lems. Subsequently, the Split Bregman algorithm, which is
used to solve these problems, is discussed. Hereafter,
we introduce the preconditioner that is used to speed up the
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PI–CS algorithm and elaborate on its implementation and
complexity.

2.1 | Parallel imaging reconstruction

In PI with full k-space sampling the data, including noise, is
described by the model

FSix5yfull;i for i51; . . . ;Nc

where the yfull;i 2 CN31 are the fully sampled k-space data
sets containing noise for i 2 f1; ::;Ncg, with Nc the number
of coil channels, and x 2 CN31 is the true image.3 Here,
N5m � n, where m and n define the image matrix size in the
x- and y-directions, respectively, for a 2D sampling case.
Furthermore, Si 2 CN3N are diagonal matrices representing
complex coil sensitivity maps for each channel. Finally, F
2 CN3N is the discrete two-dimensional Fourier transform
matrix. In the case of undersampling, the data is described
by the model

RFSix5yi for i51; . . . ;Nc; (1)

where yi 2 CN31 are the under sampled k-space data sets for
i 2 f1; ::;Ncg with zeros at nonmeasured k-space locations.
The undersampling pattern is specified by the binary diago-
nal sampling matrix R 2 RN3N , so that the under sampled
Fourier transform is given by RF. Here it is important to note
that R reduces the rank of RFSi, which means that solving
for x in Equation 1 is in general an ill-posed problem for
each coil and a unique solution does not exist. However, if
the individual coil data sets are combined and the undersam-
pling factor does not exceed the number of coil channels, the
image x can in theory be reconstructed by finding the least
squares solution, that is, by minimizing

x̂5 argmin
x

XNc

i51

jjRFSix2yijj22
( )

; (2)

where x̂ 2 CN31 is an estimate of the true image.

2.2 | Parallel imaging reconstruction with
compressed sensing

In the case of higher undersampling factors, the problem of
solving Equation 2 becomes ill-posed and additional regula-
rization terms need to be introduced to transform the problem
into a well-posed problem. Since MR images are known to
be sparse in some domains, ‘1-norm terms are a suitable
choice for regularization. The techniques of PI and CS are
then combined in the following minimization problem

x̂5 argmin
x

l
2

XNc

i51

jjRFSix2yijj221
k
2

jjDxxjj11jjDyxjj1
� �

1
c
2
jjWxjj1

( )
;

(3)

with l; k, and g the regularization parameters for the data
fidelity, the total variation, and the wavelet, respectively.8 A

total variation regularization constraint is introduced by the
first-order derivative matrices Dx; Dy 2 RN3N , representing
the numerical finite difference scheme

DxðxÞji;j5xi;j2xi21;j i52; ::;m; j51; ::; n

DyðxÞji;j5xi;j2xi;j21 i51; ::;m; j52; ::; n

with periodic boundary conditions

DxðxÞj1;j5x1;j2xm;j j51; ::; n

DyðxÞji;15xi;12xi;n i51; ::;m

so that Dx and Dy are circulant. A unitary wavelet transform
W 2 RN3N further promotes sparsity of the image in the
wavelet domain.

2.3 | Split Bregman iterations

Solving Equation 3 is not straightforward as the partial deriva-
tives of the ‘1-norm terms are not well-defined around 0.
Instead, the problem is transformed into one that can be solved
easily. In this work, we use Split Bregman to convert Equation
3 into multiple minimization problems in which the ‘1-norm
terms have been decoupled from the ‘2-norm term, as dis-
cussed in detail in Refs. 14 and 24. For convenience, the Split
Bregman method is shown in Algorithm 1. The Bregman
parameters bx; by; bw are introduced by the Bregman scheme
and auxiliary variables dx; dy; dw are introduced by writing the
constrained problem as an unconstrained problem. The algo-
rithm consists of two loops: an outer loop and an inner loop.
In the inner loop (steps 4–11), we first compute the vector b
that serves as a right-hand side in the system of equations of
step 5. Subsequently, the ‘1-norm subproblems are solved
using the shrink function in steps 6–8. Hereafter, the residuals
for the regularization terms are computed in steps 9–11 and
are subsequently fed back into the system by updating the
right-hand side vector b in step 5. Steps 4–11 can be repeated
several times, but one or two inner iterations are normally suf-
ficient for convergence. Similarly, the outer loop feeds the
residual encountered in the data fidelity term back into the sys-
tem, after which the inner loop is executed again.

The system of linear equations,

Ax̂5b; (4)

in line 5 of the algorithm follows from a standard least
squares problem, where the system matrix is given by

A5l
XNc

i51

RFSið ÞHRFSi1k DH
x Dx1DH

y Dy

� �
1cWHW

with right-hand side

b5l
XNc

i51

RFSið ÞHyi1k DH
x dkx2bkx
� �

1DH
y dky2bky
� �h i

1cWH dkw2bkw
� �

:

In this work we focus on solving Equation 4, which is
computationally the most expensive part of Algorithm 1. It is
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important to note that the system matrix A remains constant
throughout the algorithm and only the right-hand side vector
b changes, which allows us to efficiently solve Equation 4
by using preconditioning techniques.

