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COMPRESSING LARGE-SCALE WAVE PROPAGATION MODELS
VIA PHASE-PRECONDITIONED RATIONAL KRYLOV SUBSPACES\ast 
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J\"ORN T. ZIMMERLING\ddagger 

Abstract. Rational Krylov subspace (RKS) techniques are well-established and powerful tools
for projection-based model reduction of time-invariant dynamic systems. For hyperbolic wavefield
problems, such techniques perform well in configurations where only a few modes contribute to
the field. RKS methods, however, are fundamentally limited by the Nyquist--Shannon sampling
rate, making them unsuitable for the approximation of wavefields in configuration characterized by
large travel times and propagation distances, since wavefield responses in such configurations are
highly oscillatory in the frequency-domain. To overcome this limitation, we propose to precondition
the RKSs by factoring out the rapidly varying frequency-domain field oscillations. The remaining
amplitude-functions are generally slowly varying functions of source position and spatial coordinate
and allow for a significant compression of the approximation subspace. Our one-dimensional analysis
together with numerical experiments for large-scale two-dimensional acoustic models shows superior
approximation properties of preconditioned RKS compared with the standard RKS model-order re-
duction. The preconditioned RKS results in a reduction of the frequency sampling well below the
Nyquist--Shannon rate, a weak dependence of the RKS size on the number of inputs and outputs for
multiple-input/multiple-output problems, and, most importantly, in a significant coarsening of the
finite-difference grid used to generate the RKS. A prototype implementation indicates that the pre-
conditioned RKS algorithm is competitive in the modern high performance computing environment.

Key words. model reduction, wave equation, Nyquist rate, geometrical optics, seismic explo-
ration
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1. Introduction. Numerical modeling of wave propagation is fundamental to
many applications in design optimization and wavefield imaging. In the oil and gas
industry, for instance, the solution of the Maxwell equations is required to invert elec-
tromagnetic measurements, while in seismic imaging the solution to the elastodynamic
wave equation is needed to ultimately image the subsurface of the Earth.

Finite-difference discretization of the governing wave equations leads to large-scale
linear systems, whose solution is computationally intense. Imaging and optimization
often use multiple frequencies, sources, and receivers, which leads to systems that need
to be evaluated for multiple right-hand sides, time steps, or frequencies, depending
on whether the problem is solved in the time- or frequency-domain. Therefore, these
so-called multiple-input/multiple-output (MIMO) systems have a high demand on
memory and computational power, causing long runtimes. To be more specific, let
us consider a surface seismic imaging problem in a k dimensional space (1 \leq k \leq 3),
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PHASE-PRECONDITIONED RATIONAL KRYLOV SUBSPACES 1487

with maximal propagation distance of N wavelengths. This would require the solution
of a discretized system with O(Nk) state variables, O(Nk - 1) sources and receivers,
and O(N) frequencies or time steps [22]. Model-order reduction aims to reduce the
complexity and computational burden of large-scale problems and here we target all
three of these factors.

Recently, promising results were obtained in the time-domain via multiscale model
reduction [8, 10]. The time-domain multiscale algorithms can be efficiently parallelized
via domain-decomposition, but time stepping still needs to be carried out sequentially,
while frequency-domain problems can be solved in parallel for different frequencies.
Here we consider interpolatory projection-based model reduction in the frequency-
domain; e.g., see [1]. The essence of this approach is the projection of the underlying
system onto a rational Krylov subspace (RKS; originally introduced by Ruhe for eigen-
value computations [24]), which produces good-quality, low-order approximations if
the spectrum of the system is well separated from the frequency interval of interest,
as in the case of diffusion PDEs, e.g., [2, 13, 20, 16]. In the context of wavefield mod-
eling, such a separation of the clustered eigenvalues is introduced by losses present
in the media or by the use of absorbing boundary conditions for the truncation of
unbounded domains. Projection-based reduced-order models (ROMs) for wavefield
problems may therefore exhibit fast convergence, especially for resonant configura-
tions with few isolated resonant eigenmodes [5, 11, 12]. Some modifications of the
RKS projection method can also be competitive for problems with smooth initial
conditions leading to effective suppression of highly oscillatory eigenmodes [15].

Usually, the computational cost of projection-based reduced-order modeling is
dominated by the generation of a suitable projection basis, e.g., see [4, 23]. In the
interpolatory projection-based ROM the Helmholtz equation has to be solved at dif-
ferent frequencies (shifts) and the span of these solutions forms the RKS basis. The
solution obtained from the Galerkin projection onto this subspace interpolates at the
shifts, which are therefore also known as interpolation points. Moreover, for coincid-
ing sources and receivers the transfer-function and its first derivative are interpolated
at these points. A general drawback of an RKS approach is that the number of in-
terpolation points can become large when wavefield solutions with large travel times
or propagation distances are of interest. Such wavefields are highly oscillatory in the
frequency-domain and the Nyquist--Shannon sampling theorem states that this os-
cillatory field should be sampled with at least one point per oscillation (two points
per wavelength (ppw)). Consequently, the number of interpolation points required to
accurately represent the wavefield increases with the propagation distance. Moreover,
discretization grids in Helmholtz solvers must also resolve wavefield oscillations. This
requirement has an even more dramatic effect on the computational cost due to poor
scalability of the available solvers. In favorable situations the best sampling rates
approaching the Nyquist limit can be achieved with high-order spectral methods and
their outgrowths. However, their cost per unknown can be significantly higher com-
pared with less accurate low-order methods due to loss of sparsity. In this paper, we
show that the sampling demand can be significantly lowered by adding phase infor-
mation to the model-order reduction technique leading to phase-preconditioned RKSs
(PPRKS). Preconditioning of Krylov subspaces for model reduction is a tough and still
open problem in general. However, to achieve it for particular applications one can try
to incorporate the underlying physics and asymptotic analysis to arrive at PPRKS.
Our approach is related to other known approaches in the field of oscillatory wave
problem computation, such as preconditioners for Helmholtz solvers [14, 17], Filon
quadrature [19], and a recent approach to data compression using phase-tracking [21].
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1488 DRUSKIN, REMIS, ZASLAVSKY, AND ZIMMERLING

In particular, we construct RKSs using polar decompositions of frequency-
dependent basis functions. These decompositions consist of a product of smooth
amplitude-functions and a known frequency-dependent oscillatory phase term. The
phase term is determined from high-frequency asymptotic expansions such as the
Wentzel--Kramers--Brillouin (WKB) approximation [3]. The amplitude-functions are
computed by splitting the RKS into incoming and outgoing waves (by applying one-
way wave operators) and factoring out the corresponding phase terms. Analogous to
Filon quadrature, we handle the highly oscillatory phase-functions analytically and
the smooth amplitude-function numerically. By developing a block version of PPRKS
for MIMO problems, we are also able to factor out the main dependence of the RKS on
the input (source) location. This feature, and the reduction of the number of interpo-
lation points mentioned above, leads to a significant compression of the approximation
space.

Finally, the resulting phase-preconditioned ROMs can also extrapolate to fre-
quencies outside the interval of interpolation points, since the basis functions are
frequency-dependent and the amplitude-functions are smooth for smoothly varying
wave speed profiles. This enables us to coarsen the second-order finite-difference grid
used for the RKS generation.

In conclusion, with PPRKS we can effectively reduce all of the above mentioned
factors contributing to the complexity of the MIMO wavefield problem. The overall
goal is to approximate the transfer-functions from multiple sources to multiple re-
ceivers with a small ROM that honors the physics of the underlying wave equation.
The approach uses a coarse grid and low-frequency interpolation points to build an
RKS and to obtain smooth amplitude-functions. Using high-frequency asymptotic
expansions, this RKS is extrapolated to high frequencies and evaluated on a fine grid.
The projection of a fine grid wave operator onto the extrapolated RKS gauges the
ROM to the fine scale we intend to model. In this way, fine-scale wave scattering
and large-scale wave propagation can be combined, which allows us to obtain a ROM
valid for all time scales. RKS algorithms for wavefield problems are at a disadvantage
compared with polynomial and extended Krylov subspace algorithms when it comes
to computational memory consumption as the basis needs to be saved for RKS meth-
ods. The compression of the approximation space to a small number of amplitudes
and phases, however, leads to a reduction in the computational memory demand of
the proposed method.

In section 2, we start with a short discussion on the wave equation and formu-
late the wavefield problem of interest for a single-input/single-output (SISO) con-
figuration. Subsequently, we introduce a standard RKS in section 3 and construct
field approximations in the frequency-domain. We show that this RKS approach is
structure-preserving and that the transfer-function of ROMs based on this RKS is
a Hermite interpolant of the transfer-function for a coinciding source-receiver pair.
In section 4, we take the RKS approach of section 3 as a starting point and intro-
duce the PPRKS for one-dimensional SISO configurations. We show that phase-
preconditioning is structure-preserving and retains the interpolation properties of
standard RKS Galerkin projection. The main result of this section is that for a
piecewise constant wave speed profile, the new method yields the exact solution with
the number of interpolation points equal to the number of homogeneous layers, i.e.,
this number plays the same role as the problem dimensionality in a conventional RKS
approach. Section 5 discusses the algorithm for higher spatial dimensions in a MIMO
setting using a block version of PPRKS. Finite-difference implementation via a two-
grid algorithm is discussed in section 6. In section 7 we illustrate the performance
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of the proposed RKS techniques through a number of two-dimensional numerical
experiments. Section 8 discusses the implementation of the proposed method on
parallel computation architectures, and the conclusions can be found in section 9.
Throughout this manuscript, quantities in the time-domain are denoted in roman
font, while quantities in the Laplace domain are in italics.

2. Problem formulation. In this paper we address the problem of solving the
Green's function for wave equations within a spectral interval of interest. We start the
discussion by considering the scalar, isotropic, continuous wave equation on \BbbR k\times [0,\infty [

(2.1) \Delta u - 1

\nu 2
utt =  - 1

\nu 2
\delta (t)\delta (x - xS), u| t=0 = 0, ut| t=0 = 0.

In this equation, \Delta denotes the k-dimensional Laplace operator and the position
vector is x \in \BbbR k (1 \leq k \leq 3). Furthermore, \nu (x) > 0 is a wave speed distribution in
L\infty [\BbbR k], and u(x, t) is the wavefield with a compact support for all finite times.

After Laplace transformation, (2.1) becomes

(2.2) \Delta u - s2

\nu 2
u =  - 1

\nu 2
\delta (x - xS),

where s is the complex Laplace parameter with Re (s) \geq 0. The Laplace domain
wavefield u satisfies the limiting absorption principle, i.e., u vanishes at infinity for
Re (s) > 0 and converges to the solution of Helmholtz's equation that satisfies the
outgoing radiation condition as the Laplace parameter s approaches the imaginary
axis via the right half of the complex s-plane.

