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ABSTRACT

We have developed several Krylov projection-based
model-order reduction techniques to simulate electromag-
netic wave propagation and diffusion in unbounded
domains. Such techniques can be used to efficiently approxi-
mate transfer function field responses between a given set
of sources and receivers and allow for fast and memory-
efficient computation of Jacobians, thereby lowering the
computational burden associated with inverse scattering
problems. We found how general wavefield principles such
as reciprocity, passivity, and the Schwarz reflection principle
translate from the analytical to the numerical domain and
developed polynomial, extended, and rational Krylov
model-order reduction techniques that preserve these struc-
tures. Furthermore, we found that the symmetry of the Max-
well equations allows for projection onto polynomial and
extended Krylov subspaces without saving a complete basis.
In particular, short-term recurrence relations can be used to
construct reduced-order models that are as memory efficient
as time-stepping algorithms. In addition, we evaluated the
differences between Krylov reduced-order methods for
the full wave and diffusive Maxwell equations and we de-
veloped numerical examples to highlight the advantages and
disadvantages of the discussed methods.

INTRODUCTION

Krylov-based electromagnetic (EM) solvers for the Maxwell
system in the diffusion approximation have long been the work-
horse of the geophysics community (Druskin and Knizhnerman,
1994; Knizhnerman et al., 2009; Börner et al., 2015). In such a
solver, the discretized system of equations is projected onto a Kry-
lov subspace in an iterative fashion. The projected system forms a

reduced-order model (ROM), from which approximate solutions to
the full-order system can be drawn.
ROMs that model electromagnetic wave propagation play an im-

portant role in many areas of science and engineering. The appli-
cation range spans from design optimization of an optical resonator
(Zimmerling et al., 2016) and diffusive optical tomography (Kilmer
and de Sturler, 2006) to controlled-source EM inversion in the oil
and gas industry (Druskin and Zaslavsky, 2007; Borcea et al.,
2014). The goal of ROM is usually a reduction in computational
load (Antoulas, 2005). In this respect, one can differentiate between
two types of applications, namely, applications that require fast con-
struction of an ROM (Druskin and Zaslavsky, 2007) and applica-
tions in which an ROM can be constructed offline and is only
required to offer accurate and fast evaluation (Budko and Remis,
2004). In many inversion algorithms in geophysics, for example,
ROMs that are first computed offline can be used to efficiently
evaluate the elements of the Jacobian during the online inversion
stage (Borcea et al., 2014). Generally speaking, the online stage
of an inversion algorithm is the stage in which one tries to minimize
the mismatch between measured data and the data obtained from a
simulated configuration. Parametric ROMs can be computed offline
and independently of this online inversion stage in case the range of
the parameters encountered during inversion is small and known
beforehand (Benner et al., 2015). Otherwise, ROMs can be con-
structed online during each iteration of the inversion algorithm.
In this contribution, we discuss three types of projection-based

Krylov model-order reduction techniques for electromagnetic field
problems as encountered in geophysics. Polynomial, extended, and
rational Krylov subspace (RKS) techniques are presented, and we
demonstrate how the structure of the Maxwell equations can be
used to efficiently construct ROMs, while preserving the model
structure. In particular, we show that the symmetry of theMaxwell’s
equations allows us to efficiently construct polynomial and ex-
tended Krylov bases using short recurrence relations leading to
the fast construction of time- or frequency-domain ROMs. More-
over, we also show that properly constructed RKSs lead to
ROMs that preserve general wavefield properties of the unreduced
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Maxwell system, such as passivity and the Schwarz reflection prin-
ciple. The order of these rational models is typically much smaller
than the order of the ROMs obtained via polynomial or extended
Krylov subspace (EKS) methods, but their construction is much
more expensive per iteration because it requires the solution of
the full (unreduced) discretized Maxwell system at every iteration.
ROMs based on RKS techniques are therefore expensive to con-
struct, but they are very efficient to evaluate. This makes them par-
ticularly useful in online electromagnetic inversion algorithms, in
which only the evaluation of these ROMs is required. Because most
applications encountered in geophysics require the computation of
wavefield responses in open domains, absorbing boundary condi-
tions have to be included in our Krylov-solution methods. We
implement such conditions using complex coordinate stretching
techniques and variants thereof (Chew et al., 1997; Druskin and
Remis, 2013; Druskin et al., 2016). The implementation of these
boundary conditions into the various ROM frameworks is discussed
as well. Moreover, we pay particular attention to the effects of the
conductivity in the lossy Maxwell system on the convergence speed
of the ROMs and illustrate the performance of the various reduction
methods by simulating several ground-penetrating radar (GPR) sce-
narios. Finally, we provide a 3D example using the diffusion
approximation of the Maxwell equations and discuss the computa-
tional aspect of building the ROMs.

