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Summary

Space and time awareness has been an integral quest of human evolution, and more

so in the currently burgeoning era of wireless sensor networks (WSN), internet of

things (IoT) and big data. The rapid advances in technology in recent times has led

to affordable, miniaturized and low-power sensor nodes, enabling the feasibility of

networks with numerous nodes. These nodes are typically equipped with diverse

portfolio of sensors to measure various physical phenomenon, which are coopera-

tively communicated and processed for appropriate statistical inference. To ensure

coherent sampling, efficient communication and prudent inference, the knowledge

of position and time of the sampled data is imperative, and consequently accurate

space-time estimation of the nodes is as valuable as the sampled data itself.

In this dissertation we address the space-time estimation of a specific class of

WSNs, namely an anchorless network of asynchronous mobile nodes. As the ter-

minology suggests, we consider a network of mobile nodes under non-relativistic

motion, whose space-time kinematics are to be estimated. In addition, the term an-

chorless indicates no apriori information on the absolute position or time of any node

within the network. This approach is a stark contrast to conventional anchored sce-

narios, e.g., GPS-based localization, where absolute space-time reference is known.

Anchorless networks arise naturally when deployed in inaccessible regions, where an

absolute space-time reference is non-existent or only intermittently available. More-

over, when a swarm of nodes is considered, imparting the absolute reference to all

the nodes could be limited by communication resources. A few application scenar-

ios include, for example, indoor localization, underwater networks, drone swarms

and space-based satellite arrays. In such anchorless networks, it is paramount to

understand the relative space-time kinematics, which is the primary theme of this

dissertation.

Unfortunately, our understanding of relative kinematics in Euclidean space is in-

herently dependent on an absolute reference. For instance, consider the first-order

relative spatial kinematics, i.e., relative velocity, which is rightly defined as the vec-
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tor difference between absolute velocities of the respective nodes. However, in the

absence of apriori information on any absolute velocities, a natural question arises if

these relative velocities can be estimated using only pairwise distance measurements

between the nodes. In addition to relative spatial estimation, the asynchronous clocks

on-board each of these nodes must also be synchronized, in the absence of a known

absolute time-reference. These are some of the fundamental challenges which are

addressed in this dissertation.

A key motivation to investigate the relative space-time kinematics arises from

radio astronomy. The information-rich radiation from cosmic sources impinging on

Earth-based radio astronomy interferometers is severely limited at ultra-long wave-

lengths of larger than 10 meters, an impediment which can be overcome by deploying

a satellite-array in outer-space. Due to the large number of satellites and potentially

far-away deployment, the orbiting satellite array is an anchorless network of asyn-

chronous mobile nodes, which must jointly synchronize and localize all the satellites

in the cluster, with minimal support from Earth-based ground stations. We motivate

the need for such a space-based array in Chapter 2 using a few science cases and give

an overview of current trends and technologies towards the feasibility of such an ar-

ray. In context of this dissertation, the following Chapter 3 discusses the potential

of-the-shelf clocks suitable for such a satellite array and argues that the first-order

clock model is a sufficient approximation of the inherently non-linear clock.

The Chapters 4-6 form the main contributions of this dissertation, where we go

beyond the scope of space-based arrays and address the broader class of anchorless

networks of asynchronous mobile nodes. In Chapter 4, given two-way communica-

tion between the nodes, we show that the clock discrepancies of the respective nodes

in a network and the pairwise time-varying distance can be jointly estimated under

non-relativistic scenarios. In the absence of a predefined time-reference, we propose

a few statistically optimal clock references, and the performance of these blind-clock

references are discussed. In Chapter 5, under independent linear velocity assump-

tion, we show that the relative velocity of the nodes can be estimated given only

time-varying pairwise distances. The data model developed in this chapter is general-

ized and extended in Chapter 6 to estimate higher-order relative kinematics, such as

relative acceleration. For the sake of completeness, we show that the absolute kine-

matics of the nodes can also be obtained using the proposed data model, provided the

absolute kinematics of a few nodes are known. We derive theoretical lower bounds

for the developed data models to verify the performance of the proposed algorithms.

Finally, although the focus of this dissertation is on relative localization and synchro-

nization, the techniques identified can be possibly extended to broader application

areas in unsupervised learning and exploratory data analysis.

viii



Samenvatting

Kennis over ruimte en tijd is altijd een thema geweest in de menselijke evolutie. Dit

is momenteel sterk aan de orde in het bruisende tijdperk van draadloze communicatie,

het internet der dingen, en “big data”. De recente snelle ontwikkeling in technologie

heeft geleid tot betaalbare, kleine en laag-vermogen sensoren, waarmee het mogelijk

is grote netwerken te bouwen. De knooppunten in dit netwerk bestaan typisch uit

een reeks van sensoren die diverse fysische parameters kunnen meten, die gedeeld

worden met de buren om statistische schattingen op uit te voeren. Om de sensoren

coherent te samplen, data te communiceren en de schattingen betrouwbaar uit te

voeren, is het nodig om de positie en het tijdstip van samplen te weten, en daardoor

is nauwkeurige ruimte-tijd informatie van de knooppunten van even groot belang als

de sensordata zelf.

In dit proefschrift behandelen we de ruimte-tijd schatting voor een specifiek sen-

sor netwerk, namelijk een ankerloos netwerk van asynchrone mobiele knooppunten.

Hiermee bedoelen we een netwerk van mobiele knooppunten in niet-relativistische

beweging, waarvan de ruimte-tijd kinematica geschat moeten worden. De term an-

kerloos betekent dat er van geen enkel knooppunt in het netwerk a-priori informatie

is over absolute positie of tijd. Dit is in sterk contrast met conventionele technie-

ken, bijvoorbeeld GPS localisatie, waar een absolute ruimte-tijd referentie bekend

is. Ankerloze netwerken komen op een natuurlijke manier voor wanneer een net-

werk uitgerold wordt in onherbergzame gebieden, waar een absolute ruimte-tijd re-

ferentie niet beschikbaar is (of slechts tijdelijk beschikbaar). Bovendien is, voor een

zwerm knooppunten, het distribueren van de absolute ruimte-tijd referentie naar alle

knooppunten vaak lastig door beperkingen in de communicatie. Toepassingen zijn

bijvoorbeeld localisatie binnenshuis, onderwater netwerken, zwermen van drones, en

zwermen van satellieten. In deze ankerloze netwerken is het van essentieel belang

om de relatieve ruimte-tijd kinematica te begrijpen, wat het primaire thema is van dit

proefschrift.
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Helaas is ons begrip van relatieve kinematica in de Euclidische ruimte inherent

afhankelijk van een absolute referentie. Beschouw bijvoorbeeld de eerste-orde rela-

tieve ruimtelijke kinematica, dat wil zeggen relatieve snelheid, gedefinieerd als het

verschil tussen de absolute snelheidsvectoren tussen tween knooppunten. Echter, zon-

der a-priori informatie over absolute snelheden is het de vraag of deze relatieve snel-

heden geschat kunnen worden door enkel paarsgewijze metingen van de afstanden

tussen knooppunten. Verder moeten de asynchrone klokken van ieder knooppunt ge-

synchroniseerd worden, zonder gebruik te maken van een absolute tijd-referentie. Dit

zijn een paar van de fundamentele uitdagingen die we in dit proefschrift behandelen.

Een belangrijke motivatie om de relatieve ruimte-tijd kinematica te onderzoeken

komt voort uit de radioastronomie. De straling van kosmische bronnen die door de

ionosfeer op de aarde valt wordt sterk gefilterd voor de lange golflengtes (groter dan

10 meter). Dit kan worden overkomen door gebruik te maken van een zwerm satellie-

ten buiten de dampkring. Vanwege het grote aantal satellieten en de mogelijk grote

afstand tot de aarde is deze zwerm een ankerloos netwerk van asynchrone mobiele

knooppunten, die onderling gesynchroniseerd en gelocaliseerd moeten worden, met

minimale interactie met grondstations op aarde. We motiveren de noodzaak van een

ruimte-gebaseerde zwerm in hoofdstuk 2 aan de hand van een aantal wetenschappe-

lijke vragen, en geven een overzicht van trends en technologie die de realisatie van

zo een zwerm mogelijk maken. Hoofdstuk 3 behandelt mogelijke standaard klok-

ken die geschikt zouden kunnen zijn voor een satellietzwerm; we beargumenteren

dat een eerste-orde klokmodel een voldoende goede benadering is voor het inherent

niet-lineaire gedrag van de klok.

Hoofdstukken 4-6 vormen de belangrijkste bijdragen in dit proefschrift. Hierin

gaan we verder dan ruimte-gebaseerde zwermen en kijken we naar de bredere klasse

van ankerloze netwerken met mobiele knooppunten.

Gegeven twee-weg communicatie tussen knooppunten laten we in hoofdstuk 4

zien dat de klokparameters tussen de knooppunten gemeenschappelijk geschat kun-

nen worden (onder niet-relativistische aannames). Bij gebrek aan een voorgedefi-

nieerde tijdreferentie stellen we een aantal statistisch optimale referenties voor, en

behandelen we de prestaties van deze blinde klok-referenties.

Onder aannames van onafhankelijke lineaire snelheden laten we in hoofdstuk 5

zien dat de relatieve snelheid van de knooppunten geschat kan worden, gegeven en-

kel de tijdvarierende paarsgewijze afstanden. Het datamodel in dit hoofdstuk wordt

vervolgens veralgemeend en uitgebreid in hoofdstuk 6, waarin we de hogere-orde re-

latieve kinematica ontwikkelen, zoals relatieve versnellingen. Ter completering laten

we zien dat de absolute kinematica van de knooppunten ook verkregen kan worden

uit het voorgestelde datamodel, als de absolute kinematica van enkele knooppunten

x
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bekend is. We leiden theoretische ondergrenzen af voor deze modellen om de presta-

tie van de voorgestelde algoritmes te testen.

Hoewel de nadruk van dit proefschrift ligt op relatieve localisatie en synchronisa-

tie, zijn een aantal van de voorgestelde technieken geschikt voor bredere toepassings-

gebieden rond zelfstandig leren en exploratieve data-analyse.

Alle-Jan van der Veen

Delft, The Netherlands
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1. Introduction

1.1 Motivation

This dissertation aims to understand the relative space-time kinematics of an anchor-

less network of asynchronous mobile nodes under non-relativistic motion.1 Kinemat-

ics is the study of mobile nodes, without considering the forces that caused the motion

or the masses of those nodes. In this work, a cluster of mobile nodes is considered,

where the relative time-varying positions have to be estimated. We pursue this chal-

lenge by modeling and estimating the relative spatial kinematics of the mobile nodes,

given two-way communication. In addition, all the nodes are equipped with clocks

on-board, which must also be synchronized. These mobile nodes reside in an Euc-

lidean space with no absolute reference for position or time, and thus the cluster of

asynchronous nodes form an anchorless network. Such anchorless networks are of-

ten described in literature as GPS-free networks [Čapkun, Hamdi and Hubaux 2002]

or anchor-free networks [Priyantha et al. 2003].

A key motivation to pursue this topic stems from the application of space-based

ultra-long wavelength radio astronomy, which is briefly discussed in Section 1.2. The

challenges of estimating relative space-time kinematics in the context of classical

anchored localization and synchronization is laid out in Section 1.4. In Section 1.6,

the goal of this dissertation along with key research questions are presented. A brief

outline of this dissertation is given, highlighting the main contributions. The results

of this dissertation have been disseminated in various peer-reviewed journals and

conferences in diverse fields, which are listed in Section 1.7.

1.2 Radio astronomy

Astronomy is the study of our cosmos, the celestial objects within, and the related

phenomena that govern their existence and evolution. The oldest form of astronomy

is optical astronomy, which describes the observations in the visible spectrum of

≈ 400nm to ≈ 700nm. Until the late nineteenth century, observational astronomy

was only limited to this narrow band of visible wavelengths. This limitation was

primarily due to the atmospheric blockage of other wavelengths and also due to lack

of high quality detectors. The discovery of infrared radiation (wavelengths longer

than red light) in 1800 was a landmark event, which marked the beginning of our

understanding of the universe beyond the known visible spectrum.

1The terminology ‘space-time’ should not be misinterpreted as the ‘spacetime continuum’, which

is a mathematical model considered in relativistic scenarios. Throughout this dissertation we only

consider non-relativistic scenarios, and limit our discussion to the Euclidean space.

2



1.2. Radio astronomy

Ultra-long wavelength

Figure 1.1: Atmospheric opacity: The opacity (or transparency) of the Earths’ atmospheric

at various wavelengths across the electromagnetic spectrum [Wikipedia 2008].

Over the last century, baring a few frequency windows, almost the entire electro-

magnetic spectrum has been explored by either improved ground based detectors, or

by going to outer-space beyond the atmospheric barrier, or both. The technological

advancements in the aerospace industry and key policy decisions played a major role

in this success. As seen in the Figure 1.1, in the spectral regions of atmospheric opa-

city, space-based detectors such as International ultraviolet explorer, Chandra X-ray

Observatory [Weisskopf et al. 2000], XMM-Newton [Jansen et al. 2001] and Fermi

gamma-ray space telescope [Atwood et al. 2009] opened the observational windows

of ultraviolet spectra, x-rays and gamma-rays. In the visible, near-infrared and near-

ultraviolet spectra, the Hubble telescope not only achieved higher resolution, but

also led to groundbreaking discoveries, such as the observational validation of the

accelerating universe [Riess et al. 1998]. The emissions at these various wavelengths

are governed by diverse physical mechanisms and thus offer new insights about the

cosmic processes under study, which otherwise would not be possible only with ob-

servations in the optical spectrum.

Unlike the wavelengths below a few centimeters, radio astronomy enjoys a trans-

parent atmosphere for a significantly large spectral window. Radio astronomy ex-

plores the cosmos in the radio frequencies of 10MHz-3GHz (i.e., ≈ 30m up to

≈ 1cm). Despite this natural advantage, the advent of radio astronomy was much

recent, and arrived only after the inception of infrared astronomy. All along the

nineteenth century, although physicists speculated the possibility of observing radio
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ways from cosmic objects, progress was hindered due to technical limitations of the

instruments of that era. It was not until early 20th century, when the dawn of radio as-

tronomy appeared serendipitously. In 1931, a Bell labs engineer named Karl Jansky,

was investigating long-distance ship to-shore communications at the wavelength of

14.6m. During one of his experiments, he fortuitously detected an extraterrestrial

radiation from the center of our Milky Way galaxy. Since this historical event, radio

astronomy has enabled numerous groundbreaking discoveries in the last few dec-

ades. These include, radio galaxies in 1948, the observation of the 21cm hydrogen

line in 1951, quasars in 1963, cosmic wave background (CMB) in 1965, and pulsars

in 1968, to name a few. For an excellent review on the evolution of radio astronomy

see [Arnold 2014], and for an overview of radio astronomy instrumentation refer to

[Wilson, Rohlfs and Hüttemeister 2009].

The development of Earth-based radio astronomy has historically been toward

higher angular resolution, higher sensitivity and shorter wavelength. More recently

however, interesting and fundamental scientific drivers have rekindled the interest in

long wavelength radio astronomy of > 3m [Weiler 2000; Jester and Falcke 2009].

For example, to better understand the orgins of our universe, astronomers observe

the highly red-shifted 21cm line emission from the epoch of re-ionization era [Za-

roubi et al. 2012]. The radiation emitted during the Dark Ages is Doppler shifted

to longer wavelengths, which is typically more than few meters. Consequentially,

the past decade has seen the rise of various radio astronomy arrays, particularly

for low-frequency observations below 100MHz, e.g., low frequency array (LOFAR)

[van Haarlem et al. 2013]. However, towards the lower end of this spectrum, Earth-

based radio astronomy below frequencies of 30MHz (> 10m) is severely restric-

ted due to man-made interference, ionospheric distortion and almost complete non-

transparency of the ionosphere below 10MHz (> 30m), as illutrated in Figure 1.1.

Therefore, this narrow spectral band remains possibly the last unexplored frequency

range in (radio) astronomy. A straightforward solution to investigate these ultra-long

wavelengths is to deploy a space-based antenna array far away from Earths’ iono-

sphere. This proposition is no different to what has been successfully achieved in

other astronomical spectra.

1.3 Ultra-long wavelength astronomy

The promise of space-based ultra-long wavelength radio astronomy has lured radio

astronomers for over half a century, almost since the inception of radio astronomy

itself [Gorgolewski 1965]. At these wavelengths, the sky noise dominates the system
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(a) (b)

Figure 1.2: Status of ultra-long wavelength radio astronomy: The all sky map as observed

by (a) Lunar orbiter radio astronomy explorer 2 (RAE-2) at 4.7 MHz [Novaco and Brown

1978] and by (b) Jordell Bank + Parks + Effelsberg at 408MHz [Haslam et al. 1982].

performance and subsequently its sensitivity. Therefore, successful missions which

mapped the sky in this frequency regime, such as the lunar orbiter RAE-2, were

restricted by very poor spatial resolution (> 30◦). Figure 1.2(a) shows the contour

map of non-thermal emission at 4.7MHz, as observed by the RAE-2 in 1973. In

comparison, earth based observatories have achieved far higher quality images at

470MHz as shown in Figure 1.2(b). To overcome this impediment, a large number

of antennas need to be deployed, with higher bandwidth and longer integration times.

To this end, various investigations were conducted in the past, but these attempts

were unfortunately limited by technology and computing resources [Weiler 2000].

However current processing and communication trends show promise for ultra-long

wavelength astronomy.

Recently concluded projects, such as the ESA funded FIRST (Formation-flying

sub-ionospheric radio astronomy science and technology) [Bergman et al. 2009] and

DARIS (Distributed aperture array for radio astronomy in space) [Boonstra et al.

2011] , have shown the feasibility of a small cluster of < 10 satellites using off the

shelf components. The FIRST study proposed a constellation of 7 satellites deployed

at the second Earth-Moon Lagrange (L2) point, sufficiently far enough from Earth to

avert interference and allowed for a low-drift orbit. On the other hand, the DARIS

study primarily investigated the feasible ULW science cases and showed ready feasib-

ility of 9 satellites using existing off the shelf technologies. The benefits of both these

studies were combined in the SURO-LC concept, which proposed a mission at Sun-

Earth L2. In all these aforementioned studies, due to the small number of satellites,

a centralized architecture was proposed with a dedicated mothership for processing

and communication of the observed data. However, for a larger cluster of satellites
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catering to multiple science cases, more fundamental technological challenges arise,

which were investigated in the OLFAR (Orbiting Low Frequency Antennas for Ra-

dio Astronomy) project [Rajan et al. 2011]. These challenges include, for instance,

deployment of a large number of satellites with multiple observational antennas,

inter-satellite communication, distributed signal processing, imaging at ultra-long

wavelengths, down-linking science data to Earth and radio frequency interference

(RFI) mitigation. These challenges and the current status of ultra-long wavelength

radio astronomy are discussed in Chapter 2 of this dissertation.

In addition to the above issues, a fundamental challenge is to jointly localize and

synchronize all the satellites in the network 2. The space-based ultra-long wavelength

array will be deployed far away from Earth based interference, and thus may be

beyond the range of our GPS guidance systems. Furthermore, the sheer number

of possible satellites (> 10) makes it challenging for our ground based stations to

constantly monitor and track the space-time of these satellites. In case the satellite

array is Lunar orbiting, then Earth occultation of the satellite array behind the Moon

may completely obstruct Earth based communication and guidance for a period of

few hours. Hence the satellite array will be an anchorless network, cooperatively

estimating the time varying relative position, and correct for their respective on-board

clock errors. Incidentally, the estimation of relative positions and time are sufficient

for on-board processing of astronomical data, for inter-satellite communication and

for collision avoidance.

The estimation of the relative time-varying positions and clock errors is the cent-

ral theme of this dissertation. However, the discussion is not limited to satellite arrays,

instead a much broader category of wireless mobile networks will be addressed. In

the following section, we briefly discuss the challenge of estimating relative time-

varying positions and clock errors in the absence of anchors and in the context of

prevalent localization and synchronization solutions.

1.4 Localization and synchronization

In recent years, tremendous advances in MEMS and semiconductor technology have

propelled the development of low-cost sensor nodes, which are capable of efficient

wireless communication and data processing. In wireless networks comprising of

2Incidentally, the quest for accurate time keeping and precise position awareness is intricately

woven with the origins of astronomy and the needs of ancient voyagers. For an excellent review on the

evolution of time keeping and navigation, refer to [Allan, Ashby and Hodge 1997] and [Samama 2007]

respectively.
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such sensor nodes, localization and synchronization are quintessential for commu-

nication, data processing, prudent statistical inference and in general coherent func-

tioning of the network. In the burgeoning era of big data and internet of things (IoT),

accurate time stamping of the given data and the spatial information of the sensor

nodes is almost indispensable. Localization and synchronization enabled wireless

sensor networks pervade numerous applications areas of the modern age society, e.g,

defense, healthcare, scientific, industrial, civilian , home networks, and in the context

of this dissertation, space-based satellite networks [Mautz 2012; Wang, Ghosh and

Das 2010].

1.4.1 Synchronization

Accurate positioning of nodes in a network is almost always related to accuracies of

clocks on-board the nodes. Wireless networks consisting of numerous nodes are typ-

ically equipped with cheap and light-weight clocks, such as crystal oscillators, which

offer portability and economic feasibility. However, crystal oscillators are highly non-

linear in nature, with timing errors of few tens of parts per million (ppm), and thus

have to be corrected frequently for numerous applications [Elson and Römer 2003].

An alternative is to use an atomic clock, such as Cesium beams, Rubidium, Hydrogen

masers, which offer orders of magnitude higher accuracy. However, a major draw-

back of such clocks are that they are typically bulky, expensive and power hungry

devices. Nonetheless, these atomic clocks can be used to improve the long-term sta-

bility of the cheaper clocks, such as crystal oscillators. Thus, the calibration of less

accurate clocks against a higher quality clock reference via communication i.e., clock

synchronization, is a crucial aspect of all wireless (sensor) networks. A detailed over-

view of various standards, classifications, time (and frequency) characterizations and

popular metrics to evaluate clocks can be found in [Riley 2008].

1.4.2 Localization

Localization i.e., position estimation of nodes, can be broadly categorized under nu-

merous categories, for e.g., as indoor vs outdoor localization, anchored vs anchorless,

the radios employed for measurements and more importantly, the type of measure-

ment techniques employed [Patwari et al. 2005; Mao, Fidan and Anderson 2007;

Sayed, Tarighat and Khajehnouri 2005b]. These measurement techniques typically

fall under three subgroups, namely range-based (lateration), angle-based (angulation)

and proximity-based. In proximity-based scenarios, a dense grid of known anchors

are deployed and the position of the unknown node is estimated by identifying its’
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collocations w.r.t the known anchor positions. The angle-based solutions, measure

the angle of arrival (AoA) and the desired target can be localized by the intersection

of several pairs of angle direction lines, each formed by a cone from an anchor (or

base station). Along similar lines, range-based solutions measure directly the dis-

tance between the node and the anchor via signal strength or time propagation delay

over the channel of communication.

The prevalent range-based techniques are the round trip time of flight (RTOF),

time of arrival (TOA), time difference of arrival (TDOA) and received signal strength

(RSS). The RSS directly measures the power of the received signal and is typically

insensitive timing discrepancies, however offers poor accuracy and needs models

specific to the application case and environment. Alternatively, the TDOA scheme

provides improved accuracies and eliminates the timing errors of the node to be

localized. The anchors of a TDOA network must still be synchronized. Unlike

the angle-based, proximity-based, TDOA and RSS techniques, if modeled correctly,

TOA captures both the clock discrepancies of the nodes and the pair distances [Ra-

jan and van der Veen 2011]. Since the pursuit in this work is to understand both

time-varying positions and clock errors, the focus throughout this dissertation is on

TOA measurements. Traditionally, the problem of localization and synchronization

has been resolved independently. However, due to the overwhelming demands for

self-governing networks, the problem of joint localization and synchronization has

been recently explored [Wang, Ma and Leus 2011b; Ahmad et al. 2013].

1.5 Relative space-time kinematics

In contrast to anchored networks, joint synchronization and localization solutions

for anchorless networks have received considerably less attention. Such anchorless

networks naturally arise when nodes in the network are deployed in inaccessible

locations or only can only be intermittently monitored. For instance, RF signals are

heavily attenuated in underwater communication and hence employing GPS based

solutions are challenging [Akyildiz, Pompili and Melodia 2005; Chandrasekhar et al.

2006]. In indoor wireless sensor networks when anchor nodes are sparsely deployed,

access to a spatial reference frame is only sporadically available [Yang, Wu and Liu

2012]. As discussed in earlier sections, a space-based array deployed on the lunar

far-side or lunar orbiting may be devoid of anchors, and therefore must cooperatively

estimate the time-varying satellite positions.

For immobile networks, the relative positions of a network of N nodes in P
dimensional space can be estimated using Multidimensional scaling (MDS) like al-
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gorithms [Shang and Ruml 2004]. The origins of MDS stem from the field of

psychometrics [Kruskal 1964] and later matured under multivariate analysis [Borg

and Groenen 2005]. Furthermore, when the nodes are mobile but the pairwise dis-

tances are fixed, then we consider the study of rigid body kinematics [“Dynamics of

Multibody Systems” 2008]. However, the broader challenge of estimating relative

positions of mobile nodes from time-varying distance measurements has not been

not sufficiently investigated. When the nodes are mobile, then subspace tracking

based algorithms yield relative time-varying positions, however this is valid only un-

der small perturbations and does not give sufficient insight into the kinematics of

motion [Jamali-Rad and Leus 2012]. To truly understand the relative positions over

time, one must estimate the relative kinematics of the mobile nodes, which include

the relative position, relative velocity and other higher order derivatives.

A fundamental bottleneck towards this challenge is that our understanding of rel-

ative kinematics is inherently in terms of an absolute reference. For instance, relative

velocity (the first order relative kinematics) is rightly defined as the subtraction of

two absolute velocity vectors. In the absence of anchors, i.e., an absolute reference

frame, a natural question arises, if the relative kinematics of the mobile nodes can be

estimated given only time-varying distances. Secondly, in addition to the spatial kin-

ematics, the clocks on-board these nodes are also time-varying. Therefore the clock

errors and time-varying distance must be efficiently decoupled. This dissertation ad-

dresses these unique challenge of understanding and estimating relative space-time

kinematics, which to the best of the author’s knowledge has never been addressed

before.

1.6 Scope of this dissertation

In this section, the scope, goals and the research challenges of this dissertation are

presented, in addition to a brief summary of key results from each chapter.

1.6.1 OLFAR

The research work presented in this dissertation was funded under the STW OLFAR

project, within the ASSYS perspectief program. OLFAR is orbiting low frequency

antennas for radio astronomy, a project that aims to design and develop a detailed

system concept for a swarm (> 50) of scalable autonomous satellites in space (well

above the Ionosphere) to be used as a scientific instrument for ultra-long wavelength

observations. The large number of such spatially distributed satellites will collect-
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ively synthesize an aperture dish of diameter 100 km. To ensure coherent communic-

ation between the satellites, collision avoidance, time-stamping of observation data

and for radio astronomy imaging, all the satellites must be tightly synchronized and

localized in the absence of anchors, which is the primary focus of this dissertation.

1.6.2 Problem statement

Consider an anchorless network of N asynchronous mobile nodes in a P dimensional

Euclidean space, with no absolute information on time and spatial reference frame.

Given two-way communication between the nodes, estimate the clock discrepancies

and the relative kinematics of the mobile nodes.

1.6.3 Research questions

The problem statement can be further broken down into smaller questions, which will

be addressed in this dissertation. Given an anchorless network of N asynchronous

mobile nodes in a P dimensional Euclidean space, each of which is capable of two-

way communication, we pose the following research questions.

(R1) Synchronization and ranging: How can the time-varying pairwise distances

and clock discrepancies be estimated simultaneously ?

(R2) Choice of clock reference: How does the choice of clock reference impact the

accuarcy of the estimates? What is the most optimal clock reference ?

(R3) Relative position and relative velocity: How can the relative positions and

relative velocities of the nodes be jointly estimated using only time-varying

pairwise distance measurements ?

(R4) Relative kinematics: In addition to relative position and relative velocity, how

can the higher order kinematics of motion such as relative acceleration be es-

timated ?

For the sake of a better understanding, we illustrate these research questions in

Figure 1.3, which is discussed in the following section. These illustrations will be

used consistently in appropriate chapters of this dissertation.
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Figure 1.3: Generalization of two-way ranging to mobile nodes: (a) Classical two-way ran-

ging between a pair of fixed asynchronous nodes, (b) Generalized two-way ranging (GTWR)

between a pair of asynchronous mobile nodes (Chapter 4), (c) A pair of mobile nodes with

linear independent velocities (Chapter 5), (d) A pair of mobile nodes with non-linear motion

(Chapter 6). The shaded nodes indicate ideal clocks.

1.6.4 Generalized two-way ranging (GTWR)

An underlying contribution in this dissertation is the generalization of the classical

two-way ranging (TWR) framework. Figure 1.3(a) shows the TOA based TWR

between a pair of asynchronous nodes which is commonly applied in wireless sensor

networks for both synchronization and ranging [IEEE Working Group 802.15.4 2007;

Sundararaman, Buy and Kshemkalyani 2005]. The node pair {i, j} transmit and re-

ceive alternatingly, during which K timestamps are recorded at each node. The trans-

mission (or reception) recorded at node i and node j are denoted by Tij,k and Tji,k re-

spectively. Under the assumption that node i (shaded in black) is the clock reference,

node j appears to drift linearly w.r.t. node i despite the fixed distance between the
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nodes. This framework can be readily extended to sender-receiver, receiver-receiver,

pairwise listening, broadcasting and other prevalent communication schemes (see

[Wu, Chaudhari and Serpedin 2011] and references therein). However, in these scen-

arios the pairwise distance between the nodes is assumed fixed and the clock model

is almost always linear. More recent studies have also considered solutions using

non-linear clock models for fixed networks [Xie, Janssen and van der Veen 2016].

In this dissertation, we propose an extension of the classical TWR to a mobile

scenario. The generalized two-way ranging (GTWR) is illustrated in Figure 1.3 (b),

which in comparison to TWR, offers distinct additional features. Firstly, although

the two-way communication is essential, we levy no constraints on the sequence, dir-

ection or number of communications. Secondly, we now consider both time-varying

clocks and time-varying distances simultaneously which is illustrated by the curved

lines. This enables us to solve the joint synchronization and ranging problem for

mobile nodes, which is the research question posed as (R1) in the previous section.

Finally, in search of an optimal clock reference (R2), both the nodes are considered

asynchronous at the outset, unlike in Figure 1.3(a).

In the later part of this dissertation, the focus is solely on the spatial kinematics

of the nodes, where we assume the mobile nodes are synchronized. In particular, we

consider two scenarios. Firstly, to jointly understand relative position and relative

velocity (R3), we consider that the nodes are in independent linear motion, which is

shown in Figure 1.3 (c). Secondly, to address (R4), we investigate the more general

case, where the node positions are non-linear functions of time, which is illustrated

in Figure 1.3 (d). In comparison to Figure 1.3 (b), in Figure 1.3 (d) we consider

only the time-varying distance and assume synchronized nodes, as indicated by the

shaded nodes.

1.6.5 Outline and main results

The outline of this dissertation is now presented, along with the main results from

each chapter.

Chapter 2 is an overview of the current status of space-based radio astronomy

for ultra-long wavelength observations.

• Previous studies: An extensive survey of previous space-based radio astro-

nomy studies and missions are summarized.

• System design: The achievable science cases supported by an ultra-long

wavelength array are briefly discussed, along with the design requirements
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for a specific science case, namely extra-galactic surveys. A concise study

on various subsystems is presented, including radio astronomy antenna design,

processing and communication architectures. The navigation challenges and

the need for joint space-time estimation of the satellites are studied. A list of

potential deployment locations are discussed, in addition to the technological

challenges for future space-based arrays.

Chapter 3 discusses the clock requirements for a wireless sensor network, with

a particular spotlight on space-based radio astronomy arrays.

• Clock model: The phase errors of a clock is modeled as a polynomial in time.

The short term and long term accuracies of the clock are discussed in terms of

clock jitter and Allan deviation respectively.

• Clock requirements: For a space-based array, given a sufficiently low Al-

lan deviation for a certain coherence time, we show that it suffices to assume

the clock as a linear model. The clock requirements of a satellite array for

ultra-long wavelength observations are presented, and a list of commercially

available clocks are discussed.

Chapter 4 presents a framework to jointly synchronize and estimate the pairwise-

distances of an anchorless network of mobile nodes (Figure 1.3 (b)), and subsequently

addresses the research questions (R1) and (R2). The key contributions of this chapter

are as follows

• Time-range model: A novel time-range model is presented which combines a

first-order clock model with a polynomial approximation of the time-varying

pairwise distance.

• Algorithms: For a pair of asynchronous nodes, we present a Least squares

based solution to jointly estimate clock errors and the time-varying pairwise

distance. The proposed solution is extended to enable network-wide ranging

and synchronization, using a constrained Least squares approach.

• Choice of clock reference: The effect of the clock reference(s) on the accuracy

of the clock estimates is discussed, particularly in pursuit of an optimal clock

reference (see research question (R2)).

• Cramér-Rao bounds: To validate the performance of the proposed estimators,

theoretical lower bounds are derived for Gaussian noise assumption on the
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measurements. The Cramér-Rao lower bound is the lowest achievable variance

by any unbiased estimator.

Chapter 5 deals with the joint relative position and relative velocity estimation

of an anchorless network of mobile nodes, and therefore addresses the question (R3).

In contrast to the previous chapter, we assume that the nodes are synchronized as

illustrated in Figure 1.3 (c). The key results of this chapter are as follows

• First-order relative kinematics: A novel data model is developed, which relates

the time-varying distance measurements to the first-order relative kinematics

of the nodes. The term relative velocity is defined along similar lines to the

well known relative position.

• Algorithms: Closed-form algorithms are proposed for jointly estimating the

relative positions and relative velocities of the nodes. Given these estimates, a

framework to estimate the time-varying relative positions of the nodes is also

presented.

• Cramér-Rao bounds: For a network of N nodes in P dimensional Euclidean

space, Cramér-Rao bounds are derived for unbiased estimators of relative pos-

ition and relative velocity.

Chapter 6 extends the first-order kinematic model to estimate the M th order

relative kinematics, and searches for solutions to the research question (R4). The

contributions of this chapter are as follows

• Relative kinematics: A generalized data model is derived, which relates the

time-varying distances to the relative positions of the nodes over time. In par-

ticular, the goal is to estimate the relative position, relative velocity and higher

order derivatives. The new data model is inherently ill-posed, which can be

solved using relative immobility constraints.

• Algorithms: We propose a constrained optimization problem, and subsequent

estimators for both the absolute and relative kinematics of the mobile nodes.

• Cramér-Rao bounds: Constrained and unconstrained lower bounds are de-

rived for the proposed relative and absolute kinematics estimators, based on

the novel data model.

Chapter 7 reports the final conclusions of this dissertation and provides sugges-

tions for future work.
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Space-based radio astronomy

This chapter is based on the article “Space-based Aperture Array For Ultra-Long

Wavelength Radio Astronomy” by R. T. Rajan et al. in Springer Experimental Astro-

nomy, Feb. 2016, 41.1, pp. 271–306.

19



2. Space-based radio astronomy

The aim of this chapter is to discuss the current trends and technologies towards

the feasibility of a space-based aperture array for astronomical observations in the

Ultra-Long Wavelength (ULW) regime of greater than 10m i.e., below 30MHz. The

achievable science cases are discussed, and the system design for selected scenarios

such as extra-galactic surveys is presented. A discussion is presented on various sub-

systems of the potential satellite array, such as radio astronomical antenna design,

the on-board signal processing, communication architectures and joint space-time

estimation of the satellite network. In light of a scalable array and to avert single

point of failure, we propose both centralized and distributed solutions for the ULW

space-based array. The benefits of various deployment locations discussed and the

technological challenges for future space-based radio arrays are summarized.

2.1 Introduction

The success of Earth-based radio astronomy in the frequencies between 30MHz and

3GHz is jointly credited to Earth’s transparent ionosphere and the steady technolo-

gical advancements during the past few decades. In recent times, radio astronomy

has seen the advent of a large suite of radio telescopes, particularly towards the

longer observational wavelengths, i.e., ≥ 3m. These arrays include the Murchison

widefield array (MWA) [Lonsdale et al. 2009], low frequency array (LOFAR) [van

Haarlem et al. 2013] and the long wavelength array (LWA) [Ellingson et al. 2009]

to name a few. These developments have been motivated by new and interesting

science drivers such as the detection of highly red-shifted 21cm line emission from

the epoch of re-ionization [Zaroubi et al. 2012], deep surveys of the sky in search

for high redshift radio sources [Röttgering et al. 2011], surveys of pulsars and cos-

mic radio transients [Stappers et al. 2011] and study of ultrahigh-energy cosmic rays

[Falcke et al. 2005]. The frequencies below 30MHz are well suited for studying the

global dark ages signal, extragalactic surveys, (extra) solar planetary bursts and high

energy particle physics [Weiler 2000; Jester and Falcke 2009].