Let \Omega be a bounded subdomain of \BbbR k such that xS \in \Omega . We now equivalently
reduce the original problem on the unbounded domain to a problem on \Omega by consider-
ing (2.2) in the weak formulation and testing this equation with a testing function p.
This gives

(2.3)

\int 
\Omega 

p

\biggl( 
\Delta  - s2

\nu 2

\biggr) 
udx =  - 1

\nu (xS)2
p(xS),

where the overbar denotes complex conjugation. After integration by parts, we obtain

(2.4)  - 
\int 
\Omega 

(\nabla p) \cdot (\nabla u) dx - 
\int 
\Omega 

p
s2

\nu 2
udx+

\int 
\partial \Omega 

p
\partial u

\partial n
dx =  - 1

\nu (xS)2
p(xS)

with \partial u
\partial n the derivative of u in the direction of the outward-pointing normal on \partial \Omega .

Finally, introducing the Dirichlet-to-Neumann (DtN) map D(s) on \partial \Omega such that
\partial u
\partial n = D(s)u, the above equation can be written as

(2.5)  - 
\int 
\Omega 

(\nabla p) \cdot (\nabla u) dx - 
\int 
\Omega 

p
s2

\nu 2
udx+

\int 
\partial \Omega 

pD(s)udx =  - 1

\nu (xS)2
p(xS).

Without the boundary integral (third term on the left-hand side of the above equation)
this equation is linear in s2; the DtN map, however, is a nonlinear function of frequency
s [9].

Notation. To better draw similarities between continuous and discrete formula-
tions, we will treat the complex-valued functions u and p as vectors from \BbbR \infty in our
linear algebraic derivations and introduce the inner product

(2.6) pHu =

\int 
\Omega 

pudx.
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1490 DRUSKIN, REMIS, ZASLAVSKY, AND ZIMMERLING

We note that u and p for k > 1 have singularities at xS that may make this inner
product divergent. To avoid this, we assume by default that instead of \delta (x - xS) we
have some regular approximation of the delta function. After discretization, u and p
become finite-dimensional vectors from \BbbR N and the issue of diverging integrals due
to singularities disappears. In this notation, superscript H denotes the Hermitian
transpose for vectors and an inner product with complex conjugation for functions.
Operators are as capital italic letters like A, and for linear combinations such as

qm = \alpha 1g
[1] + \alpha 2g

[2] + \cdot \cdot \cdot + \alpha mg
[m],

with coefficients \alpha i and expansion functions g[i], we write qm = Gm\sansz with \sansz =
[\alpha 1, . . . , \alpha m]T , and the expansion functions are stored as columns in the function
array Gm, i.e., Gm \in \BbbR \infty \times m (sometimes called a quasi matrix [27]). Finally, finite-
dimensional matrices are given in a capital sans serif font (like \sansA ).

Using the notation outlined above, we now introduce the wave operator Q(s) to
rewrite (2.5) as

(2.7) pHQ(s)u =  - 1

\nu (xS)2
p(xS).

First, we note that real and imaginary parts of Q(s) are self-adjoint. In the time-
domain, the wavefield is obviously real-valued and consequently operator Q(s) and
the field u(s) satisfy the Schwarz reflection principle

(2.8) Q(s) = Q(s) and u(s) = u(s),

from which it immediately follows that the spectrum of Q(s) is symmetric under
complex conjugation.

Global energy conservation for problem (2.1) leads to passivity of Q(s), which can
be defined via its nonlinear numerical range \scrW \{ Q(s)\} (also known as nonlinear field
of values); e.g., see [18], [13]. Specifically, for a nonlinear operator-valued function
A(s), the nonlinear numerical range \scrW \{ A(s)\} (e.g., see [18], [13]) is defined as

(2.9) \scrW \{ A(s)\} =
\bigl\{ 
s \in \BbbC : xHA(s)x = 0 for some nontrivial x \in \BbbC k

\bigr\} 
.

Passivity of dynamic system (2.7) is equivalent to the condition

(2.10) Re\scrW \{ Q(s)\} \leq 0.

The nonlinear problem can formally be solved in the Laplace domain as u = Q - 1(s)b
and quadrature rules for evaluating the Bromwich integral in the inverse Laplace
transform can be used to obtain a time-domain solution. To compute the inverse
Laplace transform we use equidistant quadrature points on the imaginary s-axis in the
spectral region where the wavelet is active. In the area where the Laplace transform
of the applied wavelet is small we use a few quadrature points with increasing steps
on the imaginary axis.

In the case of imaging or remote sensing applications one is typically not interested
in the wavefield in the entirety of \Omega but at certain receiver locations only. With r
denoting the receiver function, the transfer-function from source to receiver can be
defined as

(2.11) f(r, b, s) = rHQ - 1(s)b.
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This is the SISO transfer-function, and since Q(s) is symmetric in the transpose
bilinear form we find that f(r, b, s) = f(b, r, s) hold for real receiver functions. Since
an imaging application often uses multiple sources and receivers, we define the MIMO
transfer-function later. Fundamentally, we try to compress and approximate this
transfer-function in this work. In the following sections we discuss a reduced-order
modeling technique that approximates the transfer-function and preserves the above-
mentioned symmetry properties, the Schwarz reflection principle, and passivity.

3. Structure preserving rational Krylov subspace reduction. As a first
step toward an efficient rational Krylov methodology for multifrequency wavefield
problems, we construct field approximations or ROMs based on an interpolatory RKS
containing single-frequency solutions (snapshots) of the problem as trial and testing
space. Specifically, our approach is to define an RKS of order m as

(3.1) \scrK m(\kappa ) = span \{ u(s1), u(s2), . . . , u(sm)\} 

with m distinct shifts \kappa = [s1, . . . , sm] and to use its real form, the RKS

(3.2) \scrK 2m
R (\kappa ) = span \{ Re\scrK m(\kappa ), \frakI m\scrK m(\kappa )\} ,

as a test and trial space. The real and imaginary parts of the snapshots u(si) spanning
\scrK 2m

R (\kappa ) are always linearly independent, since the eigenfunction expansion of the Dirac
distribution appearing on the right-hand side of (2.2) has an infinite number of terms.
Furthermore, from the symmetry given in (2.8) it follows that \scrK m(\kappa ) \subset \scrK 2m

R (\kappa ) and
\scrK m(\kappa ) \subset \scrK 2m

R (\kappa ) and a projection onto the subspace \scrK 2m
R (\kappa ) will therefore preserve

the Schwarz reflection principle leading to real-valued, time-domain wavefield approx-
imations. In the following subsections we will construct the reduced-order wavefield
approximations, discuss their structure, and show the interpolation properties of these
approximations.

3.1. Reduced-order solution. We start by approximating the weak solution
of (2.7) by an element from the space \scrK 2m

R (\kappa ). To this end, let the functions v[1],
v[2], . . . , v[2m] form a real basis Vm \in \BbbR \infty \times 2m of \scrK 2m

R (\kappa ). The reduced-order solution
is now expanded as um = Vm\sansz with expansion coefficients \alpha i collected in vector
\sansz = [\alpha 1, . . . , \alpha 2m]T . These coefficients can be obtained from a standard Galerkin
procedure defined through the weak form of (2.5) leading to

(3.3) \sansz = [V H
m Q(s)Vm] - 1V H

m b or \sansz = R - 1
m (s)V H

m b

with b =  - \delta (x - xS)/\nu (xS)
2 and where \sansR m(s) is the 2m\times 2m reduced-order operator

given by \sansR m(s) = V H
m Q(s)Vm. The ROM is structure preserving as show in the

following proposition.

Proposition 3.1. The reduced-order operator \sansR m(s) preserves the structure of
the full-order operator Q(s), that is, \sansR m(s) is symmetric and satisfies the Schwarz
reflection principle \sansR m(s) = \sansR m(s) and its numerical range is contained in the nu-
merical range of \sansQ (s), that is, \scrW \{ \sansR m(s)\} \subseteq \scrW \{ Q(s)\} .

Proof. The symmetry of \sansR m(s) follows from the symmetry of Q(s) since \sansR m(s) =
V H
m Q(s)Vm = V T

mQ(s)T \=Vm = \sansR m(s)T , since Vm is a real. The same argument shows
that the Schwarz reflection principle holds as \sansR m(\=s) = V H

m Q(\=s)Vm = V H
m

\=Q(s)Vm =
\=\sansR m(s). Moreover, from the definition of the numerical range of the reduced order we
find that

(3.4) \sansx Hm\sansR m(s)\sansx m = (Vm\sansx m)HQ(s)(Vm\sansx m).
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Now, every s that satisfies \sansx Hm\sansR m(s)\sansx m = 0 also satisfies (Vm\sansx m)HQ(s)(Vm\sansx m) = 0,
such that every point in the numerical range of \sansR m(s) is also included in the numerical
range of Q(s).

Thus, preservation of passivity (2.10) is guaranteed by Proposition 3.1, and so
is the preservation of causality and stability. Therefore, existence and uniqueness
of the reduced-order solution in (3.3) is also guaranteed by Proposition 3.1, since
it guarantees that \sansR m(s) is invertible for all Laplace parameters s with Re (s) \geq 0.
Finally, we mention that the time-domain counterpart of um(s) can be obtained by
evaluating the inverse Laplace transform. To compute the inverse Laplace transform,
equidistant quadrature points on the imaginary s-axis are used in the spectral region
where the wavelet is active. In the area where the Laplace transform of the wavelet
is small we use a few quadrature points with increasing steps on the imaginary axis.

We end this section by introducing an alternative way of representing the reduced-
order solution, which will be useful in the development of PPRKS methods. In ex-
pansion form the reduced-order solution can be written as

(3.5) um =

m\sum 
i=1

\biggl[ 
di
\delta i

\biggr] T \biggl[ 
u(si)
u(si)

\biggr] 
,

where the expansion coefficients di and \delta i follow from the Galerkin condition. Due
to the above mentioned linear independence of the real and imaginary parts of the
snapshots, this representation is algebraically equivalent to um = Vm\sansz , i.e., there
exists a transform from the 2m coefficients \alpha i to the coefficients di and \delta i of (3.5).

3.2. Interpolation properties. The standard theory of Galerkin interpolatory-
projection model reduction of passive, self-adjoint, dynamic systems yields the follow-
ing interpolation properties (e.g., see [1]).

Proposition 3.2. The projected RKS solution um(s) interpolates at the shifts,
i.e.,

(3.6) um(s) = u(s) \forall s \in \kappa \cup \kappa ,

and the SISO reduced-order transfer-function fm(s) is a Hermite interpolant of the
SISO transfer-function f(s) at the shifts, that is,

(3.7) fm(s) = f(s) and
d

ds
fm(s) =

d

ds
f(s) with s \in \kappa \cup \kappa .

Proof. Since \scrK m(\kappa ) \subset \scrK 2m
R (\kappa ) and \scrK m(\kappa ) \subset \scrK 2m

R (\kappa ), property (3.6) follows
directly from the uniqueness of the Galerkin condition for passive problems. To prove
(3.7), we first introduce the field error and residual as

em(s) = u(s) - um(s) and rm(s) = b - Q(s)um(s),

respectively. From the Galerkin condition we obtain the relation

(3.8) uHm(s)rm(s) = 0,

since um(s) \in \scrK 2m
R . The error of the transfer-function can now be written as

(3.9) f(s) - fm(s) = bHem(s) = uH(s)Q(s)em(s),
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where we have used Schwarz's reflection principle. Since Q(s)em(s) = rm(s) and the
Galerkin condition of (3.8) holds, we can write

(3.10) f(s) - fm(s) = uH(s)rm(s) = eHm(s)rm(s),

which has double zeros at s = \kappa \cup \kappa , since the error and residual vanishes for these
frequencies due to relation (3.6).