PROBLEM FORMULATION

We are interested in solving the Maxwell equations:

−∇ ×Hþ σE þ ε∂tE ¼ −J ext; (1)

∇ × E þ μ∂tH ¼ −Kext; (2)

for one (or multiple) source and receiver locations. In these equations,
E is the electric field strength,H is the magnetic field strength, and σ,
μ, and ε are the conductivity, permeability, and permittivity, respec-
tively. The source terms are the electric current density J ext and the
(equivalent) magnetic current density Kext. After a finite-difference
discretization on a Yee-Lebedev grid, in which we initially set the
tangential components of the electric field strength to zero at the outer
boundary of the computational domain (perfect electrically con-
ducting [PEC] boundary condition), we obtain the matrix equation

��
0 −Dh

De 0

�
þ
�
Mσ 0
0 0

�
þ
�
Mε 0
0 Mμ

�
∂t
��

e
h

�
¼−

�
jext

kext

�
;

(3)

where Dh∕e are the finite-difference approximations of the curl
operators, Mε∕μ∕σ are the diagonal medium matrices, and e and h
contain the finite-difference approximations of the electric and mag-
netic field strength, respectively. Finally, the right side of the above
equation contains the finite-difference approximations of the external
electric and magnetic current densities. From this moment on, we
assume that the time dependence of these densities can be factored
out; that is, we consider source vectors of the form jext ¼ wðtÞjsp
or kext ¼ wðtÞksp, where jsp and ksp are time independent and
wðtÞ is the source wavelet. Taking wðtÞ ¼ δðtÞ, where δðtÞ is the
Dirac distribution operative at t ¼ 0, and premultiplying the above
equation by

�
Mε 0
0 Mμ

�
−1
; (4)

we arrive at a discretized Maxwell system of the form

ðAþ ∂tIÞu ¼ δðtÞb; (5)

where

A ¼
�
Mε 0
0 Mμ

�
−1
��

0 −Dh

De 0

�
þ
�
Mσ 0
0 0

��
(6)

is our sparse finite-difference Maxwell operator that acts on the fields
collected in u, which are excited by the sources in b. Introducing the
diagonal step-size matrix Wp that has the volumes of the primary
voxels on its diagonal, the diagonal step-size matrixWs with the vol-
umes of the secondary (dual) voxels on its diagonal, and the diagonal
matrix

W ¼
�
WpMε 0
0 −WsMμ

�
; (7)

it can be shown that the Maxwell operator A satisfies (Remis, 1998)

WA ¼ ATW: (8)

This symmetry relation is related to reciprocity. To show this, we first
note that equation 5 admits the formal solution

uðtÞ ¼ ηðtÞ expð−AtÞb; (9)

where ηðtÞ is the Heaviside unit step function. The above solution
vector u contains electric and magnetic field approximations on
all grid nodes within the computational domain. In exploration geo-
physics, however, we are usually not interested in the fields on the
entire grid, but only in the transfer function from the sources to the
receivers. Introducing a receiver vector r that selects an electric or
magnetic field component at a specific receiver location from the sol-
ution vector u, this transfer function is given by

fðr; bÞ ¼ ηðtÞrTW expð−AtÞb: (10)

Taking the transpose of this transfer function and using equation 8,
it follows that we have the reciprocity relation fðr; bÞ ¼ fðb; rÞ.
Finally, we mention that the symmetry properties of equation 5
can also be discussed in terms of the operator W1∕2AW−1∕2 (see,
e.g., Remis, 2004).
Because we are mainly interested in electromagnetic fields in

open domains, we have to replace the PEC material boundary con-
dition at the outer boundary by an absorbing boundary condition.
We implement such a condition by applying coordinate stretching
(Chew et al., 1997) in a layer, the perfectly matched layer (PML),
which completely surrounds the domain of interest. Because
stretching is more easily discussed in the Laplace domain, we con-
tinue our analysis in this domain with Laplace parameter s. Quan-
tities in the Laplace domain will carry a hat (·̂).
Coordinate stretching is introduced by using complex frequency-

dependent step sizes hiðsÞ ¼ hrei þ ðhimi ∕sÞ inside the PML, in
which the choice for the real and imaginary parts of the step sizes
are dependent on the chosen frequency interval. The real part of the
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step sizes absorbs evanescent waves, and the imaginary part absorbs
propagating waves. The number of complex step sizes needed de-
pends on the frequency interval of interest, the maximum angle of
incidence on the PML, and the acceptable reflection coefficients.
The desired PML approximates the impedance of infinite half-
spaces well over the spectral interval. The impedance of a finite-
difference grid with step sized hi is a rational function, so that
the real and imaginary step sizes are obtained from rational approxi-
mation of the impedance of an infinite half-space, which permits a
closed-form expression (for details, see Druskin et al., 2016). Incor-
porating this technique leads to a finite-difference operator Â that
depends on the Laplace parameter s, such that equation 5 now reads

½ÂðsÞ þ sI�û ¼ b: (11)

The symmetry of matrix A (equation 8) directly translates to the
Laplace domain, except that now Â and Ŵ are s dependent due
to the application of the coordinate stretching technique. Explicitly,
we have

ŴðsÞÂðsÞ ¼ Â
TðsÞŴðsÞ: (12)

Furthermore, ÂðsÞ follows the Schwarz reflection principle

Âðs̄Þ ¼ ¯̂
AðsÞ, where the overbar denotes complex conjugation.