However, Earth-based astronomical observations at these ultra-long wavelengths

are severely restricted [Kaiser and Weiler 2000]. Firstly, due to ionospheric distortion,

especially during the solar maximum period, scintillation occurs and the celestial

signals suffer from de-correlation among the elements of a ground based telescope

array [Kassim et al. 1993]. Advanced calibration and mitigation techniques which

are currently employed in LOFAR can be used to remove these distortions, provided

the time scale of disturbances is much longer than the time needed for calibration

process [Wijnholds et al. 2010]. Furthermore, at frequencies below 10MHz the iono-
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sphere is completely non-transparent which impede observations by ground-based

instruments. In addition to ionospheric interference, man-made transmitter signals

below 30MHz also impede astronomical observations. This terrestrial interference

was even observed as far as ∼400, 000km away from Earth by the RAE-2 lunar or-

biter, which was limited by very poor spatial resolution at these wavelengths, e.g.,

37◦ at 9.18MHz [Alexander et al. 1974]. Due to the above mentioned reasons, the

very low frequency range of 0.3 − 30 MHz remains one of the last unexplored fron-

tiers in astronomy. A straightforward solution to observe the radio sky at ULW with

the desired resolution and sensitivity is to deploy a dedicated satellite array in outer-

space. Such a space-based array must be deployed sufficiently far away from Earth’s

ionosphere, to avoid terrestrial interference and offer stable conditions for calibration

during scientific observations.

2.1.1 Previous studies

The proposition for a space-based radio astronomy instrument is not novel [Weiler et

al. 1988; Basart et al. 1997a; Basart et al. 1997b; Kaiser and Weiler 2000]. One of the

first such proposals was made by Gorgolewski [1965], who discussed the benefits of

a moon-based radio interferometer. In 1968 and 1973, the RAE-1 [Weber, Alexander

and Stone 1971] and RAE-2 [Alexander et al. 1974] satelliets were launched respect-

ively. The RAE-1 covered a frequency range of 0.2MHz to 9.2MHz using two 229
meter V-antennas and one 37 meter electric dipole, while the RAE-2 mapped the non-

thermal galactic emission in the frequency range of 25kHz to 13MHz using a single

37m dipole antenna, achieving a resolution of 37◦. These explorers were the first

dedicated missions exclusively for ULW radio astronomy. Science at the ultra-long

wavelengths was revived in the 1990s with a particular focus on Lunar based arrays

[Burke 1990; Burns et al. 1990]. The Lunar surface on the far-side presents a large

and stable platform for antennas and shields unwanted interference from Earth and

the Sun [Woan 1999; Kuiper and Jones 2000; Takahashi 2003; Aminaei et al. 2014],

which motivated studies such as VLFA [Smith 1990], MERIT [Jones et al. 2007] and

more recently DEX [Klein-Wolt M. et al. 2013]. Along similar lines, Lunar orbiting

single-satellite missions dedicated for radio astronomy such as LORAE [Burns 1990]

and DARE [Burns et al. 2012] were also investigated to map bright sources and to

facilitate relatively easier Earth-based down-link of science data. Furthermore, the

pursuit of higher angular resolutions has led to Earth-orbiting single-satellite mis-

sions such as HALCA [Hirabayashi et al. 2000] and Radio Astron [Kardashev et al.

2013] which enable Earth-space very long baseline interferometry [Gurvits 2012].

However, the concept of space-based ULW array for radio astronomy has re-
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2. Space-based radio astronomy

ceived considerably less attention and has been explored inadequately, which is our

primary focus in this chapter. The successful single-satellite RAE missions motiv-

ated the first space-based array proposal to NASA i.e., the low frequency space array

(LFSA) [Weiler et al. 1988]. Another notable NASA funded study in this regard

was the ALFA concept, which proposed an array of 10 − 16 satellites in a distant

retrograde orbit [Jones et al. 2000]. More recently, two ESA funded studies namely

FIRST [Bergman et al. 2009] and DARIS [Boonstra et al. 2010] investigated passive-

formation flying missions for space-based satellite arrays (see Table 2.1). The FIRST

study proposed a constellation of 7 satellites deployed at the second Earth-Moon Lag-

range (L2) point, sufficiently far enough from Earth to avert interference and allowed

for a low-drift orbit. On the other hand, the DARIS study primarily investigated the

feasible ULW science cases and showed ready feasibility of 9 satellites using exist-

ing off the shelf technologies. The benefits of both these studies were combined in

the SURO-LC concept, which proposed a mission at Sun-Earth L2. In all these stud-

ies, a dedicated centralized mothership managed the processing and communication.

However, futuristic arrays such as OLFAR [Bentum et al. 2009; Rajan et al. 2011]

with ≥ 10 satellites will operate cooperatively and employ distributed architectures

for both processing and communication.

2.1.2 Overview

The purpose of this chapter is to discuss the current technological advances towards

the feasibility of space-based array for radio astronomy at ultra-long wavelengths.

We justify the scientific need for such a space-based array and elaborate on the sys-

tem design in Section 2.2. Various subsystems of the potential satellite array are dis-

cussed in the Sections 2.2 - 2.7, including the astronomy antenna design in Section

2.3. While current technologies limits us to ≤ 10 nodes, we foresee next generation

arrays will contain larger number of satellites and operate as a co-operative wire-

less network. Hence, a dominant theme is the extension of the proposed centralized

solutions to distributed scenarios, particularly for processing (Section 2.4), commu-

nication (Section 2.5) and joint space-time estimation of the satellites in the network

(Section 2.7). We summarize the article with a brief overview of the potential deploy-

ment locations (Section 2.6) and the fundamental challenges ahead for a space-based

ULW array (Section 2.8).
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FIRST DARIS SURO-LC OLFAR

Timeline 2009− 2010 2009− 2010 2011− 2012 2010− 2014

No. of satellites (N ) 6† + 1‡ 8† + 1‡ ≥ 8† + 1‡ ≥ 10
No. of polarizations (Npol) 3 3 3 3
Obs. frequency (ν) 0.3− 50 MHz 0.3− 10 MHz 0.5− 60 MHz 0.3− 30 MHz

Instantaneous BW (∆ν) 100KHz 1 MHz 1MHz ≥ 1 MHz

Obs. wavelength (λ) 600− 6 m 103 − 30 m 600− 5m 103 − 10m

Longest baseline 30 km 100 km 30 km 100 km

Spatial resolution 0.6′ at 50MHz 1′ at 10MHz 0.5′ at 60MHz 0.3′ at 30MHz

Array architecture Centralized Centralized Centralized Distributed

Estimated Mass ≈ 200Kg†, ≈ 10Kg‡ ≈ 550Kg†, ≈ 100Kg‡ ≈ 500Kg†, ≈ 10Kg‡ ≤ 5Kg

Deployment location(s) Sun-Earth L2 Dynamic solar orbit, Sun-Earth L2 Earth/Moon orbit

Moon far side,

Sun-Earth L2

Table 2.1: Recent space-based aperture array studies: An overview of system requirements for ultra-long wavelength observations, as

specified by various space-based aperture array studies, namely FIRST [Bergman et al. 2009], DARIS [Saks et al. 2010; Boonstra et al. 2010],

SURO-LC [Baan 2012] and OLFAR [Bentum et al. 2009; Rajan et al. 2011], where † and ‡ denote mothership and daughter node respectively.
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2. Space-based radio astronomy

2.2 Ultra-long wavelength interferometry

2.2.1 Aperture synthesis

Radio astronomy imaging is achieved by aperture synthesis, where in the cosmic

signals received at a large number of time-varying antenna positions, are coher-

ently combined to produce high quality sky maps. For a N−antenna array, each

antenna pair forms a baseline of an aperture synthesis interferometer, contributing

N̄ , 0.5N(N − 1) unique sampling points at a given time instant. Let xi(t) and

xj(t) be two arbitrary antenna position vectors at time t forming a baseline, then the

corresponding uvw point is defined as

[uij(t), vij(t), wij(t)]
T , (xi(t)− xj(t))/λ, (2.1)

where uij , vij , wij are the spatial frequencies in terms of the observed wavelength λ.

Figure 2.1(a) shows (in blue) the uvw points for a N = 9 satellite cluster which is

arbitrarily deployed with a maximum distance separation of d = 50km and an obser-

vational frequency of 10MHz. The effective synthesized aperture is then obtained by

projecting the uvw points onto a 2-D plane which is orthogonal to the source direc-

tion. As an illustration, Figure 2.1(a) shows 3 such projections (in black) for sources

orthogonal to the uv, uw and wv planes. The minimum distance between the satel-

lites is only constrained by practical safety requirements and the maximum distance

d between the satellites defines the resolution of the interferometric array as

θ = λ/d. (2.2)

The Van Cittert-Zernike theorem relates the spatial correlation of these antenna

pairs directly to the source brightness distribution by a Fourier transform [Thompson,

Moran and Swenson Jr 2008]. Hence for radio imaging, each antenna pair output is

cross-correlated to measure the coherence function which is subsequently converted

to a sky map, conventionally by an inverse Fourier transform. Figure 2.1(b) shows

the normalized Point Spread Function (PSF) corresponding to the aperture coverage

in Figure 2.1(a), for a single point source along the w direction. A densely sampled

aperture plane lowers the spatial side-lobes of the sky image. The filling factor of

the synthesized aperture can be increased by either using bandwidth synthesis or by

populating sufficient baselines. In bandwidth synthesis, different frequency channels

can be used to scale λ. As shown in Figure 2.1(c) and Figure 2.1(d), using only

10 frequency bins uniformly distributed across 1 − 10MHz, the aperture filling and

the PSF is significantly improved as compared to Figure 2.1(b). A first-order simu-

lation of an array of N = 9 satellites in Earth-leading orbit around the Sun yields
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Figure 2.1: Baseline and PSF simulations: The aperture filling of a 9-satellite ULW

array for an Earth leading orbit around the Sun (a)-(c), to illustrate the effect of the sampling

space on the normalized Point Spread Function (PSF) (d)-(f). The uvw coverage for the 3-

D array of satellites at ν = 10MHz (a) for a single snapshot Nt = 1 along with (d) the

corresponding PSF. Bandwidth synthesis is illustrated in (b) which shows the uvw coverage

of single snapshot using 10 frequency bins uniformly distributed in the range 1 - 10 MHz

with (e) the resultant PSF. The subfigures (c) and (f) show the uvw and the corresponding

PSF, for an entire orbit around the sun at 10MHz with a single observation each day, i.e., 365
snapshots.
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2. Space-based radio astronomy

Figure 2.1(e) and the corresponding PSF in Figure 2.1(f), where one snapshot each

day is assumed at a single observation frequency of 10MHz. The number of uvw

points are directly related to the unique number of baselines and the observational

frequency. To achieve the confusion limit and resolve the sources individually, the

total number of unique uvw points over the observational time period must be larger

than the total number of detected sources.

2.2.2 Ultra-long wavelength sky

The dominant foreground in the low frequency radio sky is the galactic synchrotron

radiation, which is due to synchrotron emission from electrons moving in the Galactic

magnetic field. This emission causes the brightness temperature to rise from ∼104K

at 30MHz, to as high as ∼107K around 2MHz [Oberoi and Pincon 2005]. At fre-

quencies below 2MHz, the Galactic plane is nearly completely opaque and the extra-

galactic sources cannot be observed. More explicitly, for frequencies above 2MHz,

the sky temperature can be approximated as [Jester and Falcke 2009]

Tsky = 16.3× 106K
( ν

2MHz

)−2.53
at ν > 2MHz, (2.3)

where ν is the observation frequency. For Earth-based observations at higher frequen-

cies (> 100MHz), the overall system noise temperature Tsys plaguing the cosmic

signal is typically dominated by the noise from receiver electronics Trec. However,

at lower frequencies (≤ 30 MHz), the intense galactic background implies that Tsky

will be at least an order in magnitude larger than Trec, and hence the overall noise

temperature Tsky ≫ Tsys. The immediate effect of this extremely high sky noise

is the poor sensitivity of the interferometric array. The 1-σ RMS sensitivity for an

antenna array of N nodes is [Cohen 2004]

Sσ =
235.6 Tsys

λ2
√

N(N − 1)(tobs/1hour)(∆ν/1MHz)
mJy/beam, (2.4)

where ∆ν is the bandwidth, tobs is the observation time period over which the signal

is integrated and the total number of estimated sources above this sensitivity is given

by

N>(S) = 1800
(
S/10mJy

)−0.3(
ν/10MHz

)−0.7
. (2.5)

Furthermore, the scattering in the interplanetary media (IPM) and interstellar media

(ISM) also hinder observational frequencies less than 30MHz, which limit the max-

imum baseline between the satellites to

dISM = 47km× (ν/1MHz)1.2 and dIPM ≈ 10km× (ν/1MHz). (2.6)
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2.2. Ultra-long wavelength interferometry

For very long baseline interferometry, Linfield et al. [1996] noted that angular

broadening of radio sources due to interstellar scattering will cause interplanetary

scattering to be greatly reduced. Finally, the lower limit of the achievable noise

is not the RMS sensitivity of the array, but the confusion limit. The presence of

unresolved sources with individual flux densities below the detection limit leads to a

constant noise floor, that is reached after a certain observation time tobs [Jester and

Falcke 2009]. For extra-galactic observations, under certain nominal assumptions,

this anticipated confusion limit due to background sources is

Sconf (θ, ν) = 16mJy× (θ/1′)1.54(ν/74MHz)−0.7, (2.7)

where θ is the effective resolution for which the flux is below the confusion limit.

The confusion limit is the lower limit to the achievable noise floor and thus is an

upper limit to the useful collective area of the array. In other words, adding more

antennas only decreases the time in which the confusion limit is reached, but not

the overall array sensitivity (2.4). The time necessary for an array to achieve this

confusion limited sensitivity is given by the “survey equation”

tsurvey = 3.3
(
N/100)−2

(
10ν/∆ν

)(
ν/1MHz

)−0.66(
θ/1′

)−3.08
. (2.8)

Using these elementary and yet fundamental equations, a preliminary design for a

space-based array can be proposed for desired science cases. For a more detailed

study, refer to [Jester and Falcke 2009].

2.2.3 System definition

The science cases for an ULW array broadly span cosmology, galactic surveys, tran-

sients from solar and planetary bursts and even the study of Ultra-High Energy

particles. Although a single satellite mission would suffice to detect the global dark-

ages signal, over 104 antennas are required to investigate the radio emission from

Extrasolar planets [see 2009, Table 1]. For the first space-based ULW array however,

with possibly only a few satellite nodes, extra-galactic surveys and study of transients

are among the best suited science cases [Boonstra et al. 2011], which we present as

case studies. The proposed space-based array design can be readily extended to cater

to other science cases, such as detection of the global dark-ages signal.
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Parameter Notation Units Equation Extra-galactic survey

Sensitivity Sσ Jy Input 6.5E-02 6.5E-02 6.5E-02 6.5E-02 6.5E-02 6.5E-02

Baseline d km Input 100 100 100 100 100 100

Obs. Time tobs hours Input 24 720 8760 720 8760 8760

Obs. frequency ν MHz Input 10 10 10 10 10 30

Bandwidth δν MHz Input 1 1 1 3 3 3

Resolution θ arcmin (2.2) 1.03 1.03 1.03 1.03 1.03 0.34

System temperature† Tsys K (2.3) 2.8E+05 2.8E+05 2.8E+05 2.8E+05 2.8E+05 1.7E+04

No. of Antennas N (2.4) 229 42 12 25 7 4

ISM Max. Baseline dISM km (2.6) 7.4E+02 7.4E+05 7.4E+05 7.4E+05 7.4E+05 2.8E+06

IPM Max. Baseline dIPM km (2.6) 100.0 100.0 100.0 100.0 100.0 300.0

Confusion limit Sconf Jy (2.7) 0.07 0.07 0.07 0.07 0.07 0.01

Resolution (Conf. lim.) arcmin (2.4), (2.7) 1.00 1.00 1.00 1.00 1.00 1.65

Max. Baseline (Conf. lim.) km (2.2), (2.7) 103.09 103.09 103.09 103.09 103.09 20.86

Time to Conf. lim. hours (2.8),(2.7) 0.14 4.05 46.39 3.98 43.64 38.94

Table 2.2: System requirements for extra-galactic surveys: The estimated system parameters to achieve the desired resolution

of 1′ and sensitivity of 65mJy for Extra-galactic surveys, for varying observation time, observation frequency and instantaneous

bandwidth ( † indicates sky noise dominated).

2
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2.2. Ultra-long wavelength interferometry

The expected signal strength for the extra-galactic surveys is in the order of

65mJy with a desired spatial resolution of ∼1′. In Table 2.2, we present different

scenarios to investigate the effects of varying observational frequencies, bandwidth

and observation time, on the number of antennas to achieve 65mJy. It is evident that

increasing the observation time (1 day, 1 month, 1 year) steadily reduces the required

number of antennas. Secondly, increasing the bandwidth (1MHz to 3 MHz) is also an

alternative to achieve the desired resolution for a small array. However, the increase

in bandwidth has little effect on the confusion limit. We note that the confusion limit

is a bottleneck for shorter integration times and lower observing frequencies. The

maximum baseline is in general confusion limited for frequencies ≥ 10MHz, how-

ever at < 10MHz, the ISM and IPM scattering limits the maximum baseline and

subsequently the resolution. At 10MHz, we require at least one year of observation

time with more than 7 antennas for an observational bandwidth of 3MHz to achieve

the 65mJy sensitivity. However, in the last column of the Table 2.2, we see that at

30MHz, only 4 antennas sufficient. Such a configuration is estimated to detect over

a million sources using (2.5).

A similar investigation was conducted for Jupiter-like flares and Giant crab-like

pulses, which are bright events in the order of MJy and kJy respectively, with typical

time scales of milliseconds. The desired resolution for these transient radio systems

is ∼1′ at ≤ 30MHz. Since these events are extremely bright, even a single antenna

with a nominal bandwidth of 10% of observational frequency would meet the desired

requirements. However, unlike the extragalactic surveys the observations are not con-

fusion limited but possibly by the number of baselines for short integration timescales

of milliseconds. The number of unique uvw points will depend inadvertently on the

deployment location and pairwise distance variations between of the antennas. How-

ever, in general this limitation can be overcome by increasing the integration times

in both these cases by over a minute.

In general, higher bandwidth, higher observing frequencies and longer integra-

tion times require less antennas to reach the same sensitivity level. In this chapter

we choose the DARIS mission specifications as a reference to illustrate various sub-

systems. To this end, we particularly focus on an array of N = 9 satellites, with

a maximum satellite separation of 100km and capable of observing the skies at

0.1 − 10MHz. This particular setup meets the requirements for the extra-galactic

survey and transient radio system science cases. However, all the proposed tech-

niques and technologies can be readily extended to a larger array, for observation

frequencies up to 30MHz.
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(a)

(b) (c)

(d) (e)

Figure 2.2: Space-based antenna model and potential configurations: (a) System model

of the observation Antenna connected to an LNA (b) Configuration of a dipole antenna on a

cubesat (c) Configuration of a tripole antenna in a cubesat (d) Configuration of an antenna

with four monopoles (e) A dipole antenna placed on the opposite ends of a 3-cubesat.

2.3 Radio astronomy antenna design

A critical component for the space-based array is the design of the observational an-

tenna. Figure 2.2(a) shows the system model of the observation antenna connected

to a LNA, wherein the antenna is modeled as an ideal lossless antenna, followed by

an attenuator representative of the antenna losses. For the observation frequencies of

0.3 − 30MHz, this front end must be sky noise limited i.e., Trec < 0.1Tsky, where

Trec is the receiver noise and Tsky is the sky noise temperatures which are defined

at the interface between the lossless antenna and attenuator. The LNA noise temper-

ature TLNA defined at the input of the LNA is equal to (1 − η)T0, where η is the

radiation efficiency and T0 is the physical temperature of the antenna. Without loss

of generality, we assume that the LNA noise is dominant over the noise contribution

of subsequent electronics of the receiver. Under these assumptions, the prerequisite

on the LNA noise temperature is derived as

TLNA < (1− |Γ|2)(0.1ηTsky − (1− η)T0), (2.9)

where Γ is the reflection coefficient of the antenna [Arts, van der Wal and Boonstra

2010]. A straightforward candidate for the observation antenna is a dipole (e.g., Fig-

ure 2.2(b)), which can be realized by rolling out metallic strips from the satellite

[Manning 2000]. The observational wavelengths are much larger compared to the

dimensions of the satellites and hence due to practical limitations, the realized dipole
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(a) (b)

Figure 2.3: Correlator architectures: An illustration of two potential correlator architectures for

space-based radio interferometric array, where the tags ‘X’ and ‘T’ on the nodes indicate correlation

and transmission to Earth capabilities respectively. In the (a) centralized correlator architecture a

centralized mother ship receives data from all observational satellites, correlates and down-links data

to Earth. On the contrary, in the (b) distributed correlator framework, the observed data is evenly

distributed among all nodes. After correlation, all satellite nodes down-link their respective correlated

data to Earth.

will be short compared to the wavelength. A classic half-wave dipole for 10MHz

and 30MHz observation frequencies yields a dipole length of 15m and 10m respect-

ively. For lower frequencies, a similar dipole lengths begets a short-dipole with a

directional pattern similar but less directional as compared to the half-wave dipole.

Consequentially, the radiation resistance of the small antenna would be low and the

thermal noise will significantly dominate the total antenna noise.

Two orthogonal dipoles (Figure 2.2(b)) are in principle sufficient to get all the

polarization information of the cosmic signal [Arts, van der Wal and Boonstra 2010],

however a tripole (i.e., three dipoles, see Figure 2.2(c)) can be used to obtain inform-

ation of all 3 components. The third dipole improves the directivity of the antenna

system, thereby increasing the field of view. Along similar reasoning, an equian-

gular spaced four monopole configuration can also be considered, as shown in Fig-

ure 2.2(d). However, the number of correlations is much higher and consequentially

demanding more signal processing hardware for each antenna. In the OLFAR study

where a 3U-cubesat (30 × 10 × 10 cm) is utilized, the monopoles are deployed in

groups of three at the opposite ends of the satellite, as seen in Figure 2.2(e). The

asymmetric design changes the properties of the monopoles and reduces the purity

of the gain patterns of the independent components, which is studied by Smith and

Arts [2013] and experimentally evaluated on a smaller scale by Quillien et al. [2013].
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Data rates and processing Notation/Equation Value Units/Remark

No. of satellites (or antennas) N 9 (scalable)

No. of polarizations Npol 3

No. of channels/signals Nsig = NpolN 27

No. of bits Nbits 1 bits

Observation frequency ν ≤ 10 MHz

Instantaneous bandwidth ∆ν 1 MHz

Spectral resolution ∆νres 1 kHz

No. of bins Nbins = ∆ν/∆νres 1000

Snapshot integration time τ 1 second

Observed data rate Dobs = 2∆νNpolNbits 6 Mbps/satellite

Centralized

Mothership data reception Dc
in = Dobs(N − 1) 48 Mbps

Earth down link data rate Dc
out = 2N2

sigNbitsNbins/τ 1.46 Mbps

Distributed

No. of sub-bands Nsb = N 9

Sub-band bandwidth ∆νsb = ∆ν/Nsb 111.11 kHz

Inter-satellite reception Dd
in = Dc

in/N 5.34 Mbps/satellite

Earth down link data rate Dd
out = Dc

out/N 162.2 kbps/satellite

Table 2.3: Digital signal processing estimates: Data rate estimates for a centralized correl-

ator and a frequency distributed FX correlator for the DARIS mission of 9-satellites.

2.4 Digital signal processing

Sky images in radio astronomy are made by calculating the Fourier transform of the

measured coherence function [Taylor, Carilli and Perley 1999]. The coherence func-

tion is the cross correlation product between two antenna signals located at the two

spatial positions, averaged over a period of the integration time τint. One way to

implement such a system is using the traditional XF correlator i.e., cross correlation

first and Fourier transform later, and the more recent FX correlator which measures

directly the cross-power spectrum between the two antenna signals [Bunton 2004].

Although the XF architecture is beneficial because bandwidth can be traded for spec-

tral resolution, the FX architecture offers computational efficiency [Rajan et al. 2013].

The ratio of the number of multipliers required for XF correlator to the FX correlator

is given by

N
xf/fx
X =

( NsigNbins

Nsig + log2Nbins

)
, (2.10)
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2.4. Digital signal processing

Figure 2.4: Node level signal processing: Given the low observational bandwidth, the Npol = 3
polarized astronomical signals received by each antenna will be signal conditioned and Nyquist sampled

with a 14-bit (or more) analog to digital converter (ADC). A coarse poly-phase filter bank (PFB) is

used to selectively choose the desired instantaneous bandwidth of ∆ν = 1MHz. After successful RFI

mitigation (RFIM), only Nbits = 1 − 2bits will be used in further processing stages [Altunin 2001].

The total data generated for Npol signal paths in each satellite is Dobs = 6∆νNbitsbps, which is

transported to the inter-satellite communication layer.

where Nsig = NpolN , Nbins = ∆ν/∆νres, ∆ν is the instantaneous bandwidth and

∆νres the spectral resolution (See Appendix 2.A). Observe that the multiplicands in

the XF mode are additive in the FX mode, besides the log2 reduction on the number

of frequency bins. Thus, although for lower number of nodes the XF is comparable

to FX mode, for large scalable architectures the FX mode is computationally cost

effective. Since we prefer a scalable space-based array the FX architecture is chosen

as the preferred architecture . Table 2.3 shows data rates for a cluster of N = 9 nodes,

with an instantaneous bandwidth of ∆ν = 1MHz and τ = 1 second integration time.

A typical pre-processing unit at each satellite node is shown in Figure 2.4, where

each satellite generates Dobs = 2∆νNpolNbitsbps. Observe that with Npol = 3,

for a signal with nominal instantaneous bandwidth of ∆ν = 1MHz sampled with

Nbit = 1bit resolution, the output data rate is 6Mbps. Given a far away deployment

location, such as Lunar orbit (∼400, 000 km) or Earth leading/trailing (∼2 × 106

to ∼4 × 106 km), this down-link data rate levies heavy prerequisites on the limited

resources of a small satellite using current techonology. Hence, the satellite cluster

must not only employ on-board pre-processing of astronomical signals, but also on-
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board correlation to minimize down-link data rate back to Earth. To this end, either

a centralized or a distributed correlator can be employed as illustrated in Figure 2.3.

2.4.1 Centralized architecture

In the centralized FX correlator framework each satellite node transmits Dobs =
2∆νNpolNbitsbps to the centralized mothership, which in turn receives Dc

in = Dobs(N−
1)bps in total, excluding the data collected from the antenna on the mothership itself.

The input data from all satellites is then correlated and the output is then transmitted

down to Earth at the rate Dc
out = (2N2

sigNbins/τ)bps, where Nbins = ∆ν/∆νres.

A significant drawback of the centralized correlation is that it depends heavily on the

healthy operation of a single correlation station, which introduces a Single point Of

failure (SPOF) for large array of satellites in space.

2.4.2 Distributed architecture

To alleviate SPOF, a Frequency distributed correlator is proposed where each node is

assigned a specific sub-band ∆νsb of the observed instantaneous bandwidth ∆νsb for

cross correlations [Rajan et al. 2013]. Hence, in addition to the node pre-processing

(Figure 2.4), a secondary fine Polyphase Filter Bank (PFB) is implemented to fur-

ther split the instantaneous bandwidth ∆ν into Nsb sub bands, each of bandwidth

∆νsb = ∆ν/Nsb. Each satellite is assigned a specific sub-band for processing and

the other (Nsb − 1) sub-bands are transmitted to corresponding satellites via the

intra-satellite communication layer. Furthermore, for even distribution of data and to

ensure scalability, we enforce the number of sub-bands equal to the number of satel-

lite nodes, i.e., Nsb = N . Subsequently, in the distributed framework, each node

receives a specific sub-band of the observed data, i.e., (Dobs/Nsb) from N − 1 other

satellites in the network which yields a total input of Dd
in = (Dobs/Nsb)(N − 1) =

(Dc
in/N)bps, and down-links Dd

out = (Dc
out/N)bps respectively. More generally,

these sub-bands can also be dynamically allocated, depending on the availability of

resources on each satellite.

Thus, the Frequency distributed correlator reduces the inter-satellite communica-

tion by a factor N . Furthermore, at the cost of equipping all observational satellite

nodes with communication capability (both inter-satellite and down-link to Earth),

SPOF is averted and scalability is ensured. In the context of the projects discussed

earlier, DARIS, FIRST and SURO-LC implement a centralized architecture, whereas

OLFAR employed the distributed architecture. Given that the system frequency is

typically an order of magnitude or more than the processing instantaneous bandwidth,
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Figure 2.5: Communication architectures: An illustration of a (a) centralized communic-

ation architecture and (b) single pairwise-link of a distributed communication architec-

ture for a space-based radio interferometric array, where the inter-satellite link is indicated in

blue and the Earth-downlink by red. Telemetry and tele-commands are exchanged between

the satellites and with Earth in both scenarios.

computing requirements are negligibly small, which has been duly noted by all these

studies.

2.5 Communications

The potential communication scenarios for the envisioned space-based array are

shown in Figure 2.5, which follow directly from the correlator architectures discussed

in the previous section. As shown in Figure 2.5 (a), the centralized architecture

comprises of a mothership collecting raw observed data from a cluster of daughter

satellites and, down-links the processed data to an Earth-based ground station. Al-

ternatively, in case of the distributed scenario shown in Figure 2.5 (b), all satellites

are capable of both exchanging data and correlating them, before down-linking back

to Earth. In addition to the science data, housekeeping information is also exchanged

between the satellites via tele-commands and telemetry, which is expected to be re-

latively small (/ 100kbps) in comparison to the astronomical data of 6Mbps. The

housekeeping information is critical for control, timing and synchronization of the

satellite, and to maintain coherence within the satellite network.
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2.5.1 Inter-Satellite Link (ISL)

Implementing the ISL using high-frequency optical communication [Sodnik, Furch

and Lutz 2006; Toyoshima 2005] has many advantages as compared to radio commu-

nication, such as reduced mass and volume of equipment, higher data rates and no

regulatory restrictions as experienced for radio frequency (RF) bands. However, this

would also require extremely accurate alignment of the satellites, robust synchroniz-

ation and more power than what could potentially be available for a small satellite.

In the RF domain, OFDM is an efficient modulation scheme for the ISL, in particular

for a scalable antenna array with limited available bandwidth [Nee and Prasad 2000].

OFDM is well suited to frequency selective channels and it potentially offers a good

spectral efficiency. With OFDM, the separation between each channel is equal to

the bandwidth of each channel, which is the minimum distance by which the chan-

nels can be separated. The signals from each satellite node which form individual

channels will be modulated using a form of Phased Shift Keying (PSK), Amplitude

Shift Keying (ASK), or a combination Quadrature Amplitude Modulation (QAM). In

this study, we consider an ISL transmission frequency of 2.45GHz, although other

frequency bands can also be used. One of the possible solutions to implement the

ISL is to use patch antennas on each face of a satellite node, such that the combined

implementation yields a full coverage of the sky. All the satellites will have patch

antennas on all six faces for both uplink and downlink.

In the centralized scenario, under nominal assumptions, the link margin for the

100kbps uplink (from Mothership to Node) and 6.01Mbps downlink is estimated to

be 13.2dB and 2.3dB respectively, assuming a transmission power of 5W and 1W for

the Mothership and node [Boonstra et al. 2011]. However, extending these link mar-

gin estimates of the centralized ISL architecture to a distributed scenario poses two

fundamental challenges. Firstly, the transmission data rate between every satellite

pair is now 5.44Mbps, which includes 5.34Mbps of science data (see Table 2.3) and

100kbps of housekeeping data. Secondly, in the absence of a centralized correlator,

the maximum distance between the satellites is 100km, a factor 2 compared to the

centralized scenario. Hence, to achieve the same link margin of 2.3dB as the node

to mothership downlink, the transmission power of each satellite in the distributed

architecture must be 4 times that of the centralized scenario, i.e., 20W [Rajan et al.

2016]. This requirement is a bottle neck for scalable array of small satellites with

limited transmission power. One possibility is to use clustering schemes and multi-

hop approaches to reduce the communication distances between the satellites, which

is a research area currently being explored [Budianu et al. 2011; Naghshvar, Zhuang

and Javidi 2012].
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2.5.2 Space to Earth Downlink

The total downlink data rate Dc
out after correlation quadratically increases with the

number of nodes in the cluster and reduces linearly with the integration time (see

Table 2.3). In the DARIS study, for a cluster of 9 satellites with 1 second integration

interval, the downlink of ≥ 1.46Mbps was achieved using an off-the-shelf X-band

downlink unit. For arrays larger than 50 satellites with minimal power, it is difficult to

establish Earth-based downlink with current off the shelf technology. However, these

challenges and possible distributed downlink scenarios are currently being investig-

ated [Budianu, Meijerink and Bentum 2015]. An additional constraint is the number

of limited ground stations on Earth. For instance, the core ESA network has two deep

space networks of 35m antennas along with several antennas in the 13 − 15m class

[Vassallo et al. 2007]. The DARIS study concluded that a single ESAs 35m ground

station for 8hours/day suffices the need for the data generated cluster of 9 satellites

with a centralized mothership [Boonstra et al. 2011].

2.6 Deployment locations

The deployment location of the space-based array must be chosen to ensure the fol-

lowing conditions.

1. Minimize RFI during scientific observation cycles.

2. Offer maximum possible down-link data rate.

3. Provide sufficient positional stability during integration time τ .

4. Must remain within a sphere of ∼100km.

In addition, each satellite must offer low noise conditions with minimal EMC and

stable temperature (and gain) conditions to easen calibration. To alleviate the high

complexity of active control to keep all the satellites within a cluster, passive form-

ation flying could be employed. In passive formation flying paradigm for a satellite

array, the satellites are allowed to drift, and only minimal maneuvers are employed

to ensure safety and spatial coherence. The relative positions, orientations and the

time aboard all the satellites are constantly monitored. This approach eliminates the

need for excess propulsion and heavy orbital maintenance equipment fon all satel-

lites. Additionally, the naturally varying position vectors of the satellites produce

unique uvw sampling points, which consequentially improve the PSF. The following
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section discusses the quest to find an optimum balance between down-link data rates

and maximizing observation time, emphasizing the challenges in various deployment

locations.

2.6.1 Lagrange points

The relative velocities of the satellites are minimal at Lagrangian points and hence

these locations offer increased positional stability for longer time intervals. There-

fore, the Lagrange points are an optimal choice to increase the integration time τint of

the observations and also the mission lifetime. The Earth-Moon L4 and L5 are much

closer for Earth based communication, but are suspected to be less radio quiet relat-

ive to the Earth-Moon L2. Although the Earth-Moon L2 point located at ∼61347km

away from the Moon is in the cone of radio-silence and is sufficiently shielded from

RFI, this Lagrange point may not be a favorable deployment location since electro-

magnetic transmission in this radio quiet zone may pollute the environment and affect

future missions in this location [Maccone 2005]. The Sun-Earth L4 and L5 points are

too far and subsequently limit downlink rates. In contrast, the Sun-Earth L2 libration

point at ∼1.5 Million km away from Earth, is a tradeoff between downlink data rate,

RFI avoidance and increasing τint. Although this is a stationary point, in practice

a satellite operating at L2 will experience a gravity gradient with a slow and steady

outward drift. Such a scenario is preferred by the FIRST [Bergman et al. 2009] and

SURO-LC [Baan 2012] studies. The SURO-LC proposed an array of 8 daughter

satellites drifting slowly in Lissajous orbit and a mothership at a fixed distance of

10km from the cluster. While such a mission will provide enhanced imaging per-

formance with improved uvw coverage and longer integration times, the downlink

data rate (using current technology) is estimated to be 2− 3 orders of magnitude less

than an array deployed in the Moon orbit [Rajan et al. 2011].

2.6.2 Orbiting the Moon

An equatorial orbit around the Moon presents a relatively easier down-link to Earth

and sufficiently long eclipse times behind the Moon w.r.t. Earth. The RAE-2 showed

that interference at very low frequencies is reduced by 2 orders of magnitude behind

the moon, making it an ideal location for radio astronomy observations [Alexander

et al. 1974]. However, during the eclipse behind the moon the cluster has no com-

munication with Earth. The long eclipse time periods shield against radio noise from

Earth and enable the science observations. The Eclipse time period can be increased

by decreasing the orbital altitude, however consequently the percentage of the orbit
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in the shade increases. In addition, by decreasing the orbital altitude, the relative

range rates of the satellites also increase, which in turn affects the baseline stability

during scientific observations. Hence, a balance between the relative velocity and the

eclipse time must be found [Rajan et al. 2011].

2.6.3 Orbiting the Sun

A potential reference orbit for formation flying around the Sun is the Earth orbit itself

[Saks et al. 2010]. However, if the satellites are too close to Earth, then the terrestrial

interference is a major disturbance to science observations. Alternatively, an orbit

around the Sun with a different eccentricity than the Earth orbit keeps the satellite

array at 4 to 10 million km from Earth, which is far enough to offer both stability

and also reduce radio noise from Earth. The large distance separation severely limits

the available down-link bandwidth upto at least an order of magnitude compared to

the Lunar orbits. In view of an optimal balance between increased data-downlink

and RFI free science observations, the DARIS study used the Earth orbit as a refer-

ence orbit with the satellite nodes orbiting at a distance of 4 to 10 million km from

Earth. Hence, even though the constellation orbits the Sun as a central body, the ref-

erence orbit does go around the Earth, from leading to trailing. The particular orbit

is relatively stable with low relative range rates and thus allows continuous scientific

observations, however is sensitive to minor perturbations in the injection velocities

of the satellites [Boonstra et al. 2011; Saks et al. 2010].

2.7 Synchronization and navigation

To maintain coherence, all the satellites must be synchronized, and their relative

positions known up to sub-meter accuracies. These requirements on space-time ac-

curacies at ULWs are considerably lower in comparison to other space-based array

missions, such as LISA [Bik, Visser and Jennrich 2007]. Almost all Earth-based

antenna arrays synchronize using GPS-aided atomic clocks, where fixed antenna po-

sitions are known up to millimeter accuracies, cf. e.g., LOFAR [van Haarlem et al.