The outlined approach is most efficient if only a few singular Hankel values of
the system contribute to the solution, as is the case for resonating structures with
a few excited and observable modes [4]. Then the frequency-domain response is
well-described by a low-degree rational function and a rational Krylov technique will
therefore quickly capture the desired wavefield response. For waves characterized by
large travel times, however, this may no longer be the case, since such responses are
highly oscillatory in the frequency-domain and sampling should at least take place
at half the Nyquist--Shannon sampling rate. As an illustration, consider a source-
receiver pair with an arrival at T arr such that the source wavelet convolved with
\delta (t  - T arr) is measured. In the Laplace domain this translates to multiplication
by exp( - sT arr), which means that according to the Nyquist sampling theorem the
maximum frequency-domain sampling distance is \Delta s = \pi /T arr on the imaginary axis.
Clearly, the number of required frequency-domain samples increases as the travel time
increases, leading to prohibitory large RKSs. In the next section we will incorporate
travel time information to obtain basis functions that are less oscillatory to lower this
sampling demand.

4. Field parametrization for SISO problems. To enhance the convergence
of an RKS approach for travel time dominated structures, we need to incorporate
travel time information into the Krylov subspace, and thus into our basis functions.
To this end, we assume that variations of the medium take place on a scale much
larger than the wavelength at the considered frequencies, since this allows us to use
a geometrical optics ansatz. Every basis vector belonging to the RKS is now split
into an incoming and an outgoing wave and for each of these waves we factor out a
strongly oscillating phase term exp(\pm sTeik), where Teik = Teik(x) is the eikonal time
that solves the eikonal equation | \nabla Teik(x)| 2 = 1

\nu (x)2 . Splitting of the fields is realized

using one-way wave equations. First we introduce this splitting for one-dimensional
systems in section 4.1 and then generalize to higher dimensions in section 4.2.

4.1. One-dimensional field parametrization. We decompose the field into
an incoming and an outgoing component by writing

(4.1) u(sj) = exp( - sjTeik) cout(sj) + exp(sjTeik) cin(sj).

For each component an oscillating phase term has been factored out and the ampli-
tudes are determined from the single-frequency snapshot solutions u(sj) via one-way
wave equations as

cout(sj) =
\nu 

2sj
exp(sjTeik)

\biggl( 
sj
\nu 
u(sj) - 

\partial 

\partial | x - xS| 
u(sj)

\biggr) 
(4.2a)

and

cin(sj) =
\nu 

2sj
exp( - sjTeik)

\biggl( 
sj
\nu 
u(sj) +

\partial 

\partial | x - xS| 
u(sj)

\biggr) 
.(4.2b)

D
ow

nl
oa

de
d 

10
/1

3/
18

 to
 1

45
.9

4.
11

0.
29

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1494 DRUSKIN, REMIS, ZASLAVSKY, AND ZIMMERLING

In (4.2a), the incoming wave component of u(sj) is filtered out, leaving an outgoing
component for which outgoing oscillations can be factored out. In (4.2b) the situation
is reversed and the outgoing component of u(sj) is filtered out. Finally, we note that
using the above one-way wave equations for decomposition is equivalent to enforcing
the condition

(4.3) exp(sjTeik)
\partial 

\partial | x - xS| 
cout(sj) + exp( - sjTeik)

\partial 

\partial | x - xS| 
cin(sj) = 0,

and the amplitudes cout and cin are spatially much smoother than the wavefield u,
since the highly oscillatory phase term has been factored out.

Now to obtain a field approximation at frequency s, instead of projecting our
operator onto single-frequency solutions u(sj), we project it onto the phase-corrected
basis functions exp( - sTeik) cout(sj) and exp(sTeik) cin(sj). This is the central idea of
our approach, which preserves the interpolation properties of the RKS. In particular,
by introducing the phase-preconditioned subspace as

\scrK 2m
EIK(\kappa , s) = span\{ exp( - sTeik) cout(s1), . . . , exp( - sTeik) cout(sm),

exp(sTeik) cin(s1), . . . , exp(sTeik) cin(sm)\} ,
(4.4)

and its symmetry-preserving real form

(4.5) \scrK 4m
EIK;R(\kappa , s) = span

\bigl\{ 
Re\scrK 2m

EIK(\kappa , s), \frakI m\scrK 2m
EIK(\kappa , s)

\bigr\} 
we can construct ROMs in the usual way, but now in terms of frequency-dependent
basis functions. More precisely, let M \leq 4m be the dimension of \scrK 4m

EIK;R(\kappa , s) and let

vectors v[1](s), v[2](s), . . . , v[M ](s) \in \BbbR \infty form an orthonormal basis of \scrK 4m
EIK;R; then

the field approximation drawn from this subspace can be written as

(4.6) um(s) =

M\sum 
i=1

\alpha i(s)v
[i](s)

and the coefficients \alpha i(s) \in \BbbC can again be determined from the Galerkin condition.
Note that m denotes the number of snapshots used to construct \scrK 4m

EIK;R, while M \leq 
4m denotes the dimension of this subspace. The factor of 4 in the upper bound
on M is due to splitting into incoming and outgoing fields, which can lead to a
twice-as-large approximation subspace compared with unpreconditioned RKS with
the same shifts. However, as we shall see in subsection 5.2, this increase can be
circumvented in our implementation; the overall dimension of the preconditioned RKS
is usually comparable to the dimension of a standard unpreconditioned RKS for the
same accuracy, while using a smaller number of snapshots.

With Vm;EIK(s) \in \BbbR \infty \times M the real, orthonormal basis matrix of \scrK 4m
EIK;R(\kappa , s),

the ROM that follows from the Galerkin condition can be written as a self-adjoint,
time-invariant dynamic system

(4.7) Vm;EIK(s)\sansR m;EIK(s)V
H
m;EIK(s)um;EIK(s) = bm

with

bm = Vm;EIK(s)V
H
m;EIK(s)b and \sansR m;EIK(s) = V H

m;EIK(s)Q(s)Vm;EIK(s).

The ROM of (4.7) is the phase-corrected counterpart of the ROM of (3.3). Further-
more, since cout/in(si) = cout/in(si) holds because the Schwarz reflection principle is

D
ow

nl
oa

de
d 

10
/1

3/
18

 to
 1

45
.9

4.
11

0.
29

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PHASE-PRECONDITIONED RATIONAL KRYLOV SUBSPACES 1495

satisfied, we can also express the ROM of (4.6) in terms of the amplitude-functions
cin(s) and cout(s) as (cf. (3.5))
(4.8)

um(s) =

m\sum 
i=1

\biggl[ 
ai(s)
\alpha i(s)

\biggr] T \biggl[ 
exp( - sTeik) cout(si)
exp( - sTeik) cout(si)

\biggr] 
+

m\sum 
i=1

\biggl[ 
di(s)
\delta i(s)

\biggr] T \biggl[ 
exp(sTeik) cin(si)
exp(sTeik) cin(si)

\biggr] 
with expansion coefficients ai, \alpha i, di, and \delta i \in \BbbC and where we have assumed that
M = 4m. This formulation clearly shows that we use frequency-independent ampli-
tudes, preconditioned by frequency-dependent phase-functions, employing conjuga-
tion to preserve the symmetry of the wave equation.

Finally, for field evaluations on the imaginary axis (s \in i\BbbR ) the above expansion
can be written more compactly as

(4.9) um(s) =

2m\sum 
i=1

\biggl[ 
ai(s)
\alpha i(s)

\biggr] T \biggl[ 
exp( - sTeik) c(si)
exp(sTeik) c( - si)

\biggr] 
with s \in i\BbbR 

and where c(si) = cout(si) for i = 1, 2, . . . ,m and c(si) = \=cin(si - m) for i = m +
1, . . . , 2m.

The following results show that the PPRKS retains the structure-preserving
interpolatory-projection properties of standard RKS.

Lemma 4.1. The system of (4.7) is structure preserving, i.e., W \{ \sansR m;EIK(s)\} \subseteq 
W \{ Q(s)\} on the range (column space) of Vm;EIK(s).

Proof. Let a nontrivial \sansx m be in the range of Vm;EIK(s), that is \sansx m = Vm;EIK(s)\sansy m.
Then

\sansy Hm\sansR m;EIK(s)\sansy m = \sansy HmV
H
m;EIK(s)Q(s)Vm;EIK(s)\sansy m = \sansx HmQ(s)\sansx m.

Thus, phase-preconditioned ROMs can restrict the numerical range as \sansx m is in
the range of Vm;EIK(s); however, the spectrum is always contained in the projected
operator.

Proposition 4.2. The SISO reduced-order transfer-function retains the interpo-
lation properties of the unpreconditioned RKS with the same shifts stated in Proposi-
tion 3.2.

Proof. By construction, \scrK 4m
EIK;R(\kappa , s) \supset \scrK 2m

R (\kappa ) when s \in \kappa \cup \kappa . According to
Lemma 4.1, the ROM is passive given that the Galerkin problem has a unique solution.
Therefore, the proof of Proposition 3.2 applies.

One of the motivations to use this method is the expected fast convergence, when
the parametrization of (4.1) is valid. In that case only a few phase-corrected, smooth
amplitude-functions cout/in are required to approximate the wavefield. Furthermore,
in the RKS method discussed in the previous section, the number of required shifts or
frequencies is dependent on the largest arrival time; however, in the PPRKS discussed
above, the arrival times are factored out and the number of shifts is dependent on
the complexity of the wave speed model \nu (x) rather than the largest arrival time. We
make this explicit in the following proposition.

Proposition 4.3. Let a one-dimensional problem have \ell homogeneous layers.
Then there exist m \leq \ell +1 noncoinciding interpolation points such that um;EIK(s) = u.

Proof. We start by noting that if the regions to the left and to the right of the
source are considered as separate layers, then the solution to the one-dimensional
wave equation consists of a superposition of left- and right-going waves of constant
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1496 DRUSKIN, REMIS, ZASLAVSKY, AND ZIMMERLING

amplitude in each of the \ell +1 layers. For one-dimensional problems, the decomposition
direction coincides with the travel direction of the wave; thus, cout(\kappa ) and cin(\kappa ) are
piecewise constant. A piecewise constant function with \ell + 1 layers can be exactly
represented by at most \ell + 1 linear-independent piecewise constant functions with
the same jump locations. Let us prove from the opposite, i.e., assume that there are
no m \leq \ell + 1 noncoinciding shifts \kappa i such that cout(\kappa i) form a basis for all possible
cout(\kappa ). Then the number of shifts m yielding linear-independent solutions should be
less than \ell + 1. But by assumption there must be at least a single cout(\kappa ) not from
the subspace. Then one can add this solution to the subspace, i.e., the true number
of linearly independent solutions is m+1, which contradicts the assumption that this
number is m. Analogously, we can prove the same statement for cin(\kappa i).