This principle has to hold because real-valued wavefields (transfer
functions) are measured in the time domain. For the inverse
Laplace transform of the (Laplace domain) transfer function

f̂ðb; r; sÞ ¼ rTŴðsÞ½ÂðsÞ − sI�−1b to be real valued, it needs to be

conjugate symmetric
¯̂
fðb;r;sÞ¼ f̂ðb;r; s̄Þ, and therefore Âðs̄Þ ¼ ¯̂

AðsÞ
needs to hold.
Finally, we mention that in the diffusion approximation, that is,

when the displacement currents ε∂tE in Maxwell’s equations are
neglected, we also obtain equation 5 after discretization (see Remis
and van den Berg, 1998). In this case, the computational domain can
be easily truncated by the PEC material boundary condition at the
boundary of the computational domain, provided that this boundary
is chosen sufficiently far from the structures of interest. Moreover,
in a second-order formulation for diffusion problems, in which one
solves for either the electric or the magnetic field strength, the ei-
genvalues of the resulting discrete diffusion operator lie on the real
positive semiaxis, which makes approximation of such an operator
fundamentally easier than a wave operator.

Frequency-independent PML

In our model-order reduction approach, our aim is to approximate
the field solution ûðsÞ ¼ ½ÂðsÞ þ sI�−1b̂ by matrix functions that are
easier to compute, for instance, a polynomial or a low-order rational
function. However, the introduction of coordinate stretching to sim-
ulate open domains results in a discretized Maxwell system that is
nonlinear in frequency, which makes it computationally nontract-
able to build high-order, orthogonal polynomials in ÂðsÞ because
this requires recompilation of the polynomial for every value of
s. Therefore, frequency-independent absorbing boundary condi-
tions are desirable. Recent developments in near-optimal PMLs al-
low for frequency-independent PMLs that are matched over a
spectral interval. In these implementations, the spatial step sizes
inside the PML are complex and are matched to the temporal spec-

trum of interest (for details, see Druskin and Remis, 2013; Druskin
et al., 2016). This leads to a system of the form

ðAfi þ sIÞû ¼ b; (13)

where the superscript indicates that frequency-independent coordi-
nate stretching has been implemented using complex spatial step
sizes. The above system violates the Schwarz reflection principle
as ûðs̄Þ ≠ ¯̂uðsÞ and makes equation 13 unstable because Afi has
eigenvalues with a negative real part.
However, stable-field approximations can be obtained from equa-

tion 13 by computing stability-corrected (Druskin and Remis, 2013;
Druskin et al., 2014) transfer functions via

fðr; bÞ ¼ 2ηðtÞrTWRe½ηðAfiÞ expð−AfitÞb�; (14)

which also upholds the Schwarz reflection principle in the Laplace
domain because

f̂ðr; bÞ ¼ rTWηðAfiÞðAfi þ sIÞ−1b
þ rTWηðAfiÞðAfi þ sIÞ−1b: (15)

Here, ηðzÞ is the Heaviside unit-step function acting on the real part
of its argument, such that ηðAfiÞ is a projector onto the stable part of
our finite-difference matrix. By fixing the PML frequency to a pos-
itive imaginary Laplace frequency, the matrix Afi has stable eigen-
values in the quadrant ReðsÞ > 0 and ImðsÞ > 0, and it has unstable
eigenvalues in the quadrant ReðsÞ < 0 and ImðsÞ < 0. The unstable
eigenvalues correspond to incoming wavefields for a frequency
ImðsÞ < 0 because the fixed frequency PML fails to approximate
the sign change in the radiation condition as ImðsÞ changes sign.
However, the projector ηðAfiÞ allows us to obtain the stable part
of the operator and the Schwarz reflection principle allows us to
find a stable transfer function valid for all Laplace parameters swith
ReðsÞ > 0.
To summarize, the frequency-independent PML formulation de-

scribed above linearizes equation 11 with respect to frequency (see
equation 13), but it requires stability correction as described in
equations 14 and 15. This stability-correction approach works in
general, but, as we will show in the next section, it is not always
necessary. Specifically, in configurations in which it is sufficient to
approximate û by a low-order rational function, a frequency-depen-
dent PML can be used because the construction of such a function
only requires solutions of equation 11 for a small number of differ-
ent frequencies.

REDUCED-ORDER MODELING

The finite-difference system of equation 11 is large for real-world
applications and obtaining a time-domain or frequency-domain sol-
ution over a frequency interval of interest can be too cumbersome.
In reduced-order modeling, we therefore approximate the wavefield
in terms of a small basis, to reduce the order of the systems of equa-
tions that need to be solved.