2013]. However, the envisioned space-based array will be deployed far-away from

Earth-based GPS satellites and unlike Earth-based antennas, these satellites will be

mobile. In addition, given the large number of satellites and limited ground-segment

capability, tracking each satellite independently is infeasible. Moreover, in certain

deployment locations such as the Lunar orbit, the satellite array will be partially

or even completely disconnected from Earth-based ground stations during eclipse
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Figure 2.6: Dynamic ranging: A generalized two-way ranging (GTWR) scenario between

a pair of asynchronous mobile satellite nodes where the nodes transmit and receive asymmet-

rically [Rajan and van der Veen 2015]. See Chapter 4.

periods. Thus, the satellite array must be an anchorless network, cooperatively syn-

chronizing the clocks and estimating time-varying relative positions, in the absence

of absolute reference on time and position. The estimated relative positions, which

are identical to the absolute positions upto a rotation and translation, are sufficient

for inter-satellite communication, collision avoidance and on-board correlation of

astronomical data. For radio astronomy imaging however, to ensure the desired ori-

entation of the projected baselines (see Figure 2.1), an external reference may be

required occasionally to map the relative spacecraft positions on an inertial reference

frame. Such an absolute reference can be obtained by tracking a few satellites, during

intermittent Earth-based communication.

2.7.1 Dynamic ranging

The satellites of a space-based radio astronomy array will be equipped with space-

qualified and light-weight atomic clock oscillators, which offer long-term stability

[Rajan, Bentum and Boonstra 2013]. See Chapter 3 . All clocks are inherently non-

linear w.r.t. the ideal time t and for a mobile network, the distance is also time-varying.

In case of an anchorless network of mobile asynchronous nodes, estimating both

the clock discrepancies and time-varying distances (and subsequently time-varying

positions) is a bootstrap problem.

Figure 2.6 illustrates this challenge via the generalized two-way ranging (GTWR)

scenario between a pair of asynchronous mobile satellite nodes [Rajan and van der

Veen 2015]. The asynchronous nodes transmit and receive asymmetrically, dur-

40



2.7. Synchronization and navigation

ing which K time stamps are recorded at respective nodes. Unlike classical TWR

where the transmission and reception is alternating, this particular framework im-

poses no pre-requisites on the sequence or number of two-way communications.

Consequently, this framework can be readily extended to a plethora of TWR ran-

ging protocols, including broadcasting and passive listening [Serpedin and Chaud-

hari 2009]. Furthermore, we also consider the time-varying distance between the

satellites during the asymmetric two-way communication. Let Tij,k and Tji,k be the

kth local time-markers recorded at the ith and jth satellite nodes, whose deviation

from the true time is represented by Ci(Tij,k) and Cj(Tji,k) respectively. If dij(t) is

the time-varying pairwise distance between the nodes, then for the kth transmission,

the GTWR equation is

Ci(Tij,k)− Cj(Tji,k) = ±dij
(
Ci(Tij,k)

)
, (2.11)

where ± indicates the direction of the transmission between the nodes and without

loss of generality the true time distance dij(t) is replaced with the clock model at

satellite i. We will use this framework in the following chapters, to tackle the chal-

lenge of relative localization and synchronization.

In Chapter 4, given the time measurements, both the clock discrepancies and

the time-varying distances are estimated using classical least squares based solutions

[Rajan and van der Veen 2015]. Given these pairwise distances, the relative satellite

positions can be estimated using MDS-like algorithms [Borg and Groenen 2005]. In

addition to the relative positions, the relative velocities can also be estimated using

the coefficients of the approximated distance polynomial [Rajan, Leus and van der

Veen 2015], which is presented in Chapter 5. A more generalized extension to es-

timate higher-order kinematics in Euclidean space such as relative acceleration, is

discussed in Chapter 6. These solutions are particularly suited for cold start scen-

arios when no apriori information is readily available, for instance during arbitrary

satellite network deployment. For longer time scales, when the orbital dynamics of

the deployment location is well known, the estimated space-time parameters can be

tracked and improved using recursive filters e.g., Kalman Filter [Kay 1993].

An added advantage of using dynamic ranging is that the timestamps can poten-

tially piggyback on the housekeeping data exchanged between the satellite nodes,

which mitigates the need for a dedicated ranging system. However, if a ranging sys-

tem is employed, then the achievable lower bound on the standard deviation for Time

Of Arrival in multipath-free channels is given by

σ ≥
(
8π2F 2

c BT SNR
)−1/2

, (2.12)
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where Fc denotes the carrier frequency, B ≪ Fc is the bandwidth of the signal, T is

the signal duration in seconds [Patwari et al. 2005]. A typical noise variance on the

time-markers of σ = 3.3× 10−8seconds ( i.e., 1 meter) can be adequately achieved

by a wireless node communicating at Fc = 2.4GHz with a nominal bandwidth of

1kHz transmitting and SNR=10dB for a signal duration of T∼1ms.

2.7.2 Attitude determination

In addition to localization and synchronization, attitude determination is critical for

both navigation and radio astronomy imaging. For estimating spacecraft orientation,

two-vector attitude determination can be employed by the spacecrafts, where these

vectors are either (a) the unit-vectors to the Sun and the Earths’ magnetic field vec-

tor or (b) unit vectors to two stars. The pointing direction for the satellites can be

provided by commercially available sun and star trackers, which form an integral

part of the Attitude and orbit control system (AOCS) in the satellites. Using these

measurements, methods such as TRIAD or a solution to Wahbas’ problem yield the

on-board attitude determination [Markley and Crassidis 2014].

2.8 Summary and discussion

A satellite cluster of less than 10 nodes is scientifically very interesting and meets the

requirements for the extra-galactic survey science cases in terms of resolution and

sensitivity. At least 4 antennas observing at 30 MHz for more than a year is sufficient

to achieve the confusion limit of 65 mJy with 1′ resolution and allows the detection of

over a million sources (Section 2.2.3). Moreover, even with fewer antennas, transient

science cases such as bright Jupiter-like flares and Crab-like pulses can be addressed.

In the OLFAR design, all the satellites will be equipped with 2 (or 3) 5m dipole

antennas (or two 2.5 monopoles) to observe the ≤ 30MHz spectrum (Section 2.3).

For a nominal observational bandwidth of ≥ 1MHz, each satellite is estimated

to generate ≥ 6 Mbits/s, which must be correlated in space to minimize downlink

data rate to Earth. In both centralized and distributed scenarios, the processing re-

quirements for filtering and correlation is negligibly small for up to ∼50 satellites

and can be readily incorporated into the On Board Computer (OBC) (Section 2.4).

To establish the inter-satellite link, satellites will be equipped with patch antennas to

transmit the desired ≥ 6Mbps data rate. The communication between the satellites

is a fundamental bottleneck, which limits the bandwidth of observation and possibly

the achievable baseline for radio astronomy imaging (see Section 2.5.1). In the cent-
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ralized scenario, the Node to Mothership link can be established with 5W over 50km

distance with a positive link margin. However, in the distributed scenario upto 15W

is desired to establish a link over 100km, which could be improved using cluster-

ing schemes and multi-hop communication (Section 2.5). Nonetheless, the proposed

distributed framework remains indispensable for large and scalable array of ≥ 10
satellites, where SPOF must be avoided.

In inaccessible (e.g., Moon-farside) or far-away deployment scenarios (e.g., Lag-

range points), the satellites must be synchronized and localized cooperatively, to min-

imized the dependence on Earth-based ground stations (Section 2.7). In addition, the

orientation of the satellites can be estimated using the sensors in the Attitude and

Orbit Control System (AOCS) which include the sun sensor and star trackers. All the

satellites need to be equipped with sufficient propulsion to ensure precise deployment

and to maintain the maximum baseline separation of 100km.

2.8.1 Technological challenges for ULW arrays

The actual satellite implementation is intricately connected to specific mission re-

quirements, the number of satellites, the active choices in network architecture and

the deployment location. However, recently concluded studies give insights into the

current state-of-the-art space technology for ULW radio astronomy arrays. Figure 2.7

shows the mass and power breakdown for the DARIS mission, where all subsystems

use only off the shelf components [Boonstra et al. 2011]. The power consumption for

the daughter node and the mothership was estimated at 160W and 502W respectively.

Reliable and highly efficient solar panels based on triple junction GaAs cells were

employed on both the mothership and Daughter nodes to meet the power require-

ments. Furthermore, the dry mass of each daughter node was estimated at ∼100kg

and the Mothership at ∼550kg.

In comparison to DARIS, futuristic missions such as OLFAR are expected to be

lighter by two orders of magnitude and consume at least an order of magnitude less in

power consumption (see Table 2.1). The reduced mass and power requirements will

not only enable a larger array of antennas for radio astronomy, but can potentially

enable the system to piggy-back on other missions, without the need for a dedicated

launch vehicle. Thus, future missions will possibly consist of relatively cheaper nano-

satellites with miniaturized and power-efficient subsystems.

Further potential research areas identified during the OLFAR study include the

antenna design for observation frequencies of 0.3−30MHz, development of efficient

imaging techniques for radio astronomy, high speed and robust RF inter-satellite com-

munications techniques [Budianu et al. 2013] and investigating control and reliability
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Figure 2.7: Mass and power budget analysis of the DARIS mission: The DARIS mission

consists of 8 Daughter nodes and 1 centralized mothership. The mass (and power) of each Daughter

satellite and Mothership was estimated to be 100kg (160W) and 550kg (502W) respectively [Boonstra

et al. 2011].

of large satellite arrays [Engelen, Gill and Verhoeven 2014]. In addition, observab-

ility challenges such as the unknown RFI environment at the desired deployment

location must also be investigated, possibly by a ≥ 2 satellite interferometer via a

precursor mission.

2.8.2 Conclusion

The frequency window of ≤ 30 MHz remains one of the last unexplored frequency

regimes in astronomy, which opens a new realm of interesting science cases. To

achieve the science objectives at these wavelengths with desired resolution and sens-

itivity, a dedicated space-based ULW array is necessary. Recent advances in tech-

nology and computing resources have improved both the feasibility and scientific

desirability of such a space-based array. In this chapter, we justified the need for a

space-based antenna array for ultra-long wavelength radio astronomy and discussed

various subsystems needed to achieve the desired science cases. More recently con-
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cluded studies such as DARIS, FIRST, SURO have shown feasibility of such an array.

In particular, the DARIS project showed that a cluster of less than 10 satellites can be

launched using current off the shelf technology. An expanded set of science cases can

be targeted by scaling the number of satellite nodes, extending the frequency range of

observation and increasing the instantaneous bandwidth. However, this would signi-

ficantly increase the mass, power consumption and eventually the cost of the mission.

Some of these technological challenges have been tackled under the OLFAR study.

More generally, the on-going work on miniaturized nano-satellites may pave the way

for feasible and affordable missions in the future.

In the rest of this dissertation, the focus is explicitly on relative localization and

synchronization, which is one of the key challenges identified in this chapter. A step

towards tackling this challenge is to understand the clock requirements for ultra-long

wavelength radio astronomy, and then list a handful of suitable clocks which cater to

these specifications. These steps are discussed in the following chapter.
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Appendix 2.A Computational requirements

The goal of this section is to calculate the computational requirements of each satel-

lite for on-board radio astronomy signal processing. In particular, we focus on cor-

relation which is a fundamental task of a radio interferometer. All the satellites in the

potential space-based array will perform on-board correlation, primarily to reduce

the data downlink rate. A first order processing model is presented, which estimates

the processing for correlation as the number of real Nbit multipliers required for each

mode, neglecting addition as a second order computation 1. Memory is another cru-

cial factor, but is dependent on the implementation style on the hardware and hence

will be ignored in this work. The signal processing system in all scenarios is assumed

to run at rate fsys and all the satellites are completely synchronized. The complete

list of conventions used is given in Table 2.3.

In our estimation, we presume N satellite nodes with Npol polarizations and sub-

sequently the total number of signal paths Nsig is given as Nsig = NstatNpol. In the

pre-processing block, each of these signals are conditioned, discretized and quantized

at the Nyquist rate of 2ν (see Figure 2.4). An instantaneous bandwidth of ∆νi < ν
is then filtered for further processing. Thus each channel comprises of a single po-

larization with base bandwidth of ∆νi which is coded with Nbits post quantization.

In addition, in all the cases presented, it is assumed that the electrical, front end and

geometrical delays have been compensated.

2.A.1 Signal processing blocks

Prior to investigating the types of correlators for radio interferometry and their com-

putational costs, the number of real multiplications required for fundamental signal

processing blocks are discussed. These include complex multiplications, Fast Fourier

transform (FFT) and the Poly-phase filterbank.

Complex Multiplications

The product of any 2 complex numbers; say (a1 + ib1) and (a2 + ib2) is given

as (a1a2 − b1b2) + i(a1b2 + a2b1), which involves 4 real multipliers per second.

Thus cross correlating Nsig complex channels, produces a Nsig × Nsig Hermitian

matrix consuming 4N2
sig real multipliers. However, note that the diagonal terms

containing the auto correlations only consume half the number of multipliers. In

1This work is partly based on the conference proceeding, “Distributed correlators for interfero-

metry in space” by R.T.Rajan et al. in IEEE Aerospace Conference, Mar. 2013, pp. 1–9
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addition, exploiting the symmetric nature of the Hermitian matrix, the total number

of real Nbit multipliers required for correlating Nsig channels is

NX = 4(0.5Nsig(Nsig − 1) + 2Nsig = 2N2
sig, (2.13)

where 0.5Nsig(Nsig − 1) is the number of off-diagonal terms and 2Nsig is the total

number of auto correlations.

Discrete Fourier transform (DFT)

Given a discrete set of complex data sequence x= [x0, x1, . . . , xN−1]
T ∈ C

M×1, the

output of the DFT y= [y0, y1, . . . , yN−1]
T ∈ C

M×1 is given by

yk =
N−1∑

n=0

xnW
nk
N for {n, k} = {0, 1, . . . , N − 1}, (2.14)

where WN = exp(−j2π/N), is the N th complex root of unity. N is the length of the

data vector and also indicates the spectral resolution of the Fourier transform. The

above equation is a linear isomorphic transformation, which is of the form y = WNx

where WN ∈ C
M×M is a twiddle matrix containing all the twiddles. For an N-point

DFT the number of multiplications is O(N2). A computationally efficient algorithm

to evaluate the DFT is the Fast Fourier Transform or FFT, which reduces the multi-

plications to O(N logN). Using a straight forward pipelined Radix-2 implementa-

tion, the FFT equation can be further broken down to (N/2)(log2N) butterfly stages

of 4 multipliers each. For a given input signal of bandwidth ∆ν, the FFT provides

Nbins coefficients at the rate ∆ν/Nbins. Hence the total number of real Nbit ×Nbit

multiplications per second required is given as

Nfft
X = 4(∆ν/Nbins)(Nbins/2) log2Nbins = 2∆ν log2Nbins. (2.15)

Poly-phase Filter Bank (PFB)

A poly phase filter bank for a single node, single polarization consists of a FIR filter

and a FFT module. The number of multiplications for a single FIR filter equals

the number of taps Ntaps. For an input bandwidth ∆ν, the total number of real

multiplications for a complex signal is 4∆νNtaps. In combination with the FFT

(2.15), we have the total number of real multiplications required for a PFB as

Npfb
X = 4∆νNtaps + 2∆ν(log2Nbins)

= 2∆ν(2Ntaps + (log2Nbins)). (2.16)
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2. Space-based radio astronomy

2.A.2 Correlation

Radio astronomers calculate the Fourier transform of the measured coherence func-

tion to make maps of the sky. Let xi(t) and xj(t) be two time varying signals re-

ceived at spatial positions labeled i and j, then the coherence function is the cross

correlation product between and is given as

ζij(τ) = 〈 xi(t)x∗j (t− τij) 〉τint
, (2.17)

where 〈.〉 is the expectation operator, the superscript (∗) indicates conjugation and

τijgeometric delay between the two antenna pair. The number of cross-correlation

products increase as O(N2) for N antennas and the expectation operator is applied

over a period of integration time τint. There are 3 ways to implement a correlator.

The first option is using the traditional correlator model XF i.e. cross correlation first

and Fourier transform later. The second alternative is the more recent FX correlator

which measures the cross-power spectrum between two antenna signals. While XF

architecture is beneficial because bandwidth can be traded for spectral resolution, FX

architecture reduces processing requirements and offers scalability when the number

of antennas is large. Before describing the computational requirements for XF and

the FX architectures, we briefly present the number of multiplications for essential

signal processing blocks in the following section.

XF Correlator

The conventional method to directly measure the cross-correlation function forms

the basis for the XF or ‘Lag’ correlator [Romney.J.D 1999]. The signal xj(t) is

delayed and correlated with xi(t) to produce ζij as a function of lags (τ ), which

is later Fourier transformed to produce the baseline cross power spectra. The cross

correlation operation is a function of lags, which could be varied in quantization of

n∆τ where −Nlags/2 ≤ n < Nlags/2, where for a given observation bandwidth

∆ν, ∆τ is limited by ∆τmin = 1/2∆ν. The signal xj is delayed by ∆τ , multiplied

and accumulated at every sample clock before propagating to the next segment. For

Nsig such slices, the total number of real multiplications per second is given from

(2.17) and (2.13)

Nxf
X = NXNlags∆νi = 2N2

sigNlags

(
∆νi
fsys

)
, (2.18)

where we Nsig = NstatNpol and fsys is the system processing frequency.
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2.A. Computational requirements

An advantage of XF architecture is that the Fourier transform (FFT) operation

can either be an online or an off-line process. This means that the correlator operates

on the entire bandwidth for all nodes Nstat and the data generated can be transmit-

ted/stored without the immediate need to Fourier transform.

FX Correlator

An alternative to the XF correlator is to directly measure the cross-power spectrum.

The term FX correlator was coined by Chikada [Chikada et al. 1987] who built the

first such correlator, implementing the reversal of the order of operations compared

to the XF architecture. If Xi(ν) and Xj(ν) are the real time Fourier transforms of the

delay compensated waveform xi(t) and xj(t) then using convolution theorem , the

correlation function ζij(τ) in (2.17) can be written as a multiplication in the Fourier

spectrum [Richard Thompson.A 1994]

ζij(τ) ⇌ Xi(ν)X
∗
j (ν)

⇌ Xij(ν). (2.19)

Note that the cross-power spectrum to the right is a function of frequency and its

Fourier transform to the left is a function of lags (τ ). From implementation perspect-

ive, the essence is to transform each input signal xi into frequency domain F and

then multiply-accumulate X over each spectral bin for all the nodes, to produce the

cross-power spectrum and later the visibility function off-line. Unlike the XF correl-

ator, the FX correlator must do a node based Fourier transform on-line. The number

of points N , is given by the spectral resolution intended for the application i.e Nbins.

A shift register loads Nbins samples which is Fourier transformed to produce Nbins

points. The number of points Nbins can be interpreted as the spectral translation of

Nlags from XF correlator in the time domain. The total number of multiplications

(Nfx
X ) required is the sum of multiplications for node-based FFT (Nfft

X ) and multi-

plications for Correlations (N corr
X ).

Consider Nsig signals inputted to the correlator block, then using a Nbins - point

FFT processor for each signal and referring to eq(2.15) we have the total number of

multiplications required as

Nfft
X = 2 Nsig

(
∆νi
fsys

)
log2Nbins. (2.20)

In contrast to the XF mode, where each sample is cross-multiplied at input rate, in

FX mode each spectral bin is cross-multiplied and accumulated only once for Nbins

49



2. Space-based radio astronomy

samples, thereby reducing the number of computations by a factor Nbins. In other

words, the multipliers operate at a rate (∆νi/Nbins) instead of ∆νi. From (2.13) we

have , the number of multiplications required for correlation as

N corr
X = 2N2

sig

(
∆νi
fsys

)
. (2.21)

The total number of multiplications for a Nsig channel and Nbins FX correlator is

then

Nfx
X = Nfft

X + N corr
X

= 2Nsig

(
∆νi
fsys

)
[Nsig + log2Nbins]. (2.22)

XF vs FX

The computational requirements of XF are much higher than FX mode for large

number of nodes and higher spectral resolution. Comparing (2.18) and (2.22) we

have the processing factor given as

N
xf/fx
X =

(
NsigNbins

Nsig + log2Nbins

)
. (2.23)

As can be seen, the multiplicands in the XF mode are additive in the FX mode ,

besides the log2 reduction on the number of frequency bins. Thus, although for

lower number of nodes the XF is comparable to FX mode, for large number of nodes

and scalable architectures, the FX mode is computationally cost effective.
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Clocks

This chapter is based on the conference proceeding, published as “Synchronization

for space based ultra low frequency interferometry” by R.T.Rajan et al. in IEEE

Aerospace Conference, Mar. 2013, pp.1-8.
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3. Clocks

In this chapter, we present first order clock requirements for an anchorless net-

work of mobile nodes, with applications to space-based interferometry at ultra-long

wavelengths. Space-based interferometers, such as the OLFAR cluster will be an

anchorless network deployed far from Earth, with occasional communication with

Earth, which presents new challenges in synchronization and localization of the satel-

lites. The primary focus of this chapter is on clock synchronization, in particular the

specifications of the oscillator on-board each of the satellite nodes. We begin by

modeling the phase error of a general oscillator as a polynomial in time. The bounds

on the short term and long term clock requirements are defined in terms of jitter and

Allan deviation respectively. Given a robust clock, which is stable for a certain co-

herence time, we show that it suffices to assume the clock as a first order model. We

discuss the particular use case of OLFAR, and present clock requirements for an OL-

FAR satellite. A list of commercially available clocks which meet these requirements

are discussed.

3.1 Introduction

Recently, new and interesting science drivers have emerged in the spectrum of ultra

long wavelength (ULW) of > 3m, which are driving the need for a distributed array

of radio telescopes in space, far from Earth’s atmosphere and terrestrial interference.

Until now, such a system in space was financially and technically constrained. How-

ever, more recent studies [Saks et al. 2010] have shown that with extrapolation of

current signal processing and satellite technologies, a low frequency radio telescope

in space could be feasible in the coming years. In this chapter, we particularly focus

on the OLFAR [Rajan et al. 2011] feasibility study, which aims to develop a detailed

system concept and to design and build scalable autonomous satellite flight units to be

used as an astronomical instrument for low frequencies. The OLFAR cluster will em-

ploy Distributed correlation- Distributed Down-link architecture for processing and

communication, where in, within the network, all the satellites are capable of two-

way communication with one other. The observed data is accurately time stamped

by the local oscillator before transmitting to another satellite for correlation. All the

satellites are independently capable of down-linking correlated data to Earth. In cer-

tain deployment locations, e.g., Moon-orbit, the OLFAR network maybe completely

disconnected from Earth-based communication, particularly when the satellites tra-

verse over the dark side of the Moon. See Chapter 2 for a detailed explanation of

these challenges.

Furthermore, unlike terrestrial radio astronomy arrays, the OLFAR nodes are mo-
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3.2. Clock model

bile and asynchronized, which presents a unique challenge to jointly synchronize and

locate the nodes up to desired accuracies. To maintain coherence, during observation,

for processing and during communication, the OLFAR network must be synchron-

ized. The OLFAR cluster will be a cooperative network of satellites, which will

correct for clock errors cooperatively with minimal help from Earth based ground

stations. Furthermore, in addition to synchronization, the OLFAR satellites must

also find pairwise distances to estimate relative positions for radio interferometry, to

avoid collision and for passive formation flying. The proposed localization and syn-

chronization solutions must use limited resources to ensure minimal mass and power

budget.

In this chapter, our focus is on the fundamental clock requirements for space-

based interferometry. A generic clock model is presented in Section 3.2, where the

clock error is approximated as a polynomial in the presence of random noise. For

short term stability, we emphasize the need to minimize clock jitter and its tolerance

levels for a given node in the network. The long term deviation of clock from its

nominal frequency is described using Allan deviation, which is shown to be a meas-

ure of non linear components in a given clock (in Section 3.3). In Section 3.4, the

short term and long term clock stability requirements are discussed, in addition to

desired position accuracies for interferometry. A few commercially available clocks

which meet OLFAR requirements are presented. In addition, joint localization and

synchronization algorithms are recommended, which suit OLFAR needs and use min-

imal overhead on the entire system.

3.2 Clock model

Let A and ν denote the nominal amplitude and frequency of a practical clock oscil-

lator residing in a node, then the corresponding clock output is modelled as [Barnes

et al. 1971]

a(t) = (A+ δA(t)) sin(2πνC̄(t)), (3.1)

where t represents the true time and δA(t) is the amplitude error modulated on the

ideal amplitude of the signal. The clock output is often hard limited using differential

comparison techniques which minimizes this amplitude error. Hence, the time vary-

ing amplitude δA(t) can generally be eliminated, but not ignored. The argument to

the sinusoid 2πνC̄(t) is the total accumulated phase in radians, where C̄(t) = t+δC̄(t)
is the corresponding frequency normalized phase with units of time. For an ideal

clock source C̄(t) = t, however in reality, time varying errors δC̄(t) exists and the
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fundamental challenge is to minimize it within acceptable limits depending on sys-

tem requirements.

The phase error of the clock source can be understood by expanding δC̄(t) as a

polynomial of true time t and consequentially C̄(t) is

C̄(t) = t+ δC̄(t),
= φ+ [1 + φ̇]t+ 0.5φ̈t2 + . . .+ η(t),

= φ+ ωt+ 0.5φ̈t2 + . . .+ η(t), (3.2)

where φ indicates the time or phase offset of node i. The rate of change of phase i.e.,

the frequency offset is denoted by φ̇ and we define the clock skew of node as ω =
1+φ̇. The second-order coefficient φ̈ is the rate of change of frequency offset, i.e., the

frequency drift and η(t) is the stochastic noise. In reality, there are other systematic

deviations which affect the clock performance, which include modulation sidebands,

shock, vibrations, humidity, temperature and radiation. These environmental effects

have been ignored and thus not explicitly incorporated into the model. However,

more generally, these errors can be assumed to be contained within η(t). The phase

parameter φ and its higher order derivatives are real valued and deterministic, whose

slow variations with true time t are neglected in the above model. For an ideal clock

with no phase errors, we have C̄(t) = t and subsequently [φ, φ̇, φ̈] = [0, 0, 0].

3.3 Clock stability

In approximating the phase error as a function of true time, we inherently assume

the coefficients are time-invariant for a small period of time. This assumption relies

heavily on the ability of the oscillator to reproduce these coefficients consistently

with minimal fluctuations. A statistical measure of the fluctuations of the phase error

δC̄(t) over a given time duration is defined by the chosen stability criterion. In this

chapter, we discuss both the short-term (t≪ 1 second) and long-term (t≫ 1 second)

stability of a clock, both of which are dependent on the data rate of the input signal. In

particular, the short-term stability severely limits the input sampling and quantization

data, which is briefly discussed in Appendix 3.A.

To investigate the long-term deviation of the phase error, we use Allan variance

as the clock measure. The normal standard deviation of the phase error δC̄(t) in (3.1)

does not converge, due to the accumulation of phase errors which increase in time

t. However, since the Allan variance converges as compared to the normal standard

deviation, it is a recognized clock specification parameter to estimate the long term
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clock stability i.e., t ≫ 1 second. In addition to Allan variance, there are also other

estimators to characterize the fluctuations of the clock source, such as Overlapping

Allan, Modified Allan and Hadamard variance to name a few [Riley 2008]. However,

we use the Allan variance since it is an IEEE standard and more widely accepted as a

measure when reporting performance of commercially available clocks. For the sake

of completeness and to illustrate its relation with the phase error δC̄(t), the Allan

variance [Allan 1987] is briefly derived for time domain measurements of the clock

source.

3.3.1 Continuous time

We begin by determining the instantaneous frequency deviation of the clock signal

a(t) from its ideal frequency ν, which is obtained by differentiating the total accu-

mulated phase 2πνC̄(t) and dividing by 2π, i.e.,

ν(t) =
1

2π

d

dt
2πνC̄(t) = ν + ν

d

dt
δC̄(t). (3.3)

Rearranging the terms and dividing both sides by the nominal frequency ν we have

ζ(t) ,
d

dt
δC̄(t) = ν(t)− ν

ν
(3.4)

where ζ(t) is the normalized fractional frequency deviation of a(t) and δC̄(t) is the

phase error in seconds. Now, the average fractional frequency deviation over a period,

say τ , is then

ζ̄(t, τ) =
1

τ

∫ t+τ

t
ζ(t)dt. (3.5)

Finally, the two-sample Allan variance is defined as one half of the time-averaged

squares of the differences between adjacent fractional frequency deviations ζ̄(t, τ)
i.e.,

σ2
ζ (τ) = 0.5〈(ζ̄(t+ τ, τ)− ζ̄(t, τ))2〉 (3.6)

where 〈.〉 is the expectation over sufficiently large number samples and σζ(τ) is the

Allan deviation for the time duration τ 1.

1The fractional frequency, average fractional frequency and the Allan variance are conventionally

represented by y, ȳ and σy respectively, instead of ζ, ζ̄, and σζ . However, in the following chapters,

we will use y to represent the velocity of mobile nodes, and therefore we employ ζ, ζ̄, and σζ .
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3.3.2 Discrete time

Let {C̄(Tk)}Kk=1 be a discrete set of time measurements at true time instances Tk ob-

tained from the oscillator. If the nominal spacing between adjacent measurements is

τ = Tk+1 − Tk, then the average fractional frequency offset during the kth measure-

ment interval of length τ is

ζ̄k,τ =
δC̄(Tk + τ)− δC̄(Tk)

τ
, (3.7)

Now, substituting for δC̄(Tk) from (3.2) and introducing ηi,k+1, we have

ζ̄k,τ =
φ+ φ̇[Tk + τ ] + 0.5φ̈[Tk + τ ]2 + . . . + ηk+1

τ

− φ+ φ̇Tk + 0.5φ̈T 2
k + . . . + ηk

τ

= φ̇+ φ̈[Tk+1 − 0.5τ ] + . . . + η̇k, (3.8)

where η̇k = τ−1[ηk+1 − ηk]. Subsequently, the Allan variance in (3.6) is then

σ2
ζ (τ) = 0.5〈

[
ζ̄k+1,τ − ζ̄k,τ

]2〉 = 0.5〈
[
φ̈τ + . . . + η̈k

]2〉 , (3.9)

where η̈k = τ−1[η̇k+1 − η̇k]. Note that φ̈ is the frequency drift, ηk is the random

deviation and more generally, contains other higher order terms of the polynomial in

(3.2). Thus, in essence, the Allan deviation alleviates the linear trend of the phase

error δC̄(t) in (3.2) by eliminating {φ, φ̇} and gives a measure of noise contributed

by the higher order non linear components of the clock for an integration time τ . In

other words, for a sufficiently low Allan deviation, the inherently non-linear clock

model can be approximated as an affine clock model

C̄(t) ≈ ωt+ φ. (3.10)

This linearized clock model will be employed in the context of joint ranging and

synchronization in Chapter 4.

3.3.3 Stability requirements

The approximated linear clock model is valid, provided the Allan deviation is negli-

gible over a certain time period called the coherence time τc. We pose a rough stabil-

ity requirement on the clock, following [Thompson, James.M.Moran and Swenson
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Figure 3.1: Long-term clock stability: Allan deviations of free running clocks are plot-

ted versus the coherence time (in green) for various input frequencies νi. The map is over-

layed with Allan deviations of potential clocks for potential space-based low frequency arrays

namely PRS-10 Rubidium [Stanford 2006] , RAFS ASTRIUM [Droz et al. 2007], GPS 1pps

[Lombardi et al. 2001], OCXO ASTRIUM [Airbus Defense and Space 2012], SA.45s CSAC

and Space Hydrogen Maser (SHM) [Goujon et al. 2010].

1994; Ulvestad, Edwards and Linfield 1986] and define the coherence time τc, such

that the RMS phase error of the clock remains less than 1 radian

2πνoσζ(τc)τc / 1, (3.11)

where νo is the observational frequency and σζ(τc) is the Allan deviation as a function

of τc. The product σζ(τc)τc can be visualized as the time drift due to non-linear

components of the clock after τc seconds. The clocks should be stable at least for

the integration time τc, during which it suffices to estimate and correct (ω, φ) for

synchronization.

3.4 Space-based radio astronomy

In an OLFAR node the maximum input frequency is 30MHz and the minimum integ-

ration time desired is 1 second [Rajan et al. 2011]. Thus for the minimum coherence

time τmin
c = 1s, the Allan deviation must satisfy σmax

ζ (τmin
c = 1s) ≤ 10−8. Ideally,
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the maximum coherence time τmax
c must be as large as possible since it defines the

calibration interval available to correct for the phase error. Figure 3.1 shows Al-

lan deviations of the clock versus the coherence time as per (3.11) for various input

frequencies ν and the performance of various atomic clocks. We use the OLFAR

observational frequencies of 0.3− 30MHz, for which almost all the proposed clocks

give a coherence time of 15 minutes to 1 hour, during which time period the clocks

can be approximated as a linear model (3.10). Secondly, as mentioned in the earlier

section, the short-term stability of the chosen clock hampers the input sampling and

quantization of the data stream. The figure of merit for short-term clock stability is

typically given by the sampling jitter of the clock, in terms of the desired SNR of

the observation signal. See Appendix 3.A for a brief overview on short-term clock

stability requirements.

For interferometry at wavelengths 10− 103 meters, the positions of the satellites

must be known accurately up to a fraction of the smallest observational wavelength.

This implies that the distance between the OLFAR satellites must be known with an

accuracy < 1 meter. Relative positions of the satellites are sufficient for both ra-

dio astronomy and to avoid collision, which in turn can be estimated by measuring

pairwise ranges between the satellites. In conjunction with the clock accuracies dis-

cussed in the previous section, the requirements on position and time of an OLFAR

satellite can be briefly summarized as follows.

1. Allan deviation σζ(τc): Section 3.3 (3.11)

a) σζ(τc) ≤ 10−8 for τc = 1 second

b) σζ(τc) ≤ 10−11 for τc = 1000 seconds

2. Sampling jitter ∆tjitter : Appendix 3.A (3.13)

a) ∆tjitter < 10ps for 8 bit sampling of observation signal

b) ∆tjitter < 1ps for 12 bit sampling of observation signal

3. Range: < 1m accuracy

The time-position requirements of OLFAR scale with the needs of the ground

based low frequency radio telescope LOFAR (low frequency antenna array) which

observes the sky at 30−120MHz. The LOFAR stations are equipped with Rubidium

standard PRS-10 and long term stability is ensured by correcting rubidium clocks

using the 1 pulse per second (1pps) output of a GPS receiver [Gunst and Schoon-

derbeek 2007]. For longer antenna separations at lower frequencies, it is observed
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Clock Manufacturer Technology Mass Power Space

(grams) (watts) qualified ?

PRS-10 SRS Rubidium 600 14 No

RAFS EADS Astrium Rubidium 3300 30 Yes

OCXO-F EADS Astrium OCXO 220 2 Yes

SA.45s Symmetricom Rubidium < 35 < 0.125 No

Table 3.1: List of potential clocks for an OLFAR satellite which are commercially

available. All the clocks output a 10MHz reference frequency and power indicates

steady state consumption. The long term stability of these clocks are plotted in Figure

3.1.

that the phase errors are dominated by ionospheric disturbances instead of clock er-

rors. Furthermore, the LOFAR antennas are fixed and their positions are measured

up centimeter accuracies on each dimension.

3.5 Potential clocks

To achieve Allan deviations of order 10−8 − 10−11, Rubidium oscillators and Oven

controlled crystal oscillators (OCXO) are considered. Although cesium and maser

families can offer orders of magnitude lower Allan deviations, they are also very ex-

pensive both in terms of mass and power for an OLFAR satellite and are therefore

not considered in this survey. The Allan-deviations σζ of potential (currently avail-

able) clocks are plotted in Figure 3.1 against the coherence time τc. For the sake of

reference, the plot is overlayed with the desired Allan-deviation (3.11) for various

input frequencies νin (in green). Table 3.1 shows additional features of these clocks

such as mass and power consumption.

Rubidium standards

RB-PRS10 is a rubidium based frequency standard with Allan deviations of σζ,prs ≤
10−11 for 1-100 seconds [Stanford 2006] which is currently employed in LOFAR

radio telescope [De Vos, Gunst and Nijboer 2009], but not space qualified. A second-

ary solution is the Astrium RAFS (Rubidium atomic frequency standard) which is

a space qualified robust clock system, used in the Galileo satellite navigation [Droz

et al. 2007] with σζ,rafs ≤ 10−11 for 1 < τc < 1000 seconds. Both these systems
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have low clock jitters < 0.1 picosecond for input frequencies of νin = 30MHz. The

RAFS is marginally equivalent to the PRS10-RB in terms of Allan deviations how-

ever achieves a far better noise floor at 3 × 10−14 for (t > 103 seconds). However,

refering to Table 3.1, RAFS is not a practical solution due to limitation of space and

mass in an OLFAR satellite.

Oven controlled crystal oscillator (OCXO) standards

An alternative to Rubidium standard is the oven controlled crystal oscillator or OCXO.

More specifically a space qualified variant is offered by Airbus OCXO-F [Airbus De-

fense and Space 2012], which weighs 220 grams, consumes 2 Watts during steady

state operation and which can be easily incorporated in the OBC module [Saks et al.

2010]. The Allan variances of OCXO are better than its Rubidium counterparts for

only up to τc=10 seconds, beyond which the Rubidium standards fair better.

Vertical cavity surface emitting laser (VCSEL) based Rubidium

In addition to the above mentioned clocks, there has been consistent research in devel-

oping chip scale atomic clocks in the past decade [Serkland et al. 2006][Knappe et al.