In conclusion, we proved that there exist m \leq \ell + 1 noncoinciding shifts \kappa i such
that cout(\kappa i) and cin(\kappa i) form respective bases for all possible cout(\kappa ) and cin(\kappa ), i.e.,
the exact solution u will be in the projection subspace. Finally, due to Lemma 4.1
the exact solution u will be the unique solution of the Galerkin problem.

The proposition can be extended to almost all arbitrary \ell +1 interpolation points,
as the interpolation points that lead to \ell +1 linear-dependent functions have measure
zero. Thus, phase-preconditioning allows us to obtain the exact solution with the
number of interpolation points equal to the number of homogeneous layers, i.e., this
number plays the same role as the problem dimensionality in a conventional RKS
approach.

Remark 1. Interpretation as Filon quadrature. Filon quadrature deals with the
evaluation of oscillatory integrands. Using a standard quadrature to evaluate

(4.10) y(s) =

\int 
exp(st) f(t)dt

with a smooth function f(t) that varies slowly compared to exp(st) leads to

(4.11) y(s) = \Delta t
\sum 
n

an exp(sn\Delta t) f(n\Delta t)

with quadrature weights an which requires | s\Delta t| < \pi . In Filon quadrature one makes
the weights an dependent on s to arrive at quadrature formulas whose convergence
depends merely on the properties of f(t). Similarly, in phase-preconditioned rational
Krylov we try to approximate an oscillatory frequency-domain transfer-function. By
making our projection basis frequency-dependent we enhance the convergence of the
ROM.

4.2. Generalization to higher dimensions. In higher spatial dimensions we
again split the field in incoming and outgoing wave components and use a function g(z)
to factor out a strongly varying phase. Specifically, for two- and three-dimensional
problems we write

(4.12) u(sj) = g(sjTeik)cout(sj) + g( - sjTeik)cin(sj)

and project the problem onto the real and imaginary parts of the phase-preconditioned
subspace

\scrK 2m
EIK(\kappa , s) = span\{ g(sTeik)cout(s1), . . . , g(sTeik)cout(sm),

g( - sTeik)cin(s1), . . . , g( - sTeik)cin(sm)\} ,
(4.13)
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where g(z) = exp( - z) /z in three dimensions, while g(z) = K0(z) in two dimensions,
with K0 the modified Bessel function of the second kind and order zero. The singu-
lar behavior of the field at the source location is factored out, leading to a weaker
dependence of the amplitude-functions cout/in on the source location.

In higher spatial dimensions, the field amplitudes are again obtained via one-
way wave equations, but this time along the eikonal rays leading to decomposition
directions \pm \nabla Teik. For two-dimensional applications with \scrK 0 (z) as an incoming and
\scrK 0 ( - z) as an outgoing phase-function, we obtain the amplitude-functions

cout(sj) =
sjT

sign(\frakI m (sj))i\pi 

\biggl[ 
\scrK 1 ( - sjT )u(sj) - \scrK 0 ( - sjT )

v2

sj
\nabla T \cdot \nabla u(sj)

\biggr] 
(4.14)

and

cin(sj) =
sjT

sign(\frakI m (sj))i\pi 

\biggl[ 
\scrK 1 (sjT )u(sj) +\scrK 0 (sjT )

v2

sj
\nabla T \cdot \nabla u(sj)

\biggr] 
.(4.15)

For three-dimensional applications with exp(sT ) /sT as incoming and exp( - sT ) /sT
as outgoing phase-functions the corresponding amplitude-functions are given by

cout(sj) =
v

2
exp(sT )

\biggl[ 
s

v
(1 - 1

sT
)u(sj) - \nabla T \cdot \nabla u(sj)

\biggr] 
(4.16)

and

cin(sj) =
v

2
exp( - sT )

\biggl[ 
s

v
(1 +

1

sT
)u(sj) +\nabla T \cdot \nabla u(sj)

\biggr] 
.(4.17)

Analogous to the one-dimensional reduced-order solution of (4.8), we can write the
reduced-order solution in higher spatial dimensions as

(4.18) um =

m\sum 
i=1

\biggl[ 
ai(s)
\alpha i(s)

\biggr] T \biggl[ 
g(sTeik)cout(si)
g(sTeik)cout(si)

\biggr] 
+

m\sum 
i=1

\biggl[ 
di(s)
\delta i(s)

\biggr] T \biggl[ 
g( - sTeik)cin(si)
g( - sTeik)cin(si)

\biggr] 
,

where the coefficients follow from the Galerkin condition.
Lemma 4.1 and Proposition 4.2 can be straightforwardly extended to the multidi-

mensional case. However, Proposition 4.3 is not directly extendable to higher dimen-
sions. As opposed to the one-dimensional case, a decomposition direction does not
necessarily coincide with the travel direction of the wave and the field parametrization
may be poor in such cases. This problem can be resolved, however, by considering
MIMO wavefield systems with multiple sources and receivers, since in this case we
have a decomposition direction for each source and the span of these directions may
properly capture the propagation direction of the waves. In the next section, we
therefore focus on wavefield systems with multiple sources and multiple receivers.
The problem may be additionally complicated by multivalued solutions of the eikonal
equation. In most situations it is sufficient to use the rays corresponding to the min-
imal travel time; however, as we shall see for the case of internal resonant structures
in section 7.4, it can be beneficial to split the subspace along multiple rays.
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5. Phase-preconditioning for MIMO systems.

5.1. Formulation of a block method. The time-domain equations governing
MIMO systems are given by

(5.1) \Delta u[l]  - 1

\nu 2
u
[l]
tt =  - 1

\nu 2
\delta (t)\delta (x - xlS), u| t=0 = 0, ut| t=0 = 0,

on \BbbR k \times [0,\infty [, where the superscript l is the source index with l = 1, . . . , Nsrc. The
weak formulation of the corresponding s-domain equations is (cf. (2.7))

(5.2) pHQ(s)u[l] =  - p(xlS)
1

\nu (xlS)
2

for l = 1, 2, . . . , Nsrc.

Assuming possibly coinciding source-receiver pairs, we can define the source/receiver
array as Bs = [b[1], . . . , b[Nsrc]], with individual source contributions b[l] =
 - \delta (x - xlS)/\nu 

2(xlS) as columns. Equivalently, we define the array containing the fields
as Us(s) = [u[1](s), . . . , u[Nsrc](s)] to write the MIMO equation of (5.2) as

(5.3) PHQ(s)Us = PHBs.

Finally, we define the MIMO transfer-function of size Nsrc \times Nsrc as

(5.4) F (s) = BH
s Us(s),

which is symmetric due to reciprocity of the wavefields. To introduce the reduced-
order transfer-function, we define a block-RKS

(5.5) \scrK mNsrc

B (\kappa ) = span \{ Us(s1), Us(s2), . . . , Us(sm)\} 

and its real counterpart containing \scrK mNsrc

B (\kappa ) and \scrK mNsrc

B (\kappa ) given by

(5.6) \scrK 2mNsrc

B;R (\kappa ) = span
\Bigl\{ 
Re\scrK mNsrc

B (\kappa ), \frakI m\scrK mNsrc

B (\kappa )
\Bigr\} 
.

The ROM for the fields can now be constructed completely analogous to the SISO
case. Specifically, with Vm a basis array that spans \scrK 2mNsrc

B,R (\kappa ), we have

(5.7) Us;m(s) = Vm\sansR m(s) - 1V H
m Bs with \sansR m(s) = V H

m Q(s)Vm.

The reduced-order transfer-function now follows as

(5.8) Fm(s) = BH
s Us;m(s),

and it is straightforward to show that the MIMO reduced-order transfer-function
Fm(s) is a Hermite interpolant of the MIMO transfer-function F (s). The proof of
this statement is completely analogous to the proof of Proposition 3.2.

To formulate the phase-corrected extensions of the block-RKS method, we note

that the block-RKS field approximation u
[l]
m(s) due to a source l can be written as

(5.9) u[l]m(s) =

Nsrc\sum 
r=1

m\sum 
i=1

\Biggl[ 
a
[l]
i

\alpha 
[l]
i

\Biggr] T \biggl[ 
u[r](si)
u[r](si)

\biggr] 
with sj \in \kappa . In other words, the field approximation u

[l]
m(s) due to source l is a linear

combination of single-frequency solutions from all sources. A straightforward gener-
alization of phase-preconditioning to MIMO systems is to use a field approximation
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u
[l]
m(s) that is a linear combination of phase-corrected incoming and outgoing fields

from all sources. We write the field approximation as
(5.10)

u[l]m(s) =

Nsrc\sum 
r=1

\Biggl( 
m\sum 
j=1

\Biggl[ 
a
[l]
rj

\alpha 
[l]
rj

\Biggr] T \Biggl[ 
g(sT

[r]
eik)c

[r]
out(sj)

g(sT
[r]
eik)c

[r]
out(sj)

\Biggr] 
+

m\sum 
j=1

\Biggl[ 
d
[l]
rj

\delta 
[l]
rj

\Biggr] T \Biggl[ 
g( - sT [r]

eik)c
[r]
in (sj)

g( - sT [r]
eik)c

[r]
in (sj)

\Biggr] \Biggr) 
,

where T
[r]
eik is the eikonal solution corresponding to the rth source. The coefficients

a
[l]
rj , \alpha 

[l]
rj , and d

[l]
rj , \delta 

[l]
rj are found via the block-Galerkin condition. For Nsrc > 1, this

approach accounts for multidirectional scattering by representing the field as a linear

combination of phase-corrected functions with multiple directions \nabla T [r]
eik.

The idea that we followed to justify the use of block-Krylov methods is that the
field caused by one source contains information about the field caused by a source with
a different location (and frequency). In the context of phase-preconditioning, we can
apply this idea a second time to obtain a block-preconditioned algorithm. This means

that instead of using the phase-correction function g(T
[r]
eik) to only correct c

[r]
out(sj) for

each source location r separately, we cross combine all phase-functions g(sT
[r2]
eik ) with

all amplitudes c
[r1]
out(sj) as indicated by the summations over r1 and r2. This leads to

a field approximation u
[l]
m(s) due to the lth source given by

u[l]m(s) =

Nsrc\sum 
r2=1

Nsrc\sum 
r1=1

\Biggl( 
m\sum 
j=1

\Biggl[ 
a
[l]
r1r2j

\alpha 
[l]
r1r2j

\Biggr] T \Biggl[ 
g(sT

[r2]
eik )c

[r1]
out(sj)

g(sT
[r2]
eik )c

[r1]
out(sj)

\Biggr] 
(5.11)

+

m\sum 
j=1

\Biggl[ 
d
[l]
r1r2j

\delta 
[l]
r1r2j

\Biggr] T \Biggl[ 
g( - sT [r2]

eik )c
[r1]
in (sj)

g( - sT [r2]
eik )c

[r1]
in (sj)

\Biggr] \Biggr) 
.