2.4 | Structure of the system matrix A

The orthogonal wavelet transform is unitary, so that
WHW5I. Furthermore, the derivative operators are con-
structed such that the matrices Dx;Dy;DH

x , and DH
y are block

circulant with circulant blocks (BCCB). The product and sum
of two BCCB matrices is again BCCB, showing that DH

x Dx1

DH
y Dy is also BCCB. These types of matrices are diagonal-

ized by the two-dimensional Fourier transformation, that is,

D15FCFH or D25FHCF

where C is a BCCB matrix and D1 and D2 are diagonal matri-
ces. This motivates us to write the system matrix A in Equa-
tion 4 in the form

A5FHFAFHF

5FHKF
(5)

with K 2 CN3N given by

K5l
XNc

i51

FSHi F
HRHRFSiFH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Kc

1k F DH
x Dx1DH

y Dy

� �
FH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kd

1c I|{z}
Kw

:

(6)

The term DH
x Dx1DH

y Dy is BCCB, so that Kd in K
becomes diagonal. If there is no sensitivity encoding, that is

Si 5 I 8i 2 f1; ::;Ncg, the entire K matrix becomes diagonal
in which case the solution x̂ can be efficiently found by
computing

x̂5A21b5FHK21Fb (7)

for invertible K. In practice, Fast Fourier Transforms (FFTs)
are used for this step. With sensitivity encoding, Si 6¼ I and
SHi F

HRHRFSi is not BCCB for any i, hence matrix K is not
diagonal. In that case we prefer to solve Equation 4 itera-
tively, since finding K21 is now computationally too expen-
sive. It can be observed that the system matrix A is
Hermitian and positive definite, which motivates the choice
for the conjugate gradient (CG) method as an iterative solver.

2.5 | Preconditioning

A preconditioner M 2 CN3N can be used to reduce the num-
ber of iterations required for CG convergence.41 It should
satisfy the conditions

1. M21A � I to cluster the eigenvalues of the matrix pair
around 1, and

2. determination of M21 and its evaluation on a vector
should be computationally cheap.

Ideally, we would like to use a diagonal matrix as the pre-
conditioner as this is computationally inexpensive. For this
reason, the Jacobi preconditioner is used in many applica-
tions with the diagonal elements from matrix A as the input.
However, for the current application of PI and CS the Jacobi
preconditioner is not efficient since it does not provide an

Algorithm 1. Split Bregman Iteration

1: Initialize y½1�i 5yi for i51; . . . ;Nc; x½1�5Sum of SquaresðFHyi; i51; . . . ;NcÞ ,
Initialize b½1�x ; b½1�y ; b½1�w ; d½1�x ; d½1�y ; d½1�w 50

2: for j5 1 to nOuter do
3: for k5 1 to nInner do

4: b5l
XNc

i51

SHi F
HRHy½j�i 1k DH

x ðd½k�x 2b½k�x Þ1DH
y ðd½k�y 2b½k�y Þ

h i
1cWHðd½k�w 2b½k�w Þ

5: solve Ax½k11�5b with x½k� as initial guess
6: d½k11�

x 5shrink Dxx½k11�1b½k�x ; 1k
� �

7: d½k11�
y 5shrink

�
Dyx½k11�1b½k�y ; 1k Þ

8: d½k11�
w 5shrink

�
Wx½k11�1b½k�w ; 1c Þ

9: b½k11�
x 5b½k�x 1Dxx½k11�2d½k11�

x

10: b½k11�
y 5b½k�y 1Dyx½k11�2d½k11�

y

11: b½k11�
w 5b½k�w 1Wx½k11�2d½k11�

w

12: end for
13: for i5 1 to Nc do
14: y½j11�

i 5y½j�i 1y½1�i 2RFSix½k11�

15: end for
16: end for
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accurate approximate inverse of the system matrix A. In this
work, we use a different approach and approximate the diag-
onal from K in Equation 6 instead. The motivation behind
this approach is that the Fourier matrices in matrix K center
a large part of the information contained in SHi F

HRHRFSi
around the main diagonal of K, so that neglecting off-
diagonal elements of K has less effect than neglecting off-
diagonal elements of A.

For the preconditioner used in this work we approximate
A21 by

M215FHdiagfkg21F; (8)

where diagfg places the elements of its argument on the
diagonal of a matrix. Furthermore, vector k is the diagonal
of matrix K and can be written as

k5lkc1kkd1ckw; (9)

where kc; kd, and kw are the diagonals of Kc; Kd , and Kw,
respectively. Note that Kd and Kw are diagonal matrices
already, so that only kc will result in an approximation of the
inverse for the final system matrix A.