Krylov MOR of EM fields WB63
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Structure-preserving rational Krylov subspace
approximations

Let us start with the construction of the RKS-ROMs, formally
introduced for eigenvalue problems by Ruhe and Skoogh (1998).
These approximations are constructed out of field solutions of
the discretized Maxwell system at particular frequencies s ¼ κ1,
s ¼ κ2, : : : , s ¼ κm. Note that a rational Krylov method has no
problem in handling the nonlinear dependence of Â on s because
the subspace is spanned by single-frequency solutions to the
problem.
As a first step, we multiply equation 11 by the frequency-depen-

dent and nonsingular step size matrix ŴðsÞ to obtain the system

B̂ðsÞûðsÞ ¼ b 0; (16)

where B̂ðsÞ ¼ ŴðsÞ½ÂðsÞ þ sI�. The sources b are supported out-
side the PML, and thus inside the computational domain of interest.
The step sizes contained in the step-size matrix ŴðsÞ are frequency
dependent inside the PML only, so that the product b 0 ¼ ŴðsÞb is
frequency independent. Note that B̂ðsÞ is symmetric because of
equation 12. As a next step, we solve equation 16 at the m different
frequencies s ¼ κ1, s ¼ κ2, : : : , s ¼ κm to obtain the corresponding
solutions ûðκ1Þ, ûðκ2Þ, : : : , ûðκmÞ. Subsequently, we use these sol-
utions to construct our rational Krylov ROMs. This RKS deviates
from the classical definition because the operator used to construct
it is frequency dependent. We would like the reduced-order model
to preserve the symmetry, passivity, and Schwarz reflection princi-
ple of the full-order model, to honor the underlying physics. To this
end, the set of interpolation points needs to be closed under con-
jugation; that is, the complex conjugate of the set of interpolation
points lies within the set of interpolation points itself. With
κ ¼ fs1; s2; : : : ; smg and choosing κ ∪ κ̄ as the set of interpolation
points, the RKS itself is closed under conjugation and contains the
solutions ûðκjÞ and ûðκ̄jÞ ¼ ûðκjÞ. This can be achieved by choos-
ing the real, structure-preserving RKS of size 2m

K2m
RKS ¼ spanfRe ûðκ1Þ; Im ûðκ1Þ; : : : ;

: : : ;Re ûðκmÞ; Im ûðκmÞg; (17)

as an approximation and a weighting space for the construction of
the RKS-ROMs. Although the subspace has a dimension of 2m,
only m single-frequency solutions are required and the required
memory for storing the basis is equivalent to storing m complex
vectors.
To construct the RKS-ROMs, let Vm ∈ RN×2m span the subspace

K2m
RKS and write the ROM solution as ûmðsÞ ¼ VmŷmðsÞ, where

ûmðsÞ is a vector containing the 2m s-dependent expansion coeffi-
cients. The residual that corresponds to this approximation is given
by r̂ðsÞ ¼ b 0 − B̂ðsÞûmðsÞ and by requiring that this residual is
orthogonal to Vm ∈ RN×2m (Galerkin condition), the RKS-ROM
follows as

ûmðsÞ ¼ Vm½VT
mB̂ðsÞVm�−1VT

mb
0; (18)

where the inverse in the above expression exists for all frequencies
ReðsÞ ≥ 0 of interest because the projection is structure preserving.
The reduced-order matrix VT

mB̂ðsÞVm preserves the symmetry of the

problem, and even passivity because Vm is real. More specifically,
the (nonlinear) numerical range of the projected system

N fVT
mB̂ðsÞVmg¼fs∈C∶x̂HVT

mB̂ðsÞVmû¼ 0; ∀ û∈C \ 0g
(19)

lies within the numerical range of the full operator N fB̂ðsÞg. This
implies that if the full-order system is passive, so is the reduced-
order system. Passive systems do not produce any energy, so that
the energy in the system is smaller or equal to the energy fed into the
system. Strictly passive systems dissipate the input energy (Soren-
sen, 2003). Thus, passive systems are by definition stable. Further-
more, the reduced-order solution ûm interpolates the full solution û
at all Laplace frequencies κi and κ̄i. This follows from the unique-
ness of the Galerkin condition and from the fact that the fields ûðκiÞ
and ûðκ̄iÞ are in the RKS.