2004] based on Vertical Cavity Surface Emitting Lasers, which enable orders of mag-

nitude reduction in size and power. SA.45s is a Rubidium Chip Scale Atomic Clock

(CSAC) which is based on VCSEL and meets the Allan deviation requirements of

OLFAR upto 1000 seconds, as shown in Figure 3.1. This CSAC weighs < 35 grams

and has a steady power consumption of 125 mW, which suit the needs of an OLFAR

satellite. Although the SA.45s is not space qualified, more recently similar CSACs

are available for space-based applications e.g., Airbus OCXO-H [Airbus Defense and

Space 2015].

3.6 Conclusions

The clock requirements of an OLFAR satellite have been investigated, by modeling

the clock errors as polynomial in time. Each observation satellite needs to maintain

a short term clock stability (t≫ 1s) of ≤ 1 ps to ensure sampling with 12 bits. Long

term stability (t ≥ 1) of clocks are given by Allan deviations σζ(τc) as a function

of the coherence time τc. It is shown, using a simple derivation, that the Allan de-

viation indicates the noise contributed by the non linear components of the clock.

Furthermore, given a space qualified clock which meets the Allan deviation require-

ments of σζ(1) ≤ 10−8 and σζ(1000) ≤ 10−11, the clock error can be approximated
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as a linear function of true time, during the coherence period. The VCSEL based

Rubidium SA.45s is a non-space qualified clock with low mass and minimal power

consumption, which meets the long term stability requirements of OLFAR but only

for coherence time up to 1000 seconds. This limits the maximum calibration time for

each satellite to re-synchronize, i.e., estimate and correct for their respective clock

offset (φ) and clock drift (φ̇).

In the next chapter, the approximated linear clock model (3.10) is used to propose

a novel data model for joint synchronization and ranging for a network of mobile

nodes. Furthermore, in the following chapters we do not limit our discussion to

space-based radio astronomy networks, but instead address the broader application

area of wireless networks.
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3. Clocks

Appendix 3.A Dynamic range and sampling jitter

This section investigates the effect of short term (t≪ 1 second) clock discrepancies

on the signal processing system. Traditionally, the first stage comprises of two pro-

cesses, i.e., sampling and quantization. The Sample and Hold (S/H) block decimates

the input signal periodically along the time axis and the analog to digital Converter

(ADC) quantizes the input signal along the amplitude scale. The fluctuations in the

sampling time causes the phase modulation of the incoming analog signal and results

in an additional noise component in the signal. These unwanted variations in time,

called jitter, lead to uncertainty as to when the analog input is actually sampled. The

Signal to Noise Ratio (SNR) of the S/H block with sampling jitter ∆tjitter is given as

[Kester 2004]

SNR(dB) = −20 log10(2πνin∆tjitter), (3.12)

where νin is the frequency of a pure sinusoid input signal. The ∆tjitter is the total

RMS jitter from the clock source and the ADC circuitry, i.e.,

∆tjitter =
√
∆t2ADC +∆t2CLK,

where ∆tADC and ∆tCLK are RMS jitters due to ADC and clock source respectively.

Now, since the ADC follows the S/H, the best achievable SNR post quantization is

limited by the SNR of the S/H. Hence considering an ADC with significantly high

SNR i.e., ∆tADC ≪ ∆tCLK, we can approximate the total jitter (3.12) as

∆tjitter ≈ ∆tCLK =
10

−SNR
20

2πνin
, (3.13)

Thus, given the desired dynamic range, (3.13) solves for the tolerable clock jitter.

Observe that the jitter sampling error is not a function of the clock frequency, but

instead only dependent on the desired dynamic range and the frequency of the input

signal. Figure 3.2 shows limiting cases of the SNR versus input frequencies, which

illustrates the fact that the dynamic range of system deteriorates with increase in

frequency due to jitter error. Further more, assuming a best performance scenario

(i.e., with a distortion-less High-SNR ADC), the SNR from (3.13) can be represented

as the Effective Number Of Bits (ENOB) i.e.,

ENOB =
SNR− 1.76

6.02
, (3.14)

The satellites of the potential space-based cluster will employ direct sampling of
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3.A. Dynamic range and sampling jitter
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Figure 3.2: Short-term clock stability: Limiting cases of the SNR and corresponding ENOB

due to jitter tjitter versus input frequency νin . The demarkation lines at 10MHz, 30MHz and

50MHz show the maximum input frequencies of the DARIS, OLFAR and FIRST systems at

νin = 30MHz.

the entire observation bandwidth (0.3MHz- 30MHz) [Rajan et al. 2011]. Further-

more, the required dynamic range will depend on the radio frequency interference

(RFI) level at the deployment locations. Some of the potential deployment locations

include, moon orbit, Earth-moon L2 point and Earth- leading/trailing, where the in-

terference levels at these wavelengths are little understood [Bentum and Boonstra

2011]. Hence, although only 1-2 bits are sufficient for radio astronomy imaging, the

OLFAR system will sample at >8 bits and the remaining bits will be discarded by

a RFI mitigation stage. Referring to Figure 3.2, to achieve quantization resolution

of 16 bits at νin = 30MHz, the required sampling jitter must be < 0.1ps and for 12
bits/cycle sampling, we must ensure ∆tjitter < 1ps.
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4

Synchronization and ranging

This chapter is based on the article published as “Joint Ranging and Synchronization

for an Anchorless Network of Mobile Nodes” by R. T. Rajan and A. -J. van der Veen

in IEEE Transactions on Signal Processing, Apr. 2015, vol.63, no.8, pp.1925–1940.
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4. Synchronization and ranging

Synchronization and localization are critical challenges for the coherent function-

ing of a wireless network, which are conventionally solved independently. Recently,

various estimators have been proposed for pairwise synchronization between immob-

ile nodes, based on time stamp exchanges via two-way communication. In chapter 3,

we showed that the phase error of a clock oscillator, with sufficiently low Allan devi-

ation, can be approximated as a linear function in time. In this chapter, we consider

an anchorless network of asynchronous mobile nodes, where each node has an inde-

pendent clock oscillator and the inter-nodal pairwise distance is also time-varying.

We present a novel joint time-range model, treating both asynchronized clocks and

the pairwise distances as a polynomial function of true time. For a pair of nodes,

a least squares solution is proposed for estimating the pairwise range parameters

between the nodes, in addition to estimating the clock offsets and clock skews. Ex-

tending these pairwise solutions to network-wide ranging and clock synchronization,

we present a central data fusion based global least squares algorithm. A unique solu-

tion is non-existent without a constraint on the cost function e.g., a clock reference

node. Ergo, a constrained framework is proposed and a new Constrained Cramér-Rao

Bound (CCRB) is derived for the joint time-range model. In addition, to alleviate the

need for a single clock reference, various clock constraints are presented and their be-

nefits are investigated using the proposed solutions. Simulations are conducted and

the algorithms are shown to approach the theoretical limits.

4.1 Introduction

The coherent functioning of wireless networks relies heavily on time synchronization

among nodes [Zhang, Liu and Honghui Xia 2002; Elson and Estrin 2003; Sundarara-

man, Buy and Kshemkalyani 2005; IEEE Working Group 802.15.4 2007]. All nodes

in a network are equipped with independent clock oscillators, which must be syn-

chronized to a global reference, to facilitate accurate time stamping of data and

synchronized communication of processed information. Clock oscillators in these

nodes are inherently non-linear [Barnes et al. 1971; Lindsey et al. 1985; Allan 1987],

however, if calibrated astutely, can be approximated as a linear function for a small

measurement time period. The unknown regression coefficients of such an affine

clock model will be the clock offset and clock skew. Global time synchronization

within the network is then achieved by estimating all clock offsets and clock skews

of the nodes and compensating the respective clocks aptly. Furthermore, when nodes

are arbitrarily deployed in the field, then position estimation is often equally crit-
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4.1. Introduction

ical as time synchronization [Sayed, Tarighat and Khajehnouri 2005a; Patwari et al.

2005]. The intermediate distances between all the nodes in the network (obtained via

ranging) is one of the key inputs for almost all localization techniques e.g., time of

arrival (TOA) [Cheung et al. 2004], time difference of arrival (TDOA) [Chan and Ho

1994], multidimensional scaling (MDS) [Borg and Groenen 2005]. Moreover, when

the nodes are mobile, distance estimation using ranging is a challenge, particularly

when the clocks of the nodes are asynchronous.

In this chapter, we consider an anchorless network of asynchronous mobile nodes,

capable of two-way communication. All the nodes are in motion, i.e., mobile during

the two-way communication and hence the pairwise distances are unique at each time

instant. In addition, all the nodes are equipped with independent clocks, which are

asynchronous w.r.t. some reference time, i.e., true time, during the two-way com-

munication. Finally, by the term anchorless, we consider an autonomous and co-

operative network with no external (reference) information on either time, distance

or position. Hence we assume no a priori knowledge on the nodes initial positions

and/or on their respective motion. Thus, our fundamental challenge is to understand

the joint variation of local time at each node and time-varying pairwise distances

between the cluster of nodes. After obtaining the pairwise distances at discrete in-

tervals of time, the relative positions of the nodes at respective time instances can be

obtained via MDS [Borg and Groenen 2005]. We assume the need for bi-directional

communication between the nodes, but a full mesh network is not always necessary.

4.1.1 Applications

Our motivation for this work are inaccessible mobile wireless networks, which have

partial or no information of absolute co-ordinates and/or clock references. Such scen-

arios are prevalent in under-water communication [Chandrasekhar et al. 2006], in-

door positioning systems [Liu et al. 2007], autonomous swarm networks [Bürkle,

Segor and Kollmann 2011] and envisioned space based satellite networks with min-

imal ground segment capability, such as OLFAR i.e., orbiting low frequency antennas

for radio astronomy [Rajan et al. 2016]. The OLFAR network is an interferometric

array of ≥ 10 identical, scalable and autonomous satellites in space to be used as

a scientific instrument for ultra long wavelength observations. The OLFAR cluster

will be deployed far from the earth orbiting global positioning systems. If the inter-

ferometric array is deployed on the Moon far-side, or orbits the Moon such that the

Moon eclipses the array against Earth, then Earth-based communication will be com-

pletely cut-off. In the absence of apriori reference on position and time, cooperative

synchronization and localization is one of the fundamental challenges for OLFAR
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4. Synchronization and ranging

like anchorless networks. See Chapter 2 for a detailed description. In this chapter,

we focus particularly on the joint ranging and synchronization of such an anchorless

network.

4.1.2 Previous work

The joint estimation of clock parameters (upto a first order) and the pairwise dis-

tances via two-way ranging is a well studied topic for a network of stationary nodes

[Sundararaman, Buy and Kshemkalyani 2005; IEEE Working Group 802.15.4 2007].

For a pair of fixed nodes capable of bi-directional communication, the classical two-

way ranging (TWR) model involves 2 clock offsets, 2 clock skews and the pairwise

distance between the nodes, which results in an unsolvable five dimensional problem.

However, traditionally, one clock is assumed to be the reference clock which reduces

the cardinality to 3 and given sufficient measurements, the absolute clock skew and

clock offset of the second node, and its pairwise distance from the first node can

be estimated. For estimating the clock errors, maximum likelihood estimates and

Low Complexity Least Square (LCLS) estimates are proposed in [Noh et al. 2007]

and [Leng and Wu 2010] respectively, and distributed solutions are presented in [Et-

zlinger, Wymeersch and Springer 2014]. A step further, joint estimation of clock

parameters and the fixed distances for the entire network of nodes was proposed in

[Rajan and van der Veen 2011]. An overview of estimators for a plethora of two-way

ranging protocols and approaches are presented in [Serpedin and Chaudhari 2009]

and, joint localization and synchronization for an anchored network is addressed in

[Zheng and Wu 2010][Etzlinger et al. 2013]. Furthermore, the connectivity, capacity,

clocks, and function computation required for synchronizing large network of nodes

is discussed in [Freris, Graham and Kumar 2010].

However, all these propositions are based on the classical two-way ranging data

model [IEEE Working Group 802.15.4 2007], where the node positions are fixed and

consequently the pairwise ranges are independent of time. In case of an anchorless

network of mobile nodes, the nodes are in motion during the time-of-flight meas-

urement window. As a result, the pairwise distances are a non-linear function of

time and our proposition is to approximate this continuous function as a polynomial

function in time, for a small measurement period. Under this context, the unknown

coefficients of this monomial approximation (called range parameters) need to be es-

timated, which beget the pairwise distances at discrete time intervals. Furthermore,

for an unsynchronized network, these range parameters are plagued with clock errors,

which must be estimated and the respective clocks calibrated. Along these lines, for

a network of mobile nodes, we had previously proposed a joint first-order time-range
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model in [Rajan and van der Veen 2012], where clock parameters were estimated

along with range parameters upto the first order. We further extended this model to

a joint second-order ranging and affine synchronization basis for a network of mo-

bile nodes in [Rajan and van der Veen 2013], where second-order range parameters

were also estimated. However, in reality, the order of the time-varying distance ap-

proximation is typically unknown, as it depends on the initial position, the nature

of node mobility and the measurement time window. This motivates the need for a

unified time-range basis which can estimate both the clock parameters and pairwise

distances without any a priori information on the motion of the nodes.

4.1.3 Contributions

In this chapter, we propose a generic joint time-range basis (Section 4.2), which

combines the affine clock model (Section 4.2.1) with a generalized (L − 1)th order

non-linear range model for an anchorless network of mobile nodes. In the presence of

clock errors, the time-varying distance measurements are corrupted with clock skews

and clock offsets and the relation is addressed in Section 4.2.2. The proposed joint

basis is applied in a TWR framework (Section 4.3.1) and a Mobile Pairwise Least

Squares (MPLS) solution (Section 4.3.2) is proposed for a pair of mobile nodes, to

estimate the clock skews, offsets and the range parameters of the pairwise distance

between the nodes. Furthermore, for the entire network, all the clock skews, offsets

and range parameters can be estimated using the proposed Mobile Global Pairwise

Least Squares (MGLS) algorithm (Section 4.4.1). More generally, when the order of

distance approximation L is unknown, iterative solutions are proposed for both the

pairwise and global solutions. A unique solution is non-existent without a constraint

on the cost function (e.g., clock reference node) and hence, a constrained framework

is proposed. A new Constrained Cramér-Rao Bound (CCRB) is derived in Section

4.5 for the estimated clock and range parameters. In addition, instead of the classic

constraint of using a single clock reference, alternative sum constraint and nullspace

constraint are proposed (Section 4.6) which are shown to yield about a factor of mag-

nitude better performance on the clock skew and offset estimation. The performance

of the proposed algorithms and choice of constraints are analyzed using simulations

in Section 4.7.
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4.2 Joint time-range basis

4.2.1 Affine time model

Consider a network of N nodes equipped with independent clock oscillators which,

under ideal conditions, are synchronized to the global time. However, in reality,

due to various oscillator imperfections and environment conditions the clocks vary

independently and are inherently non-linear. Nonetheless, the local time at a given

node can be approximated to a linear function, provided the Allan deviation of the

respective clock is negligible for a small time period, as discussed in the previous

chapter (See Chapter 3). Let ti be the local time at node i, then its divergence from

the ideal true time t is to first order given by the affine clock model,

ti = ωit+ φi ⇔ Ci(ti) , t = αiti + βi, (4.1)

where ωi ∈ R+ and φi ∈ R are the clock skew and clock offset of node i and

the function Ci(ti) relates the local time ti to the true time t , Ci(ti). In actual-

ity, the clock skew (ωi) and clock offset (φi) are time-varying, but we assume they

remain constant for small measurement time period (say ∆T ), which is often a reas-

onable assumption [Freris, Graham and Kumar 2010]. Alternatively, the 2nd part of

(4.1) shows the translation from local time ti to the global time t, where [αi, βi] ,
[ω−1

i , −φiω
−1
i ] are the calibration parameters needed to correct the local clock at

node i. The clock skew and clock offset parameters for all N nodes are represented

by ω = [ω1, ω2, . . . , ωN ]T ∈ R
N×1
+ and φ = [φ1, φ2, . . . , φN ]T ∈ R

N×1 respect-

ively, and similarly the clock calibration parameters of the network are α ∈ R
N×1
+

and β ∈ R
N×1. The unique relation between all the clock parameters is given by

α , 1N ⊘ ω ⇔ ω , 1N ⊘α, (4.2a)

β , −φ⊘ ω ⇔ φ , −β ⊘α. (4.2b)

Observe that for an ideal clock, [ωi, φi] = [1, 0] immediately implies [αi, βi] = [1, 0]
and vice versa.

4.2.2 Non-linear range model

In addition to clock variations, the nodes are also in motion with respect to each other.

Traditionally, when the nodes are fixed, the pairwise propagation delay τij between

a node pair (i, j) is τij = c−1dij , where dij is the fixed distance between the node
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pair and c is the speed of the electromagnetic wave in the medium. 1 However, when

the nodes are mobile, then the relative distances between the nodes are a non-linear

function of time. For a small measurement time period ∆T , the propagation delay

τij(t) between a node pair (i, j) is then, classically a Taylor series, given by

τij(t) , c−1Rij(t)

≈ c−1(r
(0)
ij + r

(1)
ij t+ r

(2)
ij t2 + . . .+ r

(L−1)
ij tL−1), (4.3)

where Rij(t) is the time-varying pairwise distance between node pair (i, j) and

rij =
[
r
(0)
ij , r

(1)
ij , r

(2)
ij , . . . , r

(L−1)
ij

]T
∈ R

L×1 contains all the range coefficients of

the corresponding Taylor approximation. The order of approximation and the range

of these L coefficients depend on the initial position and the type of motion of the

respective nodes. However, the propagation delay between the node pair is not meas-

ured at true time, instead by a local node clock, say node i. Hence, substituting the

equation of ideal true time t from (4.1), we have the propagation delay τij(ti) in

terms of the local time ti, i.e.,

τij(ti) = Gij(ti) , c−1Rij(Ci(ti))
≈ γ

(0)
ij + γ

(1)
ij ti + γ

(2)
ij t2i + . . .+ γ

(L−1)
ij tL−1

i , (4.4)

where Gij(ti) describes the pairwise propagation delay w.r.t. the local time at ti. The

coefficients γij =
[
γ
(0)
ij , γ

(1)
ij , γ

(2)
ij , . . . , γ

(L−1)
ij

]T
∈ R

L×1 are translated range para-

meters, which can be expressed in terms of rij , αi and βi.

For the entire network, comprising of N̄ =

(
N
2

)
unique pairwise links for N

nodes, all the unique range coefficients are given by

R =
[
r12, r13, . . . , r(N−1)N

]T ∈ R
N̄×L

=




r
(0)
12 r

(1)
12 · · · r

(L−1)
12

r
(0)
13 r

(1)
13 · · · r

(L−1)
13

...
. . .

...

r
(0)
(N−1)N r

(1)
(N−1)N · · · r

(L−1)
(N−1)N



, (4.5)

1Without the loss of generality, we assume line of sight communication and hence all physical

layer effects such as multi-path and shadowing are beyond the scope of this work. These scenarios can

be addressed using existing techniques in literature e.g., [Bellusci et al. 2008].
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and along similar lines, we have the translated range coefficients

Γ =
[
γ12,γ13, . . . ,γ(N−1)N

]T ∈ R
N̄×L

=




γ
(0)
12 γ

(1)
12 · · · γ

(L−1)
12

γ
(0)
13 γ

(1)
13 · · · γ

(L−1)
13

...
. . .

...

γ
(0)
(N−1)N γ

(1)
(N−1)N · · · γ

(L−1)
(N−1)N



, (4.6)

where r
(l)
ij and γ

(l)
ij represent the unique lth order range coefficient for (0 ≤ l ≤

L− 1) of the node pair (i, j) respectively. Furthermore, vectorizing these coefficient

matrices, we have

γ = vec(Γ) ∈ R
N̄L×1, r = vec(R) ∈ R

N̄L×1. (4.7)

Observe that although G(·) and R(·) are non-linear functions, Ci(ti) ∀ 1 ≤ i ≤
N is an affine translation and thus there exists a linear transformation matrix G ∈
R
N̄L×N̄L containing

[
α β

]
such that

r = Gγ ⇔ γ = G−1r. (4.8)

The expression for G is derived in Appendix 4.A.

4.2.3 Time-range interrelation

In the following section we present a generalized TWR scenario where the joint

time-range basis is applied. Furthermore, an estimation process is described to ob-

tain the network parameters θ = [α,β,γ]T ∈ R
M×1 where M = 2N + N̄L,

that are uniquely related to the desired unknown clock and range parameters ζ =
[ω,φ, r]T ∈ R

M×1 by (4.2) and (4.8) respectively. Finally the distance at discrete

time intervals is obtained using (4.4).

4.3 Pairwise synchronization and ranging

4.3.1 Data Model

Consider a pair of mobile nodes (i, j) with i < j, which are capable of two-way

communication with each other as shown in Figure 4.1. The two nodes communicate
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Figure 4.1: Asynchronous pair of mobile nodes: A generalized two-way ranging (TWR)

scenario between a pair of asynchronous nodes in motion, where the nodes exchange K time

stamps each. The curved lines symbolize the time-varying motion of the nodes, in addition

to the independent clock drifts. See Remark 1.

messages back and forth, and the time markers of transmission and reception are re-

gistered independently at respective nodes in respective local time coordinates. The

kth time stamp recorded at node i when communicating with node j is denoted by

Tij,k and similarly at node j the time stamp is Tji,k. Note that the total measurement

period in this framework is ∆T = Tij,K − Tij,1 seconds. The direction of the com-

munication is indicated by Eij,k, where Eij,k = +1 for transmission from node i to

node j and Eij,k = −1 for transmission from node j to node i. Furthermore, the

propagation delay between the nodes at each time instant 1 ≤ k ≤ K is given by

τij,k = c−1dij,k, where K is the total number of time stamps recorded at each node

and dij,k is the distance between the nodes at time instant k.

Under ideal circumstances, when the nodes are completely synchronized the

noise free kth communication time markers are related as

Tji,k =

{
Tij,k + c−1dij,k for i→ j (4.9a)

Tij,k − c−1dij,k for i← j (4.9b)

which can be combined as

Tji,k = Tij,k + c−1Eij,kdij,k for i↔ j (4.10)

= Tij,k + c−1Eij,kRij(Tij,k), (4.11)

where the distance between the nodes dij,k = cτij,k at time instant k is Rij(Tij,k)
defined in (4.3). However, due to clock uncertainties modeled in (4.2), and its sub-
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sequent influence on distance (4.4), (4.11) translates to

Ci(Tij,k)− Cj(Tji,k) + Eij,kGij(Tij,k) = 0, (4.12)

where without loss of generality, the time-varying pairwise distance is expressed as

a function of time at node i.
Furthermore, in reality due to measurement noise on the time markers, (4.12) is

Ci(Tij,k + ηi,k)− Cj(Tji,k + ηj,k) + Eij,kGij(Tij,k + ηi,k) = 0, (4.13)

where {ηi,k, ηj,k} are noise variables plaguing the timing measurements at respective

nodes. Rearranging the terms and incorporating the approximate range model for

τij(ti) from (4.4) as a function of local time at node i we have,

αiTij,k − αjTji,k + βi − βj︸ ︷︷ ︸
Clock parameters + Measurements

+ Eij,k︸︷︷︸
Direction

(γ
(0)
ij + γ

(1)
ij Tij,k + . . . )

︸ ︷︷ ︸
Range parameters + Measurements

= ηij,k︸︷︷︸
noise

(4.14)

which includes the error due to Taylor series expansion and where ηij,k is the stochastic

noise between the node pair (i, j) at the kth instant, which is discussed in Section 4.5.

Remark 1: (Mobile nodes during communication): In Figure 4.1, the curved

lines symbolize the independent clock drifts in addition to the time-varying distance

between the nodes. In traditional TWR, for a fixed pair of nodes (i.e., L = 1), the

pairwise distance dij,k is assumed to be invariant for the total measurement period

∆T = Tij,K − Tij,1. However, when the nodes are mobile, the distance at each

time instance k is dissimilar. Hence, instead of the classical assertion that the nodes

are relatively stable over a time period ∆T [IEEE Working Group 802.15.4 2007;

Noh et al. 2007; Leng and Wu 2010], we suppose that the nodes are relatively stable

over a much smaller time period of δt = |Tij,k − Tji,k| i.e., the propagation time

of the message. Furthermore, unlike previous cases [IEEE Working Group 802.15.4

2007; Noh et al. 2007; Leng and Wu 2010] where the transmission and reception was

alternating, the proposed setup imposes no pre-requisites on the sequence or number

of two-way communications [Rajan and van der Veen 2011; Rajan and van der Veen

2012; Rajan and van der Veen 2013]. However, at least a single communication in

the opposite direction is required for a feasible solution.
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4.3.2 Mobile Pairwise Least Squares (MPLS)

Extending (4.14) for all K communications, a generalized joint clock and (L− 1)th
order range model for a pair of nodes is

[
Aij,1 Aij,2

]




αi

αj

βi
βj

γ
(0)
ij

γ
(1)
ij

γ
(2)
ij
...

γ
(L−1)
ij




= ηij , (4.15)

where

Aij,1 =
[
tij −tji 1K −1K

]
, (4.16)

Aij,2 = EijVij , (4.17)

Vij =
[
t⊙0
ij t⊙1

ij . . . , t⊙L−1
ij

]
, (4.18)

contain the observation vectors

tij = [Tij,1, Tij,2, . . . , Tij,K ]T ∈ R
K×1, (4.19)

Eij = diag(eij) ∈ R
K×K , (4.20)

eij = [Eij,1, Eij,2, . . . , Eij,K ]T ∈ R
K×1. (4.21)

The time markers recorded at node i and node j while communicating with each other

are stored in tij and tji respectively, eij is a known vector indicating the transmission

direction for each data packet and the noise vector ηij ∈ R
K×1 is

ηij = [ηij,1, ηij,2, . . . , ηij,K ]T ∈ R
K×1. (4.22)

Given a sufficiently large number of communications K between the two nodes,

the homogeneous system (4.15) has a non-trivial solution spanning the null space of

[Aij,1 Aij,2]. The known Vandermonde matrix Vij is full rank for K sufficiently

large. Secondly, in Aij,1 the column vectors 1K and −1K are completely dependent
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4. Synchronization and ranging

and although [tij − tji] is full rank, it is observed that the matrix Aij,1 is rank

deficient by 2 and the corresponding null space is data dependent [Rajan and van der

Veen 2011].

A unique solution can be obtained by assuming either one of {αi, αj} and either

one of {βi, βj} is known and thus eliminating respective columns in Aij,1, which is in

turn accomplished by choosing one of the two nodes as a clock reference[Rajan and

van der Veen 2011]. More generally, we can translate the homogeneous equations

into normal equations by asserting one of the two nodes as the reference node, say

node i with [αi, βi] = [1, 0]. This gives

Aijθij = bij + ηij (4.23)

where

Aij = [−tji − 1K Aij,2] ∈ R
K×(L+2), (4.24)

θij = [αj βj γT
ij ]

T ∈ R
(L+2)×1, (4.25)

bij = −tij . (4.26)

The Mobile Pairwise Least Squares (MPLS) solution is then obtained by minimizing

the l2 norm,

θ̂ij = argmin
θij

‖Aijθij − bij‖2 = (AT
ijAij)

−1AT
ijbij , (4.27)

where θ̂ij = [α̂j β̂j γ̂
T
ij ]

T is an estimate of θ. Following, an estimate of the desired

clock and range parameters [ω̂j φ̂j r̂
T
ij ]

T can then be obtained using (4.2) and (4.8).
An estimate of the approximated distance dij,k between the nodes at the kth time

instant is then from (4.4)

d̂ij,k = c
(
γ̂
(0)
ij + γ̂

(1)
ij Tij,k + γ̂

(2)
ij T 2

ij,k + . . .+ γ̂
(L)
ij TL−1

ij,k

)
, (4.28)

and for all 1 ≤ k ≤ K, we have

d̂ij = cVijγ̂ij , (4.29)

where Vij is the Vandermonde matrix (4.18) and d̂ij =
[
d̂ij,1, d̂ij,2, . . . , d̂ij,K

]T ∈
R
K×1 is the distance estimate between the node pair (i, j) at all K time instances.

More generally, when L is unknown, solutions for increasing L can be estimated

using iterative MPLS (iMPLS) (based on order recursive least squares [Kay 1993]),
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Node 1

Node 2

Node 3

Node 4

Figure 4.2: Illustration of a network of mobile nodes: A network with N = 4 nodes, each

capable of two-way communication. The clock skews and clock offsets of node 2, 3 and 4
are unknown and are to be estimated, in addition to all unknown range parameters.

which we briefly describe in Appendix 4.B for the sake of completeness. This order

recursive least squares not only implicitly estimates the unknown L by increment-

ing the number of columns of the Vandermonde structure Aij,2 iteratively, but also

implements computationally economical updates of the inverse and solutions (4.27).

Although the MPLS solution is motivated for a mobile network of nodes, it is

readily applicable for a network of immobile nodes. In that case, for a given node

pair {i, j} the estimated range parameter r
(0)
ij indicates the fixed uncalibrated com-

munication latency during the exchange of time stamps and the higher order range

parameters indicate the latency fluctuations during communication.

Remark 2: (Feasibility of the MPLS solution): The solution (4.27) is feasible

if Aij,L ∈ R
K×(L+2) is a square or tall matrix i.e., the number of communications

K ≥ (L + 2). Secondly, to ensure full column rank, we require eij 6= −1K and

eij 6= +1K . In other words, among the K ≥ (L + 2) data exchanges between the

two nodes, there must be at least one transmission from i to j and j to i respectively.

Remark 3: (Sub-optimality of the MPLS solution): The proposed LS solution

(4.27) is suboptimal if the linear model is heteroscedastic or when the noise plaguing

the system (4.23) is correlated, which can be improved by employing a Weighted

Least Squares (WLS). Alternatively, since both A and b contain noise, the corres-

ponding cost function can be minimized using a Total Least Squares (TLS) estimator.

[Lawson and Hanson 1974] .

4.4 Network synchronization and ranging

We now extend the pairwise model in (4.15) to the entire network, i.e., N ≥ 2, and

intend to find a global solution for joint ranging and synchronization. In the pro-

cess, for the sake of notational simplicity we assume all nodes transmit K messages,
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which is not mandatory. Secondly, we enforce the same approximation order on both

time (first order) and distance ((L − 1)th order) for all node pairs (during the small

measurement period). Thus, the proposed solution may not be accurate when the

magnitude of the estimation parameters of some nodes vary eccentrically from the

rest of the cluster within the approximation time period. As an illustration, Figure 4.2

shows a network consisting of N = 4 nodes with N̄ = 6 pairwise communication

links.

4.4.1 Mobile Global Least Squares (MGLS)

Aggregating (4.15) for all pairwise links in the network, we have a linear global

model of the form

A︷ ︸︸ ︷
[T H V̄]

θ︷ ︸︸ ︷

α

β

γ


 = η, (4.30)

where V̄ = EV and V ∈ R
N̄K×N̄L is a Vandermonde-like matrix given by

V =
[
IN̄ ⊗ 1K T̄⊙1 . . . T̄⊙L−1

]
. (4.31)

T ∈ R
N̄K×N , T̄ ∈ R

N̄K×N̄ are measurement matrices contain the timing vectors re-

corded at all N nodes. H ∈ R
N̄K×N is a matrix of± 1K and 0K , and E ∈ R

N̄K×N̄L

contains all the vectors which indicate the direction of the two-way communication.

The noise vector is represented as

η = [ηT
12,η

T
13, . . . ,η

T
(N−1)(N)]

T ∈ R
N̄K×1, (4.32)

where each ηij is given by (4.22). We assume that the noise vectors for each pairwise

communication ηij are uncorrelated with one another, which may not be applicable

for all communication schemes e.g., broadcasting.
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For N = 4, T, H, T̄, E are of the form

T =




t12 −t21
t13 −t31
t14 −t41

t23 −t32
t24 −t42

t34 −t43



,

H =




+1K −1K
+1K −1K
+1K −1K

+1K −1K
+1K −1K

+1K −1K



,

T̄ = diag(t12, t13, t14, t23, t24, t34),

E = bdiag(E12,E13,E14,E23,E24,E34), (4.33)

where the empty spaces in matrices T,H are entries with 0. A similar structure

can be obtained for N ≥ 4. The vector tij contains the time stamps recorded at

the ith node when communicating with the jth node in the network and is defined

in (4.19). Similarly, Eij contains the direction information of the corresponding

pairwise communication and is defined in (4.20).
Let us analyze the submatrices of A. We find T̄ and E are full column rank

since they are block diagonal and subsequently, V̄ = EV is a full rank matrix. H

is rank deficient by 1, with a null space spanning {1N}. The sparsely populated

matrix T containing the time stamp vectors is full rank. However, augmenting T

with the matrix H further reduces the rank of A by 1 and hence we require at least 2
constraints. This is expected, since a clock reference is needed to solve for unknown

clock and range parameters of the network, as observed in Section 4.3.2.

4.4.2 Equality constrained least squares

Traditionally, a simple constraint would be to choose a random node as the clock

reference and thereby eliminating the rank deficiency in A. Following which, it

is straightforward to formulate a global solution similar to (4.23), however in this

section we will present a generic constrained least squares framework, the benefits of

which will be discussed in Section 4.6.4. Thus, more generally, the unknown vector
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θ ∈ R
M×1, where M = 2N+N̄L, can be estimated by minimizing the cost function

min
θ

‖Aθ‖2 s.t. Cθ = b, (4.34)

where A is the (rank-deficient) matrix defined in (4.30), C ∈ R
N2×M is a known

constraint matrix and b ∈ R
N2×1, where N2 is the number of constraints. The

equation Cθ = b implements the feasibility conditions, enforcing N2 ≥ 2 linearly

independent constraints on θ. Assuming the constraints are selected such that

[
A

C

]
∈

R
(N̄K+N2)×L is non-singular and b 6= 0N2

[Lawson and Hanson 1974], the solution

to (4.34) is obtained by solving the Karush-Kuhn-Tucker (KKT) equations [Boyd

and Vandenberghe 2004] and is given by

[
θ̂

λ̂

]
=

[
2ATA CT

C 0N2,N2

]−1 [
0

b

]
, (4.35)

where λ ∈ R
N2×1 is the Lagrange vector. A detailed discussion on the choice of the

constraint matrix C is presented in Section 4.6.

Given the estimate θ̂ = [α̂T , β̂
T
, γ̂T ]T , an estimate of the clock parameters

{ω̂, φ̂} is estimated using (4.2) and the pairwise range parameters r̂ between the

nodes using (4.8). Furthermore, all the unique N̄ pairwise distances between the

nodes d̂ = [d̂T
12, d̂

T
13, . . . , d̂

T
(N−1)N ]T ∈ R

N̄K×1 at all K time instances are given by

d̂ = cVγ̂, (4.36)

where V is defined in (4.31). Similar to the iterative MPLS (iMPLS) solution (Ap-

pendix 4.B), we propose an iterative equality constrained least squares algorithm

(iMGLS) in Appendix 4.C to estimate θ in the presence of unknown L. Note that d

is linearly dependent on the clock parameter estimates since d̂ = cVγ̂ = cVĜ−1r̂

using (4.8), where Ĝ is the transformation matrix containing the clock parameter es-

timates (4.6). While this 2-step optimization (of estimating the clocks first followed

by distance) is suboptimal in theory, simulations point out the effectiveness of the

method. See Section 4.7.

Remark 4: (Extension to partially connected networks): The closed form

solution (4.35) is for a full mesh network. More generally, if some pairwise com-

munications links are missing then the corresponding rows in the primary matrix A

are dropped. Consequentially, the pairwise distances between those particular nodes

cannot be estimated. However, despite missing links, network wide synchronization
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1

2

3

4

(a)

1

2

3

4

(b)

1

2

3

(c)

1

2

3

4

(d)

4

Figure 4.3: Illustration of feasible networks for the proposed algorithms: Four networks

with N = 4 nodes each capable of two-way communication. The nodes shaded in black are

the clock references. The 4 networks are illustrative examples where MGLS algorithm (and

thus the constrained formulation) can be applied for network wide clock synchronization,

despite missing communication links and multiple clock references.

is still feasible using the proposed algorithms if the primary matrix in (4.35) is full

rank [Rajan and van der Veen 2011; Rajan and van der Veen 2012]. A few feas-

ible topologies are illustrated in Figure 4.3. For global synchronization, the network

must consist of at least N − 1 links, where every node has at least a single two-way

communication link with one other node in the network.

Remark 5: (Distributed MGLS): It is worth noting that, for N = 2, the central-

ized MGLS is identical to the MPLS solution. However, the MGLS solution yields

a better estimate for the clock parameters (when N̄ > N i.e., N ≥ 4) due to an

increase in number of unique pairwise links, which will be discussed in Section 4.7.

Furthermore, although suboptimal, the MPLS is a distributed alternative to the cent-

ralized MGLS for estimating the clocks and range parameters. For large number of

message exchanges and/or a large network of nodes i.e., KN̄ ≫ (L+2), the compu-

tational complexity of the MGLS algorithm isO(KN2L2), which can be distributed

efficiently using prevalent techniques [Bertrand and Moonen 2011].
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4.5 Cramér-Rao bounds

4.5.1 Noise modeling

In reality, the time markers in (4.13) are plagued with measurement noise, which

for simplicity is here assumed to be Gaussian [Serpedin and Chaudhari 2009]. 2

Hence the noise on the nodes {i, j} at the kth time instant in (4.13) are modeled as

{ηi,k, ηj,k} ∼ N (0, 0.5σ2), where without loss of generality, we assume the same

noise variance on both transmission and reception markers. Subsequently, the cumu-

lative noise vector ηij,k for the pairwise link (4.14), after ignoring the higher order

noise terms, is

ηij,k = αjηj,k −
(
αi + Eij,k(γ

(1)
ij + 2γ

(2)
ij Tij,k + . . . )

)
ηi,k,

which is modeled as

ηij,k ∼ N (0, 0.5σ2(α2
j + (αi + γ

(1)
ij + 2γ

(2)
ij Tij,k + . . . )2)).