2.6 | Efficient implementation of the
preconditioner

The diagonal elements kc;i of Kc;i5 FSHi F
H|fflfflffl{zfflfflffl}

CH
i

RHR|fflfflffl{zfflfflffl}
R

FSiFH|fflffl{zfflffl}
Ci

for a certain i are found by noting that Ci5FSiFH is in fact a
BCCB matrix. The diagonal elements kc;i of Kc;i can now be
found on the diagonal of CH

i RCi, so that

kc;i5
XN
j51

ej cHj;iRcj;i
� �

;

with cHj;i being the jth row of matrix CH
i and ej the jth standard

basis vector. Note that the scalar cHj;iRcj;i
� �

is the jth entry of

vector kc;i. Since R is a diagonal matrix which can be written
as R5diagfrg, we can also write

kc;i5
XN
j51

ej cHj;i � cTj;i
� �

r

5

cH1;i � cT1;i

cH2;i � cT2;i
�

cHN;i � cTN;i

2
666666664

3
777777775
r

5 CH
i � CT

i

� �
r;

(10)

where � denotes the element-wise (Hadamard) product. Since
the element-wise product of two BCCB matrices is again a

BCCB matrix, the circular convolution theorem tells us42,43

that

Fkc;i5F cH1;i � cT1;i
� �T

� r
� �

5F cH1;i � cT1;i
� �T

� �
� Fr:

The resulting matrix vector product in Equation 10 can
now be efficiently computed as

kc;i5FH F cH1;i � cT1;i
� �T

� �
� Fr

	 

: (11)

Finally, the diagonal elements d of the diagonal matrix D
with structure D5FCFH can be computed efficiently by
using d5Fc1, where c1 is the first row of C. Therefore, the
first row cH1;i of matrix CH

i is found as cH1;i
� �

T
5FH sHi

� �T ,
with sHi a row vector containing the diagonal elements of
matrix Si. For multiple coils Equation 11 becomes

kc5FH F
XNc

i51

cH1;i � cT1;i
� �T

" #
� Fr

( )
; (12)

where the action of the Fourier matrix on a vector can be
efficiently computed using the FFT.

Since DH
x Dx1DH

y Dy is BCCB, the elements of kd can be
quickly found by evaluating kd5Ft1, where t1 is the first
row of DH

x Dx1DH
y Dy. Finally, the elements of kw are all

equal to one, since Kx is the identity matrix.
Alternatively, in Equation 2 the summation over the coil

sensitivity matrices can be removed by stacking the matrices.
The derivation following this approach can be found online
as supporting information.

2.7 | Complexity

For every inner-iteration of the Split Bregman algorithm we
need to solve the linear system given in Equation 4, which is
done iteratively using a Preconditioned Conjugate Gradient
method (PCG). In this method, the preconditioner con-
structed above is used as a left preconditioner by solving the
following system of equations:

M21Ax̂5M21b; (13)

where x̂ is the approximate solution constructed by the PCG
algorithm. In PCG this implies that for every iteration the
preconditioner should be applied once on the residual vector
r5Ax̂2b. The preconditioner M can be constructed before-
hand since it remains fixed for the entire Split Bregman algo-
rithm as the regularization parameters l, k, and g are
constant. As can be seen in Table 1, M21 is constructed in
ð312NcÞN1ð41NcÞNlogN FLOPS. Evaluation of the diag-
onal preconditioner M21 from Equation 8 on a vector
amounts to two Fourier transforms and a single multiplica-
tion, and therefore requires N12NlogN FLOPS.

To put this into perspective, evaluation of matrix A on a
vector requires ð614NcÞN12NcNlogN FLOPS, as shown in

KOOLSTRA ET AL.
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Table 1. The upper bound on the additional costs per itera-
tion relative to the costs for evaluating A on a vector is
therefore

lim
N!1

N12NlogN
ð614NcÞN12NcNlogN

5
1
Nc

;

showing that the preconditioner evaluation step becomes rel-
atively cheaper for an increasing number of coil elements.
The scaling of the complexity with respect to the problem
size is depicted in Figure 1 for a fixed number of coils
Nc512.

3 | METHODS

3.1 | MR data acquisition

Experiments were performed on healthy volunteers after giv-
ing informed consent. The Leiden University Medical Center
Committee for Medical Ethics approved the experiment. An
Ingenia 3T dual transmit MR system (Philips Healthcare)
was used to acquire the in vivo data. A 12-element posterior
receiver array, a 15-channel head coil, a 16-channel knee coil
(also used for transmission) and a 16-element anterior
receiver array were used for reception in the spine, the brain,
the knee and the lower legs, respectively. The body coil was
used for RF transmission, except for the knee scan.

For the spine data set, T1-weighted images were acquired
using a turbo spin-echo (TSE) sequence with the following
parameters: field of view (FOV)5 340 3 340 mm2; in-plane
resolution 0.66 3 0.66 mm2; 4 mm slice thickness; 15 slices;
echo time (TE)/repetition time (TR)/TSE factor5 8 ms/648
ms/8; flip angle (FA)5 908; refocusing angle5 1208; water–
fat shift (WFS)5 1.5 pixels; and scan time5 2:12 minutes.