The expansion coefficients are found from the block-Galerkin condition. Basis vectors

in this expression can be viewed as a tensor-product of the amplitudes c
[r1]
out and the

phase terms g( - sT [r2]
eik ), while the Hadamard product is used spatially.

Similarly to the multidimensional SISO case, Lemma 4.1 and Proposition 4.2 can
be straightforwardly extended for the multidimensional MIMO case. Our experiments
presented in section 7 also indicate that the number of interpolation points needed for
multidimensional MIMO configurations is dependent on the complexity of the wave
speed model and not the largest travel time (as proven for the one-dimensional case
in Proposition 4.3).

Remark 2. Application to resonant cavities. In the case that resonant cavities are
present in the wave speed model, it is essential to model the resonance modes of the
cavity as well as wave propagation from sources and receivers toward the cavity. This
can be done by taking multivalued eikonal travel times into account. In the result
section we give an example of a layered configuration that contains a resonant cavity.
To extend our approach to this configuration we factored out two phase-functions, one
that approximates the cavity modes and one that approximates the wave propagation
from the cavity to the source and receivers.

5.2. SVD truncation of the expansion amplitudes. In the case of many

sources and receivers it is possible to compress the field amplitudes c
[r1]
out(sj) and

c
[r1]
in (sj) a posteriori using a thin singular value decomposition (SVD). Using this
SVD we compress the ROM and remove redundancy in the expansion of (5.11). In
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the phase-preconditioned approach redundancy of the basis occurs in two ways. First,
smooth amplitude-functions corresponding to different frequencies can be close to
linear dependent due to the frequency-dependent basis vectors in (5.11). Second, the
amplitude-functions of multiple sources can be similar, which leads to redundancy
once we use cross combinations of amplitudes and phase-functions as in (5.11). The
original block-Krylov basis does not have these redundancies.

To realize SVD truncation, the amplitudes c
[r1]
in (sj) and c

[r1]
out(sj) are first normal-

ized in pairs to have unit Euclidean norm. To be more specific, c
[r1]
in (sj) and c

[r1]
out(sj)

are normalized by \sqrt{} 
| | c[r1]in (sj)| | 2 + | | c[r1]out(sj)| | 2

such that the sum of the squared singular values is 2mNsrc. In this way the ratio
between the incoming and outgoing amplitudes is preserved. The SVD of the 2mNsrc

incoming and outgoing amplitudes is then computed separately and truncated after
Mout

SVD and M in
SVD left singular vectors to obtain the compressed amplitudes cjin;SVD

and cjout;SVD. The original amplitudes c
[r1]
in (sj) and c

[r1]
out(sj) are associated with a

specific frequency sj and source r1, whereas the compressed amplitudes cjin;SVD and

cjout;SVD are associated with a singular value. The amplitudes are therefore no longer
associated with a source or frequency and the corresponding subscripts are dropped
and replaced by the singular value index j. The resulting reduced-order solution
expressed in terms of these compressed amplitudes is given by
(5.12)

u[l]m(s) =

Nsrc\sum 
r=1

\Biggl( Mout
SVD\sum 

j=1

\Biggl[ 
a
[l]
rj

\alpha 
[l]
rj

\Biggr] T \Biggl[ 
g(sT

[r]
eik)c

j
out;SVD

g(sT
[r]
eik)c

j
out;SVD

\Biggr] 
+

M in
SVD\sum 

j=1

\Biggl[ 
d
[l]
rj

\delta 
[l]
rj

\Biggr] T \Biggl[ 
g( - sT [r]

eik)c
j
in;SVD

g( - sT [r]
eik)c

j
in;SVD

\Biggr] \Biggr) 
,

where M
out/in
SVD \ll mNsrc.

If we contract the outgoing amplitudes and the conjugate of the incoming ampli-
tudes into one amplitude basis cjSVD, compute the SVD after pairwise normalization,
and evaluate on the imaginary line (s \in i\BbbR ) we can expand the field as

(5.13) u[l]m(s) =

Nsrc\sum 
r=1

MSVD\sum 
j=1

\Biggl[ 
a
[l]
rj

\alpha 
[l]
rj

\Biggr] T \Biggl[ 
g(sT

[r]
eik)c

j
SVD

g( - sT [r]
eik)c

j
SVD

\Biggr] 
with s \in i\BbbR ,

where MSVD \ll mNsrc.
Here the cjSVD are first MSVD left singular vectors of

[\=c
[r1]
in c

[r1]
out ]/

\sqrt{} 
| | c[r1]in | | 2 + | | c[r1]out | | 2.

In our numerical experiments we show that the singular values of the contracted am-
plitudes cjSVD decay much faster than the ones of the block-Krylov basis. Later in
Figure 3(a) we plot the decay of singular values of a matrix with pairwise normal-
ized vectors cjSVD and normalized vectors u[r1](sj) as columns. Each SVD trace is
normalized to the largest singular value to emphasize the decay. The singular values
associated with cjSVD show a strong decay with a plateau at the level of the finite-
difference error, whereas the singular values associated with the wave field solutions
u[r1](sj) barely show any decay before reaching the Nyquist sampling rate.

The compressibility of the amplitudes confirms that the chosen parametrization
of the wavefield is valid. Phase-preconditioning enhances the convergence of RKS
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not by increasing the subspace but by preconditioning a small basis of problem spe-
cific amplitudes in dependence of the evaluation frequency using phase-functions. In
our experiments we show that the number of contributing amplitudes is only weakly
dependent on the number of sources.

The compression of the amplitudes offers several advantages. First, it signifi-
cantly reduces the cost of evaluating the ROM, since it reduces the amount of inner
products that need to be computed to obtain the reduced-order operator. Second,
the cost associated with communicating and storing the ROM is reduced as well. The
compressed amplitude basis is only very weakly dependent on the source locations
used to construct it. Therefore, we can reduce the number of sources (right-hand
sides) for which the basis vectors need to be computed, since their response can be
approximated from their eikonal travel time and the basis vectors computed from
other sources. It is in line with our effort to reduce the computation at every stage
of our algorithm.

Remark 3. Relation to existing approaches. Phase-tracking was recently intro-
duced to decompose a seismic response into smooth amplitudes and phase-functions
via optimization [21]. This method also uses the idea that once a physically meaning-
ful parameterization has been found, it can be used to extrapolate to higher or lower
frequencies. This method is entirely data driven, whereas our method is model driven
and we can therefore use the eikonal time as phase. However, using optimization to
obtain even smoother amplitude-functions may even be possible in our method.

In the fast Helmholtz solver proposed in [17], a plane wave ansatz is substituted
into the Helmholtz equation and the resulting advection-diffusion-reaction equation
is solved using multigrid methods. While in this method the Helmholtz equation is
basically preconditioned with a single asymptotic function, in our proposed approach
we effectively use a different phase-function for every source and receiver pair. In
addition, we don't solve the resulting equations directly but project them onto a
subspace.

6. Discrete formulation. In this section we consider the discrete implementa-
tion of the introduced reduced-order modeling technique. Discretization and selection
of the grid accuracy are addressed first, followed by a discussion on how we handle
numerical dispersion.

6.1. Finite difference discretization. Our basic approach is to solve (2.5)
(restated here as (6.1)) using phase-corrected single-frequency solutions as expansion
functions and to obtain a reduced-order solution for a complete spectral interval of
interest via the Galerkin condition.

We consider a rectangular domain \Omega \in \BbbR k with constant \nu (x) on \BbbR k \setminus \Omega and
discretize the equation

(6.1)

\int 
\Omega 

\nabla p \cdot \nabla ud\Omega  - 
\int 
\Omega 

p
s2

\nu 2
ud\Omega +

\int 
\partial \Omega 

pD(s)ud\partial \Omega =  - 1

\nu (xS)2
p(xS),

using finite differences to obtain a linear shifted system with a matrix nonlinearly
depending on s. Discretization of the first two terms in the above equation using
a second-order accurate finite-difference scheme with constant step sizes is straight-
forward. To discretize the third term, we approximate the DtN map D(s) using
nearly optimal discrete perfectly matched layers (PML) according to [9]. The optimal
Zolotarev rational approximants used for the PML construction make the size the
of finite-difference problem (necessary for accurate approximation of D(s)) in \BbbR k \setminus \Omega 

D
ow

nl
oa

de
d 

10
/1

3/
18

 to
 1

45
.9

4.
11

0.
29

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1502 DRUSKIN, REMIS, ZASLAVSKY, AND ZIMMERLING

negligible compared to the grid in \Omega 's interior. In two dimensions, for instance, the
resulting equations that need to be solved in the PML can be solved efficiently with
a block-cyclic solver [25] or with a band solver after sorting the PML system to a
bandwidth of 2k + 1 (in two dimensions). This discretization leads to the matrix
equation

(6.2) \sansp H\sansQ (s)\sansu =  - \sansp H\sansb ,

with \sansb the discrete approximation of the scaled delta function. The matrix \sansQ (s) of
order N inherits all properties of the continuous operator Q(s) and thus follows the
Schwarz reflection principle, is symmetric in a bilinear form (\sansQ (s) is the adjoint of
\sansQ (s) in the Hermitian inner product), and has a nonlinear numerical range in the
left half of the complex s-plane. The single-frequency solutions \sansu (sj) needed to build
the RKS can be obtained using iterative solvers or Gaussian elimination. The eikonal
equation | \nabla T | 2 = 1

\nu 2 is solved on the same grid using a fast marching method [26].
The associated computational cost is negligible with respect to the cost of solving the
Helmholtz equation.

We use uniform finite differences in order to keep our approach simple, although
single-sided finite differences may lead to better parameterizations near caustics and
jumps in the medium parameters.

6.2. Realization on two grids. For smooth media, the amplitudes c
[r1]
out and

c
[r1]
in are smooth functions of the spatial coordinates, since the highly oscillatory part
of the frequency-domain wavefield is factored out together with the source singu-
larity. Therefore, linear combinations of these amplitudes can form reasonable ap-
proximations of amplitude distributions at higher frequencies. Consequently, the
phase-corrected ROMs can extrapolate to frequencies outside the convex hull of the
interpolation points. Building a ROM that extrapolates to higher frequencies has the
advantage that the amplitudes can be determined on grids that are much coarser than
grids required by a direct method at these high frequencies. This significantly reduces
the computational cost of solving the Helmholtz equation to obtain the amplitude-
functions cout/in, since the main cost of the algorithm is associated with solving shifted
systems.

To be specific, let \sansQ fine(s) and \sansQ coarse(s) denote the matrix operators obtained by
discretizing the wave operator Q(s) on a fine and a coarse grid, respectively. Writing
the transfer-function and field approximations obtained with these fine and coarse
grid operators as Fm(s) and \sansU m(s) and Fc;m(s) and \sansU c;m(s), respectively, we have

(6.3) Fm(s) - Fc;m(s) = [\sansU m(s) - \sansP interp\sansU c;m(s)]H\sansQ fine(s)[\sansU m(s) - \sansP interp\sansU c;m(s)],

which is essentially a block version of (3.10). \sansU m and \sansU c;m don't live on the same grid
and the interpolation matrix \sansP interp \in \BbbR Nfine\times Ncoarse makes the above equation con-
sistent. In this case, however, \sansU m(s) - \sansP interp\sansU c;m(s) signifies the difference between
the fine and coarse grid field solutions and the interpolation property as presented in
Proposition 3.2 obviously does not hold here. In other words, using a coarse grid for
construction and a fine grid for projection leads to a loss of the interpolation property
of the ROM. On the other hand, we do increase the accuracy of the coarse transfer-
function as the errors introduced by interpolation and the coarse grid solution get
squared at the interpolation points s \in \kappa \cup \kappa .