Polynomial and extended Krylov methods

Polynomial and extended Krylov ROMs can be constructed for
frequency-independent PML formulations (on a frequency interval
of interest because these methods cannot directly handle the non-
linear dependence of the discretized Maxwell operator on the fre-
quency). Therefore, we take equation 13 as a starting point and
exploit the fact that matrix Afi is symmetric with respect to the
diagonal, nonsingular, frequency-independent, and complex step-
size matrix W to construct a basis of the polynomial Krylov sub-
space (PKS)

Km
PKS ¼ spanfb;Afib; : : : ; ðAfiÞm−1bg; (20)

via a modified three-term Lanczos algorithm (Jea and Young, 1983;
Freund and Nachtigal, 1995). This subspace can now be used
to obtain polynomial, stability-corrected Krylov subspace approx-
imations for the transfer functions (Druskin and Remis, 2013).
Similarly, the W-symmetry of Afi can be exploited to efficiently
construct a basis of the EKS

K
nn;np
EKS ¼ spanfðAfiÞ−nnb; : : : ; b; : : : ; ðAfiÞnp−1bg; (21)

via a five-term recurrence relation (Jagels and Reichel, 2011) and
extended Krylov transfer function approximations can efficiently be
computed (Druskin et al., 2014). The short recursion relations to-
gether with the fact that only the transfer function

fðr; bÞ ¼ rTWgðAfiÞb (22)

is needed rather than the whole field approximation allows for the
computation of the transfer function without storing the basis.
Here, gð·Þ is the (stability corrected) exponential for time-domain
and the resolvent for frequency-domain problems (see equations 14
and 15). With Vm ∈ CN×m as the basis for the PKS or EKS
(m ¼ nn þ np), the reduced-order transfer function can be written
as

fmðr; bÞ ¼ rTWVmgðVH
mWAfiVmÞVH

mWb; (23)

using short-term recurrence algorithms. Because the projection
of the operator is computed within the short-term recurrence
algorithm, only the inner products rTWVm and VH

mWb need to

WB64 Zimmerling et al.
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be kept in memory and the basis does not need to be stored. The
projected Maxwell operator VH

mWAfiVm is tridiagonal for PKS and
pentadiagonal in the case of EKS, further simplifying the evaluation
of gðVH

mWAfiVmÞ. Adding a vector to a PKS is computationally
cheap and just requires one matrix vector multiplication: It is equiv-
alent to one finite-difference time-domain (FDTD) step in cost.
However, adding a negative power of matrix Afi to an EKS is com-
putationally more expensive because one has to numerically solve a
static (zero frequency) problem. Generally, EKS performs well if
low frequencies need to be approximated, as it interpolates the origi-
nal function and its first nn − 1 derivatives at the zero frequency.
Finally, we mention that polynomial and extended Krylov field ap-
proximations of the stability-corrected transfer function are stable
by construction because all eigenvalues of ηðAfiÞ and ηðAfiÞ lie in
the right half-plane.
The matrix Afi is singular for wave propagation and diffusion,

and we therefore need to solve the system with the pseudoinverse
of Afi (Remis, 2004). In the case of 2D wave propagation, this pseu-
doinverse corresponds to the law of Biot-Savart (the action of
Afi;†b). One has to essentially solve the Poisson’s equations to com-
pute the action of the pseudoinverse on a right side (Druskin and
Knizhnerman, 1998). This can be done with standard Poisson’s
solvers or more generally with iterative solvers computing the mini-
mum norm solution. Finally, we mention that in our model-reduc-
tion approach, we approximate shifted systems using polynomial
and extended Krylov subspaces. The first-order Maxwell system
leads to such a linear system if a fixed-frequency PML is used.
The second-order Maxwell system leads to a quadratic equation

ðDþMεμs2 þMμσsÞe ¼ b (24)

that can only be viewed as a shifted system in the lossless case, in
the diffusion approximation, or if ε is proportional to σ throughout
the domain (see Remis, 1998). Thus, for general lossy Maxwell sys-
tems, the first-order formulation is used in the proposed approach.

DIFFUSION APPROXIMATION VERSUS FULL
MAXWELL SYSTEM

For the Maxwell equations in the diffusion
approximation, polynomial or rational Krylov
subspace clearly outperform time-stepping
schemes (Druskin and Knizhnerman, 1994;
Knizhnerman et al., 2009; Börner et al., 2015).
In particular, to obtain the time-domain solution
in the interval ½0; T� to the diffusion equations
discretized with step size h, one needs
m ¼ Oðh−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logðhÞTp Þ PKS iterations as op-
posed to Oðh−2TÞ time steps using an explicit
second-order time-stepping scheme. Further-
more, the eigenvalues of the diffusion operator
lie on the positive, real semiaxis so that the op-
timal shifts for an RKS are known via a Zolotarev
rational approximant (Knizhnerman et al., 2009).
In contrast, the Courant–Friedrichs–Lewy condi-
tion of the FDTD method for Maxwell’s wave
equations with lossless media yields an estimate
of only Oðh−1TÞ time steps. In fact, one can
show that the PKS method for these types of

problems is computationally equivalent to FDTD with an optimal
time step in case of PEC boundary conditions and lossless media
(Remis, 2011). Material losses and the PML, however, shift the
spectrum of the first-order wave operator away from the imaginary
axis and into the complex plane. The separation of the spectrum
from the area of approximation (the imaginary axis) enhances
the convergence of PKS.
In Figure 1, we show the spectrum of a typical discretized first-