T2-weighted TSE scans had parameters: FOV5 340 3

340 mm2; in-plane resolution 0.66 3 0.66 mm2; 4 mm slice
thickness; 15 slices; TE/TR/TSE factor5 113 ms/4008 ms/32;
FA5 908; WFS5 1.1 pixels; and scan time5 3:36 minutes.

For the brain data set, T1-weighted images were acquired
using an inversion recovery turbo spin-echo (IR TSE)
sequence with parameters: FOV5 230 3 230 mm2; in-plane
resolution 0.90 3 0.90 mm2; 4 mm slice thickness; 24 slices;
TE/TR/TSE factor5 20 ms/2000 ms/8; refocusing
angle5 1208; IR delay: 800 ms; WFS5 2.6 pixels; and scan
time5 05:50 minutes. T�

2-weighted images were measured

TABLE 1 FLOPS required for construction of M21 and for evaluation of A on a vector.

Operation FLOPS

Construction of M21 cHi
� �T

5FH sHi
� �T8i 2 f1; ::;Ncg, NcNlogN

XNc

i

cH1;i � cT1;i
� �T 2NcN2N

FH F . . .ð Þ� F . . .ð Þ½ � N13NlogN

kd5FH t1 NlogN

k5kc1kd1kw 2N

k21 N

Total ð312NcÞN1ð41NcÞNlogN

Evaluation A on vector XNc

i51

RFSið ÞHRFSi
Ncð3N12NlogNÞ1NcN2N

DH
x Dx1DH

y Dy 5N

WHW 0

Summation of the three terms above 2N
Total ð614NcÞN12NcNlogN

64x64 128x128 256x256 512x512 1024x1024
105

106

107

108

109

FL
O

PS

M-1 on vector
A on vector

M-1A on vector

FIGURE 1 The complexity for different problem sizes. The number
of FLOPS for the action of the preconditionerM on a vector (blue), A on a
vector (red), and the combination of the two (yellow) are depicted for
Nc512
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using a gradient echo (FFE) sequence with parameters:
FOV5 2303 230 mm2; in-plane resolution 0.903 0.90 mm2;
4 mm slice thickness; 28 slices; TE/TR5 16 ms/817 ms;
FA5 188; WFS5 2 pixels; and scan time5 3:33 minutes.

For the knee data set, T1-weighted images were acquired
using an FFE sequence with parameters: FOV5 160 3

160 mm2; in-plane resolution 1.25 3 1.25 mm2; 3 mm slice
thickness; 32 slices; TE/TR5 10 ms/455 ms; FA5 908;
WFS5 1.4 pixels; and scan time5 1:01 minutes.

For the calf data set, T1-weighted images were acquired
using an FFE sequence with parameters: FOV5 300 3

300 mm2; in-plane resolution 1.17 3 1.17 mm2; 7 mm slice
thickness; 24 slices; TE/TR5 16 ms/500 ms; FA5 908;
WFS5 1.5 pixels; and scan time5 2:11 minutes.

The different acquisitions techniques (TSE, FFE) were
chosen to address different basic contrasts used in daily clini-
cal practice. Undersampling in the case of nonstationary
echo signals, such as during a T2-decaying TSE train, can
result in image quality degradation. This effect can be miti-
gated, for example, in TSE scans using variable refocusing
angle schemes as outlined in Ref. 44.

To show the performance of the preconditioner also in
the presence of these and similar effects, scans in the brain
were acquired directly in undersampled mode employing a
simple variable density sampling pattern, with acceleration
factors R5 2 and R5 3. To validate the results, fully
sampled data is acquired as well in a separate scan. Data for
a T2-weighted TSE scan (R5 2, FOV5 230 3 230 mm2; in-
plane resolution 0.90 3 0.90 mm2; 4 mm slice thickness; 1
slice; TE/TR/TSE factor5 80 ms/3000 ms/16; refocusing
angle5 1208; WFS5 2.5 pixels; and scan time5 00:30
minutes), a FLAIR scan (R5 2, FOV5 240 3 224 mm2; in-
plane resolution 1.0 3 1.0 mm2; 4 mm slice thickness; 1
slice; TE/TR/TSE factor5 120 ms/9000 ms/24; IR
delay5 2500 ms; refocusing angle5 1108; WFS5 2.7 pix-
els; and scan time5 01:30 minutes) and a 3D magnetization
prepared T1-weighted turbo field echo (TFE) scan (R5 3,
FOV5 250 3 240 3 224 mm2; 1.0 mm3 isotropic resolu-
tion; TE/TR5 4.6 ms/9.9 ms; TFE factor5 112; TFE pre-
pulse delay5 1050 ms; flip angle5 88; WFS5 0.5 pixels;
and scan time5 04:17 minutes).