Note that, for c = 3 × 108 m/s the term (γ
(1)
ij + 2γ

(2)
ij Tij,k + . . . ) is scaled by

c−1 (by definition of γ in (4.68) and (4.67) and thus is negligibly small for small

measurement periods. Hence the gaussian noise simplifies to

ηij,k ∼ N (0, 0.5σ2(α2
i + α2

j )), (4.37)

and for the entire network, we have

η ∼ N (0,Ση), (4.38)

where Ση = σ2(Ã ⊗ IK) ∈ R
KN̄×1 and Ã ∈ R

N̄×1 is of the form

Ã = 0.5diag(α2
1 + α2

2, α
2
1 + α2

3, . . . , α
2
N−1 + α2

N ). (4.39)

Remark 6: (Distance dependent noise): In reality, the pairwise noise ηij,k is

also dependent on the distance between the nodes and the physical communication

medium [Jia and Buehrer 2008], in which case the noise is correlated with both chan-

nel effects and range parameters. The presented model can be readily extended to

address these scenarios, where a weighted least squares solution would be appropri-

ate in contrast to the proposed least squares solution.

2Elsewhere, the noise on the time markers is also modeled as uniformly random variable (rising

from quantization errors) or an exponential distribution [Abdel-Ghaffar 2002; Serpedin and Chaudhari

2009].
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4.5.2 Lower Bounds for joint time-range estimation

In order to verify the performance of the proposed algorithms, we derive a Con-

strained Cramér-Rao lower Bound (CCRB) for the joint affine clock and L − 1th

order range model defined in (4.30). The error vector η in (4.30) is Gaussian by as-

sumption and following immediately, the Constrained Cramér-Rao Bound (CCRB)

on the error variance for an unbiased estimator is given by [Stoica and Ng 1998]

E

{
(θ̂ − θ)(θ̂ − θ)T

}
≥ Σθ ,



Σα ∗ ∗
∗ Σβ ∗
∗ ∗ Σγ


 = U(UTFU)−1UT , (4.40)

where Σθ is the Cramér-Rao lower Bound on θ =
[
αT , βT , γT

]T
, ∗ represent

entries not of interest, U ∈ R
M×(M−N2) with M = 2N + N̄L is an orthonormal

basis for the null space of the constraint matrix C with N2 constraints

F = ATΣ−1
η A ∈ R

M×M , (4.41)

is the Fisher Information Matrix (FIM) and Ση is the covariance of the noise on the

time markers (4.38). Moreover, since the system parameters ζ =
[
ωT , φT , rT

]T
can be uniquely derived from θ, we have the CRB on the estimates of ζ from standard

error propagation formulas [Kay 1993] as

Σζ ,



Σω ∗ ∗
∗ Σφ ∗
∗ ∗ Σr


 = JθζΣθJ

T
θζ , (4.42)

where Σθ is given by (4.40) and Jθζ ∈ R
M×M is the Jacobian of the transformation

of ζ from θ (Appendix 4.D). Following immediately, given the lower bound on the

variance of γ as Σγ ∈ R
N̄L×N̄L, the lower bound on the variance of the distance

estimate (4.36) is

Σd = c2VΣγV
T , (4.43)

where V is the Vandermonde-like matrix (4.31).

4.6 On the choice of clock reference

Observe that the solution to θ in (4.35) and its corresponding performance (4.40),

(4.42) is not only data dependent, but also depends on the choice of constraints. The
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primary matrix A is rank deficient by 2 and hence, N2 ≥ 2 feasible constraints are

needed on the clock parameters to ensure a unique solution in (4.35). In view of

achieving an optimal solution, we discuss three potential constraints, namely (a) the

Classic constraint, (b) a Nullspace constraint and (c) the Sum constraint.

4.6.1 Classic constraint

The minimum requirement for a feasible solution is to use an arbitrary node i as a

clock reference, i.e., the constraint αi = 1 and βi = 0, which yields the classic

constraint,

C1 =

[
cTi 0TN 0T

N̄L

0TN cTi 0T
N̄L

]
, b1 =

[
1
0

]
, (4.44)

where

ci = [0Ti−1, 1, 0
T
N−i]

T ∈ R
N×1. (4.45)

Such a constraint is often utilized without further discussion for clock synchroniz-

ation in a network of fixed nodes [IEEE Working Group 802.15.4 2007; Serpedin

and Chaudhari 2009; Wu, Chaudhari and Serpedin 2011] and much of the literature

on localization [Zheng and Wu 2010]. To alleviate the dependence on a single node

for clock reference, we propose 2 virtual clocks via the Nullspace constraint and the

Sum constraint in the following sections.

4.6.2 Nullspace constraint

Among the set of all feasible linearly independent constraints, the pseudo-inverse of

the unconstrained FIM yields the lowest value for the total variance on all estimated

parameters [Carvalho, Cioffi and Slock 2000]. Let the spectral decomposition of the

rank deficient FIM be

F = [V1 V2]

[
Λ1 0

0 Λ2

]
[V1 V2]

T ≈ V1Λ1V
T
1 , (4.46)

where Λ1 is a diagonal matrix containing the non-zero eigenvalues and V1 the cor-

responding eigenvectors. Now, let C2 be the nullspace constraint matrix such that

the range of CT
2 spans the null space of F (i.e., in the range of V2). Subsequently,

the orthogonal basis for the null space of C2 i.e., U2 spans the range of V1, and the
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trace of the CCRB (4.40) is

Tr (Σθ) = Tr
[
U2(U

T
2 FU2)

−1UT
2

]

= Tr
[
V1(V

T
1 (V1Λ1V

T
1 )V1)

−1VT
1

]

= Tr
[
Λ−1

1

]
= Tr

[
F†
]
, (4.47)

where we use the property VT
1 V1 = I and exploit the cyclic nature of the trace oper-

ator. Hence, the nullspace constraint yields the pseudo-inverse of the unconstrained

FIM, which is the lowest achievable total variance on all estimated parameters. This

implies that any set of vectors which span the nullspace of the FIM form an optimal

constraint for the system.

Observe that the Nullspace constraint offers little insight on the optimality of the

independent parameters α,β,γ and subsequently on the translated parameters of

interest ω,φ and d. Furthermore, this constraint is data dependent and presents no

physical intuition on the estimated parameters. However, the Nullspace constraint

cannot be dismissed since it guarantees the lowest variance on the overall estimate θ.

4.6.3 Sum constraint

In the pursuit of a data independent constraint and inspired by [Wijnholds and van

der Veen 2006], we propose a sum constraint, whereby we enforce the sum of all αi

to be 1 and the sum of all βi to be 0, i.e.,
∑N

i αi = 1 and
∑N

i βi = 0, which begets

a new constraint matrix

C2 =

[
1TN 0TN 0T

N̄L
0TN 1TN 0T

N̄L

]
, b2 =

[
1
0

]
. (4.48)

The sum constraint proposes a virtual “average” clock, which in turn is governed

by the clock errors {α,β} of all the clocks in the network and thereby alleviates a

single clock reference which maybe potentially unstable. In case of the classic con-

straint with a single clock reference, the variance of the reference clock parameters is

artificially put to zero and thereby accruing its variance to all other clock parameter

estimates. In comparison, the sum constraint computes the average βi (and αi) for all

the nodes, which leads to about a factor 2 reduction in the variance of the estimate of

βi (and αi), and subsequent improvement on ω and φ due to averaging, as observed

in the simulations. See Section 4.7.

As shown in Section 4.6.2, any set of constraints that span the null space of

the FIM yield an optimal estimate of the unknown parameter. Among the pair of
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proposed sum constraints on α,β, observe that the second constraint [0TN 1TN 0T
N̄L

]T

indeed lies in the null space of the FIM (4.41), since H1N = 0N̄ . However, a similar

argument cannot be made for the constraint on α, i.e., [1TN 0TN 0T
N̄L

]T , thus the sum

constraint is not yet optimal (unlike the case in [Wijnholds and van der Veen 2006]),

although it is seen to be close to optimum in simulations.

4.6.4 Benefits of the constrained formulation

Contrary to the pairwise algorithm MPLS, which was formulated as a least square

solution, the global algorithm is structured as a constrained least squares problem.

Such a generic framework enables the user to incorporate additional a priori inform-

ation into the constraint matrix C and thereby obtain a lower variance on the clock

and range estimates. For example, if the network has three reference nodes, say

node 1, 3, and 4, which is common in joint TOA localization and synchronization

[Zheng and Wu 2010; Zhu and Ding 2010] (refer Figure 4.3(d)), then by increasing

the number of rows M2 of the constraint matrix C, such as

Ć =




cT1 0TN 0T
N̄L

0TN cT1 0T
N̄L

cT3 0TN 0T
N̄L

0TN cT3 0T
N̄L

cT4 0TN 0T
N̄L

0TN cT4 0T
N̄L



, b́ =




α1

β1
α3

β3
α4

β4



, (4.49)

a better estimate can be obtained for the unknown clock parameters of node 2. As

a special case, if there are one-way communication links from the reference nodes

to node 2 and the reference nodes directly communicate their true time, then Fig-

ure 4.3(d) simplifies to the conventional GPS based synchronization and ranging

[Kaplan and Hegarty 2006]. Likewise, for L = 1, in a network with adequate known

node positions, one can incorporate known pairwise distances in the constraint mat-

rix to yield higher accuracy in overall estimates. The formulation in (4.34) is thus a

convenient framework to incorporate various prevalent scenarios.

4.7 Simulations

Simulations are conducted to evaluate the performance of the proposed estimators.

We consider a network of N = 5 mobile nodes, each capable of two-way commu-

nication with each other. The nodes transmit and receive time stamps alternatively
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and thus the direction matrix E is (4.33), where eij = [+1,−1]T ⊗10.5K . The trans-

mission time markers tij are linearly distributed within a small measurement time

interval of ∆T = [−1.5, 1.5] seconds. All the nodes are equipped with independent

clock oscillators, whose clock skews (ω) and clock offsets (φ) are uniform randomly

distributed in the range [1−10ppm, 1+10ppm] and [−10,+10] seconds respectively,

which are given by (4.50) and (4.51) respectively.

The metric used to evaluate the performance of the estimators is the Root Mean

Square Error (RMSE) given by

RMSE(ẑ, z) =

√√√√N−1
exp

Nexp∑

n=1

||ẑ(n)− z||2, (4.54)

where ẑ(n) is the nth estimate of the unknown vector z ∈ R
N×1 to be estimated

and the number of experiments is Nexp = 1000. Furthermore, along with the RMSE

plots, the square Root of the constrained Cramér-Rao Bounds (RCRB) derived in

Section 4.5 are also plotted for the three constraints discussed in Section 4.6. In case

of the classic constraint, node 1 is assumed to be the reference node without loss of

generality.

To verify the proposed algorithms, two simulation setups are considered: (a) a

fixed network of asynchronous nodes, and (b) a mobile network of asynchronous

nodes. Furthermore, both setups are evaluated for (1) varying number of pairwise

communications K for fixed noise on the time markers with standard deviation σ =
1meter and (2) varying σ in the range [−10,+10] dBmeters for K = 10. The error of

σ = 1meter translates to a timing error of ≈ 3.3ns for a static network model, since

var(τij) = c2 × var(dij) with c = 3 × 108 m/s. Although such high SNR is not

usually considered in clock synchronization literature [Wu, Chaudhari and Serpedin

ω = [1.0000, 0.9995, 1.0008, 1.0009, 0.9999]T (4.50)

φ = [0, 1.8787, 8.1303, 4.5389, 1.9800]T (4.51)

X =



−3446 −748 −4044 −4566 1968
−1424 −1140 2712 −4031 2111
4384 −3376 −4352 −1198 1580


m (4.52)

Y =



−35 36 −13 −47 −20
−43 40 −42 8 −8
23 19 −23 4 41


m/s (4.53)

87



4. Synchronization and ranging

2011], it is typical to achieve meter level accuracies for localization [Patwari et al.

2005; Patwari et al. 2003].

4.7.1 Immobile network

Let the locations of the N nodes be X =
[
x1,x2, . . . ,xN

]
∈ R

N×3 in a 3-dim.

space, which are arbitrarily chosen to be (4.52), where xi ∈ R
3×1 is the position of

the ith node. The time invariant propagation delay between the nodes is then

τij , c−1dij = c−1r
(0)
ij = c−1‖xi − xj‖2. (4.55)

The proposed MPLS algorithm (Section 4.3.2) for L = 1 is independently applied,

pairwise from node 1 to every other node as in Figure 4.3a to estimate all the un-

known clock skews (ω), clock offsets (φ) and range parameters (r). For the entire

network, the proposed MGLS (Section 4.4.1) algorithm (with L = 1) is applied to

estimate both the clock parameters {ω φ} and the range parameters r. Note that for

a fixed network d , r ∈ R
N̄×1, where d contains all N̄ unique pairwise distances

within the network. Figure 4.4 show the RMSE plots for the clock skew (ω) and the

clock offset (φ) and pairwise distances (d). The RMSE of clock parameter estim-

ates from the Low Complexity Least Squares (LCLS) solution [Leng and Wu 2010]

(L = 1) is also presented for clock skew and offset, which not surprisingly performs

similar to the MPLS solution for a fixed network [Rajan and van der Veen 2011].

The MGLS estimate outperforms the MPLS estimate, which is expected, since

the total number of communication channels available for the MGLS estimate is

greater than that for MPLS i.e., N̄ > (N − 1) for N ≥ 2. Furthermore, the MGLS is

shown to achieve the CCRB bounds for L = 1 for both clock and range parameters

since the least square solution is the Minimum Variance Unbiased estimate for the

assumed Gaussian noise model. For the given experimental setup, with 10ns (≈
3.3meters) noise on the time measurements, distance accuracies improve by an order

for K = 100 two-way communications (see Figure4.4(c)).
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Figure 4.4: Immobile network: (Left) Varying K: RMSEs (and RCRBs) of (a) clock

skew, (b) clock offset and (c) distances for varying number of communications (K) between

the N = 5 fixed nodes for σ = 3.3nS (1 meter). (Right) Varying σ: RMSEs (and RCRBs)

of (d) clock skew, (e) clock offset and (f) distances for a cluster of fixed nodes, for varying

noise (σ) on the time measurements with K = 10 number of communications.
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In addition, the nullspace and sum constraints are shown to improve the perform-

ance of the clock parameter estimates by about a factor 2. It is worth noting that, the

RMSE (and RCRBs) of the clock parameters and distance for the sum constraint is

nearly the same as the nullspace constraint. A discussion on the lower bound of the

distance parameter is presented in Appendix 4.E.

4.7.2 Mobile network

To investigate the performance of the Least Square solutions for a cluster of mobile

nodes, we consider a simple scenario where the nodes are mobile with constant inde-

pendent velocities. 3 The independent constant velocities of the N nodes are given

by Y =
[
y1,y2, . . . ,yN

]
∈ R

N×3 , which similar to the initial positions, are also

arbitrarily chosen as (4.53). Hence, the true time-varying propagation delay τij(t)
w.r.t. to the clock in node i, between the nodes at time instant k, is

τij,k , c−1dij,k = c−1‖x̃i,k − x̃j,k‖2, (4.56)

where

x̃i,k = xi + yiTij,k ∀ 1 ≤ i ≤ N. (4.57)

Note that, even though the nodes are in linear motion, the pairwise distance between

the nodes is always non-linear (4.56). In previous cases [Rajan and van der Veen

2011; Rajan and van der Veen 2012; Rajan and van der Veen 2013], fixed range

parameters rij =
[
r
(0)
ij , r

(1)
ij , r

(2)
ij , . . . , r

(L−1)
ij

]T
∀i, j ≤ N were used for simulation

ensuring the linearity of the joint time-range model, which is unlike the current ex-

perimental setup where distance is inherently non-linear.

Furthermore, since L is unknown the proposed iMPLS algorithm (Appendix 4.B)

is independently applied, pairwise from node 1 to every other node as in Figure 4.3(a)

to estimate all the unknown clock skews, clock offsets and range coefficients. For the

given input parameters, the iterative algorithms are observed to converge for L = 3.

For the entire network the iMGLS algorithm (Appendix 4.C) is applied to estimate

the clock parameters [ω φ] and the distances. Observe that unlike the fixed network

(with N̄ unique pairwise distances), the mobile scenario has N̄K unique pairwise

distances to be estimated, i.e., N̄ unique pairwise distances between the nodes, at all

K discrete time instances during the measurement period ∆T . As before, we invest-

igate the performance of the proposed algorithms for all the 3 constraints, i.e., the

3Note that the presented model is more general and readily applicable to any motion, as long as

τij(t) is a continuous function of time.

90



4.7. Simulations

classic constraint, nullspace constraint and the sum constraint. All the correspond-

ing RMSEs of the clock skew, offset and distance estimates are plotted in Figure 4.5

along with their respective RCRB derived in (4.42) and (4.43) for various constraints.

The proposed iMPLS algorithm outperforms the LCLS algorithm [Leng and Wu

2010] for clock skew and offset estimation of a mobile network, as shown in Fig-

ure 4.5(a), Figure 4.5(b), Figure 4.5(d) and Figure 4.5(e). Recall that the LCLS

algorithm assumes a fixed network. In addition, numerous outliers are also observed

in case of LCLS, since the approximation error of the time-varying distance domin-

ates the Gaussian noise under consideration. Secondly, it is perhaps not surprising

that the iMGLS solution achieves the theoretical bounds asymptotically for the clock

parameters (α,β) since the linearity of the clock model is ensured via exact para-

metrization. However, for the non-linear range model in conjunction with the affine

clock model, given that the nodes are in independent linear motion (4.52, 4.53), the

distance parameters achieving the CCRB at L = 3 validates the joint time-range

model.

Remark 7: (Noise covariance): We observed in (4.37) and (4.38) that the cov-

ariance of the noise on the time markers was coupled with the estimated parameter α.

However, in spite of this dependency, the proposed least squares estimate achieves

the CRB asymptotically. This is a consequence of the clock skews ω typically being

close to 1, with errors of the order of 10−4 or so [IEEE Working Group 802.15.4

2007]. Therefore, α2
i ≈ 1 ∀ i ≤ N in (4.37), which simplifies the scaling of the

noise covariance (4.39) to Ã = IN̄ and subsequently (4.38) reduces to,

η ∼ N (0, σ2IKN̄ ). (4.58)

Such an approximation is satisfactory and is implicitly employed in various literature

[Noh et al. 2007; Leng and Wu 2010; Rajan and van der Veen 2011; Wu, Chaudhari

and Serpedin 2011; Wang, Ma and Leus 2011a] for conventional fixed networks.

In Figure 4.5(d), Figure 4.5(e) and Figure 4.5(f), where the RMSE of the pro-

posed algorithms are compared against varying noise variance, the iMPLS shows

considerable improvement over LCLS for high SNR. For lower SNR however, par-

ticularly when σ > 1 meters, the difference between the performances of iMPLS and

LCLS is negligible. This is because the noise variance exceeds the magnitude of the

velocities (few meters/second in the current experimental setup) and hence, the effect

of higher order approximation of the time-varying distance is ineffective.
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Figure 4.5: Mobile network: (Left) Varying K: RMSEs (and RCRBs) of (a) clock skew, (b)

clock offset and (c) distance estimates, for varying number of communications (K) between

the N = 5 mobile nodes for σ = 3.3nS (1 meter). (Right) Varying σ: RMSEs (and RCRBs)

of (d) clock skew, (e) clock offset and (f) distance estimates for a cluster of mobile nodes, for

varying noise (σ) on the time measurements with K = 10 number of communications.

92



4.7. Simulations

10 13 16 20 25 32 40 50 63 79 100

10
−1

10
0

 

 

(a)

Number of communications (K)

R
M

S
E

Range (m): r

Range rate (m/s): ṙ
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Figure 4.6: Mobile network: RMSEs of range parameters (a) for varying number of com-

munications (K) between the nodes for σ = 1 meter and (b) for varying noise (σ) on the

Time measurements with number of communication K = 10.

For the sake of completeness, the range coefficients along with their respective

CRBs are also plotted in Figure 4.6, which are shown to achieve the derived CRB

asymptotically. The purpose of these coefficients, beyond polynomial fitting of time-

varying distance, will be discussed in the following chapters.

4.7.3 Effect of L on estimation error

The iterative algorithms (iMPLS, iMGLS) implicity choose the distance approxima-

tion order L which minimizes the Least Squares error. To understand the effect of

choosing L on the RMSE of the clock and distance parameters, we investigate the

performance of MPLS and MGLS algorithms for L = 1, 2, 3. Figure 4.7 shows the

RMSE and RCRB plots of the proposed algorithm for varying K and varying SNR

with a single clock reference, i.e., the classic constraint. 5

For the given experimental setup, the RCRBs of the clock parameters are nearly

indistinguishable for L = 1, 2, 3 (and thus overlay on the plots). However, Fig-

ure 4.7(a) and 4.7(b) show an order improvement in the performance of the MGLS

algorithm for clock offset and skew. Furthermore, the disparity between L = 1 and

the optimal L = 3 decreases steadily by an order of magnitude for higher SNR

scenarios as presented in Figure 4.7(d) and 4.7(e). A significant advantage of util-

izing the proper L is observed in RMSE of the distance parameter in Figure 4.7(c)

and Figure 4.7(f). As the approximation order increases, the RCRB of the distance

(dominated by the Vandermonde-like system) also increases, while the RMSE of the
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distance estimate steadily decreases with incrementing L. An optimality is achieved

at L = 3, when the RMSE of the distance estimate meets the RCRB. Similar to the

performance of the clock parameters, for lower SNR the higher order approximation

is redundant.

4.7.4 Extension to partially connected networks

The proposed MGLS algorithm caters to a full mesh network and can be extended to

partial networks for clock synchronization as discussed in Remark 3. For the given

mobile network of N = 5 nodes, the minimum requirement on the number of links

is N − 1 = 4 and for a full mesh network we have N̄ = 10 links. We evaluate

the performance of the MGLS algorithm for the synchronization in case of a par-

tially connected network, by varying the number of connected links as 4, 6, 8 and

10. The links are arbitrarily chosen such that each node has at least single two-way

communication link with one other node in the network, to ensure network wide syn-

chronization. Subsequently, the rows and columns of the corresponding non-existing

links are eliminated from the primary matrix A (4.30). The MGLS algorithm is

implemented for L = 3 with a single clock reference (i.e., classic constraint 5) for

K = 10 and σ = 1meter, and the performance of the clock parameters are presented

in Figure 4.8, shown by blue colored markers. Not surprisingly, the RMSE of clock

parameters deteriorate with the increase in missing links.

In addition, to emphasize the benefits of the constrained formulation (Section

4.6.4), we assume that first 3 clocks of the 5 node clocks are known in each of the

partially connected networks under study. The constraint matrix is then accordingly

designed (e.g., (4.49)) and the performance of the corresponding MGLS solution

is presented in Figure 4.8, shown by red colored markers. The incorporation of 2
additional reference clocks improves the performance of the clock parameters. Fur-

thermore, observe that a partially connected network with 8 links and 3 reference

clocks outperforms the full mesh network of 10 with a single clock. Such observa-

tions can be directly interpreted from the CCRB and the proposed algorithm achieves

this CCRB asymptotically, catering readily to such partially connected networks with

(or without) apriori information.

5The classic constraint is arbitrarily chosen for investigating this scenario. Alternatively, these

experiments can also be conducted using the proposed Nullspace and Sum constraints, which follow

similar trends.
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Figure 4.7: Choice of L on estimator performance: (Left) Varying K: RMSEs (and

RCRBs) of (a) clock skew, (b) clock offset and (c) distances for varying number of commu-

nications (K) between the N = 5 mobile nodes with σ = 3.3nS (1 meter) and different

orders of approximation L. (Right) Varying σ: RMSEs (and RCRBs) (a) clock skew, (b)

clock offset and (c) distances, for varying noise (σ) on the time measurements with K = 10
and different orders of approximation L.
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Figure 4.8: Effect of additional clocks on partially connected networks: RMSEs (and

RCRBs) of (a) clock skew and (b) clock offset with K = 10, L = 3, σ = 3.3nS (1 meter) ,

for a mobile network with varying number of connected links.

4.7.5 Summary

We validate the joint time-range model by simulating an asynchronous cluster of

mobile nodes, where the pairwise distances are time-varying, and the approximation

order of distance L is unknown. The proposed MPLS and MGLS algorithms clearly

outperform the prevalent solutions when the nodes are in motion, and in particular

for relatively higher SNR on the time markers. More significantly, the variance of the

estimated clock parameters and distance achieve the derived CCRB asymptotically.

The proposed sum constraint shows an improvement of about factor 2 in contrast

to the classic constraint, and is nearly identical to the performance of the “optimal”

nullspace constraint. Furthermore, the extension of the proposed algorithms to a

partially connected network is simulated for various number of missing links. In

addition, the benefits of the constrained framework are shown by studying the effect

of multiple clocks in partially connected networks.

4.8 Conclusions

The fundamental challenge has been to jointly estimate clock discrepancies and the

time-varying distances between a cluster of asynchronous mobile nodes, which is

addressed by proposing a novel joint time-range basis. The clock parameters are

modeled up to the first order and the time-varying pairwise distances are approxim-

ated as a Lth order function of time. An elegant linear transformation decouples the
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clock errors from the estimated range parameters. This joint time-range basis has

been applied to the proposed generalized TWR scenario and is shown to be a linear

system of unknown clock and range parameters. More generally, the joint basis can

be applied to other two-way communication frameworks as well. Subsequently a

global least squares solution (MGLS) is proposed, which is in turn an extension of

the corresponding distributed pairwise algorithm (MPLS), to estimate all the clock

parameters and the pairwise distances at discrete time intervals. Furthermore, when

the order L of range approximation is unknown, iterative solutions (iMGLS, iMPLS)

are proposed to estimate the apt approximation order for the distance measurement.

A novel Constrained Cramér-Rao Bound is derived for the presented model and the

proposed solutions meet this lower bound asymptotically, which is corroborated by

the simulations. As an alternative to the classical single clock reference constraint,

we propose the sum and the nullspace constraints which beget a lower variance for

clock parameters.

The generalized constrained framework enables users to add more constraints

if there is additional information available on the clock and range parameters from

other systems, which would evidently increase overall estimation performance. The

proposed framework is for a full mesh network with two-way communication capab-

ility, however robust synchronization is still feasible despite missing links, including

one-way communication. More generally, these solutions can be easily extended to

sender-receiver, receiver-receiver, pairwise listening, broadcasting and other preval-

ent communication schemes (see [Wu, Chaudhari and Serpedin 2011] and references

therein).

The presented solutions are suited for autonomous networks with minimal a priori

knowledge, where the clock and range parameters need to be estimated at cold start.

Given the pairwise distances, the relative node positions of an anchorless network at

every time instant can be estimated using Multidimensional scaling. In practice, over

longer durations, a Kalman filter [Kay 1993] can be applied sequentially to track

these network parameters, which would yield more efficient and optimal estimates

with time. In addition, although the proposed model is targeted towards anchorless

networks, it is readily applicable to anchored scenarios of time, distance and position.

In this chapter, the estimated range parameters are viewed merely as coefficients

to fit the pairwise distances between the nodes. In the following chapters, we invest-

igate the interpretation of the range parameters and their relationship to the relative

kinematics of a mobile network.
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Appendix 4.A Range translation matrix G

To find an expression for G, we begin by considering the classic case of a static

network of immobile nodes i.e., L = 1. This is a special case of the dynamic

range model in (4.3), which has been investigated extensively [IEEE Working Group

802.15.4 2007; Serpedin and Chaudhari 2009; Leng and Wu 2010; Freris, Graham

and Kumar 2010; Rajan and van der Veen 2011]. When the nodes are fixed, the

propagation delay τij(t) , c−1Rij(t) = c−1r
(0)
ij is invariant with the true time t and

following immediately we have

r
(0)
ij , cγ

(0)
ij . (4.59)

A step further, in case of a mobile network, a first order range model is proposed in

[Rajan and van der Veen 2012], where the translated range model (4.4) for L = 2 is

given by

Gij(ti) = γ
(0)
ij + γ

(1)
ij ti. (4.60)

Substituting the equation of ideal true time from (4.1) in (4.60), the translated range

coefficients in terms of αi, βi and r
(0)
ij are

γ
(1)
ij , c−1

(
αi r

(1)
ij

)
, (4.61a)

γ
(0)
ij , c−1

(
r
(0)
ij + r

(1)
ij βi

)
, (4.61b)

and rearranging the terms,

r
(1)
ij , c

(
α−1
i γ

(1)
ij

)
, (4.62a)

r
(0)
ij , c

(
γ
(0)
ij − α−1

i βiγij

)
. (4.62b)

Along similar lines, extending the affine range model to a second order model [Rajan

and van der Veen 2013] (i.e., L = 2), we have

Gij(ti) = γ
(0)
ij + γ

(1)
ij ti + γ

(2)
ij t2i , (4.63)

where an expression for γij = [γ
(0)
ij γ

(1)
ij γ

(2)
ij ] in terms of the true range parameters

rij and clock errors is obtained by substituting for ideal true time from (4.1) in (4.63),
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4.A. Range translation matrix G

which yields

γ
(2)
ij , c−1

(
α2
i r

(2)
ij

)
, (4.64a)

γ
(1)
ij , c−1

(
αir

(1)
ij + 2αiβir

(2)
ij

)
, (4.64b)

γ
(0)
ij , c−1

(
r
(0)
ij + βir

(1)
ij + β2

i , r
(2)
ij

)
, (4.64c)

or alternatively

r
(2)
ij , c

(
α−2
i γ

(2)
ij

)
, (4.65a)

r
(1)
ij , c

(
α−1
i γ

(1)
ij − 2α−2

i βiγ
(2)
ij

)
, (4.65b)

r
(0)
ij , c

(
γ
(0)
ij + α−1

i βiγ
(1)
ij − α−2

i β2
i γ

(2)
ij

)
. (4.65c)

More generally, for any L ≥ 1, the lth order translated range coefficient γ
(l)
ij for the

node pair {i, j} is by symmetry

r
(l)
ij , c

L−1∑

l̄=l

(
l̄
l

)
α−l̄
i (−βi)l̄−lγ

(l̄)
ij ∀ l = 0, 1, . . . , L, (4.66)

which for the sake of notational brevity can be written as

rij = G̃iγij ⇔ γij = G̃−1
i rij , (4.67)

where G̃i ∈ R
L×L, ∀ l = 0, 1, . . . L and l̄ = l + 1, l + 2, . . . L is a triangular matrix

contains the clock discrepancies of node i and is given by

{G̃i}l+1,l̄+1 = c

(
l̄
l

)
α−l̄
i (−βi)l̄−l. (4.68)

For the entire network of N̄ unique pairwise links, we have

r̃ = G̃γ̃ ⇔ γ̃ = G̃−1r̃, (4.69)

where γ̃ = vec(ΓT ) = PTγ and r̃ = vec(RT ) = PT r, where P ∈ R
N̄L×N̄L is a

permutation matrix. The transformation matrix G̃ ∈ R
N̄L×N̄L is given by

G̃ = bdiag
(
IN−1 ⊗ G̃1, IN−2 ⊗ G̃2, . . . , I⊗ G̃N−1

)
, (4.70)
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4. Synchronization and ranging

which is only dependent on the clock calibration parameters {α,β} of the network.

Finally, defining

G = PG̃PT , (4.71)

we have

r = Gγ ⇔ γ = G−1r, (4.72)

which gives us a unique relation between the true range parameters and the translated

range parameters, in the presence of clock errors. It is evident from (4.72) that the

range parameters can be extracted uniquely from the modified range parameters des-

pite clock discrepancies, provided G i.e., the clock calibration parameters
[
α β

]

are known. Furthermore, in the absence of clock errors, i.e., α = 1N and β = 0N ,

then G = cIN̄L and following immediately r = cγ. Observe that, for a given node

pair (i, j) although the translated parameters (γij) are dependent on the choice of

clock reference i or j, the true range parameters (rij) remain unique to a given node

pair.

Appendix 4.B iterative Mobile Pairwise Least

Squares (iMPLS)

For a given distance approximation order l, the pairwise cost function (4.27) can be

rewritten as

θ̂ij,l = argmin
θij,l

ǫij,l = (AT
ij,lAij,l)

−1Aij,lbij , (4.73)

where

ǫij,l = (Aij,lθij,l − bij)
T (Aij,lθij,l − bij), (4.74)

Aij,l = [−tji − 1K EijVij,l], (4.75)

Vij,l = [t⊙0
ij t⊙1

ij . . . , t⊙l−1
ij ],

θij,l = [αj βj γT
ij ]

T ,

and bij = −tij . More generally, when l is unknown, we briefly describe the iterative

Mobile Pairwise Least Squares (iMPLS) algorithm for a pair of nodes, using the well

known order recursive least squares [Kay 1993].
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4.B. iterative Mobile Pairwise Least Squares (iMPLS)

Algorithm 1 iterative Mobile Pairwise Least Squares (iMPLS)

Initialize:

1) For l = 0 define Aij,l , Aij,0 from (4.75)

2) Define Āij,l , Āij,0 = (AT
ij,0Aij,0)

−1

3) Estimate θ̂j,l , θ̂j,0 using (4.73)

4) Estimate LSE ǫij,l , ǫij,0 from (4.74)

3) Define m = 3 and δ0 = ǫij,0/m
while δl > δij,tol do

4) Update inverse Āij,l+1 using (4.76)

5) Estimate θ̂ij,l+1 from (4.77)

6) Update least squares error ǫij,l+1 using (4.78)

7) Update δl ← (ǫij,l+1 − ǫij,l)/(m+ 1)
8) Update l← l + 1, m← m+ 1, ǫij,l ← ǫij,l+1

end while

Āij,l+1 =



Āij,l +

Āij,lA
T
ji,laij,l+1a

T
ij,l+1

Aij,lĀij,l

aT
l+1

P⊥
ij,lal+1

Āij,lA
T
ji,laij,l+1

aT
l+1

P⊥
ij,lal+1

aT
ij,l+1

Aij,lĀij,l

aT
l+1

P⊥
ij,lal+1

1
aT
ij,l+1

Aij,lĀij,l


 , (4.76)

θij,l+1 =



θij,l −

Āij,lA
T
ji,laij,l+1a

T
ij,l+1

P⊥
ij,lbij

aT
l+1

P⊥
ij,lal+1

aT
ij,l+1

P⊥
ij,lbij

aT
ij,l+1

P⊥
ij,laij,l+1


 , (4.77)

ǫij,l+1 = ǫij,l −
(aTij,l+1P

⊥
ij,lbij)

2

aTij,l+1P
⊥
ij,laij,l+1

, (4.78)

where aij,l+1 = eij ⊙ t⊙ l+1
ij and P⊥

ij,l = I−Aij,lĀij,lA
T
ji,l.
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4. Synchronization and ranging

Appendix 4.C iterative Mobile Global Least

Squares (iMGLS)

Similar to the pairwise model, we propose an iterative Mobile Global Least Squares

solution to dynamically estimate all the clock and range parameters for a cluster of

mobile nodes, when the range order is unknown. Note that for a given l, the KKT

solution (4.35) is

θ̂l = argmin
θl

ǫl = B−1
l b, (4.79)

where

ǫl = (Blθl − b)T (Blθl − b), (4.80)

Bl =

[
2AT

l Al CT
l

Cl 0N2,N2

]
, (4.81)

Al =
[
T H EVl

]
,

Vl =
[
IN̄ ⊗ 1K T̄⊙1 . . . T̄⊙l−1

]
,

b =
[
0T bT

]T
.