order wave and second-order diffusion operator. All eigenvalues are
shown as red crosses and are located in the right half of the complex
s-plane. The spectra of the diffusion and wave operator are clearly
different — eigenvalues of the diffusion operator are located on the
positive real line, whereas the wave operator has a (symmetric)
spectrum that is completely located in the stable right half-plane
ReðsÞ ≥ 0. For frequency-domain problems, we want to obtain an
accurate approximation in a frequency interval of interest that is
usually located on the imaginary axis (encircled with a dashed black
line). After discretization of the continuous wave operator, its spec-
trum becomes discrete and shifts into the complex plane due to
material losses and the introduction of a PML. The fixed-frequency
PML is only matched in a certain region of interest, corresponding
to strongly damped eigenvalues with a large real part. Cavities or
other resonant inclusions can introduce so-called resonance modes,
which are characterized by eigenvalues with a small real part be-
cause they lead to a slowly decaying exponent in the transfer func-
tion of equation 14. The separation of the area of approximation and
the spectrum also allows for efficient model reduction via RKS.
However, contrary to the diffusive case, the eigenvalues of the wave
operator are not located on the real axis, but they can be found in the
complex plane (for more information about the spectrum of ÂðsÞ,
we refer to Kim and Pasciak [2009], for example). A priori selection
of optimal shifts as in the diffusive case is therefore very difficult. In
general, the frequency-domain response of a wave equation can be
oscillatory, which limits an interpolatory method such as the RKS
method. In conclusion, introducing losses into the Maxwell system
allows us to find smaller reduced-order models. Losses lead to a loss
of information and allow for a low-order approximation that can
capture the relevant features of the transfer function. This will
be illustrated with a numerical experiment in the “Results” section.

Figure 1. Illustration of the eigenvalues of (a) the second-order diffusion operator and
(b) the (linearized) first-order wave operator Afi, including stability correction. The un-
stable left half-plane (ReðsÞ < 0) is depicted in red, whereas the stable right half-plane
(ReðsÞ > 0) is shown in blue.
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RESULTS

In this section, we use several GPR scenarios to illustrate the per-
formance of the various Krylov reduction techniques. In addition, a
3D example for the diffusive Maxwell equations is presented as
well, and we conclude the “Results” section by a discussion of
the computational aspect of the introduced methods.

2D GPR

To show the approximation qualities of the introduced ROMs, we
consider a configuration arising in exploration with GPR. We inves-
tigate a lossy subsurface with a box-shaped anomaly, and we use
a frequency band between 50 MHz and 3 GHz. The simulated
configuration is shown in Figure 2, in which the exact medium
parameters are provided in the caption. An electrical dipole source
oriented in the z-direction is used for excitation, and the z-
component of the electric field strength is measured at the ground-
air interface. Finite-difference discretization with a second-order ac-
curate operator and eight points per smallest wavelength at 3 GHz
leads to a first-order Maxwell system with N ¼ 62 × 103 un-
knowns. Using this full operator, we compute the transfer function
for this configuration using an FDFD method to obtain a compari-
son solution for our reduced-order models. This comparison solu-
tion is shown alongside the responses of the PKS, EKS, and RKS
reduced-order models in Figure 3. The order of the reduced-order
models was increased until the reduced-order models and the com-
parison solution essentially overlap on the frequency interval of
interest.
For the RKS method, we choose equidistant shifts (interpolation

points) on the imaginary axis between 50 MHz and 3 GHz. The
RKS method leads to the smallest model with m ¼ 55; however,
a single iteration is much more expensive than a PKS iteration.
The PKS method needs m ¼ 3400 iterations until convergence,

where one iteration is as expensive as an FDTD step. The EKS
method needs nn ¼ 100 inverse and np ¼ 2200 forward iterations.
The only difference can be seen at very low frequencies where the
frequency-independent and -dependent PML deviate. Furthermore,
the PKS method converges from large eigenvalues toward small ei-
genvalues, meaning that high frequencies are approximated first.
The EKS method with 100 inverse iterations interpolates at the zero
frequency such that it converges from low and high frequencies to-
ward the middle spectrum. The RKS method with uniform distrib-
uted shifts interpolates the response at all shifts, and it therefore
converges on the whole interval of shifts simultaneously. The con-
vergence of the different Krylov methods in the frequency domain
is shown in more detail in Figure 4, in which the relative L2-error
between the different Krylov ROMs and the FDFD comparison sol-
ution is shown as a function of the number of iterations. We measure
the approximation by the relative L2-error in the time domain

err ¼ kfmðtÞ − fðtÞk2
kfðtÞk2

; (25)

and we use an FDFD comparison simulation to obtain fðtÞ.
The RKS-ROM converges up to machine precision to the FDFD

comparison solution because both solutions are computed using the
frequency-dependent Maxwell operator. The error of the PKS and
EKS ROMs stagnates at around an error level of approximately
10−4 because these models use the frequency-independent PML for-
mulation.
The convergence of the PKS method in the time domain is illus-