3.2 | Coil sensitivity maps

Unprocessed k-space data was stored per channel and used to
construct complex coil sensitivity maps for each channel.45

Note that the coil sensitivity maps are normalized such that

Ŝi5
XNc

j51

SHj Sj

" #21
2

Si for i51; . . . ;Nc:

The normalized coil sensitivity maps were given zero
intensity outside the subject, resulting in an improved SNR

of the final reconstructed image. For the data model to be
consistent, also the individual coil images were normalized
according to

mi5Ŝi
XNc

j51

Ŝ
H
j mj for i51; . . . ;Nc:

3.3 | Coil compression

Reconstruction of the spine data set was performed with and
without coil compression. A compression matrix was con-
structed as in Ref. 46 and multiplied by the normalized indi-
vidual coil images and the coil sensitivity maps, to obtain
virtual coil images and sensitivity maps. The six least domi-
nant virtual coils were ignored to speed up the
reconstruction.

3.4 | Undersampling

Two variable density undersampling schemes were studied: a
random line pattern in the foot-head direction, referred to as
structured sampling, and a fully random pattern, referred to
as random sampling. Different undersampling factors were
used for both schemes.

3.5 | Reconstruction

The Split Bregman algorithm was implemented in MATLAB
(The MathWorks, Inc.). All image reconstructions were per-
formed in 2D on a Windows 64-bit machine with an Intel
i3–4160 CPU @ 3.6 GHz and 8 GB internal memory.

Reconstructions were performed for reconstruction
matrix sizes of 128 3 128, 256 3 256, and 512 3 512, and
the largest reconstruction matrix was interpolated to obtain a
simulated data set of size 1024 3 1024 for theoretical com-
parison. For prospectively undersampled scans, additional
matrix sizes of 240 3 224 were acquired. For the 3D scan,
an FFT was first performed along the readout direction, after
which one slice was selected. To investigate the effect of the
regularization parameters on the performance of the precon-
ditioner, three different regularization parameter sets were
chosen as:

1. set 1 l51023; k54 � 1023, and c51023

2. set 2 l51022; k54 � 1023, and c51023

3. set 3 l51023; k54 � 1023, and c54 � 1023:

The Daubechies 4 wavelet transform was used for W. Fur-
thermore, the SB algorithm was performed with an inner
loop of one iteration and an outer loop of 20 iterations. The
tolerance (relative residual norm) in the PCG algorithm was
set to e51023.
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4 | RESULTS

Figure 2 shows the T1-weighted TSE spine images for a
reconstruction matrix size of 512 3 512, reconstructed with
the SB implementation for a fully sampled data set and for
undersampling factors of four (R5 4) and eight (R5 8),
where structured Cartesian sampling masks were used. The
quality of the reconstructed images for R5 4 and R5 8 dem-
onstrate the performance of the CS algorithm. The difference
between the fully sampled and undersampled reconstructed
images are shown (magnified five times) in Figure 2D,E for
R5 4 and R5 8, respectively.

The fully built system matrix A5FHKF is compared
with its circulant approximation FHdiagfkgF in Figure 3A
for both structured and random Cartesian undersampling in
the spine, without regularization to focus on the approxi-
mated term containing the coil sensitivities. The elements of
A contain many zeros due to the lack of coil sensitivity in a
large part of the image domain when using cropped coil sen-
sitivity maps. These zeros are not present in the circulant
approximation, since the circulant property is enforced by
neglecting all off-diagonal elements in K. The entries intro-
duced into the circulant approximation do not add relevant
information to the system, because the image vector on
which the system matrix acts contains zero signal in the
region corresponding with the newly introduced entries. For
the same reason, the absolute difference maps in the bottom
row were masked by the coil-sensitive region of A, showing

that the magnitude and phase are well approximated by
assuming the circulant property. Figure 3B-D show the same
results for the brain, the knee and the calves, respectively,
demonstrating the generalizability of this approach to differ-
ent coil set-ups and geometries.

The product of the inverse of the preconditioner M21

and the system matrix A is shown for the spine, the brain,
the knee and the calves in Figure 4A-D, respectively. Differ-
ent regularization parameter sets show that the preconditioner
is a good approximate inverse, suggesting efficient
convergence.

Table 2 reports the number of seconds needed to build
the circulant preconditioner in MATLAB before the recon-
struction starts, for different orders of the reconstruction
matrix. Note that the actual number of unknowns in the cor-
responding systems is equal to the number of elements in the
reconstruction matrix size, which leads to more than 1 mil-
lion unknowns for the 10243 1024 case. For all matrix sizes
the initialization time is negligible compared with the image
reconstruction time.

Figure 5A shows the number of iterations required for
PCG to converge in each Bregman iteration without precon-
ditioner, with the Jacobi preconditioner and with the circulant
preconditioner for regularization parameters
l51023; k54 � 1023, and c51023 and a reconstruction
matrix size of 256 3 256. The Jacobi preconditioner does
not reduce the number of iterations, which shows that the
diagonal of the system matrix A does not contain enough

FIGURE 2 Reconstruction results for different structured Cartesian undersampling factors. (A) shows the fully sampled scan as a reference, whereas
(B) and (C) depict the reconstruction results for undersampling factors four (R5 4) and eight (R5 8), respectively. The absolute difference, magnified five
times, is shown in (D) and (E) for R5 4 and R5 8, respectively. The reconstructionmatrix has dimensions 5123 512. Regularization parameters were set
to l51 � 1023; k54 � 1023, and c51 � 1023
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information to result in a good approximation of A21. More-
over, it shows that the linear system is invariant under scal-
ing. The circulant preconditioner, however, reduces the
number of iterations considerably, leading to a total speed-up
factor of 4.65 in the PCG part.