Algorithm 2 iterative Mobile Global Least Squares (iMGLS)

Initialize:

1) For l = 0, define Bl , B0 using (4.81)

2) Estimate θ̂l , θ̂0 using (4.79)

3) Estimate LSE ǫl , ǫ0 from (4.80)

4) Define m = 2N + N̄ and δl = ǫ0/m.

while δl > δtol do

4) Estimate θ̂l+1 using (4.35)

5) Obtain least squares error ǫl+1 using (4.80)

6) Update δl ← (ǫl+1 − ǫl)/(m+ 1)
7) Update l← l + 1, m← m+ N̄ , ǫl ← ǫl+1

end while

102



4.D. Jacobian Jθζ

Appendix 4.D Jacobian Jθζ

The Jacobian Jθη in (4.42) is given by

Jθζ ,
[
∂ζ

∂θT

]
,
[

∂ζ

∂αT

∂ζ

∂βT

∂ζ

∂γT

]

=




∂ω

∂αT

∂ω

∂βT

∂ω

∂γT

∂φ

∂αT

∂φ

∂βT

∂φ

∂γT

∂r

∂αT

∂r

∂βT

∂r

∂γT



=



−A2 0N,N 0N,N̄L

A2B −A 0N,N̄L

Ġα Ġβ G


 , (4.82)

where A = diag(α)−1 ∈ R
N×N , B = diag(β) ∈ R

N×N , G is the transformation

matrix defined in (4.71). The transformation derivatives Ġα ∈ R
N̄L×N̄L, Ġβ ∈

R
N̄L×N̄L are

Ġα ,
∂PGPT

∂αT
= P

(
∂G

∂αT

)
PT

= P
(

bdiag
(
IN−1 ⊗ Ġα

1 , IN−2 ⊗ Ġα
2 , . . . , I⊗ Ġα

N−1

))
PT , (4.83)

Ġβ ,
∂PGPT

∂βT
= P

(
∂G

∂βT

)
PT

= P
(

bdiag
(
IN−1 ⊗ Ġ

β
1 , IN−2 ⊗ Ġ

β
2 , . . . , I⊗ Ġ

β
N−1

))
PT , (4.84)

where ∀ 1 ≤ i ≤ N , Ġα
i ∈ R

L×L and Ġ
β
i ∈ R

L×L are

{Ġα
i }l+1,l̄+1 = c

(
l̄
l

)
(−l̄)α−l̄−1

i (−βi)l̄−l,

{Ġβ
i }l+1,l̄+1 =





(
l̄

l

)
(l̄ − l)α−l

i (−βi)l̄−l−1 if βi 6= 0,

0L,L if βi = 0.
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4. Synchronization and ranging

Appendix 4.E CCRB on time-varying distance

Since Ση = σ2IKN̄ (See Remark 7), the Fisher information matrix of θ (4.41) sim-

plifies to

F =




TTT TTH TT V̄

HTT HTH HT V̄

V̄TT V̄TH V̄T V̄


 =

[
F11 FT

12

F12 F22

]

and considering all the 3 constraints are levied on the clock parameters, the orthonor-

mal basis for the null space of these constraints are of the form U = bdiag(Ũ, IN̄ ).
Following immediately, the CCRB (4.40) is

Σθ = σ2U
[
UTFU

]−1
UT

= σ2U

[
ŨTF11Ũ ŨTFT

12

F12Ũ F22

]−1

UT

= σ2

[
∗ ∗
∗ S−1

2

]
=

[
∗ ∗
∗ Σγ

]
, (4.85)

where Σγ is the lower bound on γ and

S2 = V̄T V̄ − F12Ũ
[
ŨTF11Ũ

]−1
ŨTFT

12, (4.86)

is the Schur complement and subsequently, the CCRB on distance d is given by

Σd = c2VΣγV = c2σ2VS−1
2 VT . It is observed that contribution of the term

F12Ũ
[
ŨTF11Ũ

]−1
ŨTFT

12 is insignificant (in all 3 constraint cases) for the ex-

perimental setup. Hence, the CCRB of distance and the performance of the MGLS

solution is observed to be independent of the clock constraints in the simulations.
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5

Relative velocity and relative position

This chapter is based on the article published as “Joint relative position and velocity

estimation for an anchorless network of mobile nodes” by R. T. Rajan, G. Leus and

A. -J. van der Veen in Elsevier Signal Processing, Oct. 2015, vol.115, no.0, pp.66-78.
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5. Relative velocity and relative position

Localization is a fundamental challenge for any network of nodes, particularly

when the nodes are in motion within a framework where no reference nodes are avail-

able. In the previous chapter, we proposed a solution to decouple the time-varying

distances and clock errors, where the distance is approximated as a polynomial func-

tion in time. In this chapter, we assume the nodes are synchronized and using the

coefficients of the distance approximation, propose a novel framework to localize an

anchorless network of mobile nodes. The time derivatives of the pairwise distances

are used to jointly estimate the initial relative position and relative velocity of the

nodes. Under linear velocity assumption for a small time duration, we show that the

combination of the initial relative positions and relative velocity beget the relative mo-

tion of the nodes at discrete time instances. The proposed approach can be seen as an

extension of the classical MDS in scenarios when the nodes are mobile. In addition,

the Doppler measurements, if available, can be readily incorporated in the proposed

framework. We derive Cramér-Rao bounds and perform simulations to evaluate the

performance of the proposed estimators. Furthermore, the computational complexity

and the benefits of the proposed algorithms are also presented.

5.1 Introduction

Localization is a key requirement for the deployment of wireless networks in a wide

range of applications. There are numerous absolute localization algorithms, such

as Time of Arrival (TOA), Time Difference of Arrival (TDOA) and Received Sig-

nal Strength (RSS) which cater to anchored networks, where a few node positions

are known [Sayed, Tarighat and Khajehnouri 2005a]. Alternatively, when there are

no reference anchors, then the relative positions of the nodes, up to a rotation and

translation, can still be obtained using Multidimensional scaling (MDS) based solu-

tions [Borg and Groenen 2005; Cheung and So 2005]. Such anchorless networks

arise naturally when the nodes are deployed in inaccessible locations or when anchor

information is known intermittently. In both anchored or anchorless scenarios, pair-

wise distances are one of the key inputs for almost all localization techniques. For

stationary nodes, these pairwise distances are classically obtained by measuring the

propagation delays of multiple time stamp exchanges between the nodes and aver-

aging these measurements over a time period.

A step further, when the nodes are mobile, then conventionally either the nodes

are considered relatively stationary within desired accuracies for the complete dura-

tion of the measurement interval (i.e., multiple distance measurements) [Rajan and

van der Veen 2011] or Doppler measurements are utilized [Wei et al. 2010]. Un-
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5.1. Introduction

fortunately, Doppler measurements are not always available and the assumption on

the node positional stability for large time periods is simply impractical in many ap-

plications. For a mobile network, the application of classical MDS-based relative

positioning at every time instant yields a sequence of position matrices with arbitrary

rotation, thereby providing no information on the relative velocities of the nodes. We

define the term relative velocities as the velocity vectors of the nodes, up to a common

rotation, translation and reflection. This has, to the best of the authors’ knowledge,

not yet been investigated in the literature. Given the relative velocities up to the

appropriate rotation, the time-varying positions can be readily obtained for a linear

mobility model. Hence, the estimation of relative velocities therefore constitutes a

paramount challenge to be solved in next-generation localization technologies.

5.1.1 Contributions

In this article, our quest is to localize an anchorless network of mobile nodes, given

time-varying pairwise distance measurements. We propose a two-step approach to

solve this problem. Firstly, we approximate the time-varying pairwise propagation

delays (and subsequently the distances) between the mobile nodes as a Taylor series

in time, which is aptly termed dynamic ranging (Section 5.2). A simple yet efficient

time-basis is employed, to estimate the derivatives of the pairwise distances at a given

time instant (Section 5.3). Secondly, under the assumption of constant velocity for a

short time duration, we show that the relative position of each node is dependent only

on the initial relative position, the relative velocity and a unique rotation matrix (Sec-

tion 5.4). Furthermore, we also show that the solutions to the unknown initial relative

position, the relative velocity and the rotation matrix lie in the first three derivatives

of the time-varying pairwise distance. Subsequently, we present MDS-like and least

squares solutions to estimate the unknown parameters in Section 5.5 and Cramér-Rao

Bounds are derived in Section 5.6. Finally, based on the proposed estimators we pro-

pose two algorithms, namely linearized MDS (LMDS) and connected MDS (CMDS)

to estimate the relative positions of the nodes over discrete time intervals (Section

5.7). Simulations are conducted to evaluate the performance of the proposed estim-

ators in Section 5.8. The novelty of our work lies in the proposed framework and

subsequent estimators to estimate time-varying relative motion in Euclidean space.
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5. Relative velocity and relative position

5.2 Dynamic ranging

5.2.1 Range model

Consider a cluster of N nodes in a P -dimensional Euclidean space. If the nodes are

fixed, then the pairwise propagation delay at time t0 between a given node pair (i, j)
is defined as

τij(t0) ≡ τji(t0) , c−1dij(t0), (5.1)

where dij(t0) is the fixed distance between the node pair at t0 and c is the speed of

the electromagnetic wave in the medium. However, when the nodes are mobile, the

relative distances between the nodes are a non-linear function of time (for P ≥ 2),

even when the nodes are in linear motion. For a small time interval ∆tk = tk −
t0, we consider these relative distances as a smoothly varying polynomial in time.

The propagation delay τij(tk) ≡ τji(tk) between a given node pair (i, j) can be

expanded classically as an infinite Taylor series around a time instant t0 within the

neighborhood ∆tk. As an extension of the second-order distance model [Rajan and

van der Veen 2013], we have

τij(t0 +∆tk) , c−1dij(t0 +∆tk) , c−1dij(tk), (5.2)

where dij(tk) is the distance at tk = t0 +∆tk, given by

dij(tk) ≃ rij +
ṙij
1!

∆tk +
r̈ij
2!

∆t2k + . . . , (5.3)

where [rij , ṙij , r̈ij , . . .]
T ∈ R

L×1 are the range parameters for the Lth order approx-

imation of the time-varying distance. The first coefficient rij ≡ dij(t0) is the initial

pairwise distance and the following L − 1 coefficients are successive derivatives of

rij at t0. Without loss of generality, assuming t0 = 0, we have tk = ∆tk and

subsequently (5.2) and (5.3) simplify to the Maclaurin series as

τij(tk) = c−1
(
rij + ṙijtk +

r̈ij
2!

t2k + . . .
)
. (5.4)

The polynomial range basis is simplified further by introducing

[
rij , ṙij , r̈ij , . . .

]T
, diag(f)−1

[
rij , ṙij , r̈ij , . . .

]T
, (5.5)

where f = c[1, 1!, 2!, . . .]T ∈ R
L×1, such that (5.4) is

τij(tk) , c−1dij(tk) = rij + ṙijtk + r̈ijt
2
k + . . . . (5.6)
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Node j
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Figure 5.1: Illustration of a pair of mobile nodes in linear motion: A generalized Two-

Way Ranging (TWR) between a pair of mobile nodes, where the solid-skewed lines indicate

the linear motion of the nodes. During the linear motion, the nodes transmit and receive K
time stamps, which are recorded at the respective nodes. Similar to [Rajan and van der Veen

2011; Rajan and van der Veen 2013; Rajan and van der Veen 2015], we levy no constraints

on the sequence, direction or number of communications.

Now, for the entire network of N nodes, the unique pairwise ranges are collected

in a vector r ∈ R
N̄×1, where N̄ =

(
N
2

)
is the number of unique pairwise baselines.

Along similar lines, we define ṙ ∈ R
N̄×1, r̈ ∈ R

N̄×1 and corresponding higher-order

terms. The unknown range parameters for all pairwise links are collected under the

vector θ =
[
rT , ṙT , r̈T , . . .

]T ∈ R
N̄L×1. Furthermore, similar to the definition

of θ , we define θ =
[
rT , ṙT , r̈T , . . .

]T ∈ R
N̄L×1, where r ∈ R

N̄×1, ṙ ∈ R
N̄×1,

r̈ ∈ R
N̄×1 and corresponding higher-order terms are modified range parameters. The

relationship between θ and θ, using (5.5), is then

θ = (diag(f)⊗ IN̄ ) θ. (5.7)

Remark 8: (Doppler measurements): Observe that in essence, r is the time of

arrival (TOA) at t0, the range rate ṙ is the radial velocity (as obtained from a Doppler

shift) and the second order range parameter r̈ is the rate of radial velocity (as observed

from a Doppler spread) between the nodes at t = t0. These range coefficients can be

readily incorporated if these measurements are available.
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5. Relative velocity and relative position

5.2.2 Data model

We now consider a relaxed two-way ranging (TWR) setup for collecting distance

information as follows. Let each node pair (i, j) within the network be capable of

communicating with each other as shown in Figure 5.1. The nodes communicate K
messages back and forth, and the time of transmission and reception is registered

independently at the respective nodes. The kth time stamp recorded at node i when

communicating with node j is denoted by Tij,k and similarly at node j the time stamp

is Tji,k. The direction of the communication is indicated by Eij,k, where Eij,k = +1
for transmission from node i to node j and Eij,k = −1 for transmission from node j
to node i. Under ideal noiseless conditions, the propagation delay between the node

pair at the kth time instant is τij,k , Eij,k(Tji,k−Tij,k), and in conjunction with the

polynomial approximation (5.6), we have

τij,k , Eij,k(Tji,k − Tij,k) = rij + ṙijTij,k + r̈ijT
2
ij,k + . . . , (5.8)

where without loss of generality we have replaced tk with Tij,k.

Remark 10: (Synchronized nodes): By replacing true time tk by Tij,k, we as-

sume without loss of generality that Tij,k is in the neighborhood of t0 = 0 and the

propagation delay is measured as a function of the local time at node i. Furthermore,

we also assume that the clocks of these nodes are synchronized. This is a valid as-

sumption since for an asynchronous network of mobile nodes, the clock parameters

(up to first order) can be decoupled from the range parameters and the distances can

be estimated efficiently as shown in chapter 4 [Rajan and van der Veen 2011; Rajan

and van der Veen 2013; Rajan and van der Veen 2015]. .

In practice, the time measurements are also corrupted with noise and thus (5.8) is

rij + ṙij(Tij,k + qi,k) + r̈ij(Tij,k + qi,k)
2 + . . .

= Eij,k

(
(Tji,k + qj,k)− (Tij,k + qi,k)

)
, (5.9)

where qi,k ∼ N (0,Σi), qj,k ∼ N (0,Σj) are modelled as Gaussian i.i.d. noise vari-

ables, plaguing the timing measurements at node i and node j, respectively. Rearran-

ging the terms, we have

rij + ṙijTij,k + r̈ijT
2
ij,k + . . . = Eij,k(Tji,k − Tij,k) + qij,k, (5.10)

where

qij,k = Eij,k(qj,k − qi,k)− (ṙijqi,k + 2r̈ijTij,kqi,k + r̈ijq
2
i,k + . . .). (5.11)
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5.2. Dynamic ranging

For wireless communication with c = 3 × 108m/s, note that the modified range

parameters are scaled by c−1 (5.7). Furthermore, since the dynamic range model is

proposed for a small time interval, the term (ṙijqi,k +2r̈ijTij,kqi,k + r̈ijq
2
i,k + . . .) is

relatively small and subsequently the noise vector plaguing the measurements can be

approximated as qij,k ≈ Eij,k(qj,k − qi,k) which begets

qij,k ∼ N (0,Σij), (5.12)

where Σij = Σi +Σj . Aggregating all K packets, we have

Aij︷ ︸︸ ︷[
1K tij t⊙2

ij . . .
]

θij︷ ︸︸ ︷


rij
ṙij
r̈ij
...


 = τ ij + qij , (5.13)

where

τ ij , eij ⊙ (tji − tij) ∈ R
K×1, (5.14)

eij = [Eij,1, Eij,2, . . . , Eij,K ]T ∈ R
K×1, (5.15)

tij = [Tij,1, Tij,2, . . . , Tij,K ]T ∈ R
K×1. (5.16)

The known Vandermonde matrix Aij ∈ R
K×L contains the measured time stamps

and is full column rank if Tij,k are unique. The direction vector eij is encapsulated in

the propagation delay τ ij and θij ∈ R
L×1 is a vector containing the unknown range

parameters. The noise vector on this linear system is qij = [qij,1, qij,2, . . . qij,K ]T ∈
R
K×1, where qij,k is given by (5.12) and the corresponding covariance matrix is

Σij , E
[
qijq

T
ij

]
= ΣijIK ∈ R

K×K . (5.17)

For a network of N nodes, the normal equation (5.13) can be extended to the dynamic

ranging model

A︷ ︸︸ ︷[
IN̄ ⊗ 1K T T⊙2 . . .

]

θ︷︸︸︷


r

ṙ

r̈
...


 = τ + q , (5.18)
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5. Relative velocity and relative position

where

T = bdiag(t12, t13, . . . t1N , t23, . . .) ∈ R
N̄K×N̄ , (5.19)

τ = [τ T
12, τ

T
13, . . . τ

T
1N , τT

23, . . .]
T ∈ R

N̄K×1, (5.20)

contain the time stamp exchanges of the N̄ unique pairwise links in the network and

θ ∈ R
N̄L×1 contains the unknown range parameters for the entire network. The

noise vector is q = [qT
12,q

T
13, . . . ,q

T
1N , qT

23, . . .]
T ∈ R

N̄K×1 and the covariance

matrix is

Σ , E
[
qqT

]
∈ R

N̄K×N̄K . (5.21)

Remark 12: (Mobility of the nodes): In (5.8), we implicitly assumed that the

nodes are relatively fixed during a time period of δtk = |Tij,k−Tji,k| i.e., the propaga-

tion time of the message. This is a much weaker assumption compared to traditional

TWR, where for a pair of fixed nodes (i.e., L = 1), the pairwise distance is assumed

to be invariant for the total measurement period ∆T = |Tij,K − Tij,1|. In reality,

when the nodes are mobile, the distance at each kth time instant is dissimilar and this

feature is naturally incorporated in the presented dynamic ranging model.

5.3 Dynamic ranging algorithm

Suppose that we have collected all the TWR timing data in A and τ , then in this

section we find an estimate for the unknown θ using the model (5.18). Given an

estimate of θ, the range coefficients θ = [rT , ṙT , r̈T , . . .]T can be directly obtained

from (5.7).

5.3.1 Weighted Least Squares

Under the assumption that the covariance matrix Σ is known, a Weighted Least

Squares (WLS) solution θ̂ is obtained by minimizing the l2 norm of the linear system

(5.18), leading to

θ̂ = argmin
θ
||Σ−1/2(Aθ − τ )||2 (5.22)

= (ATΣ−1A)−1ATΣ−1τ , (5.23)

which is a valid solution if K ≥ L for each of the N̄ pairwise links. More generally,

when the polynomial model order L is unknown in (5.3), order recursive least squares
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5.3. Dynamic ranging algorithm

algorithms (such as iMGLS [Rajan and van der Veen 2015]) can be employed to

obtain the range coefficients for increasing values of L, until an optimal polynomial

fit for (5.22) is reached.

5.3.2 Distributed Weighted Least Squares

If we consider independent pairwise communication between all the nodes, with no

broadcasting, then the noise in each pairwise link is independent of each other and

subsequently the covariance matrix (5.21) simplifies to

Σ = bdiag (Σ12,Σ13, . . .Σ1N , Σ23, . . .) . (5.24)

In which case, the centralized system (5.18) is a cascade of pairwise linear systems

(5.13) and subsequently (5.23) is a generalized version of solving the distributed

pairwise system for estimating the pairwise range parameters θij independently as

θ̂ij = argmin
θij

‖Σ−1/2
ij (Aijθij − τ ij)‖2

= (AT
ijΣ

−1
ij Aij)

−1AT
ijΣ

−1
ij τ ij , (5.25)

which, similar to (5.23), has a valid solution for K ≥ L for each pairwise link. It is

worth noting that when the noise is correlated between pairwise links, the distributed

weighted least squares (5.25) may be sub-optimal. In this case, a consensus based

distributed least squares algorithm [Bertrand and Moonen 2011] can be employed for

improved solutions.

5.3.3 Cramér-Rao bounds

The Cramér-Rao lower Bound (CRB) [Kay 1993] for the linear model (5.18) is

Σθ = (ATΣ−1A)−1, (5.26)

and in combination with the range scaling (5.7), the CRB on θ is given by

Σθ = (diag(f)⊗ IN̄ )(ATΣ−1A)−1(diag(f)⊗ IN̄ ), (5.27)

where

Σθ =




Σr ∗ ∗ ∗
∗ Σṙ ∗ ∗
∗ ∗ Σr̈ ∗
∗ ∗ ∗ . . .


 , (5.28)
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is the lowest variance achievable by any unbiased estimate of the range parameters

θ = [rT , ṙT , r̈T , . . .]T . It is worth noting that (5.23) achieves these lower bounds for

an appropriate L.

Remark 14: (Direction independence): In general, observe that the proposed

solution (5.23) is feasible for any direction marker Eij,k, which is incorporated in τ

(5.14). In addition, the lower bounds are unaffected by the choice of direction vec-

tor eij , ∀ i, j ≤ N , since all direction vectors are encapsulated in the measurement

vector τ ij , which is not a part of the CRB (5.27). Hence communication between

the nodes could be arbitrary or one way, and need not be necessarily bi-directional.

However, this is not true for an asynchronous network, where two-way communic-

ation is pivotal in jointly estimating the clock and range parameters [Rajan and van

der Veen 2015]. In addition, we impose no pre-requisite on the number, sequence

or direction of the communication links [Rajan and van der Veen 2011; Rajan and

van der Veen 2015]. Therefore, the proposed solution is amenable to prevalent TWR

protocols, such as classical pairwise communication [IEEE Working Group 802.15.4

2007], passive listening and broadcasting [Wang, Ma and Leus 2011a].

5.4 First-order relative kinematics

In the previous section, we estimated θ which contains the solution to the unknown

range derivatives θ =
[
rT , ṙT , r̈T , . . .

]
. Our next motive is to use these range deriv-

atives to estimate the positions of the mobile nodes. When the nodes are in motion,

similar to the pairwise range rates, the position vector of each node is also a Taylor

series in time. However, exploiting piecewise linearity, we assume that the nodes are

in linear motion with no acceleration, which is valid for a sufficiently small meas-

urement period. Note that despite this assumption, the pairwise distance remains a

non-linear function of time.

5.4.1 Absolute linear motion

Let the position of N (N > P ) nodes in a P -dimensional Euclidean space at the

kth time instant be given by Sk ∈ R
P×N . Furthermore, the ith node has velocity

yi ∈ R
P×1 and all such velocities are collected in Y = [y1,y2, . . . yN ] ∈ R

P×N .

Then, under a linear motion assumption, we have

dyi

dt
= 0P ∀ i ≤ N. (5.29)
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5.4. First-order relative kinematics

Now, let ∆tk = tk − t0 where for the sake of notational convenience and without

loss of generality, we assume tk = Tij,k ∀ k, then the position matrix at the kth time

instant is

Sk = X+∆tkY (5.30)

where X , S0 =
[
x1,x2, . . . ,xN

]
is the initial position matrix at time instant t0

and Sk only depends on the initial Position and Velocity (PV) of the nodes.

5.4.2 Range derivatives

To estimate the position matrix at the kth time instant Sk, we begin by stating explicit

expressions for the range derivatives
[
r, ṙ, r̈, . . .

]
in terms of X,Y under linear ve-

locity assumption. The pairwise distance dij(t) between a node pair (i, j) in P ≥ 2
dimensional Euclidean space is a non-linear function of time, even if the nodes are

only in linear motion. As derived in 5.A, the range parameters [rij , ṙij , r̈ij , . . . ] at

t = t0 satisfy

rij =
√
xT
i xi + xT

j xj − 2xT
i xj , (5.31a)

ṙij = r−1
ij (xi − xj)

T (yi − yj), (5.31b)

r̈ij = r−1
ij

(
‖(yi − yj)‖2 − ṙ2ij

)
. (5.31c)

Although these range parameters can be estimated up to the (L − 1)th order (as

demonstrated in Section 5.3), in the rest of this article we utilize the information only

up to L = 3 for estimating the relative PV. Rearranging the equations for rij , ṙij , r̈ij ,
from (5.31) we obtain

r2ij = (xi − xj)
T (xi − xj), (5.32a)

rij ṙij = (xi − xj)
T (yi − yj), (5.32b)

rij r̈ij + ṙ2ij = (yi − yj)
T (yi − yj). (5.32c)

Extending the above equations for all N nodes and defining N dimensional vectors

gxx = diag(XTX),gxy = diag(XTY) and gyy = diag(YTY), we have

R⊙2 = gxx1
T
N + 1NgT

xx − 2XTX, (5.33a)

R⊙ Ṙ = gxy1
T
N + 1NgT

xy −XTY −YTX, (5.33b)

R⊙ R̈+ Ṙ⊙2 = gyy1
T
N + 1NgT

yy − 2YTY, (5.33c)
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5. Relative velocity and relative position

where the square matrices R = [rij ] ∈ R
N×N , Ṙ = [ṙij ] ∈ R

N×N and R̈ =
[r̈ij ] ∈ R

N×N contain the initial pairwise ranges, range rates and rate of range rates,

respectively.

It is evident from (5.33) that without apriori knowledge of a few known PV, estim-

ating the PVs of the network is an ill-posed problem and hence, we look to find solu-

tions for the relative PV. Applying the centering matrix P = IN − N−11N1TN ∈
R
N×N on (5.33), and defining

Bxx , −0.5PR⊙2P, (5.34a)

Bxy , −P(R⊙ Ṙ)P, (5.34b)

Byy , −0.5P(R⊙ R̈+ Ṙ⊙2)P, (5.34c)

we have,

Bxx = PXTXP, (5.35a)

Bxy = P(XTY +YTX)P, (5.35b)

Byy = PYTYP. (5.35c)

where we exploit the property P1N = 0N . The equations (5.35a) and (5.35c) can

now be used to estimate the initial relative positions and relative velocities of the

nodes respectively, which will be addressed in Section 5.5. However, first we present

a relative framework of the absolute mobility model discussed in (5.30).

5.4.3 Relative linear motion

We define the relative PV vectors as an affine transformation of the corresponding

absolute PV (Sk,Y) i.e.,

Sk = Hx,kS̃k + hx,k1
T
N , (5.36)

Y = HyY + hy1
T
N , (5.37)

where S̃k is the relative position matrix of the nodes at tk up to a rotation Hx,k ∈
R
P×P and translation hx,k ∈ R

P×1. Along similar lines, we define relative velo-

city as HyY and relative velocity up to a rotation as Y, where Hy ∈ R
P×P is an

unknown rotation matrix. The relative velocity of the nodes HyY is relative to the

group velocity of the network, which is hy ∈ R
P×1. Under a linear velocity assump-

tion (5.29), the group velocity is the rate at which the translation vector varies with

time i.e.,

hy = ∆t−1
k (hx,k − hx,0). (5.38)
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5.4. First-order relative kinematics

Furthermore, the rotation matrices Hx,k,Hy are orthogonal i.e.,

HT
x,kHx,k = HT

y Hy = Ip. (5.39)

Substituting (5.36) and (5.37) in (5.30), and using the property (5.38) we have

Hx,kS̃k = Hx,0X+∆tkHyY, (5.40)

where we use X , S̃0 to denote the relative position matrix at t0. Note that the trans-

lation vectors hx,k,hy are unidentifiable from observations (5.35). Subsequently, we

shall also see in the following section, that the solution to the relative PVs are inde-

pendent of the translation vectors hx,hy and hence without loss of generality can

be considered to be 0P for notational simplicity. Secondly, in order to have a mean-

ingful interpretation of the relative position at the kth time instant (5.40), we must

choose a reference coordinate system e.g., Hx,0 = I. To this end, without loss of

generality and for notational simplicity, we make the following assumptions

Hx,0 = IP , (5.41a)

hx,0 = 0P , (5.41b)

hy = 0P . (5.41c)

Applying these assumptions on (5.40), we have

Sk = X+∆tkHyY (5.42)

where Sk , Hx,kS̃k is the relative position of the nodes at the kth time instant up

to a translation and rotation, under the assumption (5.41). The above is the relative

linear counterpart of the absolute linear model presented in (5.30). More significantly,

observe that the relative position at each kth time instant is only dependent on the

instantaneous relative PV and Hy. In the following sections, we estimate X,Y and

Hy using the range parameters (R, Ṙ, R̈), which was previously defined in (5.35)

and estimated in Section 5.3.
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5. Relative velocity and relative position

5.4.4 Relative kinematic matrices

Substituting the affine transformation of the absolute PV from (5.36) and (5.37) in

(5.35), we have

Bxx = PXTXP = PXTHT
x,0Hx,0XP = XTX, (5.43a)

Bxy = P(XTY +YTX)P

= P(XTHT
x,0HyY +YTHT

y Hx,0X)P

= XTHyY +YTHT
y X, (5.43b)

Byy = PYTYP = PYTHT
y HyYP = YTY, (5.43c)

where we use the property (5.39) in (5.43a) and (5.43c), and the assumption (5.41a)

in (5.43b). Bxx and Byy are Gramian matrices of the relative PVs and the expression

for Bxy is the generalized Lyapunov-like linear matrix equation [Penzl 1998]. It is

worth noting that the relative kinematic equations Bxx,Bxy,Byy are dependent only

on the relative PVs and the unique rotation matrix Hy at time t0. For an alternative

derivation of the relative kinematic matrices, refer to Appendix 5.B.

Given an estimate of the range matrices, i.e., R̂, ˆ̇R, ˆ̈R, either using (5.23) or al-

ternative methods, an estimate of the relative kinematic matrices, i.e., B̂xx, B̂xy, B̂yy

can be readily obtained using (5.34). Using these relative kinematic matrices, we aim

to estimate the relative position X , the relative velocity Y and the unknown velocity

rotation matrix Hy from (5.43a), (5.43c) and (5.43b) respectively.

5.5 Estimation of first-order relative kinematics

5.5.1 Relative position and velocity

The relative PV can be directly obtained by the spectral decomposition of the matrices

Bxx,Byy. Let

B̂xx = UxΛxU
T
x , (5.44)

B̂yy = UyΛyU
T
y , (5.45)

where Ux,Uy ∈ R
N×N contain the eigenvectors and the diagonal matrices Λx,Λy ∈

R
N×N contain the increasingly ordered eigenvalues of the matrices B̂xx, B̂yy re-

spectively. Then, for a P -dimensional setup, an estimate of the relative positions X
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5.5. Estimation of first-order relative kinematics

and relative velocities Y of the nodes up to a rotation is then

X̂ = Λ1/2
x UT

x , (5.46)

Ŷ = Λ1/2
y UT

y , (5.47)

where Λx,Λy ∈ R
P×P contain the first P nonzero eigenvalues and Ux,Uy ∈

R
N×P contain the corresponding eigenvectors.

Relative positioning (5.46) from pairwise distance measurements using MDS is

a well known technique [Borg and Groenen 2005]. However, our contribution is the

definition and estimation of relative velocities , i.e., (5.37) and (5.47) respectively.

5.5.2 Rotation matrix

The estimate of the relative velocity Y up to an arbitrary rotation gives no informa-

tion on the direction of node mobility in Euclidean space. Hence, it is important to

find the relative velocities w.r.t. the orientation of the initial positions i.e., Hy. Sub-

stituting the estimates of Bxy,X,Y from (5.34b), (5.46) and (5.47) respectively in

(5.43b), we have

B̂xy = X̂
T
HyŶ + Ŷ

T
HT

y X̂, (5.48)

where Hy is the unknown rotation matrix. Now, vectorizing (5.48) and rearranging

the terms, we have

b̂xy = (Ŷ
T ⊗ X̂

T
) vec(Hy) + (X̂

T ⊗ Ŷ
T
) vec(HT

y )

= (IN2 + J)(Ŷ
T ⊗ X̂

T
) vec(Hy)

= Ĝvec(Hy), (5.49)

where b̂xy = vec(B̂xy) is a vector of the known measurement matrix B̂xy from

(5.35b) and J ∈ R
N2×N2

is an orthogonal permutation matrix such that Jvec(Hy) =

vec(HT
y ). Let Ĥy be an estimate of Hy, the unknown rotation can be obtained by

minimizing the cost function

Ĥy = argmin
Hy

‖Ĝvec(Hy)− b̂xy‖2. (5.50)

Since both Ĝ and b̂xy are plagued with errors, we propose a Total Least Squares

solution. Let the singular value decomposition of the augmented matrix
[
Ĝ bxy

]

be
[
Ĝ bxy

]
=
[
Us1 Us2

] [Λs

0

] [
Vs11Vs12

Vs21Vs22

]T
,
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then the total least squares solution for minimizing the cost function (5.50) is

vec(Ĥy) = −Vs12V
−1
s22, (5.51)

which has a feasible solution for N > P [Lawson and Hanson 1974]. The pro-

posed solution does not exploit the orthogonality property of the unknown rotation

matrix Hy. Hence, more optimal solutions are feasible by solving the constrained

least squares problem on the Stiefel manifold [Viklands 2006], such as solving the

following cost function

min
Hy

‖Ĝvec(Hy)− b̂xy‖2 s.t HT
y Hy = IP , (5.52)

which is beyond the scope of this article and will be addressed in a follow-up work.

5.6 Cramér-Rao Bounds

The Cramér-Rao Bounds (CRB) for relative positioning were studied in [Ash and

Moses 2008; Chang and Sahai 2006], however the Fisher Information Matrix (FIM)

for a general P -dimensional anchorless network was not investigated, which we

present here. Furthermore, we also derive a lower bound for the proposed relative

velocity estimator.

The CRB for any unbiased estimate of the unknown relative PVs

φx , vec(X) =
[
xT
1 ,x

T
2 , . . . ,x

T
N

]T ∈ R
NP×1, (5.53)

φy , vec(Y) =
[
yT
1
,yT

2
, . . . ,yT

N

]T ∈ R
NP×1, (5.54)

are given by the inverse of the respective FIM i.e.,

Tr
(
E

{
(φ̂x − φx)(φ̂x − φx)

T
})

, Tr(Σx) ≥ Tr(F†
x), (5.55)

Tr
(
E

{
(φ̂y − φy)(φ̂y − φy)

T
})

, Tr(Σy) ≥ Tr(F†
y), (5.56)

where {φ̂x, φ̂y} are estimates of the unknown relative PVs {φx,φy} and {Σx,Σy}
are the corresponding lowest achievable covariances. The FIMs for relative PVs

Fx,Fyare derived in Appendix 5.C and Appendix 5.D respectively.

The derived FIMs are singular in the absence of anchor information. More spe-

cifically, for a 2−dimensional network the FIM for relative positions and relative
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velocities are rank deficient by 3. Since the FIM are not invertible, we use the pseu-

doinverse of the FIM as a lower bound to verify the optimality of the proposed es-

timators. Such scenarios arise in reference-free clock estimation [Rajan and van der

Veen 2015], anchor-deficient localization [Chang and Sahai 2006], blind channel es-

timation [Carvalho, Cioffi and Slock 2000] and array calibration [Wijnholds and van

der Veen 2006] to name a few, where the inverse of the rank-deficient FIM is replaced

by the pseudoinverse. This approach can be reasoned by investigating the CRB for a

constrained framework.

When the FIM is singular, a set of linearly independent constraints, say C, is

required on the unknown parameters to obtain the CRB. Let Uc be an orthonor-

mal basis for the null space of this constraint matrix C, then the CRB for the con-

strained scenario is given by Tr
(
Uc

(
UT

c Uc

)−1
UT

c

)
[Stoica and Ng 1998]. Now, let

F , UfΛfU
T
f be the eigenvalue decomposition of the singular FIM. Then, the con-

strained CRB is lowest when the Uc spans the range of F [Carvalho, Cioffi and Slock

2000], which simplifies the CRB to Tr
(
Λ

†
f

)
, where Λ

†
f is obtained by taking the re-

ciprocal of each non-zero elements along the diagonal and leaving the zeros in place.

Observe that the pseudoinverse of the singular FIM yields exactly the same expres-

sion i.e., Tr
((

UfΛfU
T
f

)†)
= Tr

(
Λ

†
f

)
. Thus, among the set of all feasible linearly

independent constraints, the pseudo-inverse of the unconstrained FIM yields the low-

est value for the total variance on all estimated parameters. There exists no unbiased

estimator which achieves this bound without apriori knowledge or additional con-

straints on the system, and hence the bounds (5.55, 5.56) are termed oracle-bounds.

5.7 Relative positions over time

We now briefly summarize the steps to find the relative position at discrete time

instances using the time stamp measurements discussed in Section 5.2.

5.7.1 Linearized MDS (LMDS)

Given the noisy time stamps T̂ij,k = Tij,k + qi,k, ∀ (i, j) node pairs in the network

and ∀ 1 ≤ k ≤ K time instances, the relative position of the nodes at the kth time

instance can be estimated as follows.

1. Estimate the Range derivatives R̂, ˆ̇R, ˆ̈R

a) using dynamic ranging (5.23) and/or
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b) via Doppler measurements and/or by other means.

2. Using these range derivatives, construct the relative kinematic matrices B̂xx,

B̂xy, B̂yy (5.34a).

3. Obtain an estimate of the relative position X, relative velocity Y and rotation

matrix Hy from (5.36), (5.37) and (5.51) respectively.

4. Defining ∆t̂k = T̂ij,k − T̂ij,0 and using (5.42), the relative position at the kth

time instant is

Ŝk,lmds = X̂+∆t̂kĤyŶ. (5.57)

5.7.2 Connected MDS (CMDS)

Alternatively, the relative positions of the nodes can also be estimated using MDS

at each time instant. Let Dk , c[τij,k] ∈ R
N×N be the Euclidean Distance Mat-

rix (EDM) at each discrete time instant k where τij,k = Eij,k(Tij,k − Tji,k) (5.8).

Furthermore, let D̂k , c[τij,k + qij,k] be the corresponding noisy distance estim-

ate where qij,k is the noise plaguing the measurements as shown in (5.12). Let

−0.5P(D̂⊙2
k )P = ŪkΛ̄kŪ

T
k be an eigenvalue decomposition, then the solution to

the relative position is

Ŝk,cmds = Λ̄
1/2
k Ū

T
k , (5.58)

where Λ̄k ∈ R
P×P contains the first P nonzero eigenvalues and Ūk ∈ R

N×P the

corresponding eigenvectors.

The relative position estimate using CMDS i.e., Ŝk,cmds is up to an arbitrary

rotation and translation, unlike Ŝk,lmds which yields the relative position of the nodes

up to a translation alone. Hence to align all the relative position estimates (5.58), a

unique rotation matrix at each time instant k must be estimated. Under constant

velocity assumption, note that

Sk−1 − 2Sk + Sk+1 = 0P ,

and using (5.36) and multiplying by HT
k , we have

HT
kHk−1Xk−1 − 2Sk +HT

kH
T
k+1Sk+1 = 0P,N .

Now, substituting the relative position estimates from (5.58), we have

Âk︷ ︸︸ ︷[
Ŝ
T
k−1,cmds Ŝ

T
k+1,cmds

]
Θk︷ ︸︸ ︷[

HT
kHk−1

HT
kHk+1

]
= 2Ŝ

T
k,cmds,
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Algorithm DR MDS Rotation FLOPS

CMDS − K K K(12N3 + 4NP 4 + 8P 6)
LMDS − 2 1 24N3 + 4NP 2 + 8P 3

LMDS-DR 1 2 1 2KN2L2 + 24N3 + 4NP 2 + 8P 3

Table 5.1: Computational complexity of proposed estimators, namely connected multidi-

mensional scaling (CMDS), linear multidimensional scaling (LMDS) and LMDS with dy-

namic ranging (DR).

where Θk containing the unknown rotation matrices can be estimated by minimizing

the l2 norm

Θ̂k = argmin
Θk

‖ÂkΘk − 2ŜT
k,cmds‖2, (5.59)

which similar to (5.50), has a solution for N > P . We name the estimation of relative

positions (5.58) and the subsequent rotation matrices (5.59) under constant velocity

assumption as Connected MDS (CMDS).