trated in Figure 5. Here, the time derivative of a Gaussian pulse,
shifted to 1.15 GHz, was used as a wavelet. The 1% cut-off fre-
quency of this wavelet is 2.4 GHz, and discretization is chosen such
that we have approximately 10 points per the smallest wavelength at
this cut-off frequency. We observe that early times are approximated
well after m ¼ 1100; however, late times containing the reflection
of the anomaly did not yet converge. After m ¼ 3400 iterations, the
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Figure 2. Simulated GPR configuration, with an (εr ¼ 4;
σ ¼ 10−2 S∕m) anomaly embedded in a (εr ¼ 2; σ ¼
5 × 10−4 S∕m) surface layer, with dry air εr ¼ 1; σ ¼ 0 on top.
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Figure 3. Imaginary part of the transfer function over the frequency
interval of interest computed with FDFD (solid green line), PKS
after 3400 iterations (solid blue line), EKS after 2200 forward
and 100 inverse iterations with Afi, respectively, (solid yellow line),
and RKS after 55 iterations (dashed line).
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time-domain error is less than 0.1% and the reduced-order approxi-
mation and FDFD comparison solution are indistinguishable. The
direct arrival of the pulse and the reflections from the anomaly can
clearly be distinguished in this experimental setup.
To study the effect of losses on the convergence rate of RKS-

ROMs in the time domain, we repeat the above experiment with
different conductivity models. Specifically, we scale the conduc-
tivity profile by factors of 0.5, 2, and 5. The relative time-domain
errors (with respect to an FDTD comparison solution) for different
iterations of RKS are shown in Figure 6, in which we used the same
wavelet as in the previous experiment. Higher losses clearly in-
crease the convergence rate because it shifts the spectrum of the
operator further away from the imaginary axis and into the complex
plane. For small dimensions of the Krylov subspace, the errors in all
experiments are similar due to the presence of a direct lossless path
between the sources and receivers. Once this direct arrival is well-
approximated, the errors of the different conductivity models start to
differ and higher losses positively influence the convergence rate.
The convergence of RKS is not monotonic, however, because we
use equidistant shifts for our experiments, meaning that we rebuild
our subspace for each of the experiments.

3D electromagnetic diffusion

In case the displacement currents ε∂tE are negligible compared
with the conduction currents, we obtain the diffusion approximation
of the Maxwell’s equations. In this computational example, we con-
sider a 3D configuration with a resistive, anisotropic anomaly.
The geometric configuration is a scaled version of the previous ex-
ample, and it is shown in Figure 7, in which the source and receiver
are directed in the positive y-direction. The lower half-space
has conductivity of σ ¼ 1 S∕m, and the resistive, anisotropic,
cube anomaly has principal components of σI ¼ 0.01 S∕m, σII ¼
0.04 S∕m, and σIII ¼ 0.02 S∕m with a dip and azimuth angle of
the anisotropy of 30° and 15°. After discretization with finite
differences, the model has N ¼ 1.5 × 106 field unknowns in a
second-order formulation.
The interpolation points of the RKS method are placed on the

negative real semiaxis and chosen asymptotically optimal assuming

a uniform spectral distribution of the diffusion operator, as de-
scribed by Druskin et al. (2009). Therefore, the shifts are known
a priori and the dimension of the RKS can be increased by adding
vectors one by one.
In Figure 8a, the L2-error of the ROM is shown as a function of

the iteration number m for the PKS and RKS methods. Both meth-
ods converge to a relative error of 10−4 in mPKS ¼ 18;700 and
mRKS ¼ 33 iterations, respectively. To show the convergence within
a single figure, double logarithmic axes are used. The RKS method
clearly yields a smaller ROM.
The wall times for a sequential implementation are shown in

Figure 8b, the RKS method clearly outperforms the PKS method
in terms of computation time and size of the ROM. However,
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Figure 4. Relative error of the PKS, EKS, and RKS-ROMs. The
PKS and EKS-ROMs stagnate around a relative error of approxi-
mately err ¼ 10−4, as the comparison solution was computed with
an FDFD method with frequency-dependent PML.
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Figure 5. Time-domain trace as approximated by the PKS method
after 1100 iterations and 3400 iterations. For a PKS method, the
early times converge first. The reflections from the anomaly can
be seen in the magnified panel in the top right. The FDTD compari-
son response and ROM-PKS response for m ¼ 3400 are magnified
for (normalized) times between 250 and 550.
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the PKS method uses less memory to construct the ROM. In the
next section, we discuss the computational complexity of the
ROM methods in more detail. We choose to show the wall times
in a semilogarithmic scale and the L2-error as function of the iter-
ations on a double logarithmical scale because the asymptotic com-
plexity of a single iteration of RKS is constant, so is the complexity
of PKS.
The time-domain transfer function as approximated by the RKS

and PKS methods for the time interval of interest (t ¼ 10−3–10−1 s)
is shown in Figure 9. A slight difference at early times between
these methods is caused by the different averaging techniques used
in RKS and PKS for spatial discretization (see nodal homogeniza-
tion and standard homogenization, respectively, fromMoskow et al.,
1999). In this experiment, a Heaviside step function is used as a
wavelet that is active for all negative times and zero for all positive
times (switch-off source). The observed L2-error between both
methods for the time trace shown in Figure 9 is 3%.