The effect of the reduced number of PCG iterations can
directly be seen in the computation time for the reconstruc-
tion algorithm, plotted in Figure 6 for different problem
sizes. Figure 6A shows the total PCG computation time
when completing the total SB method, whereas Figure 6B

FIGURE 3 Systemmatrix and its circulant approximation. The first and the second columns show the systemmatrix elements for structured and ran-
dom undersampling and R5 4, respectively, for the spine (A), the brain (B), the knee (C), and the calves (D). The top row depicts the elementwise magni-
tude for the true systemmatrix A, the second row depicts the elementwise magnitude for the circulant approximated systemmatrix and the bottom row
shows the absolute difference between the true systemmatrix and the circulant approximation. The differencemaps were masked by the nonzero-region of
A, since only elements in the coil-sensitive region of the preconditioner describe the final solution

KOOLSTRA ET AL.
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shows the total computation time required to complete the
entire reconstruction algorithm. A fivefold gain is achieved
in the PCG part by reducing the number of PCG iterations,
which directly relates to the results shown in Figure 5A. The
overall gain of the complete algorithm, however, is a factor
2.5 instead of 5, which can be explained by the computa-
tional costs of the update steps outside the PCG iteration
loop (see Algorithm 1). Figure 6C also shows the error,

defined as the normalized 2-norm difference with respect to
the fully sampled image, as a function of time. The precondi-
tioned SB scheme converges to the same accuracy as the
original SB scheme, since the preconditioner only affects the
required number of PCG iterations.

The number of iterations required by PCG for each Breg-
man iteration is shown in Figure 5B for the three parameter
sets studied. The preconditioned case always outperforms the

FIGURE 4 The new systemmatrix. The first column and the second column show the elements of the effective new systemmatrixM21A for struc-
tured and random undersampling and R5 4, respectively, for the spine (A), the brain (B), the knee (C), and the calves (D). The rows show this result for the
three studied regularization parameter sets

10 | Magnetic Resonance in Medicine
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nonpreconditioned case, but the speed up factor depends on
the regularization parameters. Parameter set 1 depicts the
same result as shown in Figure 5A and results in the best
reconstruction of the fully sampled reference image. In
parameter set 2 more weight is given to the data fidelity term
by increasing the parameter l. Since the preconditioner relies
on an approximation of the data fidelity term, it performs
less optimally than for smaller l (such as in set 1) for the
first few Bregman iterations, but there is still a threefold gain
in performance. This behavior was already predicted in
Figure 4. Finally, there is very little change between parame-
ter set 3 and parameter set 1, because the larger wavelet regu-
larization parameter g gives more weight to a term that was
integrated in the preconditioner in an exact way, as for the
total variation term, without any approximations.

Figure 5C illustrates the required iterations when half of
the coils are taken into account by coil compression. Only a
small discrepancy is encountered for the first few iterations,
since the global structure and content of the system matrix A
remain the same, which demonstrates that coil compression
and preconditioning can be combined to optimally reduce
the reconstruction time.

The method also works for different coil configurations.
In Figure 7 the result is shown when using the 15-channel
head coil for the brain scans, the 16-channel knee coil for a
knee scan and the 16-channel receive array for the calf scan.
The circulant preconditioner clearly reduces the number of
iterations, with an overall speed-up factor of 4.1/4.4 and 4.5

in the PCG part for the brain (TSE/FFE) and the knee,
respectively.

Figure 8 shows reconstruction results for scans where the
data was directly acquired in under sampled mode instead of
retrospectively undersampled, for a T2-weighted TSE scan, a
FLAIR scan and a 3D magnetization prepared T1-weighted
TFE scan, leading to PCG acceleration factors of 4.2, 5.1,
and 5.4, respectively. The convergence behavior is similar to
the one observed for the retrospectively undersampled data,
demonstrating the robustness of the preconditioning
approach in realistic scan setups.

The performance of the preconditioner is also stable in
the presence of different noise levels, as shown by experi-
ments in which the excitation tip angle was varied from 108
to 908 in a TSE sequence, and results can be found online in
Supporting Information Figure S1.

5 | DISCUSSION AND
CONCLUSIONS

In this work we have introduced a preconditioner that
reduces the reconstruction times for CS and PI problems,
without compromising the stability of the numerical SB
scheme. Solving an ‘2-norm minimization problem is the
most time-consuming part of this algorithm. This ‘2-norm
minimization problem is written as a linear system of equa-
tions characterized by the system matrix A. The effectiveness

TABLE 2 Initialization times for constructing the preconditioner for different problem sizes.