5.7.3 Computational complexity

The computational complexity of the proposed estimators are listed in Table. 5.1.

We evaluate the computation costs based on floating point operationS (FLOPS), ig-

noring the negligibly less complex additions and subtractions. The columns indicate

the algorithms, the number of executions for various methods and the total number

of FLOPS for each algorithm. To implement dynamic ranging i.e., least squares es-

timator, we assume the Gram-Schmidt method. In case of MDS and Rotation matrix

estimation we use the Golub-Reinsch based singular value decomposition [Golub

and Van Loan 2012]. Observe that, in contrast to the CMDS which estimates the

relative position and corresponding rotation matrices for all K time instances, the

proposed LMDS estimator estimates only the relative position, relative velocity and

a single rotation matrix. Furthermore, the CMDS estimates 2 rotation matrices at

each time instant (5.59) and hence has a factor P 2 more complexity in rotation mat-

rix estimation. Overall, the LMDS shows clear advantage, as it reduces the use of

the expensive Eigenvalue decomposition for MDS and total least squares for rotation

matrix estimation, in comparison to the CMDS algorithm.
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Figure 5.2: RMSEs of range parameters (a) for varying number of communications (K)

between the nodes for σ = 1 meter and (b) for varying noise (σ) on the time measurements

with number of communication K = 10.

5.8 Simulations

Simulations are conducted to evaluate the performance of the proposed solutions. We

consider a cluster of N = 5 nodes in P = 2 dimensions, whose coordinates X and

velocities Y are arbitrarily chosen as

X =

[
−629 311 123 −503 297
−812 929 237 490 −662

]
meters,

Y =

[
−5 5 4 −5 −2
−8 −9 2 −5 5

]
meters/second.

Without loss of generality, we assume that all nodes employ one-way communication,

i.e., eij = 1K , ∀ i, j ≤ N . Furthermore, all nodes communicate with each other

within the time interval ∆T = [Tij,1, Tij,K ] = [−2.5, 2.5] seconds and the transmit

time markers are chosen to be linearly spaced within this interval. We consider a

classical pairwise communication scenario, where all the pairwise communications

are independent of each other and thus Σ = σ2IN̄K .

The metric used to evaluate the performance of the distances and range paramet-

ers is the Root Mean Square Error (RMSE), given by

RMSE(z) =

√√√√N−1
exp

Nexp∑

n=1

‖ẑ(n)− z‖2, (5.60)
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5.8. Simulations

where ẑ(n) is the nth estimate of the unknown vector z during Nexp = 1000 Monte

Carlo runs. To qualify these estimates, the square Root of the Cramér-Rao Bound

(RCRB) is plotted along with the respective RMSE. We also use the same metric for

evaluating the rotation vec(Hy). In contrast to the range parameters, the relative PVs

(X, Y) and Xk are known only up to an arbitrary rotation. Hence, we define the

RMSE for these matrices as

RMSE(Z) =

√√√√N−1
exp

Nexp∑

n=1

‖vec(HẐ(n)− ZP)‖2, (5.61)

where P is the centering matrix and H is the optimal Procrustes rotation, given the

matrix Z and the corresponding estimate Ẑ(n) of the nth Monte Carlo run. See

5.E. The RCRBs derived for the relative PVs (Section 5.6) are plotted along with the

corresponding RMSEs.

5.8.1 Range parameters

The dynamic ranging algorithm (5.23) is implemented for L = 4, where the num-

ber of communications K is varied from 10 to 1000. The noise on the propagation

delays is σ = 0.1 meters, which is typical in classical TWR [Patwari et al. 2003]

or in conventional anchored MDS-based velocity estimation using Doppler measure-

ments [Wei et al. 2010]. Figure 5.2 shows the RMSE of the first 3 range coefficients

(which are relevant for estimating the relative positions and velocities) . A second

experiment is carried out by varying σ in the range [−20,−5] dB meters for a fixed

number of communications K = 500. For the sake of comparison, we also plot the

range estimate for the ‘non-dynamic’ scenario, where the nodes are immobile and

the range between the nodes is fixed over the measurement period i.e., for Y = 02,N
. The RMSEs of the range coefficients obtained via the dynamic ranging algorithm

(5.23) are plotted in Figure 5.2. In both these experiments, the RMSEs of these range

parameters achieve the corresponding RCRBs asymptotically for L = 4. Without

loss of generality, we assume that the order of approximation is known, since iter-

ative solutions such as iMGLS [Rajan and van der Veen 2015] can be employed to

estimate L. For a detailed discussion on the effect of L on the distance estimation,

particularly for an unsynchronized network, please refer to the Chapter 4 [Rajan and

van der Veen 2015].
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Figure 5.3: RMSEs of relative positions and velocities (a) for varying number of commu-

nications (K) between the nodes for σ = 1 meter and (b) for varying noise (σ) on the time

measurements with number of communication K = 10.

5.8.2 Relative positions, velocities and rotation

The range parameters obtained via dynamic ranging are used to estimate the relative

PV from (5.46) and (5.47). Figure 5.3(a) shows the RMSEs of the PV plotted along

with the respective RCRBs, for varying number of two-way communications K and

Figure 5.3(b) shows the RMSE plots for the relative PVs for varying signal-to-noise

ratio. For the given experimental setup, the estimates are shown to perform reas-

onably well against the derived oracle-bounds. Furthermore, it is observed that the

performance of the relative velocity is poorer in comparison to the relative positions.

This is primarily because the measurement matrix for the relative velocity estimation

Byy is dependent on R, Ṙ, R̈, whereas the relative position estimation relies only on

the EDM R. Hence, we observe that the magnitude of the noise covariance on the

velocity model Σηy (5.83) is much larger than that of the position model Σηx (5.75).

However, improved solutions can be expected if the Doppler measurements are made

available, which is not investigated here and is beyond the scope of this chapter. The

RMSEs of the relative rotation matrix Hy estimate (5.51) are plotted in Figure 5.4,

where the relative PV estimates are used.

5.8.3 Relative position over time tk

To illustrate the benefits of jointly estimating the relative PVs of the network, we

simulate the proposed LMDS and CMDS algorithms. The relative PV and the rota-

tion matrix estimates are used to realize the relative position of the nodes across time
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Figure 5.4: RMSEs of rotation matrix (a) for varying number of communications (K)

between the nodes for σ = 1 meters and (b) for varying noise (σ) on the time measurements

with number of communication K = 10.

using LMDS (5.57). For the sake of comparison, the CMDS solution is also eval-

uated by estimating the relative positions using MDS (5.58) and the corresponding

rotation matrix (5.59) at each time instant tk. Figure 5.5(a) shows the RMSE plots

for Xk,cmds and Xk,lmds around the region of interest i.e., t0 = 0 with Gaussian noise

of σ = 0.1 meters and varying communication links K = [100, 300, 500]. Secondly,

for a fixed K = 500, the signal-to-noise ratio is varied σ = [−3dB,−10dB,−20dB]
and the LMDS is compared against CMDS in Figure 5.5(b). The Xk,cmds estimate

steadily achieves a constant RMSE, which is expected since CMDS is independently

applied at each kth time instant. On the contrary, the relative position estimation via

dynamic ranging betters this estimate around t0, where the improvement of up to a

factor
√
K is primarily due to averaging over K measurements. However, the error

estimate of Xk,lmds increases as we move away from t0, which is typical of Taylor

series approximation. Note that, without loss of generality the range derivatives can

be estimated in general for any t0 along the time interval. Hence, the relative PVs

can be jointly estimated along the time-line, yielding improved solutions compared

to CMDS at any given time instant.

5.9 Conclusions

We proposed a novel relative localization framework for an anchorless network of

mobile nodes, given only the time-varying pairwise distances. Given the inter-nodal
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Figure 5.5: RMSE of relative positions over time tk around t0 = 0 (a) for K =
[100, 250, 500] communication links with noise on time measurements σ = 1 meters and

(b) for varying signal-to-noise ratio σ = [−3,−10,−20] dB meter with fixed K = 500.

distances over time, the dynamic ranging algorithm employs a classical Taylor series

based approximation, which extracts pairwise distance derivatives at any given time

instant efficiently. Under linear velocity assumption, these derivatives are used to

jointly estimate the initial relative PVs and a unique rotation matrix. We propose

the LMDS algorithm, which combines the relative PVs and the rotation matrix to

beget the relative motion of the nodes at discrete time instances. The LMDS can be

considered as an extension of the well-known MDS. In addition, we also propose the

CMDS where the relative node positions and the corresponding rotation matrices are

estimated at each time instant. The Cramér-Rao bounds are also derived for the range

parameters, and the relative PV and simulations are conducted to verify the perform-

ance of the proposed estimators. While the CMDS shows consistent performance

over time, the LMDS is computationally cost effective and shows up to a factor
√
K

improvement around the region of interest. Furthermore, the LMDS permits the us-

age of Doppler measurements if available. The presented solutions are suited for

autonomous networks with minimal a priori knowledge, where the positions and ve-

locities need to be estimated at cold start. In practice, over longer durations, the

estimated parameters can be readily extended to both relative and absolute tracking,

which will be addressed in a follow-up work.

One of the key bottlenecks in the proposed model is the constraint on linear mo-

tion of the mobile nodes. In the following chapter, we present a generalized model

in search for solutions to higher order kinematics, such as relative acceleration.
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5.A. Distance non-linearity

Appendix 5.A Distance non-linearity

Consider an arbitrary pair of of nodes {i, j} with initial positions {xi,xj} at t = t0
and constant velocities {yi,yj}, then the pairwise distance at t = tk is

dij,k = ‖(xi − xj)− (yi − yj)tk‖
=

√
xT
ijxij − yT

ijyijt2k − 2xT
ijyijtk, (5.62)

where xij = xi − xj and yij = yi − yj , which shows the pairwise distance is

non-linear in time.

Let {x̄i(t), x̄j(t)} be the time varying positions of the node pair and dij(t) be the

corresponding pairwise distance at time t, then the range parameters are derived as

follows. By definition, the pairwise range between the nodes is the Euclidean norm

rij , dij(t0) = ‖xi − xj‖, (5.63)

From (5.63), we compute the first-order range parameter as

ṙij =
d

dt
dij(t)

=
1

2rij

d

dt

(
(x̄i(t)− x̄j(t))

T (x̄i(t)− x̄j(t))
)

=
1

rij

(
yT
i xi + yT

j xj − yT
i xj − yT

j xi

)

= r−1
ij (yi − yj)

T (xi − xj). (5.64)

Similarly, under the assumption of constant velocities, the second-order range para-

meter using (5.63) is

r̈ij =
d2

dt2
dij(t)

= −r−2
ij ṙij

(
(yi − yj)

T (xi − xj)
)

+r−1
ij

d

dt

(
(yi − yj)

T (x̄i(t)− x̄j(t))
)

= −r−1
ij ṙ2ij + r−1

ij (yi − yj)
T (yi − yj)

= r−1
ij

(
‖yi − yj‖2 − ṙ2ij

)
. (5.65)
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5. Relative velocity and relative position

The third-order derivative of the range parameter under linear motion (5.63) yields

...
r ij =

d3

dt3
dij(t)

= −r−2
ij ṙij(‖yi − yj‖2 − ṙ2ij)− r−1

ij

d2

dt2
(d2ij(t))

= −r−1
ij ṙij r̈ij − 2r−1

ij ṙij r̈ij

= −3r−1
ij ṙij r̈ij . (5.66)

The higher-order range derivatives can be derived along similar lines.

Appendix 5.B Bxx,Bxy Byy

We now present an alternative derivation for Bxx,Bxy Byy. With an abuse of nota-

tion, let D(t) ∈ R
N×N be the time-varying Euclidean Distance Matrix (EDM) for a

network of N nodes in P -dimensional Euclidean space and let

B(t) = −0.5PD(t)⊙2P, (5.67)

where P = IN −N−11N1TN is the centering matrix. Then observe that at t = t0,

B(t0) , Bxx = XTX, (5.68)

and the subsequent first derivative is

Bxy ,
dB(t)

dt
, −P

(
D(t)⊙ Ḋ(t)

)
P

∣∣∣
t=t0

= XTHxyY +YTHT
xyX. (5.69)

A step further, differentiating again w.r.t. time and substituting t = t0 we have

d2B(t)

dt2

∣∣∣
t=t0

, Byy , −0.5P(R⊙ R̈+ Ṙ⊙2)P = YTY, (5.70)

where Ṙ = [ṙij ] ∈ R
N×N and R̈ = [r̈ij ] ∈ R

N×N
+ which, perhaps not surprisingly,

concurs with the relations obtained in (5.43) and offers an alternative verification.

Secondly, unlike the time-varying distance function D(t), which is infinitely dif-

ferentiable, B(t) is a second-order function under the linear velocity assumption

(5.29). Differentiating (5.70) yet again, we have

d3B(t)

dt3

∣∣∣
t=t0

= −0.5P(R⊙ ...
R+ 3Ṙ⊙ R̈)P = 0N,N , (5.71)
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5.C. FIM of the relative positions

where

...
R ,

d3R

dt3
= −3R−1 ⊙ Ṙ⊙ R̈. (5.72)

Appendix 5.C FIM of the relative positions

The problem of estimating the unknown positions φx , vec(X) =
[
xT
1 ,x

T
2 , . . . ,x

T
N

]T
∈ R

NP×1 from the distance measurements is formulated as

ax(φx)− dx = ηx, (5.73)

where the vector dx = {rij}∀ i, j ≤ N, i 6= j ∈ R
2N̄×1 is the set of distances

between N points, with N̄ =

(
N
2

)
. The distance vector is related to the positions

by a(φx) =
[
ax(x1,x2), ax(x1,x3), . . . , ax(xN−1,xN )

]T ∈ R
2N̄×1 where,

ax(xi,xj) ,
(
xT
i xi + xT

j xj − 2xT
i xj

) 1

2 . (5.74)

Furthermore, the noise plaguing the distance vector is

ηx ∼ N (0,Σηx), where Σηx = bdiag(Σr,Σr), (5.75)

and Σr is given by (5.28). For the data model (5.73), the FIM Fx ∈ R
NP×NP is

Fx =

[
∂ax(φx)

∂φT
x

]T
Σ−1

ηx

[
∂ax(φx)

∂φT
x

]
. (5.76)

where the Jacobian is of the form

∂ax(φx)

∂φT
x

=

[
∂ax(φx)

∂xT
1

,
∂ax(φx)

∂xT
2

, . . . ,
∂ax(φx)

∂xT
N

]
. (5.77)

The ith element of the Jacobian

[
∂ax(φ)

∂xT
i

]
is given by

[
∂a(x1,x2)

T

∂xT
i

,
∂a(x1,x3)

T

∂xT
i

, . . . ,
∂a(xN−1,xN )T

∂xT
i

]
,

where ∀1 ≤ j, k ≤ N, j 6= k, we have

∂a(xj ,xk)

∂xT
i

=





r−1
jk

(
xj − xk

)T
if i = j (5.78a)

−r−1
jk

(
xj − xk

)T
if i = k (5.78b)

0TP otherwise. (5.78c)
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Appendix 5.D FIM of the relative velocities

The estimation of relative velocities φx , vec(Y) =
[
yT
1
,yT

2
, . . . ,yT

N

]T ∈ R
NP×1

is modeled as

ay(φy)− d⊙2
y = ηy, (5.79)

where a(φy) =
[
ay(y1

,y
2
), ay(y1

,y
3
), . . . , ay(yN−1

,y
N
)
]T
∈ R

2N̄×1 and

ay(yi
,y

j
) , yT

i
y
i
+ yT

j
y
j
− 2yT

i
y
j
. (5.80)

The distance squared vector d⊙2
y = {rij r̈ij+ ṙ⊙2

ij }∀ i, j ≤ N, i 6= j ∈ R
2N̄×1, where

rij , ṙij , r̈ij are the corresponding range estimates. The noise ηy = {ηy,ij} in the data

model is

ηy,ij = rijqr̈,ij + r̈ijqr,ij + 2ṙijqṙ,ij + qr,ijqr̈,ij + qṙ,ijqṙ,ij

≈ rijqr̈,ij + r̈ijqr,ij + 2ṙijqṙ,ij , (5.81)

where qr,ij , qṙ,ij , qr̈,ij are the noise variables plaguing the range parameters rij , ṙij , r̈ij
respectively. The covariance of the noise is subsequently defined as ,

Σηy = E
{
ηyη

T
y

}
≈ bdiag(Σηy,Σηy), (5.82)

where

Σηy ≈ RΣr̈R+ R̈ΣrR̈+ 4ṘΣṙṘ , (5.83)

R = diag(r), Ṙ = diag(ṙ), R̈ = diag(r̈) are the range parameters and Σr,Σṙ,Σr̈

are the corresponding covariances matrices (5.28). The FIM Fy ∈ R
NP×NP is then

Fy =

[
∂ay(φy)

∂φT
y

]T
Σ−1

ηy

[
∂ay(φy)

∂φT
y

]
, (5.84)

where the Jacobian is of the form

∂ay(φy)

∂φT
y

=

[
∂ay(φy)

∂yT
1

,
∂ay(φy)

∂yT
2

, . . . ,
∂ay(φy)

∂yT
N

]
. (5.85)

The ith element of the Jacobian

[
∂ay(φ)

∂yT
i

]
is given by

[
∂a(y

1
,y

2
)T

∂yT
i

,
∂a(y

1
,y

3
)T

∂yT
i

, . . . ,
∂a(y

N−1
,y

N
)T

∂yT
i

]
,
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5.E. Procrustes alignment

where ∀1 ≤ j, k ≤ N, j 6= k, we have

∂a(y
j
,y

k
)

∂yT
i

=





2
(
y
j
− y

k

)T
if i = j (5.86a)

−2
(
y
j
− y

k

)T
if i = k (5.86b)

0TP otherwise. (5.86c)

Appendix 5.E Procrustes alignment

Let Z,Z ∈ R
P×N be matrices identical up to a rotation and let Uz contain the

eigenvectors of the matrix product ZZT , then there exists a rotation matrix H which

minimizes the following cost function

min
H
‖Z−HZ‖ s.t. HTH = IP , (5.87)

and the corresponding optimal Procrustes rotation [Schönemann 1966] is

Ĥ = UzU
T
z . (5.88)
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6

Relative kinematics

This chapter is based on the article “Relative Kinematis Of An Anchorless Network”

by R. T. Rajan, G. Leus and A. -J. van der Veen, (Submitted to Elsevier Signal Pro-

cessing)
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6. Relative kinematics

The estimation of the location of N points in a P dimensional Euclidean space,

given the pairwise distance or proximity measurement, is a principal challenge in

a wide variety of fields. Conventionally, the multidimensional scaling algorithm is

applied on the Euclidean distance matrix to obtain the relative coordinates upto a ro-

tation and translation. In this chapter, we focus on an anchorless network of mobile

nodes, where the distance measurements between the mobile nodes are time-varying

in nature and there is no absolute information on the network co-ordinates. The data

model discussed in the previous chapter, which relates the time-varying distances to

the time-varying relative positions of the anchorless network, is now extended for

non-linear motion. In particular, the aim is to estimate the relative position, relative

velocity and higher order derivatives of the initial node coordinates, which is cumu-

latively labeled as relative kinematics. The derived data model is inherently ill-posed,

however can be solved using certain relative immobility constraints on a few nodes.

Elegant constrained closed form solutions are proposed, to recursively estimate the

relative kinematics of the network. For the sake of completeness, we also estimate

the absolute kinematics of the nodes given these time-varying distance measurements

in the presence of known reference anchors. Cramér-Rao bounds are derived for the

new data model and simulations are performed to analyze the performance of the

proposed estimators.

6.1 Introduction

Estimating the relative coordinates of N points (or nodes) in a P dimensional Eu-

clidean space using proximity measurements is a fundamental problem spanning

a broad range of applications. These applications include, but are not limited to,

psychometric analysis [Koehler et al. 2005], perceptual mapping [Ho, MacDorman

and Pramono 2008], range-based anchorless localization [Dil, Dulman and Havinga

2006], combinatorial-chemistry [Agrafiotis, Rassokhin and Lobanov 2001], polar-

based navigation [Rehm, Klawonn and Kruse 2005], sensor array calibration [Jenkins

and Matarić 2004] and in general exploratory data analysis [Borg and Groenen 2005].

In anchorless localization scenarios for instance, nodes heavily rely on co-operative

estimation of relative coordinates. Such anchorless networks naturally arise when

nodes are inaccessible or only intermittently monitored, as is the case in space-based

satellite arrays [Rajan et al. 2016], underwater networks [Chandrasekhar et al. 2006]

or indoor wireless sensor networks [Yang, Wu and Liu 2012]. In such reference-free

scenarios, the proximity information which is often measured as pairwise distances

between the nodes, form a key input to estimating the relative coordinates of nodes.
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Multidimensional scaling (MDS) like algorithms are typically employed to estimate

the relative coordinates of the cluster, which have been studied rigorously over the

past decades [Borg and Groenen 2005; Forero and Giannakis 2012; Young 2013].

However, considerably less attention has been directed towards anchorless mobile

scenarios.

Our primary focus in this chapter is on an anchorless network of mobile nodes,

where the term anchorless is to indicate no absolute knowledge of the node posi-

tions, motion or reference frame. Furthermore, since the nodes are mobile, both the

node positions and the pairwise distance measurements between the nodes are time-

varying in nature. Our motive is to relate the time-varying pairwise distance measure-

ments to time-derivatives of the node coordinates. For an anchorless network, these

include the relative position, relative velocity, relative acceleration and higher-order

derivatives which are cumulatively referred to as relative kinematics in this chapter.

It is worth noting that the universal definition of relative kinematics inherently relies

on the information in the absolute reference frame. For example, the non-relativistic

relative velocity between two objects is (rightly) defined as the difference between

their respective absolute velocity vectors [Halliday, Resnick and Walker 2010]. In

an anchorless framework however, a natural question arises on whether the relative

kinematics can be estimated, given only time-varying distance measurements. Ergo,

the aim is to understand the relationship between the time-varying distance measure-

ments and the relative kinematics of mobile nodes, which is the goal of this chapter.

6.1.1 Previous work

A key challenge in our pursuit is that both the time-varying distance and the time-

varying relative positions are non-linear in nature. In particular, the Euclidean dis-

tance between a pair of mobile nodes is almost always a non-linear function of time,

even if the nodes are in linear independent motion. Therefore, it is perhaps not

surprising that traditional methods to solving such a problem have been state-space

based approaches with the assistance of known anchors [Kay 1993]. The initial pos-

ition of the nodes is estimated using MDS like algorithms, which use the Euclidean

distance matrix (EDM) at a single time-instant to estimate the relative node positions.

Given this initial estimate, the relative positions are tracked over a period of time with

Doppler measurements and known anchors [Wei et al. 2010], or via subspace track-

ing methods [Jamali-Rad and Leus 2012]. Unfortunately, Doppler measurements and

anchor information are not always available. Secondly, subspace tracking is applic-

able only for small perturbations in motion and offers little insights on the kinematics

of motion itself.
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6. Relative kinematics

In our previous chapter, a two-step solution was proposed to estimate the relative

velocities of the nodes from time-varying distance measurements [Rajan, Leus and

van der Veen 2015]. Firstly, the derivatives of the time-varying distances were es-

timated by solving a Vandermonde-like system of linear equations. The estimated

regression coefficients (called range parameters) jointly yield the relative velocit-

ies and the relative positions, using MDS-like algorithms. However, the proposed

solution is valid only for linear motion, which is not always practical. Furthermore,

the previously proposed MDS-based relative velocity estimator heavily relies on the

second-order time-derivative of distance, and under Gaussian noise assumptions, the

proposed estimator performs worse than the well known MDS-based relative position

estimator. Thus, more optimal estimators for relative velocity is one of the key motiv-

ations for the pursuit of a generalized framework presented in this chapter. Moreover,

understanding the higher order relative kinematics of motion in Euclidean space via

time-varying distance measurements is crucial for next-generation localization solu-

tions, particularly mobile networks which are only intermittently accessible.

6.1.2 Overview

A novel data model is proposed, which relates the time-varying distances to the kin-

ematics of the mobile nodes in Section 6.2. More specifically, this relationship is

established via the derivatives of the time-varying distance, which is estimated using

dynamic ranging as discussed in Chapter 5. In Section 6.3 we show that the rela-

tionship between the range parameters and the relative kinematics is of the form of

a Lyapunov-like set of equations, which is inherently ill-posed. In pursuit of unique

solutions, we propose elegant least squares algorithms, which can be solved under

certain assumptions. For the sake of completion in Section 6.4, we also propose

similar algorithms for estimating the absolute kinematics of the nodes, given known

reference parameters in the cluster. To compare the performance of our estimators,

we derive constrained Cramér-Rao bounds (CRBs), under Gaussian noise assump-

tion on the data. A optimal choice of the weighting matrix ensures the proposed

estimator is the best linear unbiased estimator (BLUE) for the given data model. In

addition, unconstrained oracle bounds are also derived in Section 6.5, as a benchmark

for next generation estimators. In Section 6.6, we conduct experiments to validate

the performance of the proposed estimators.
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6.2 Data model

6.2.1 Absolute kinematics

Consider a cluster of N mobile nodes in a P dimensional Euclidean space (N > P ),

whose positions at time t are given by S(t) ∈ R
P×N . For a time interval t close

to t0 = 0, we assume the time-varying position is continuously differentiable M
times and that the M th derivative exists in the interior of this interval1. Therefore,

the position vectors of the respective nodes can be expanded using a classical Taylor

series as

S(t) = X+Y1t+ 0.5Y2t
2 + . . .

= X+
M∑

m=1

(m!)−1Ymt⊙m, (6.1)

where X contains the initial co-ordinates of the mobile nodes at time t0. The instant-

aneous velocities of the nodes i.e., the first-order derivatives of the position vectors

are collected in Y1 ∈ R
P×N . Similarly, we define acceleration as Y2 ∈ R

P×N and

other higher-order derivatives as Ym ∀ 1 ≤ m ≤M .

6.2.2 Relative kinematics

The absolute positions at t0 are an affine transformation of the relative positions, i.e.,

X = H0X+ h01
T
N , (6.2)

where X ∈ R
P×N is the relative position matrix upto a rotation and translation,

H0 ∈ R
P×P is the unknown rotation and h0 ∈ R

P×1 is the unkown translation of

the network at t0 [Borg and Groenen 2005]. Now, we extend this well-known relative

position definition to the higher order derivatives. For instance, the velocity of the

nodes can be written as

Y1 = H1Ỹ1 + h11
T
N , (6.3)

where Ỹ1 represents the instantaneous relative velocities of the network at t0. The

translational vector h1 is the group velocity and H1 is the unique rotation matrix of

1Throughout this article, we assume t0 = 0 without loss of generality. The presented model,

bounds and corresponding solutions can be readily extended for any t0 ∈ R in general.
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6. Relative kinematics

the relative velocities [Rajan, Leus and van der Veen 2015]. More generally, the mth

order derivative is an affine model defined as

Ym = HmỸm + hm1TN . (6.4)

Now substituting (6.2) and (6.4) in (6.1), multiplying both sides by the centering

matrix P = IN − N−11N1TN on the right and HT
0 on the left, we can write the

relative position at time t as

HT
0 S(t)P = X+

M∑

m=1

(m!)−1HT
0 HmỸmtm, (6.5)

where we exploit the property P1N = 0N to eliminate the translational vectors and

enforce the orthonormality of the rotation matrix, i.e., HT
0 H0 = IN . Furthermore,

by introducing

Ym = HT
0 HmỸm, (6.6)

for all 1 ≤ m ≤M , (6.5) simplifies to

S(t) = X+
M∑

m=1

(m!)−1Ymtm, (6.7)

where we define the relative time varying position as

S(t) = HT
0 S(t)P. (6.8)

The above equation represents the relative counterpart of the absolute Taylor expan-

sion (6.1), where the matrices
(
X,Y1,Y2, . . . ,YM

)
denote the relative kinemat-

ics of the corresponding absolute kinematics
(
X,Y1,Y2, . . . ,YM

)
. Our quest in

this article is to estimate the relative (and absolute) kinematic matrices, given time-

varying pairwise distance measurements between the nodes. Consequently, the relat-

ive (and absolute) position S(t) (and S(t)) at any time t can then be estimated using

(6.7).

6.2.3 Time-varying distances

Similar to the node positions, the pairwise distances are also time-varying which

we denote by the time-varying EDM D(t) , [dij(t)] ∈ R
N×N where dij(t) is
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6.2. Data model

the pairwise Euclidean distance between the node pair (i, j) at time instant t. More

explicitly
(
D(t)

)⊙2
= g(t)1TN + 1NgT (t)− 2ST (t)S(t), (6.9)

where g(t) = diag
(
ST (t)S(t)

)
. Observe that D(t) is a non-linear function of time t,

even when the nodes are in independent linear motion and hence D(t) is a continu-

ously differentiable function in time. Now, based on the time-varying EDM D(t),
we define the double centered matrix B(t) and its time derivatives as

B(t) , −0.5P
(
D(t)

)⊙2
P, (6.10a)

Ḃ(t) , −P
(
D(t)⊙ Ḋ(t)

)
P, (6.10b)

B̈(t) , −P
(
D(t)⊙ D̈(t) + (Ḋ(t))⊙2

)
P, (6.10c)

where
(
Ḋ(t), D̈(t), . . .

)
are the derivatives of the time-varying EDM, which indicate

the radial velocity and other higher order derivatives. Now, let the EDM and the

corresponding derivatives at t0 be denoted by D(t0) , R = [rij ], Ḋ(t0) , Ṙ =
[ṙij ], D̈(t0) , R̈ = [r̈ij ], ∀{i, j} ≤ N , then with an abuse of notation (6.10)

becomes

B(0) , B(t)|t0 = −0.5PR⊙2P, (6.11a)

B(1) , Ḃ(t)|t0 = −P
[
R⊙ Ṙ

]
P, (6.11b)

B(2) , B̈(t)|t0 = −P
[
R⊙ R̈+ Ṙ⊙2

]
P. (6.11c)

In general, given the distance derivatives at t0, i.e., the range parameters (R, Ṙ, R̈,
. . .), the double centered matrix B(0) and the corresponding higher-order derivatives

(B(1), B(2), . . .) can be readily obtained.

6.2.4 Data model

To understand the relationship between the time-varying distances and the relative

kinematics of the nodes, we substitue the definition of the EDM from (6.9) in (6.10a)

and differentiate recursively, to obtain

B(t) = ST (t)S(t), (6.12a)

Ḃ(t) = Ṡ
T
(t)S(t) + ST (t)Ṡ(t), (6.12b)

B̈(t) = ST (t)S̈(t) + S̈
T
(t)S(t) + 2Ṡ

T
(t)Ṡ(t), (6.12c)

141



6. Relative kinematics

where we use the definition (6.8) and introduce (Ṡ(t), S̈(t), . . .) as the derivatives of

S(t). Now, rearranging the terms and substituting the definition of S(t) at t0 from

(6.7), we have

B0 , B(0) = XTX, (6.13a)

B1 , B(1) = XTY1 +YT
1 X, (6.13b)

B2 , B(2) − 2YT
1 Y1 = XTY2 +YT

2 X, (6.13c)

where we introduce the matrices (B0,B1,B2, . . .). The joint left and right centering

using the centering matrix P in (6.10) ensures that the phase center of the relative

kinematic matrices (Y1,Y2, . . .) are at 0P , similar to the relative position X.

Combining (6.11a) and (6.13a) for M = 0 , we have

B0 = XTX = −0.5PR⊙2P, (6.14)

and more generally for a given M ≥ 1, (6.11) and (6.13) can be generalized to

BM , B(M) −
M−1∑

m=1

(
M − 1
m

)
YT

M−mYm (6.15a)

= XTYM +YT
MX, (6.15b)

where B(M) is the M th derivative of the double centered matrix and YM is the M th

order relative kinematic matrix.

Remark 16: (Measurement matrix BM ): We make two critical observations

on BM in (6.15a). Firstly, note that BM is dependent on the range parameters

R, Ṙ, R̈, . . . via the definition of B(M) from (6.11). Secondly, BM also relies on

the relative kinematic matrices of order less than M . Thus given all the necessary

range parameters and the kinematic matrices of order less than M , the measurement

matrix BM can be reconstructed. Finally, (6.15b) is a bilinear system containing the

unknown YM as a function of the initial relative position X.

6.2.5 Problem Statement

Problem: Given the time-varying pairwise distances D(t) between the N nodes in

a P dimensional Euclidean space, estimate the relative kinematics (X,Y1,Y2 . . .)
and absolute kinematics (Y1,Y2 . . .) of the mobile network. These estimates sub-

sequently yield the relative (and absolute) time-varying positions.

Solution: We propose a two-step approach to estimate the relative (and absolute)

kinematic matrices, from the time-varying distances.
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Figure 6.1: Illustration of a pair of mobile nodes in non-linear motion: A generalized

two-way ranging (TWR) scenario between a pair of mobile nodes, where the nodes exchange

K time stamps asymmetrically with each other. The curved lines symbolize the non-linear

motion of the mobile nodes with time. Unlike our previous model in Chapter 5, which

considered only linear independent velocities of the nodes, in this chapter we consider non-

linear motion of the nodes.

(a) Dynamic ranging : Given distance measurements D(t), estimate the range

parameters (R, Ṙ, R̈, . . .).

(b) Kinematics: Using the range parameters, estimate the unknown 1) relative kin-

ematics (Section 6.3), and 2) absolute kinematics (Section 6.4).

The range parameters (R, Ṙ, R̈, . . .) can be estimated using the dynamic ranging

algorithm discussed in the previous chapter (see Section 5.3). Given an estimate of

θ using (5.23), an estimate of the range parameter matrices
(
R̂, ˆ̇R, ˆ̈R, . . .

)
can be

constructed and subsequently, from (6.11) we have the following estimates

B̂
(0)

= −0.5PR̂⊙2P, (6.16a)

B̂
(1)

= −P
[
R̂⊙ ˆ̇

R
]
P, (6.16b)

B̂
(2)

= −P
[
R̂⊙ ˆ̈

R+ ˆ̇
R⊙2

]
P. (6.16c)

The relative position X can now be estimated from B̂(0) using classical multidi-

mensional scaling as shown in Section 5.5.1 of the previous chapter.
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6.3 Relative kinematics

Given the estimates
(
B̂

(0)
, B̂

(1)
, B̂

(2)
, . . .

)
and the relative position estimate X̂ from

(6.16) and (5.46) respectively, we aim to find the unknown relative kinematic matrices

YM using (6.15b).

6.3.1 Lyapunov-like equations

For any M ≥ 1, the model (6.15b)

BM = XTYM +YT
MX, (6.17)

is the relative Lyapunov-like equation [Hodges 1957; Chiang, Chu and Lin 2012],

where BM is a N × N measurement matrix and YM is the M th order kinematics

to be estimated. Our equation is very similar, but not the same as the following

equations,

AHY +YA = B,

AY +YA = 0,

AY +YC = E,

which are the (continuous) Lyapunov equation, commutativity equation [Horn and

Johnson 1991, chapter 4] and Slyvester equation [Bartels and G.W.Stewart 1972;

Golub, Nash and Van Loan 1979] respectively, where the unknown matrix Y has to

be estimated, given A,B,C,E. The solutions to these equations exist and are extens-

ively investigated in control theory literature [Bhatia and Rosenthal 1997]. However,

the Lyapunov-like equation has received relatively less attention. The Lyapunov-like

equation has a straight forward solution for P = 1. But, for P ≥ 2, although a

general solution was proposed by Braden [Braden 1998], a unique solution to (6.17)

does not exist. See Appendix 6.A.

Now, vectorizing (6.15b), the cost function we intend to minimize is

ŷ
M

= argmin
y
M

‖(IN2 + J)(IN ⊗XT )y
M
− bM‖2

= argmin
y
M

‖Ay
M
− bM‖2, (6.18)

where

A = (IN2 + J)(IN ⊗XT ) ∈ R
N2×NP , (6.19a)

y
M

= vec(YM ) ∈ R
NP×1, (6.19b)

bM = vec(BM ) ∈ R
NP×1, (6.19c)
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and J is an orthogonal permutation matrix. The matrix (IN ⊗ XT ) ∈ R
N2×NP is

full column rank, since Xis typically non-singular. However, the sum of permutation

matrices (IN2 + J) ∈ R
N2×N2

is always rank deficient by at least
(
N
2

)
. Hence, the

matrix primary objective function A is not full column rank, but is rank deficient by

at least P̄ , 0.5P (P − 1). In (6.17), since the translational vectors of both X and

YM are projected out using the centering matrix P, the P̄ dependent columns in A

indicate the rotational degrees of freedom in a P -dimensional Euclidean space.

6.3.2 Lyapunov-like least squares (LLS)

A unique solution to the Lyapunov-like equation is not feasible without sufficient

constraints on the linear system (6.18). Let Â be an estimate of the matrix A, ob-

tained by substituting the estimated relative position X̂ (5.46). Similarly, let b̂M

be an estimate of bM obtained by substituting the range parameters and appropriate

relative kinematic matrices upto order M − 1. Then the constrained Lyapunov-like

least squares (LLS) solution to estimating the relative kinematic matrices is given by

minimizing the cost function

ŷ
M,lls

= argmin
y
M

‖Ây
M
− b̂M‖2 s.t. C̄y

M
= d̄, (6.20)

where C̄ is a set of non-redundant constraints. The above optimization problem has

a closed-form solution, given by solving the KKT equations (Appendix 6.B).