Discussion on computational complexity

In this section, we briefly discuss the computational complexity
and memory requirements of the PKS, EKS, and RKS algorithms.
With N denoting the order of the original unreduced Maxwell sys-
tem and m denoting the order of the ROM, the performance of all
three methods can be summarized as in Table 1. From this table, it is
clear that there is a tradeoff between memory requirements and
computational complexity. Specifically, one iteration of RKS is
much more costly than one iteration of PKS or EKS because it re-
quires a solution of the unreduced Maxwell system at each iteration.
On the other hand, RKS typically converges much faster than does
PKS or EKS, as demonstrated in the numerical results section.
Another advantage of the RKS method is that the construction

0.2 0.4 0.6 0.8 1
y-direction (km)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x-
di

re
ct

io
n 

(k
m

)

Receiver
Source

Figure 7. Cross section of the 3D model simulated with a lower
half-space of σ ¼ 1 S∕m and a lossless upper half-space. A resis-
tive, anisotropic, cube anomaly with principal components of
σI ¼ 0.01 S∕m, σII ¼ 0.04 S∕m, and σIII ¼ 0.02 S∕m is present
in the configuration. The dip and azimuth of the anisotropy are
30° and 15°, respectively.
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of the RKS basis is parallelizable as multiple shifted systems can be
solved in parallel. From a memory point of view, the PKS and EKS
algorithms are more attractive due to the short-term recurrence re-
lations that allow for a memory-efficient construction of these
spaces. Only three vectors of the size of the computational domain
need to fit the computational memory for PKS and five vectors for
EKS. For the RKS method, m vectors need to be stored in memory.
Finally, we note that in a sequential implementation of the RKS and
PKS method, the computational cost of each iteration of RKS or
PKS is approximately constant. Our 3D diffusive example showed,
however, that the convergence of PKS slows down as the error de-
creases, whereas the RKS shows linear convergence and RKS out-
performs PKS in terms of computation time (see also Figure 8b).

CONCLUSION

In this paper, we have presented polynomial, extended, and ra-
tional Krylov reduced-order modeling techniques for the Maxwell
equations on open domains. The model-reduction techniques have
been applied to a GPR configuration, involving lossy media and an
anisotropic diffusion configuration. Polynomial and extended
ROMs are based on a frequency-independent PML formulation
in combination with a stability-correction procedure to obtain ac-
curate transfer function approximations between a given source
and a given receiver. By exploiting the symmetry of Maxwell’s
equations, we have shown that PKS- and EKS-ROMs can be con-
structed using short recurrence relations and it is not necessary to
store a complete Krylov basis to evaluate transfer function approx-
imations for the fields.
Constructing PKS- and EKS-ROMs can be realized at low com-

putational cost, but the order of these models can be much larger
than the order of the RKS models. This makes PKS and EKS par-
ticularly well-suited for online field computations. RKSs, on the
other hand, generally yield the smallest models; however, for some
applications and configurations, the low cost of a single iteration of
PKS or EKS outweighs this advantage. Furthermore, generating an
RKS demands more memory because we have to save the basis.
However, if the goal is to obtain a reduced-order model of the small-
est order and this model can be computed offline, then RKS-ROMs
may be preferred. Another advantage of an RKS approach over
PKS- and EKS-ROM construction is that it does not require lineari-
zation of the PML and a stability-correction procedure is not nec-
essary.
What all methods have in common is that the convergence rate of

the models improves as the losses within the configuration increase.

When solving wavefield problems on open domains, PMLs that
simulate outward wave propagation automatically introduce a loss
mechanism into the system that moves the spectrum of the first-or-
der Maxwell wave operator away from the imaginary axis, where
the wavefield responses are approximated. If, in addition, material
losses are present as well, the spectrum moves away even further
into the complex frequency plane and this separation increases as
the loss profiles of the different media increase. This separation has
a positive effect on the convergence rate of the Krylov ROMs, and
lower-order models are sufficient to accurately model the transfer
function responses between a source and a receiver. Physically, an
increase in conductivity leads to a loss of information and smoother
wave responses, which can be more easily approximated, resulting
in ROMs of a lower order.
Finally, for Maxwell’s equations in the diffusion approximation,

rational approximation of the transfer function via RKS is clearly
superior in computation time and the resulting model order. The
separation of the spectrum and the area of approximation are intrin-
sic to the problem in this case, and optimal shifts for RKS can
be found.
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