Problem size 128 3 128 256 3 256 512 3 512 1024 3 1024

Initialization time (s) 0.0395 0.0951 0.3460 1.3371

Additional costs (%) 1.7 0.85 0.52 0.48

Even for very large problem sizes the initialization time does not exceed 2 seconds.
Additional costs are given as percentage of the total reconstruction time without preconditioning.

A B C

FIGURE 5 Number of iterations needed per Bregman iteration. The circulant preconditioner reduces the number of iterations considerably compared
with the nonpreconditioned case. The Jacobi preconditioner does not reduce the number of iterations due to the poor approximation of the systemmatrix’
inverse. (A) depicts the iterations for Set 1: l51 � 1023; k54 � 1023; c51 � 1023

� �
, whereas (B) depicts the iterations for Set 1, Set 2:

l51 � 1022; k54 � 1023; c51 � 1023
� �

, and Set 3: l51 � 1023; k54 � 1023; c54 � 1023
� �

The preconditioner shows the largest speed up factor when the
regularization parameters are well-balanced. (C) Shown are the number of iterations needed per Bregman iteration with and without coil compression
applied. The solid lines and the dashed lines depict the results with and without coil compression, respectively
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of the introduced preconditioner comes from the fact that the
system matrix is approximated as a BCCB matrix. Both the
total variation and the wavelet regularization terms are
BCCB, which means that only the data fidelity term, which

is not BCCB due to the sensitivity profiles of the receive
coils and the undersampling of k-space, is approximated by
assuming a BCCB structure in the construction of the pre-
conditioner. This approximation has been shown to be

A B C

FIGURE 6 Computation time for 20 Bregman iterations and different problem sizes. (A) Using the preconditioner, the total computation time for the
PCG part in 20Bregman iterations is reduced bymore than a factor of 4.5 for all studied problem sizes. (B) The computation time for 20 Bregman iterations
of the entire algorithm also includes the Bregman update steps, so that the total speedup factor is approximately 2.5 for the considered problem sizes. (C)
The twomethods converge to the same solution, plotted here for R5 4 and a reconstructionmatrix size 2563 256

FIGURE 7 Reconstruction results for different anatomies. (A) shows the fully sampled scan as a reference for the brain, whereas (B) depicts the
reconstruction results for an undersampling factor of four (R5 4). The absolute difference, magnified five times, is shown in (C). The reconstructionmatrix
has dimensions 2563 256 and regularization parameters were chosen as l51 � 1023; k54 � 1023, and c52 � 1023. The convergence results for the PCG
part with and without preconditioner are plotted in (D), showing similar reduction factors as with the posterior coil. Results for the knee are shown in (E)-
(F) for a reconstructionmatrix size 1283 128 and an undersampling factor of 2 (R5 2). Regularization parameters were chosen as l50:1; k50:4, and
c50:1. Results for the calves are shown in (I)-(L) for a reconstructionmatrix size 2563 256 and R5 4. Regularization parameters were chosen as
l50:1; k50:4, and c50:1. Results for the brain FFE scan are shown in (M)-(P) for a reconstructionmatrix size 2563 256 and R5 3. Regularization
parameters were chosen as l51; k54, and c51
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accurate for CS–PI problem formulations. The efficiency of
this approach comes from the fact that BCCB matrices are
diagonalized by Fourier transformations, which means that
the inverse of the preconditioner can simply be found by
inverting a diagonal matrix and applying two additional
FFTs.

With the designed preconditioner the most expensive
‘2-norm problem was solved almost five times faster than
without preconditioning, resulting in an overall speed up fac-
tor of about 2.5. The discrepancy between the two speed up
factors can be explained by the fact that apart from solving
the linear problem, update steps also need to be performed.
Step 4 and steps 13–15 of Algorithm 1 are especially time
consuming since for each coil a 2D Fourier transform needs
to be performed. Furthermore, the wavelet computation in
steps 4, 8, and 11 are time consuming factors as well. There-
fore, speed up factors higher than 2.5 are expected for an

optimized Bregman algorithm. Further acceleration can be
obtained through coil compression,46,47 as the results in this
study showed that it has negligible effect on the performance
of the preconditioner.

The time required to construct the preconditioner is negli-
gible compared with the reconstruction times as it involves
only a few FFTs. The additional costs of applying the pre-
conditioner on a vector is negligible as well, because it
involves only two Fourier transformations and an inexpen-
sive multiplication with a diagonal matrix. Therefore, the
method is highly scalable and can handle large problem
sizes.