The main drawback of using coarser grids is that the numerical dispersion error
increases and the analytic phase term exp(\pm sTeik) does not match the phase term of
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Table 1
Summary of the phase-preconditioned RKS algorithm.

1. Solve the eikonal equation to obtain \sansT eik

2. Solve the coarse grid wave problems \sansQ coarse(\kappa i)\sansu (\kappa i) = \sansb 
3. Decompose the fields \sansu (\kappa i) into the amplitudes \sansc in and \sansc out
4. Compress the amplitudes using an SVD
5. Interpolate the amplitudes to a fine grid
6. For each evaluation frequency project the operator \sansQ fine onto the phase-corrected subspace
7. Compute the resulting reduced-order transfer-function
8. Compute the inverse Laplace transform to obtain the time-domain transfer-function

\sansu (s) for large imaginary shifts. Fortunately, we can correct for this phase mismatch.
To be precise, in the analytic case the phase term exp( - sTeik) is used to cancel the
high-frequency dominant term  - s2/\nu 2 in the wave equation. To guarantee that this
cancellation takes place in the discrete case and to match the discrete and analytic
phases, we introduce the discrete, second-order, finite-difference gradient matrix \sansD xi

(see, e.g., [7]) mapping from a primary to a dual grid in all spatial directions i =
1, . . . , k and adjust the wave speed model from \nu to \nu \prime , where \nu \prime follows from the
requirement

(6.4) exp
\Bigl( 
2s\sansT 

[l]
eik;p

\Bigr) k\sum 
i=1

\Bigl[ 
\sansD T

xi
exp
\Bigl( 
 - s\sansT [l]

eik;dxi

\Bigr) \Bigr] 2
=

s2

\nu \prime [l]
2 ,

where \sansT eik;p is the eikonal time on the primary grid, and \sansT eik;dxi
is the eikonal time on

the primary grid in all spatial directions except for xi. This equation is thus an equa-
tion on the primary grid. This is the discrete counterpart of the (continuous) relation

exp(2sTeik) [\nabla exp( - sTeik)]2 = s2

\nu 2 . This equation ensures that the high-frequency
dominant term  - s2/\nu 2 vanishes and the numerical dispersion error is minimized.

Finally, we note that this dispersion correction is accurate only in the dominant

direction of \nabla \sansT 
[l]
eik and works only in the reduced-order modeling framework. In our

block approach multiple directions are taken into account by incorporating multiple

source locations. Therefore, errors occurring in the directions orthogonal to \nabla \sansT 
[l]
eik are

corrected in the block projection framework by projection onto sources with different
dominant directions.

We summarized our algorithm in Table 1.

Remark 4. Grid selection. The main goal of our method is to lower the asymp-
totic complexity of the basis computation and shift work to the highly parallelizable
stage of computing inner products. In our current implementation we discretize all
Helmholtz systems on the same coarse grid; another step toward reducing computa-
tional efforts is to adapt the coarse grid discretization for each solve to the frequency
of the RKS shift.

7. Two-dimensional experiments. In this section we illustrate the perfor-
mance of the developed solution methods using three different two-dimensional nu-
merical experiments. In our first set of experiments, we show the performance of the
proposed preconditioning technique for wavefields in a smooth layered configuration.
We simulate the same structure with and without grid coarsening to show the effects of
both concepts. As a second example, we consider a nonsmooth medium with jumps in
the wave speed profile to illustrate that the effectiveness of preconditioning decreases
as the high-frequency geometrical optics argument is no longer valid. However, the
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1504 DRUSKIN, REMIS, ZASLAVSKY, AND ZIMMERLING

Fig. 1. The smoothed Marmousi layers test configuration. Shown are the configuration (a),
the contour lines of the eikonal times (b), and a solution vector prior to (c) and after parametriza-
tion (d).

method still exhibits excellent approximation properties even for nonsmooth media.
Finally, in the third experiment, a configuration with a resonant cavity present in a
smooth geology is considered.

All experiments are performed using uniformly distributed shifts on the imaginary
axis and we show that significant reductions can be achieved using this simple choice
of shifts. The theory of optimal shift selection for RKSs has been developed for
many applications; however, it is not clear how to extend these approaches to a
priori optimal shift selection for wave equations and phase-preconditioning, due to
the complex spectrum.
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7.1. A geophysical structure with a smooth wave speed profile. To il-
lustrate the effect of phase-preconditioning, we consider the smoothed geophysical
structure illustrated in Figure 1(a). This model is obtained by smoothing a lay-
ered section of the acoustic Marmousi model [6] with a Hanning window of width
hHan = 200 m leading to a discretized model of order N = 4 \cdot 105. Five coincid-
ing source-receiver pairs are placed at the top boundary, where a perfectly reflecting
boundary condition is imposed to model a water-air interface. A Ricker wavelet with
a maximum in its spectrum at \omega peak = 8 Hz (13 ppw at 1\% cut-off frequency) is
used as a source signature and a near optimal eight-layer PML [9] is applied on the
remaining outer boundaries to simulate outward wave propagation toward infinity.
Finally, a fast marching method [26] is adopted to obtain the eikonal solution for
this configuration. The true solution \sansu [4] corresponding to the fourth source from the
left at the frequency corresponding to 14.6 ppw is visualized in Figure 1(b). This
solution shows ``diving wave behavior"" and a caustic can be seen at a depth of about
750 m in the left half of the configuration. The real part of the outgoing amplitude

\sansc 
[4]
out is depicted in Figure 1(c) and is clearly spatially much smoother than the orig-
inal wavefield. Reflections of the wavefield can easily be identified in this amplitude
plot.

The overall time-domain errors of the block-RKS and preconditioned block-RKS
ROMs without grid coarsening are shown in Figure 1(d), where we used a 500-point
Fourier method to obtain a comparison solution. The overall time-domain error is
defined by the ratio of the root mean square (r.m.s.) error of all traces and the r.m.s.
of the signals over all traces. Preconditioning the RKS method significantly decreases
the number of interpolation points needed to reach a certain error level. To obtain an
error of 1 percent in the time-domain, for example, the RKS algorithm needs about
80 interpolation points, while only 10 interpolation points are required in the phase-
preconditioned algorithm. This fast convergence is due to the construction of the
WKB-like field approximations at high frequencies in PPRKS, which already provide
an accurate approximation of the Green's function at high frequencies and in smooth
structures as considered in this example.

The real part of the transfer-function of the leftmost source to the rightmost re-
ceiver is shown in Figure 1(e) for structure-preserving and preconditioned block-RKS
ROMs of order m = 20. The phase-preconditioned model coincides with the com-
parison solution on the complete frequency interval of interest. The main oscillations
present in this Green's function response are due to the direct arrival of the wave and
its first reflection from the salt layer located at a depth of about 2500 m. Typically,
the PPRKS method provides a smooth approximation to the field response showing
only small errors in the amplitudes or at highly oscillatory reflections. The structure-
preserving RKS method, on the other hand, overshoots after every interpolation point
causing spiking behavior as can be clearly seen in Figure 1(e).

7.2. Grid coarsening and SVD. The amplitude-functions cin and cout are
spatially much smoother than the wavefield and therefore we expect that a coarser
spatial grid can be employed. To investigate the effects of grid coarsening, we con-
sider the same wave speed profile as in the previous example and place 12 coinciding
source-receiver pairs at the top water-air interface instead of 5. For excitation, we
use a modulated Gaussian pulse with a center frequency \omega peak and its support essen-
tially given by [0, 2\omega peak]. The pulse is shifted in time such that it starts at t = 0.
Spatial discretization is now chosen such that we have about 5.5 points per smallest
wavelength, where the wavelength corresponds to the center frequency of the pulse
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and 2.7 ppw at the cut-off frequency of the pulse. With this choice, the step sizes of
the grid are 4 times larger than in the previous example leading to a system that is
16 times smaller with N = 2.5 \cdot 104 unknowns. Using such a coarse grid to model
wavefields without phase-preconditioning is obviously insufficient, but here we expect
that the smoothness of the amplitude-functions cin and cout allows us to use a much
coarser grid. During the evaluation of the ROM we project an operator correspond-
ing to a fine grid onto the phase-corrected RKS. For this example, we choose a fine
operator using half the step size compared to the previous operator in order to show
that the projection gauges the ROM to the operator used during projection.

For MIMO systems with grid coarsening, we define the error as the error averaged
over all source-receiver combinations. We denote the elements of the finite difference
matrix transfer-function FF(s) by f

[ij]
F (s) = b[i];Hu[j](s), while the elements of the

ROM transfer-function Fm(s) are given by f
[ij]
m (s) = b[i];Hu

[j]
m (s). Having introduced

these elements, the average MIMO error as a function of frequency is defined as

(7.1) erraverageROM (m, s) =

\surd 
\omega max

N2
src

Nsrc\sum 
j=1

Nsrc\sum 
i=1

\bigm| \bigm| f [ij]F (s) - f [ij]m (s)
\bigm| \bigm| \biggl( \int \omega max

\omega =0

\bigm| \bigm| f [ij]F (i\omega )
\bigm| \bigm| 2 d\omega \biggr) 1/2

.

It is assumed that the comparison solution f
[ij]
F (t) is computed with a spatial dis-

cretization of sufficient accuracy. This averaged frequency domain error definition
gives a higher error, yet delivers more insight, than computing the overall error. The

overall error is dominated by the mono static elements f
[ii]
F , whose direct arrival con-

tains most energy and is well approximated. Furthermore, the above error definition
allows us to study the error as a function of frequency.

The phase-corrected RKS is build using m = 40 equidistant shifts on the imag-
inary axis from \omega = 2.4 \cdot 10 - 3\omega peak (2383 points per smallest wavelength) to \omega =
1.1\omega peak (5 ppw). In other words, the RKS interpolation frequencies uniformly cover
the lower half of the support of the spectrum of the source wavelet. Withm = 40 inter-
polation points and Nsrc = 12 source-receiver pairs, we have 480 amplitude-functions
cin and an additional 480 amplitude-functions cout. Computing the SVD of the 960
amplitude-functions [cout \=cin], we observe that for this example, essentially only the
first 100 singular functions contribute to the ROM for the contracted amplitudes. We
therefore use a truncated SVD that uses the first 100 SVD basis functions to represent
the amplitudes.

The resulting time-domain trace from the leftmost source to the rightmost receiver
is shown in Figure 2, compared to the trace obtained via a 500-point Fourier method
using an operator with step sizes eight times smaller than the step sizes used in the
coarse operator. Both responses clearly coincide on the considered time window and
the first arrival of the pulse, the complex interaction between the pulse and the upper
layered medium, and the reflection of the pulse at the high contrast salt layer around
t = 3000 can be observed. The multiple reflection from source to salt layer, water-air
interface, salt layer, and back to the receiver can be seen around t = 6000.

In Figure 3(a) we plot the decay of the singular values of a matrix with pairwise
normalized vectors. The decay of the singular values of the single-frequency solutions
that make up the RKS is shown in black. The singular values associated with the
amplitude matrix are shown in blue. Prior to the SVD the vectors u[r1] were normal-

ized, such that the square of the singular values sum up to mNs. The vectors c
[r1]
out(sj)

and \=c
[r1]
in (sj) were normalized in pairs together to reflect the ratio of the incoming and
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Fig. 2. Time-domain trace from the leftmost source to the rightmost receiver after m = 40
interpolation points.

outgoing waves at each frequency. Their SVD is computed together such that the
sum of the squares of all singular values adds up to mNs as well. Finally, to show
the decay in singular values we normalize the largest singular value to one for each of
the shown curves. This figure clearly shows that incoming and outgoing amplitudes
are significantly compressible, whereas the RKS vectors are not. The singular values
associated to RKS drop by less than a factor of 2 between the index 50 and the index
400, indicating that the RKS can hardly be compressed. To show that after the com-
pression the basis is essentially independent of the number of sources, we computed

the SVD of the amplitudes [c
[r1]
out(sj) \=c

[r1]
in (sj)] for Nsrc = 12, 24, 48, and 96. The num-

ber of (normalized) singular values larger than 0.01 is shown in Table 2. It shows that
the number of contributing singular vectors is basically independent of the number
sources, and so are the left-hand side singular vectors.

In Figure 3(c), the averaged error erraverageROM over all 122 traces is shown along
with the interpolation points used in the construction of the ROM. The same Fourier
method that was used to compute the comparison solution in Figure 2 is used here
to compute the errors in the transfer-function. Furthermore, the figure shows the
error of a finite-difference frequency-domain (FDFD) method with a normalized step
size of 0.6, which is 20\% larger than the step size used to compute the comparison
solution and used for the operator that was projected onto the PPRKS. For higher
frequencies such an operator has increasing dispersion, such that the solutions between
the comparison FDFD method with normalized step size of 0.5 and the one of 0.6
don't match anymore. For low frequencies there is a small discrepancy due to the
inability of both grids to approximate a delta source.

When introducing grid coarsening, the ROM no longer interpolates the transfer-
function, but the error remains small and below 1\% on the frequency interval covered
by the interpolation points. In addition, we observe that the phase-preconditioned
ROMs can extrapolate to higher frequencies to a certain extent, since the basis in
PPRKS is frequency-dependent. The error only gradually grows outside the interpo-
lation interval, which covers the lower half of the spectrum of the pulse, and at 2.4
points per smallest wavelength we end up with an error of about 5\%.

Finally, in Figure 3(b) the averaged error in the transfer-function is shown as
a function of the number of points per wavelength. Again, the PPRKS with 40
interpolation points is compared to the 500-point Fourier method, but this time the
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Fig. 3. Smooth Marmousi test configuration with grid coarsening.

latter method uses the same coarse-grid operator that is used during construction of
the PPRKS (instead of the operator that uses step sizes 0.6 as in the previous figure).
Clearly, the RKS approach that uses a Galerkin condition to select optimal linear
combinations with respect to a fine operator outperforms the direct Fourier method
that uses the same operator to construct the field approximations. The RKS approach
is gauged to the operator by using the Galerkin condition.

7.3. A geophysical structure with a nonsmooth wave speed profile. The
justification of the phase-preconditioned algorithm is based on a geometrical optics
argument. This asymptotic argument is applicable for smooth media with spatial
variations that take place on a scale much smaller than the wavelength. On the other
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Table 2
Number of (normalized) singular values larger than 0.01 in dependence of the number of sources.

Nsrc 12 24 48 96
Number of (normalized) singular values > 0.01 for [cout, \=cin] 69 72 73 73
Number of (normalized) singular values > 0.01 for u 457 833 1369 1741
m \cdot Nsrc 480 960 1920 3840

hand, RKS reduced-order modeling is a valid approach independent of the medium
considered and Proposition 4.3 shows that one-dimensional problems with piecewise
constant wave speeds need not be a problem for this approach to work. Therefore,
let us turn to an unsmoothed variant of the layered geophysical structure from the
Marmousi model considered earlier as depicted in Figure 4(a).

For this structure, we essentially follow the same procedure as before. Specifically,
we again position 12 source-receiver pairs at the top air-water interface and use the
same coarse grid operator as in the previous example to construct a phase-corrected
RKS ROM of order m = 40 with interpolation points on the imaginary axis covering
the lower half of the spectrum of the pulse such that we have 5 points per smallest
wavelength for the highest interpolation frequency. The center frequency of the pulse
is again chosen at 5.5 ppw. The only difference in model construction compared with
the previous example is that here we use a truncated SVD that takes 150 SVD basis
functions into account, instead of the 100 basis functions in the previous example.
Here, more basis functions are required, since the amplitude-functions are less smooth
due to the nonsmooth wave speed profile of the present Marmousi model. Finally,
the comparison solution is computed using a direct 500-point Fourier method using a
spatially discretized operator with step sizes that are four times smaller than the step
sizes used in the coarse operator. The coarse operator has a normalized step size of 4
and the operator used to compute the comparison FDFD response has a normalized
step size of 1.

The resulting error is shown in Figure 4(b) along with the corresponding error
curve for an FDFD method which used the coarse operator that constructed the
PPRKS. In addition, the error of an ordinary RKS method is shown, which uses the
fine operator for construction and evaluation. It uses m = 40 shifts uniformly dis-
tributed on the whole spectral interval. An RKS method on the fine grid interpolates
the FDFD response on the shifts, which leads to a strongly oscillatory error curve.
This error curve clearly shows the advantage of phase-preconditioning with a dual
grid approach---a lower error is achieved while solving considerably smaller shifted
systems, and projecting on the same operator. The performance of the algorithm for
smooth profiles is better than for nonsmooth wave speed profiles, especially for ex-
trapolated frequencies. We also observe that the error decreases for lower frequencies,
since lower frequencies have larger wavelengths and variations in the wave speed pro-
file take place on a scale smaller than these wavelengths of operation. Furthermore,
compared to an FDFD method that uses a 20\% coarser grid than the comparison
solution, the PPRKS achieves lower errors across the whole spectral interval while
the systems that need to be solved are much smaller. Especially in the area where
the phase-preconditioned method has shifts it reproduces the comparison solution re-
markably well. A similar error comparison is shown in Figure 4(c), where the error is
plotted against points per wavelength.

To illustrate the effects of an increased error in the time-domain, we show the time
trace for the most distant source-receiver pair in Figure 4(d) (for the same Gaussian
pulse as used before in Figure 2) along with a comparison solution obtained with
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Fig. 4. Nonsmooth Marmousi test configuration with grid coarsening.
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the 500-point Fourier method. We observe that the arrival times are approximated
well; only the amplitudes are slightly off. Throughout our numerical work, we have
found that this result is typical for nonsmooth problems. Furthermore, compared
with the same trace computed for smooth media as shown in Figure 2, it is clear that
a larger part of the pulse is scattered back to the receiver, as arrivals are visible on the
complete time interval of observation for the nonsmooth velocity profile considered
here.

7.4. A resonant cavity embedded in a smooth geology. In this section we
investigate the performance of our algorithm in a configuration with a resonant cavity.
Figure 5(a) shows the wave speed profile, which is inspired by borehole exploration.
Coinciding source-receiver pairs are placed at the surface and inside a borehole of slow
acoustical wave speed.

The grid coarsening procedure and wavelet selection are equivalent to the previous
examples. A coarse grid operator with the same accuracy as selected in the previous
example is used to construct a phase-corrected RKS ROM of order m = 40 with
interpolation points on the imaginary axis covering the lower half of the spectrum
of the pulse such that 5 points per smallest wavelength are used for the highest
interpolation frequency. The center frequency of the pulse is again chosen at 5.5 ppw.

To approximate the cavity-resonances with few interpolation points, we extend
the approach discussed in this paper and factor out oscillations of resonance modes
along the borehole. To do so, we take the fact that the eikonal time Teik is multivalued
into account. More specifically, each solution \sansu (\kappa i) is split using two different phase
terms, a cavity-mode phase term and a propagation phase term. The eikonal phase
term shown in Figure 5(b) shows a caustic inside the borehole, which has a low
wave speed compared to its surrounding. In this experiment we also factor out the
cavity-mode phase term g(sTeik;CM), where Teik;CM follows the borehole as shown in
Figure 5(c). The eikonal time of the cavity-mode Teik;CM is not the second arrival,
but it is chosen to correctly factor out resonances present in the borehole. At every
interpolation point we split the field into four amplitudes as

u[l](sj) = g(sjT
[l]
eik)c

[l]
out;eik(sj) + g( - sjT [l]

eik)c
[l]
in;eik(sj),(7.2)

u[l](sj) = g(sjT
[l]
eik;CM)c

[l]
out;CM(sj) + g( - sjT [l]

eik;CM)c
[l]
in;CM(sj).(7.3)

With 14 sources and 40 interpolation points we end up with 560 amplitudes for each
of the four amplitudes cin/out;eik/CM, which we compress to 30 each using an SVD.
These compressed amplitudes are then used to construct the phase-preconditioned
RKS on which the fine operator is projected.

For these types of configurations, the time window of interest tends to be very
long due to the resonant nature of the configuration. Finite-difference time-domain
therefore requires very long runtimes, whereas the proposed algorithm just needs to
evaluate the ROM on more frequencies to avoid aliasing. The time-domain trace of
the topmost source-receiver pair within the borehole is shown in Figure 6(a), where
the emitted pulse bounces back and forth within the cavity. The ROM captures
this resonant behavior, showing that the resonant modes are well approximated. In
Figure 6(b) a trace is shown from a source within the borehole to a surface receiver.
In this trace it can be seen that the interaction of the pulse with the smooth geology is
modeled correctly next to the repetitive trace shape caused by the resonant cavity. An
ordinary RKS method with no grid coarsening would perform well on this problem,
since it is mainly dominated by the resonant cavity; however, this would require
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1512 DRUSKIN, REMIS, ZASLAVSKY, AND ZIMMERLING

Fig. 5. The source-receiver setup (a), and the eikonal times (b) and (c) used to decompose the
fields into smooth amplitude-functions are depicted.

solutions of the wave equation on a much finer grid then the proposed approach.
Furthermore, contrary to the proposed approach, the RKS approximation deteriorates
as the configuration size and thus the propagation distance from the cavity to the
receiver increase.

In this experiment we show that the developed algorithm shows potential for
reduced-order modeling of resonant cavities within slowly varying media. The combi-
nation of an RKS method together with phase-preconditioning can approximate both
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Fig. 6. Time-domain responses of the resonant cavity test-case.

resonant eigenmodes as well as propagative modes. We point out that this is just a
first approach in order to include resonant structures into ROMs that are travel time
dominated.