The preconditioner works optimally when the regulariza-
tion terms in the minimization problem are BCCB matrices
in the final system matrix. This implies that the total varia-
tion operators should be chosen such that the final total vari-
ation matrix is BCCB, and that the wavelet transform should

FIGURE 8 Reconstruction results for data acquired in fully and undersampledmode. (A) shows a fully sampled scan as a reference for a T2-weighted
TSE scan in the brain, whereas (B) depicts the reconstruction results for a prospectively undersampled scan with an acceleration factor of two (R5 2). The
reconstructionmatrix has dimensions 2563 256 and regularization parameters were chosen as l51; k54, and g5 1. The convergence results for the
PCG part with and without preconditioner are plotted in (C). Results for the FLAIR brain scan are shown in (D)-(F) for a reconstructionmatrix size 2403
224 and R5 2. Regularization parameters were chosen as l51:4 � 102; k55:7 � 102, and c51:4 � 102. Results for a 3Dmagnetization prepared T1-
weighted TFE scan in the brain are shown in (G)-(I) for a reconstructionmatrix size 2403 224 and R5 3. Regularization parameters were chosen as
l50:5; k52, and c50:5. Note that the data in the left column stem from a different measurement as the data in the middle column
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be unitary. Both the system matrix and the preconditioner
can be easily adjusted to support single regularization instead
of the combination of two regularization approaches.

The BCCB approximation for the data fidelity term sup-
ports both structured and random Cartesian undersampling
patterns and works well for different undersampling factors.
The performance of the preconditioner was experimentally
validated using a variable density sampling scheme to pro-
spectively undersample the data. The convergence behavior
shows similar results as the retrospectively undersampled
case.

The regularization parameters were shown to influence
the performance of the preconditioner. Since the only
approximation in the preconditioner comes from the approxi-
mation of the data fidelity term, the preconditioner results in
poorer performance if the data fidelity term is very large
compared with the regularization terms. In practice, such a
situation is not likely to occur if the regularization parameters
are chosen such that an optimal image quality is obtained in
the reconstructed image. In this work, the regularization
parameters were chosen empirically and were kept constant
throughout the algorithm. For SB-type methods, however,
updating the regularization parameters during the algorithm
makes the performance of the algorithm less dependent on
the initial choice of the parameters.48 Moreover, it might
result in improved convergence, from which our work can
benefit.

This work focused on the linear part of the SB method,
in which only the right-hand side vector changes in each iter-
ation and not the system matrix. Other ‘1-norm minimization
algorithms exist that require a linear solver,49 such as IRLS
or Second-Order Cone Programming. For those type of algo-
rithms linear preconditioning techniques can be applied as
well. Although the actual choice for the preconditioner
depends on the system matrix of the linear problem, which is
in general different for different minimization algorithms,
similar techniques as used in the current work can be
exploited to construct a preconditioner for other minimiza-
tion algorithms.

As outlined earlier in the introduction, there are alterna-
tive approaches to eliminating the iterative scheme to solve
the ‘2-norm minimization problem. Although a detailed com-
parison of techniques is difficult due to the required choice
of reconstruction parameters, it is worth noting that in Ref.
31 a comparison was made between the nonpreconditioned
SB scheme that we also use as comparison in our work, and
the authors’ extra variable splitting method. Their results
suggest that the preconditioned SB scheme with an accelera-
tion factor of 2.5 is very similar to the performance of the
method adopting extra variable splitting. Moreover, variable
splitting is not possible for non-Cartesian data acquisition
but is easily incorporated into the preconditioned SB
approach. In this extension, the block circulant matrix with

circulant blocks is replaced by the block Toeplitz matrix with
Toeplitz blocks.40 Given the promising results for Cartesian
trajectories, future work will therefore focus on including
non-Cartesian data trajectories into a single unified precondi-
tioned SB framework.

Another large group of reconstruction algorithms involve
gradient update steps; examples in this group are the Iterative
Shrinkage-Thresholding Algorithm (ISTA), FISTA,
MFISTA, and BARISTA.50-53 In Ref. 53 it was discussed
that the performance of FISTA, for which convergence
depends on the maximum sum of squared absolute coil sensi-
tivity value, can be poor due to large variations in coil sensi-
tivities. In our work, however, the coil sensitivity maps were
normalized such that the corresponding sum-of-squares map
is constant and equal to one in each spatial location within
the object region. The normalization of these coil sensitivities
might therefore lead to acceleration of FISTA-type algo-
rithms. Thus, it would be interesting to compare the perform-
ance of the preconditioned SB algorithm with the
performance of FISTA when incorporating normalized coil
sensitivities into both algorithms.

In conclusion, the designed FFT-based preconditioner
reduces the number of iterations required for solving the lin-
ear problem in the SB algorithm considerably, resulting in an
overall acceleration factor of 2.5 for PI–CS reconstructions.
The approach works for different coil-array configurations,
MR sequences, and nonpower of two acquisition matrices,
and the time to construct the preconditioner is negligible.
Therefore, it can be easily used and implemented, allowing
for efficient computations.
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FIGURE S1 The performance of the preconditioner for
different SNR levels. Prospectively undersampled data sets
were obtained for different SNR levels by varying the flip
angle from 10 to 90 degrees in a TSE sequence. The dif-
ference in the number of CG iterations needed until con-
vergence with and without preconditioner for different
SNR levels is negligible.
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