8. Discussion on parallel implementation. The numerical experiments of
the previous section (using a serial MATLAB prototype code) showed significant
compression of large-scale wave propagation due to phase-preconditioning. To see
how observed dimensionality reduction can be translated to computational cost re-
duction using modern high-performance platforms, we consider the simplest parallel
implementation, known in computer science literature as an ``embarrassingly parallel
workflow.""1

Like the majority of the projection-based model reduction methods, the PPRKS
can be split into basis construction and ROM evaluation stages, as summarized in

1Term used for parallelization not requiring horizontal communication between nodes.
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Fig. 7. Overview of the proposed algorithm. External embarrassing parallelism is symbolized
by parallel blocks. Internal parallelism within a block is also possible.

Table 3
Cost estimates for PPRKS and RKS.

Step
PPRKS

Legend
Computations per worker \# workers

Eikonal O(Nf logNf) Nsrc Nsrc \# sources
Basis comp. O (Nc\psi (Nc)) NsrcmPPRKS Nc/f \# coarse-/fine-grid notes
SVD O(Nc[2NsrcmPPRKS ]

2) 1 m \# ROM interpolation points
Eval O(NfN

2
srcM

2
SVD ) Neval Neval \# evaluation frequencies

RKS MSVD size SVD compressed vectors
Basis comp. O

\bigl( 
Nf\psi (Nf)

\bigr) 
NsrcmRKS

SVD O(Nc[2NsrcmRKS ]
2) 1 m \# ROM interpolation points

Eval O(NfN
2
srcm

2
RKS ) 1 \psi (Nc/f) scaling function of Helmholtz solver

Figure 7. This figure is complemented by a summary in Tables 1 and 3, where we
compare computational cost estimates for PPRKS with standard RKS neglecting
O(Nf) terms and considering only parallelism on the external level.

For both standard RKS and PPRKS the main cost of the first stage consists of
the computation of the block-RKS and the rank-revealing subspace truncation via
SVD. Phase-preconditioning adds the negligible cost of solving the eikonal equation
and decomposing the waves into incoming/outgoing amplitudes via (4.14) and (4.15).
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In Table 3 we assume that the block-RKS is computed by assigning solutions of
Helmholtz problems for different frequencies and right-hand sides to separate workers,
so that the PPRKS and RKS require NsrcmPPRKS and NsrcmRKS nodes, respectively.
The PPRKS obviously reduces the number of the Helmholtz solves; however, in the
parallel implementation the most important cost reduction lies in a single solve. In
our case, this cost is critical due to the high complexity and poor internal parallel
scalability of available Helmholtz solvers. In the table, \psi (N) reflects this (usually
faster than logarithmic) growth of the computational complexity of the Helmholtz
solver.

Thus, the observed reduction in grid nodes from Nf to Nc, which lies between one
and two orders of magnitude, can result in even stronger reductions of computation
time. Subspace truncation is another poorly scalable bottleneck of the basis generation
stage (e.g., see [23]) and the compound effect of the reduction of mPPRKS and Nc

compared to mRKS and Nf is more than two orders.
The main cost of the second stage is the evaluation of the ROM frequency response

at quadrature points in the frequency domain. In particular, the computation of the
orthogonal basis and the Galerkin projection are the main bottlenecks with costs that
grow linearly with respect to the fine grid dimension. The dimension of the PPRKS
approximation space is the product of the size of the compressed amplitude space and
the number of sources, which is usually of the same order as the dimension needed for
standard RKS.2 Nonetheless, storage of the space is reduced by a factor of NsrcNf/Nc

and the computation of the coarse grid amplitudes is obviously cheaper. However,
the phase-preconditioned subspace is frequency-dependent, unlike the standard RKS.
Therefore, the Galerkin projection should be computed for every frequency for the
entire operator Q(s). This is not a significant disadvantage thanks to the possibility of
an embarrassingly parallel implementation; for every evaluation frequency a separate
worker can be assigned. Moreover, the compressed tensor-product representation
(5.12) allows efficient lower-level parallelization for the evaluation phase of PPRKS,
i.e., columnwise, elementwise, and via domain-decomposition of the inner products.
Solving the Galerkin system as well as carrying out inverse Fourier transforms to the
time-domain do not depend on the grid size and their costs can be neglected.

We choose to benchmark the prototype implementation of algorithm in two parts.
The basis construction is benchmarked on a CPU and the ROM evaluation on a GPU,
as our algorithm is intended for the modern high-performance computing environment.
Efficient Helmholtz solvers or solvers for large, sparse matrix systems are generally
developed for CPUs. GPUs, however, are designed for fast, parallel computation
of large inner products and therefore are excellent for the evaluation stage of the
proposed model order reduction technique.

For the smooth geophysical structure example given in this paper with Nf =
4 \cdot 105, Nsrc = 12 we compare the most important computation times in Table 4. The
basis computation is performed on a CPU3 and the ROM evaluation on a GPU.4 In
the proposed algorithm we solve the wave equation on a coarse grid only, leading to
a much lower cost in basis construction than standard RKS where fine-scale systems
need to be solved. This is especially important considering that for large three-
dimensional applications it can become infeasible to solve the wave equation on a

2Recall that this is due to the tensor-product structure of the PPRKS approximation space given
by (5.12).

3Solved using UMFPACK v 5.4.0 on a 4-Core Intel i5-4670 CPU@3.40 GHz with parallel BLAS
level-3 routines.

4Double precision python implementation on an Nvidia GTX 1080 Ti.
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Table 4
Cost of the basis computation and evaluation of the ROM.

Basis computation comparison Computation Time

Block solve fine grid \sansQ fine(si)
 - 1\sansB 10.3 s

Single solve fine grid \sansQ fine(si)
 - 1\sansb 4.1 s

Block solve coarse grid \sansQ coarse(si)
 - 1\sansB 0.6 s

Single solve coarse grid \sansQ coarse(si)
 - 1\sansb 0.2 s

Evaluation step Computation Time Scaling

Computing phase-functions exp(i\omega Teik) 0.00546 s NsrcNf

Hadamard products exp(i\omega Teik) cSVD 0.01496 s MSVDNsrcNf

Galerkin inner product \sansV m;EIK(se)H \cdot \sansQ fine\sansV m;EIK(se) 1.752 s NfM
2
SVDN

2
src

fine grid as the scaling function \psi (\cdot ) is much worse for three-dimensional systems
than for two-dimensional systems. To show the cost of the evaluation of the ROM
we benchmarked the evaluation of a single frequency se on a GPU. The used model
parameters are Nf = 4 \cdot 105,MSVD = 100, Nsrc = 12 and the results are given in
Table 4. The computationally most involving part is the computation of the Galerkin
inner product of left-hand vectors \sansV m;EIK(se)

H with the vectors \sansQ fine\sansV m;EIK(se). Even
for this relatively small example the computational cost of the solving a coarse system
and projecting the ROM is smaller than evaluating the equation on a fine grid. We
infer that especially for large-scale models these computation times become negligible
with respect to basis construction, which scales worse. The phase-preconditioning
approach drastically reduces the vertical communication of the algorithm as only
coarse-grid amplitudes and phases need to be transferred to all workers instead of fine-
grid RKS vectors. The ROM is essentially compressed and the storage is drastically
reduced.

In summary, the computational cost is shifted from the poorly scalable basis
construction to the highly scalable evaluation stage where inner products can be
computed in an embarrassingly parallel fashion on multiple GPUs. We should also
mention significant storage reduction due to phase-preconditioning as the amplitude
basis is smaller than the standard RKS basis for the same accuracy and is stored on
the coarse grid only, which significantly reduces vertical communication.

9. Conclusions. In this paper we have introduced the PPRKS for model or-
der reduction and compression of wave propagation in unbounded domains targeting
problems with large propagation distances. Preconditioning is achieved by splitting
the RKS into incoming and outgoing waves and factoring out strongly oscillating
phase terms using the WKB approximation. The remaining slowly varying amplitude
terms are SVD-compressed and then used in the construction of the preconditioned
projection space via combinations of the singular vectors of the compressed space and
the WKB phase terms computed for different inputs (sources). Finally, the ROM is
evaluated via structure-preserving model reduction.

Phase-preconditioning has multiple objectives, namely, reduction of the num-
ber of required interpolation points, right-hand sides, and spatial discretization. The
number of interpolation points needed for a nonpreconditioned RKS method is funda-
mentally limited by the Nyquist frequency. However, phase-preconditioning weakens
this dependence of the interpolation points on the Nyquist limit. We quantified this
effect for one-dimensional SISO problems with piecewise constant coefficients, where
the PPRKS solution is exact with the number of the RKS shifts equal to the num-
ber of the homogeneous layers, i.e., this number plays the same role as the problem
dimensionality in a conventional RKS approach. Thus, in one dimension the number
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of interpolation points needed is independent of the Nyquist rate. We do not have a
rigorous estimate for the general case of multidimensional MIMO problems. However,
numerical experiments show that the positive effects of preconditioning can increase
due to simultaneous reduction of interpolation points and right-hand sides. In ad-
dition, factorization significantly relaxes requirements on the discretization grids for
subspace computations, which is critical for large-scale problems due to the poor
scalability of available Helmholtz solvers.

Furthermore, factorization reduces the computation cost and increases the model-
reduction compression factor. More specifically, for a given approximation accuracy
the SVD compressed amplitude space is much smaller than the RKS basis. Numerical
experiments for sections of two-dimensional acoustic benchmark Marmousi problem
show that the best cost reduction in subspace generation and compression is achieved
for smooth wave speed profiles; however, our approach is still competitive for the
discontinuous models and can even be adapted to include resonant substructures.

Finally, we point out that due to the tensor-product-like structure of the MIMO
preconditioned projection space, it is larger than the space of compressed amplitudes
and can even be comparable to the conventional block-RKSs required for the same
accuracy.

However, unlike the subspace generation and compression, the projection is gen-
erally highly scalable and can be easily implemented in parallel on GPUs, leaving its
computation time insignificant.

In this paper, we presented a prototype implementation of PPRKS for two-
dimensional problems using serial computation; however, our eventual target is high-
performance computing of large-scale two-dimensional seismic problems. In future
work, we will also focus on optimal placement of the interpolation points. Specifi-
cally, we plan to investigate the approximation quality of the ROMs when we move
the interpolation points away from the imaginary axis and into the complex plane.
This can potentially improve both the approximation properties of the preconditioned
RKS for the case of bounded time intervals and the performance of Helmholtz itera-
tive solvers used for RKS construction. As a natural extension of PPRKS, we will also
focus on the modeling of wave propagation in dispersive media using PPRKS, since
this will not add additional costs to the evaluation stage. Finally, we note that WKB-
like asymptotic solutions are available for many discrete and continuous dynamical
systems, which opens up a number of possibilities to extend phase-preconditioning to
such problems and related matrix-function computations, in particular if the cost of
the solution of the shifted systems is dominant in the RKS algorithm.
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