6.3.3 Weighted Lyapunov-like LS (WLLS)

In reality, both A and b are plagued with errors and hence the solution to the cost

function (6.20) is sub-optimal. Let W̄M be an appropriate weighting matrix on the

Lyapunov-like equation, then the weighted lyapunov-like least squares (WLLS) solu-

tion is obtained by minimizing the cost function

ŷ
M,wlls

= argmin
y
M

‖W̄1/2
M

(
Ây

M
− b̂M

)
‖2 s.t. C̄y

M
= d̄, (6.21)

which, similar to (6.20), can be solved using the constrained KKT solutions (See

Appendix 6.B). An appropriate choice of the weighting matrix W̄M will be discussed

in Section 6.5.2.
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6.3.4 Choice of constraints: Relative immobility

In the absence of absolute location information, a unique solution is feasible if the

relative motion of at least P nodes or features are invariant (or known) over a small

time duration ∆T . In an anchorless framework, a set of given nodes would have

equivalent relative kinematics, if they are identical in motion upto a translation or

if they are immobile for the small measurement time ∆T . Such situations could

arise, for example, in underwater localization, when a few immobile nodes could

be deployed in fixed but unknown absolute locations, which in turn could assist the

relative localization of the other nodes. For P = 2, if the first P nodes are relatively

immobile for the small measurement time, a valid constraint for (6.20) and (6.21) is

C̄1 =
[
I2 −I2 0

]
, d̄1 = 0, (6.22)

which can be readily extended for P > 2 and if required, for a larger number of

immobile nodes. In essence, the relative immobility constraint reduces the parameter

space in pursuit of a unique solution for the ill-posed Lyapunov-like equation. ‘

6.4 Absolute kinematics

In addition to relative kinematics, (6.17) can also be reformulated to estimate the ab-

solute kinematics of the network. For the sake of completion, we propose an estimate

of the absolute kinematics YM using our data model.

Note that the initial rotation H0 and translation h0 do not affect the model, as

observed in (6.17). Thus, without the loss of generality, we assume

H0 = IP and h0 = 0P . (6.23)

Under this assumption, the relative position is identical to the absolute position X =
X, which we use to estimate the higher order kinematics.

6.4.1 Generalized Lyapunov-like equation

Recall that YM is the absolute kinematic matrix of the M th order, such that YMP =
HMỸ holds (6.4). Then, under the assumption (6.23), the relative kinematic model

(6.17) is

XTYMP+PYT
MX = BM . (6.24)
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The above equation is similar, but not the same, to the generalized (continuous-time)

Lyapunov equation

ATYC+CTYA = B,

where A,B,C are known square matrices [Penzl 1998]. We now vectorize (6.24)

and aim to minimize the following cost function

ŷM = argmin
yM

‖AyM − bM‖2, (6.25)

where

A = (IN2 + J)(P⊗XT ) ∈ R
N2×NP , (6.26a)

yM = vec(YM ) ∈ R
NP×1, (6.26b)

and bM is given by (6.19c). In comparison to (6.18), the matrix (IN ⊗ XT ) is

replaced with (P ⊗ XT ) in (6.26a). The rank of the centering matrix P is N −
1 and since X is typically full row rank, the Kronecker product is utmost of rank

NP − P . This rank-deficiency of P is also reflected in the matrix A. Unlike A

which has P̄ dependent colomns, A is rank-deficient by
(
P+1
2

)
= P̄ + P . The

additional P dependent columns are perhaps not surprising, as they indicate the lack

of information on the translational vector, i.e., the group center of the M th order

kinematic matrix.

6.4.2 Generalized Lyapunov-like Least Squares (GLLS)

In pursuit of a unique solution to the rank-deficient system (6.25), we propose a

constrained generalized Lyapunov-like least squares (GLLS) to estimate the absolute

kinematic matrices which is obtained by minimizing the cost function

ŷM,glls = argmin
yM

‖ÂyM − b̂M‖2 s.t. CyM = d, (6.27)

where Â and b̂M are estimates of A and bM respectively. The matrix C is a set of

non-redundant constraints, which will be discussed in Section 6.4.4.

6.4.3 Weighted generalized lyapunov-like LS (WGLLS)

The performance of the estimator can be improved by weighting the cost function

(6.27), i.e.,

ŷM,wglls = argmin
yM

‖W1/2
M

(
ÂyM − b̂M

)
‖2 s.t. CyM = d, (6.28)
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which yields the weighted generalized lyapunov-like least squares (WGLLS) solution

(See Appendix 6.B), where WM is an appropriate weighting matrix (See Section

6.5.2).

6.4.4 Choice of constraints: Anchor-aware network

For an anchored scenario, if the M th order absolute kinematics of a few nodes are

known, then the absolute velocity, acceleration and higher order derivatives can be

estimated. A straightforward minimal constraint for the feasible solution is then

C1 =
[
IP̄+P , 0

]
, (6.29)

where without loss of generality, we assume the first P̄ + P parameters are known.

6.5 Cramér-Rao bounds

6.5.1 Kinematics

We now derive the lower bounds on the variance of the estimates of relative kinemat-

ics y
M

= vec(YM ) and absolute kinematics yM = vec(YM ). The Gaussian noise

vectors plaguing the respective cost functions (6.18) and (6.25) are modelled as

ρ
M
∼ N (Ay

M
− bM ,Σρ,M ), (6.30)

ρM ∼ N (Ay
M
− bM ,Σρ,M ), (6.31)

where ρM ,ρ
M

are N2 dimensional noise vectors, and the corresponding covariance

matrices are of the form

Σρ,M , E
{
ρ
M
ρT
M

}
≈ Ay,MΣ̄xA

T
y,M +Σb,M , (6.32a)

Σρ,M , E
{
ρMρT

M

}
≈ Ay,MΣ̄xA

T
y,M +Σb,M , (6.32b)

where

Ay,M = (IN2 + J)(IN ⊗YT
M ) ∈ R

N2×NP , (6.33a)

Ay,M = (IN2 + J)(P⊗YT
M ) ∈ R

N2×NP , (6.33b)

and an expression for Σb,M is derived in Appendix 6.C.
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Unconstrained CRBs

The lowest achievable variance by an unbiased estimator is given by

Σy,M , E

{
(ŷ

M
− y

M
)(ŷ

M
− y

M
)T
}
≥ F

†
y,M , (6.34a)

Σy,M , E
{
(ŷM − yM )(ŷM − yM )T

}
≥ F

†
y,M , (6.34b)

where the corresponding FIMs are given by

Fy,M =
(
ATΣ

†
ρ,MA

)
, (6.35a)

Fy,M =
(
ATΣ

†
ρ,MA

)
. (6.35b)

It is worth noting that the Moore-Penrose pseudoinverse is employed since the FIM

is rank-deficient, and consequently the derived bounds (6.34) are oracle-bounds.

Constrained CRBs

When the FIM is rank-deficient, a constrained CRB can be derived given differenti-

able and deterministic constraints on the parameters [Stoica and Ng 1998]. Let Ū,U
be an orthonormal basis for the null space of the constraint matrices C̄,C, then

the constrained Cramér-Rao bound (CCRB) on the M th order kinematic matrices is

given by

ΣC
y,M , E

{
(ŷ

M
− y

M
)(ŷ

M
− y

M
)T
}

≥ Ū
(
ŪTFy,MŪ

)−1
ŪT , (6.36a)

ΣC
y,M , E

{
(ŷM − yM )(ŷM − yM )T

}

≥ U
(
UTFy,MU

)−1
UT , (6.36b)

where the FIMs are given by (6.35).

6.5.2 Choice of weighting matrices W̄M ,WM

To admit a BLUE solution, we use the inverse of the covariance matrices Σρ,M ,Σρ,M

as weights to solve the regression problems (6.21) and (6.28), i.e.,

W̄M , Σ̂
†

ρ,M =
(
Ây

ˆ̄ΣxÂ
T
y + Σ̂b,M

)†
, (6.37a)

WM , Σ̂
†

ρ,M =
(
Ây

ˆ̄ΣxÂ
T
y + Σ̂b,M

)†
, (6.37b)
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Figure 6.2: Range parameters: (Left) Varying K : RMSEs (and RCRBs) of relative range

parameters (r, ṙ, r̈) for varying number of communications (K) between the N = 10 mobile

nodes for σ = 0.1 meters. (Right) Varying σ: RMSEs (and RCRBs) of relative range

parameters (r, ṙ, r̈) for a network of N = 10 exchanging K = 10 timestamps, where the

noise on the time markers (σ) is varied. Unlike our previous experiments [Rajan, Leus and

van der Veen 2015; Rajan and van der Veen 2015] (See Chapter 4 and Chapter 5), we consider

acceleration in the current setup.

where the estimates Ây, Ây are obtained by substituting ŶM from LLS [ (6.20) and

(6.27) ], in (6.33), ˆ̄Σx is an estimate of (5.55) and Σ̂b,M is derived in Appendix 6.C

from appropriate range parameter estimates.

6.6 Simulations

In this section, we conduct experiments to validate the proposed data model, and the

solutions against their respective derived lower bounds. A network of N = 10 nodes

is considered in P = 2-dimensional space, with instantaneous position, velocity

and acceleration values arbitrarily chosen as in (6.38), such that the constraint (6.22)

holds. All the nodes communicate with each other within a small time-interval of

∆T = [Tij,k, Tji,k] = [−1, 1] seconds , wherein the transmit time markers are chosen

to be linearly spaced. Furthermore, we assume that all the pairwise communications

are independent of each other, i.e., Σ = σ2IN̄K . The metric used to evaluate the

performance of the range parameters, absolute velocity and absolute acceleration is
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X =

[
−244 385 81 −19 −792 −554 −965 −985 −49 −503
−588 −456 −992 −730 879 970 155 318 −858 419

]
,

Y1 =

[
−5 −5 −6 6 −1 2 1 −5 9 −5
−8 −8 −7 −9 −3 −2 −2 −10 2 −1

]
,

Y2 =

[
−0.2 −0.2 0.2 −0.1 0.2 −0.2 0.5 −0.7 −0.5 −0.3
0.4 0.4 1 0.7 0.5 0.1 −0.4 −0.1 0.5 0.9

]
(6.38)

the root mean square error (RMSE), given by

RMSE(z) =

√√√√N−1
exp

Nexp∑

n=1

‖ẑ(n)− z‖2,

where ẑ(n) ∈ R
NP×1 is the nth estimate of the unknown vector z during Nexp =

500 Monte Carlo runs. To qualify these estimates, the square root of the Cramér-

Rao bound (RCRB) is plotted along with the respective RMSE. For all proposed

estimators, we conduct two types of experiments, for (a) varying number of pairwise

communications K from 0 to 100, with constant noise of σ = 0.1m and (b) varying

SNR from [−10, 10] dB meter with a fixed K = 10 time-stamp exchanges. The noise

on the time-markers is typical for classical TWR based fixed localization [Patwari et

al. 2003].

6.6.1 Range parameters

We employ the dynamic ranging algorithm (5.23) for L = 3, to extract the desired

range coefficients. Figure 6.2 shows the RMSE of the first 3 range coefficients, for

both varying K and varying SNR. In both experiments, not surprisingly, the RMSEs

of the estimated range coefficients achieve the corresponding RCRBs asymptotic-

ally. It is worth noting, that unlike previous experiments in Chapter 4 and Chapter 5,

which considered only linear motion, we now consider acceleration in the current

simulation. Without loss of generality, we assume that the order of approximation

L is known. Alternatively, iterative solutions such as iMGLS can be employed to

estimate L. For a detailed discussion on the effect of L on the distance estimation,

particularly for an asynchronous network, see Chapter 4.

151



6. Relative kinematics

10 13 16 20 25 32 40 50 63 79 100
10

-3

10
-2

10
-1

(a) Relative position: X [m]

No. of two-way comms. (K)

R
M

S
E

MDS
RCRB-Unconstrained

-10  -8  -6  -4  -2   0   2   4   6   8  10
10

-2

10
-1

10
0

10
1

(d) Relative position: X [m]

−10 log
10
(σ) [dB meters]

R
M

S
E

MDS
RCRB-Unconstrained

10 13 16 20 25 32 40 50 63 79 100
10

-2

10
-1

10
0

(b) Relative velocity: Y
1

[ms−1]

No. of two-way comms. (K)

R
M

S
E

LLS
WLLS
RCRB-Constrained
RCRB-Unconstrained

-10  -8  -6  -4  -2   0   2   4   6   8  10
10

-2

10
0

10
2

(e) Relative velocity: Y
1

[ms−1]

−10 log
10
(σ) [dB meters]

R
M

S
E

LLS
WLLS
RCRB-Constrained
RCRB-Unconstrained

10 13 16 20 25 32 40 50 63 79 100
10

-2

10
-1

10
0

10
1

(c) Relative acceleration Y
2

[ms−2]

No. of two-way comms. (K)

R
M

S
E

LLS
WLLS
RCRB-Constrained
RCRB-Unconstrained

-10  -8  -6  -4  -2   0   2   4   6   8  10
10

-2

10
0

10
2

(f) Relative acceleration Y
2

[ms−2]

−10 log
10
(σ) [dB meters]

R
M

S
E

LLS
WLLS
RCRB-Constrained
RCRB-Unconstrained

Figure 6.3: Relative Kinematics: Varying K: RMSEs (and RCRBs) of (a) Relative position

(X), (b) Relative velocity (Y
1
) and (c) Relative acceleration (Y

2
) for varying number of

communications (K) for σ = 0.1 meters. Varying σ: RMSEs (and RCRBs) of (d) Relative

position (X), (e) Relative velocity (Y
1
) and (f) Relative acceleration (Y

2
) for K = 10 , and

where the noise on the time markers (σ) is varied.
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Figure 6.4: Comparison of relative velocity estimators: RMSEs (and RCRBs) of relative

range parameters Y1 for (left) varying number of communications (K) for σ = 0.1 meters

and (right) varying σ between the N = 10 mobile nodes.

6.6.2 Relative kinematics

The estimated relative range parameters yield the desired relative kinematics matrices.

Figure 6.3 shows the RMSEs (and RCRBs) of all the relative kinematic estimates.

The MDS-based relative position estimates presented in Figure 6.3(a) and in Fig-

ure 6.3(d), perform well against the derived orcale-bound, which was also observed

in [Rajan and van der Veen 2015]. In case of the relative velocity and acceleration, we

assume the minimal constraint C̄1 for analysis. Note that the unconstrained oracle-

bounds are lower as compared to the CCRB, for a fixed SNR and increasing K. The

WLLS solution outperforms the LLS solutions for both velocity and acceleration

estimation, and asymptotically achieve the derived respective CCRBs.

To compare the performance of the proposed relative velocity estimator against

the MDS-based relative velocity estimation (5.47), we perform another experiment.

The MDS-based algorithm for relative velocity estimation assumes the nodes are in

linear motion. Hence, we set Y2 = 0P,N in (6.38), and re-implement the dynamic

ranging algorithm for L = 2 and plot the standard deviation of the relative velo-

city estimators in Figure 6.4. Under the constant velocity assumption, the CCRB

is comparable to the oracle-bound. The proposed WLLS solution outperforms the

MDS-based estimator, especially for higher SNR and lower number of pair-wise

communications. This is perhaps not surprising, since the previously proposed MDS-

based relative velocity estimator is based on R̈, where the estimated noise on these

regression coefficients typically increases with range-order for a Taylor basis (see

Figure 6.2). In comparison, the WLLS solution proposed in this chapter is dependent
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6. Relative kinematics

only on range R and range rates Ṙ.

6.6.3 Absolute kinematics

Figure 6.5 shows the RMSEs and the corresponding RCRBs of the absolute velocity

Y1 and acceleration Y2. We assume constraint (6.29) to solve the proposed GLLS

(6.27) and WGLLS (6.28) algorithms. The proposed estimators are seen to converge

asymptotically to the derived CCRBs, while the CCRB itself is an order higher than

the theoretical oracle-bound. The performance of the absolute kinematics is very

similar to the that of the relative kinematics (see Figure 6.3), which is due to the

fact the FIMs in both scenarios are dominated by the singular values of the relative

position matrix.

6.6.4 Relative positions over time

The primary objective of this chapter is to estimate the relative (and absolute) kin-

ematics of motion. However, for the sake of completeness, we discuss the use of

these estimates in reconstructing the relative and absolute time-varying positions i.e.,

S(t) and S(t). Substituting the proposed constrained solutions in (6.1) and (6.7), the

time-varying position estimates are

Ŝ(t) = X̂+ Ŷ1t+ 0.5Ŷ2t
2, (6.39)

Ŝ(t) = X̂+ Ŷ1t+ 0.5Ŷ2t
2, (6.40)

where X̂ = X̂ is the relative position estimated from (5.46), and {Ŷ1, Ŷ2} and

{Ŷ1, Ŷ2} are the relative and absolute kinematic estimates from (6.21) and (6.28)

respectively. The RMSE plot for the absolute and relative time-varying positions

around the region of interest at t0 = 0 are shown in Figure 6.6, where the number

of communications is varied as K = [50, 100, 500] with a Gaussian noise on the

distance of σ = 1 meter. For K = 500, the RMSE estimate of both the relative

and absolute position around t0 shows an improvement by an order magnitude in

comparison to the noise on the distance measurement, for the given experimental

setup. This gain is primarily contributed during dynamic ranging, where K data

points are averaged using the Taylor basis which yields a factor
√
K improvement

on the estimate of the range parameters. Secondly, the performance deteriorates as

we move away from t0, which is a typical characteristic of the Taylor approximation.

However, if Doppler measurements are available for radial velocities and other higher

order derivatives, then the standard deviation of the estimators can be further reduced.

154



6.7. Conclusions

6.7 Conclusions

Understanding the relative kinematics of an anchorless network of mobile nodes is

paramount for reference-free localization technologies of the future. We presented a

novel data model which relates the time-varying distance measurements to the M th

order relative kinematics for an anchorless network of mobile nodes. The derived

data model takes the form of a Lyapunov-like equations, which under certain con-

straints, can be recursively solved for estimating the relative velocity, acceleration

and higher order derivatives. Closed form constrained estimators, such as the LS and

WLS are proposed, which are also the BLUE for the given data model. Cramér-Rao

lower bounds are derived for the new data model and the performance of the pro-

posed algorithms are validated using simulations. Although our focus is on relative

localization, the proposed model and solutions can be broadly applied to understand

feature variation in Euclidean space.

In our future work, we are keen in addressing two research challenges. Firstly,

our focus in this chapter has been on finding unique solutions to time-derivatives of

the relative position matrix. To this end, unbiased constrained estimators are pro-

posed to solve the under-determined Lyapunov-like equation. However, more gen-

erally, regularized algorithms can be employed, such as Ridge regression [Golub,

Hansen and O’Leary 1999], subset selection [Lawson and Hanson 1974] or Lasso

[Tibshirani 1996], without the need for equality constraints on the cost function. The

estimates of such unconstrained algorithms can be corroborated against the uncon-

strained Cramér-Rao bound derived in this chapter. Furthermore, the algorithms are

inherently centralized in nature, which could be distributed for resource constrained

implementation. Finally, the proposed framework is particularly helpful for cold-

start scenarios when there is no apriori information on the position or higher order

kinematics. In practice, given the cold-start solution on relative velocity and higher

order kinematics, a state-space model readily emerges for dynamic tracking of the

relative positions over time, which can be elegantly solved using a Kalman filter.

Appendix 6.A Lyapunov-like equation

Theorem 1. Given X ∈ R
P×N and B ∈ R

N×N for N > P , the Lyapunov-like

equation

XTY +YTX = B, (6.41)

is rank-deficient by at least P̄ =
(
P
2

)
.
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Figure 6.5: Absolute kinematics: Varying K: RMSEs (and RCRBs) of (a) Absolute ve-

locity (Y1) and (b) Absolute acceleration (Y2) for varying number of communications (K)

between the N = 10 mobile nodes for σ = 0.1 meters. Varying σ: RMSEs (and RCRBs)

of (c) Absolute velocity (Y1) and (d) Absolute acceleration (Y2), for a network of N = 10
exchanging K = 10 timestamps, where the Noise on the time markers (σ) is varied.
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Figure 6.6: Error on position over time: RMSEs of (left) relative position S(t) and (right)

absolute position S(t) over time for K = [50, 100, 500] communications between a cluster

of N = 10 mobile nodes, with σ = 1 meter.

Proof. Let the singular value decomposition of X be

X = Ux

[
Λx 0

]
VT

x , (6.42)

where Λx ∈ R
P×P is a diagonal matrix containing the singular values and Ux ∈

R
P×P , and Vx ∈ R

N×N are the corresponding singular vectors. Then, (6.41) is

[
Λx 0

]T
Ỹ + ỸT

[
Λx 0

]
= B̃, (6.43)

where

B̃ =

[
B̃11 B̃12

B̃T
12 B̃22

]
= VT

xBxVx, (6.44)

Ỹ =
[
Ỹ1 Ỹ2

]
= UT

xYVx, (6.45)

where Ỹ1 ∈ R
P×P , Ỹ2 ∈ R

P×N−P and B̃22 = 0 for the equation to be consistent.

A solution to the system (6.41) is obtained by solving for Ỹ the set of equations,

ΛxỸ1 + ỸT
1 Λx = B̃11, (6.46)

ΛxỸ2 = B̃12. (6.47)

An estimate for Ỹ2 is straightforward and is given by
ˆ̃
Y2 = Λ−1

x B̃12. Let

Λ̃x, Ỹ1 and B̃11 be partitioned into
[
σ1 0
0 Λx,1

]
,

[
y11 ỹ12

ỹ21 Ỹ1,1

]
,

[
b̃11 b̃12

b̃T
12 B̃11,1

]
, (6.48)
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then (6.46) is equivalent to solving

y11 = b̃11/2σ1, (6.49)

σ1ỹ12 + ỹT
21Λx,1 = b̃12, (6.50)

Λx,1Ỹ1,1 + ỸT
1,1Λx,1 = B̃11,1. (6.51)

Note that the solution to y11 in (6.49) is straightforward, however the solution to

off-diagonal terms ỹ12, ỹ21 is underdetermined. Furthermore, since (6.51) is in form

similar to (6.46), Ỹ1,1 can be estimated recursively [Chu 1989]. Thus, the diagonal

terms of the P−dimensional matrix Ỹ1,1 can be estimated, however to resolve the

ambiguity of the off-diagonal terms at least P̄ =
(
P
2

)
constraints are required.

Appendix 6.B Karush-Kuhn-Tucker (KKT) system

A solution to minimize the equality constrained l2 norm

min
y
‖Ay − b

∥∥2 s.t. Cy = d, (6.52)

is obtained by solving the Karush-Kuhn-Tucker system (KKT) equations [Boyd and

Vandenberghe 2004],

[
ŷ

λ̂

]
=

[
2ATA CT

C 0N2,N2

]−1 [
2ATb

d

]
, (6.53)

where ŷ is an estimate of the unknown parameter y and λ̂ collects the correspond-

ing Lagrange multipliers. The problem has a feasible solution provided

[
A

C

]
is full

column rank [Lawson and Hanson 1974].

Appendix 6.C Expression for Σb,M

We present an explicit expression for the covariance matrix Σb,M , which is obtained

by ignoring higher order noise terms i.e., for sufficiently large SNR. For M = 1, i.e.,

relative velocity, we have

Σb,1 ≈ P̃
(
ΨrΣ̄ṙΨr +ΨṙΣ̄rΨṙ

)
P̃, (6.54)
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and for M = 2, i.e., relative acceleration, we have

Σb,2 ≈ P̃
(
ΨrΣ̄r̈Ψr +Ψr̈Σ̄rΨr̈ + 4ΨṙΣ̄ṙΨṙ

)
P̃+ 4ΨyΣ̄ẋΨy, (6.55)

where we P̃ , P ⊗ P, Ψr , diag
(
vec
(
R)
)
,Ψṙ , diag

(
vec
(
Ṙ)
)

and Ψr̈ ,
diag

(
vec
(
R̈)
)
. The matrix Ψy = Ay,1 for absolute kinematics and Ψy = Ay,1

for relative kinematics. Observe that the diagonal elements of the range paramet-

ers R, Ṙ, R̈, . . . contain zeros and consequentially the matrices Ψr,Ψṙ,Ψr̈, . . . are

singular. Hence the covariance matrix Σb,M is in general rank deficient. Further-

more, Ay in (6.33b) is rank deficient by definition and subsequently Σρ (6.32) is

ill-conditioned and therefore, we use the Moore-Penrose pseudo-inverse in (6.35)

and (6.37). An expression for higher order M > 2 can be similarly derived.
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7. Conclusions

In this chapter, the conclusions of this dissertation are summarized. In addition,

suggestions to improve the proposed solutions are enlisted, along with directions for

future work.

7.1 Summary and conclusions

The primary goal of this dissertation has been to estimate the time-varying positions

and clock discrepancies of an anchorless mobile network, with no apriori absolute ref-

erence information of position or time. In particular, the quest has been to understand

the relative space-time kinematics in Euclidean space, as formulated in Section 1.6.3.

This research problem was further broken down into 4 key research questions, which

were addressed in the various chapters of this dissertation, as laid out in Section 1.6.5.

In Chapters 3-6, novel models and algorithms are proposed, to estimate the derivat-

ives of relative position (i.e., relative kinematics) and the first-order clock model,

given only two-way communication. One of the key motivations behind this disserta-

tion topic is space-based radio astronomy at 0.3- 30MHz, which remains one of the

last unexplored spectrum in radio astronomy (Chapter 2).

7.1.1 Space-based radio astronomy

Space-based ultra-long wavelength radio astronomy has come of age. In the past,

studies were primarily limited by technology, as discussed in Chapter 2. However,

recently completed studies such as DARIS and SURO-LC have shown the feasibility

of a small satellite-array using off the shelf components. A satellite cluster of greater

than 10 satellites equipped with dipole antennas and observing at 0.3 − 30MHz for

over a year is scientifically interesting, and meets the requirements for the extra-

galactic survey science cases in terms of resolution and sensitivity. The ultra-long

wavelengths will be observed by all the satellites, each equipped with dipole an-

tenna(s) and pre-processing block for signal conditioning and RFI mitigation. To

minimize downlink data rate, all the satellites must communicate the observed data

with each other and process the data on-board. In view of next generation arrays

consisting of larger number of satellites, to avoid single point of failure, both central-

ized and distributed architectures are presented for communication and processing.

The on-board processing for a cluster of 10 satellites can be easily performed using

present day technology. However, the intra satellite communication and downlink

of the processed data to Earth based communication appears to be the fundamental

bottleneck.
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The potential deployment location must be chosen to ensure, minimal RFI during

radio astronomy observations, offer maximum downlink data rate and provide suffi-

cient positional stability. Among all deployment locations discussed in this disserta-

tion, the Lunar orbiting scenario emerges as the most favorable, since it meets almost

all the requirements. There are numerous research areas which were identified during

these feasibility studies, which include intra-satellite and downlink communication

for larger arrays [Budianu 2015], antenna design for 0.3 − 30MHz observational

frequencies, efficient imaging techniques for ultra-long wavelength radio astronomy

and investigating control and reliability of large satellite arrays [Engelen, Gill and

Verhoeven 2014]. In addition, co-operative localization and synchronization of an-

chorless network of mobile nodes was recognized as a fundamental challenge during

these studies, which is addressed in this dissertation.

7.1.2 Synchronization and ranging

The choice of clocks for ultra-long wavelength radio astronomy was discussed in

Chapter 3. In particular, it was shown that if the Allan deviation of a given clock

is sufficiently low, then the inherently non-linear clock model can be approximated

up to the first order. Furthermore, a few commercially available clocks which meet

these requirements were discussed.

In Chapter 4, the joint time-range basis is proposed, which combines the afore-

mentioned linear clock model along with a (L− 1)th order Taylor approximation of

the time-varying distance for a pair of mobile nodes. This joint time-range model

is applied to the proposed GTWR framework, which is an extension of the classical

TWR for a pair of fixed nodes. Least squares based solutions are proposed for net-

work wide synchronization, namely MPLS and MGLS. Furthermore, when the order

of distance approximation L is unknown, iterative solutions (iMPLS, iMGLS) are

proposed for estimating the distance derivatives i.e., range parameters. A novel con-

strained Cramér-Rao bound is derived for the model, and simulation results show that

the proposed estimators asymptotically achieve this bound.

The proposed estimators are part of a constrained framework, which allow addi-

tional knowledge of clock or distance to be incorporated. The solutions are for a full

mesh network with two-way communication capability, however a robust synchron-

ization is still feasible despite missing links. Furthermore, in search of an optimal

choice of clock reference, two virtual clocks references are suggested. The Null con-

straint based clock reference is a data dependent reference, which is the most optimal

reference in the l2 sense. In comparison, the data independent sum constraint yields

a near-optimal performance and does not need additional processing.
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7.1.3 Relative kinematics in Euclidean space

The Chapters 5 and 6 exclusively focus on relative kinematics of N nodes in P
dimensional Euclidean space where N > P . A novel relative localization framework

is proposed for an anchorless network of mobile nodes, given only the time-varying

pairwise distances. The Dynamic ranging algorithm employs a Taylor approximation

of time-varying distance to obtain its derivatives. The proposed framework is similar

to the joint time-range model proposed in the previous chapter, however is applicable

to a synchronized network. Relative velocities (and higher order relative kinematics)

are defined as an affine model of the absolute velocities (and corresponding higher

order absolute kinematics).

In Chapter 5, under linear velocity assumption, the first 3 derivatives of time-

varying distances are used to jointly estimate the relative positions, relative velocities

and a unique rotation matrix. MDS-based algorithms are proposed to estimate the

relative positions and velocities of the nodes, and total Least squares algorithm is

proposed for the rotation matrix estimation. The LMDS algorithm, which is an exten-

sion of the MDS algorithm for mobile scenario, combines these estimates to provide

the time-varying relative positions of the nodes. In addition, the CMDS algorithm is

also proposed which yields the relative position and unique rotation matrices at each

time instant. Simulation results show that the CMDS algorithm performs consistently

over time, however in comparison, the LMDS algorithm shows improvement up to a

factor
√
K. In addition, the LMDS algorithm and dynamic ranging allows incorpor-

ation of the Doppler measurements if available. For the generalized scenario of N
mobile nodes in P dimensions, novel Cramér-Rao lower bounds are derived for the

relative positions and relative velocities.

The LMDS and the CMDS algorithms are applicable only to mobile nodes under

linear independent velocities. In search of higher order kinematics e.g., relative ac-

celeration, a more generalized framework is proposed in Chapter 6 which relates the

L derivatives of the time-varying distance to a M th order relative kinematic of the

mobile nodes. This relationship is bi-linear in form and is a Lyapunov-like equation,

which is inherently ill posed. However, in the presence of some relative immobil-

ity constraints, the relative kinematics can be uniquely estimated. Constrained Least

squares and Weighted Least squares solutions are proposed, and the estimated kin-

ematics naturally yield the relative time-varying positions of the mobile nodes in non-

linear motion. Cramér-Rao bounds are derived for the relative kinematic estimates,

given the novel data model. The proposed algorithms in this chapter show significant

improvement over the MDS based relative velocity algorithms in Chapter 5, despite

the disadvantage of enforcing relative immobility constraints.
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7.2 Directions for future work

The focus of this dissertation, particularly in Chapters 3-6, has been to “model” the

problem of relative space-time estimation of an anchorless network. Therefore, there

is a significant scope to improve the proposed estimators, and there are numerous

directions for extending these solutions. A few possible extensions and other sugges-

tions for future work are listed below.

1. Improved joint synchronization and ranging: The Least squares based solu-

tions proposed for joint ranging and synchronization are suboptimal for het-

eroscedastic models, or when the noise between the various time markers are

correlated. In such scenarios, a Weighted Least Squares algorithm with an

appropriate weighting matrix would yield an optimal estimate (see Remark

3). Furthermore, throughout this dissertation we have considered Gaussian

noise plaguing the data model for dynamic ranging, which may not always be

valid. For instance, some experimental results have favored the use of expo-

nential delay models [Moon, Skelly and Towsley 1999], for which Maximum-

likelihood estimators (MLE) have been proposed [Abdel-Ghaffar 2002; Jeske

2005]. Along similar lines, optimal estimators in the presence of exponential

(and other) noise distributions should be investigated for the proposed joint

ranging and synchronization model.

2. Joint relative space-time kinematics: In Chapters 5-6, to estimate the rel-

ative kinematics, we assume the clocks in the nodes to be synchronized. Al-

though this assumption is without loss of generality, for all practical purposes

the nodes will be asynchronous. The clock errors would adversely affect the

accuracy of the range parameters and subsequently the relative kinematic es-

timates. This can be resolved by jointly estimating the first-order clock coeffi-

cients, range parameters and the relative kinematics.

3. On the choice of basis: In Chapter 4, a Taylor basis is employed to estim-

ate the clock discrepancies and time-varying distances. This is feasible since,

both clock and distance are assumed to be continuous functions of time, and

their respective derivatives exist up to the appropriate order. The advantage is

that this approximation is exact at the given point and the estimated derivatives

give physical insights the space-time variations. However, the approximation

error in this representation gradually worsens when going away as observed in

the simulations. The bottleneck can be overcome by employing an orthonor-

mal basis; such as Legendre, splines or wavelets; for approximating the clock
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model, or time-varying distance model or both [Vetterli, Kovačević and Goyal

2014, Chap. 4].

4. Extension to other communication protocols: The generalized two-way ran-

ging is an extension of the pairwise TWR, which has been employed in this

dissertation to estimate the relative space-time kinematics. More generally, the

proposed framework can be extended towards broadcasting and passive listen-

ing protocols, which can possibly further improve the clock parameter estim-

ates (see [Serpedin and Chaudhari 2009] and references therein). In particular,

passive listening exploits more number of communication measurements in

contrast to a full-mesh network employing TWR, and consequentially can of-

fer better performance.

5. Tracking the coefficients over time: The proposed algorithms for estimating

relative space-time kinematics of the mobile network are designed for cold-

start scenarios, when there is no apriori information available. In practice,

for longer time scales, a state-space based recursive Bayesian filter naturally

emerges from the proposed framework, where in the predicted state equation

can be readily constructed using the first-order derivative estimates i.e., clock

offset and relative velocity. These filters include, for instance, the Kalman

filter, unscented Kalman filter and particle filters [Särkkä 2013].

6. Optimal relative kinematics: In Chapter 5, for obtaining the relative position

and relative velocity, the classical MDS algorithm is employed, which minim-

izes the Strain criterion and fits the double center semi-definite matrix by apply-

ing an eigenvalue decomposition. This approach is identical to kernel Principal

component analysis (PCA), where the kernel is isotropic [Williams 2002]. The

classic metric multidimensional scaling can be improved using Nyström meth-

ods, FastMDS or Isomap. Alternatively, estimators can also be designed using

nonmetric MDS techniques which minimize the Stress function, or other nu-

merous variants of Stress, for e.g., a majorization approach such as SMACOF.

[Borg and Groenen 2005]. In Chapter 6, unbiased constrained Least squares

solutions are proposed for estimating the relative kinematics of the M th order.

More generally, regularized solutions e.g., Tikhonov regularization can be in-

vestigated, for solving the rank-deficient Lyapunov-like equations[Boyd and

Vandenberghe 2004].

7. Distributed algorithms: All the algorithms in this dissertation are inherently

centralized, which in reality must be distributed to minimize the computation
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overhead. The objective and the constraint functions of the proposed equality

constrained least squares systems can be split, to employ distributed proximal

algorithms such as the alternating direction method of multipliers (ADMM)

[Parikh and Boyd 2014]. Similarly, the MDS based solutions can be solved

frugally, for instance using the distributed variants of the SMACOF algorithm,

such as Distributed weighted multidimensional scaling (DWMDS) [Costa, Pat-

wari and Hero III 2006].

8. Beyond the l2 norm: For a sufficiently large network exhibiting mobility

sparsely, one can reconstruct the relative kinematics of the mobile nodes using

compressive sensing (CS) techniques. This typically entails the minimization

of the proposed estimator for joint synchronization and ranging, and relative

kinematic estimation using l1 minimization norm. For e.g., the joint ranging

and synchronization Least squares algorithms can be solved in the l1 sense, by

using a greedy approach such as the Orthogonal Matching Pursuit (OMP).

9. Beyond localization: The spatial kinematic estimators in this dissertation are

discussed in the context of relative localization, where time-varying distances

are input measurements. However, more generally, these algorithms can also

be applied to predict trends of mobile features in Euclidean space, given only

time-varying proximity measurements. Such solutions can possibly find ap-

plications in time-varying scenarios of data reduction, manifold learning, data

visualization, data pre-processing and in general exploratory multivariate ana-

lysis.

10. Beyond Euclidean distance: In the context of localization, throughout this

dissertation the focus is on the study of kinematics of mobile nodes, where

the metric used is Euclidean distances between the nodes i.e., l2. More gen-

erally, time-varying systems with lp distance metrics for p 6= 2 can also be

investigated. These may lead to possible extensions of the Kruskals’ original

MDSCAL algorithm, which only exploits the proximity information between

all the nodes at a single time frame [Cox and Cox 2000].
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Glossary

Abbreviations and acronyms

ADC analog to digital converter

AOCS attitude and orbit control system

CRB Cramér-Rao bound

CCRB constrained Cramér-Rao bound

CSAC chip scale atomic clock

DARIS distributed aperture array for radio astronomy in space

DFT discrete Fourier transform

DOA direction of arrival

EDM Euclidean distance matrix

ENOB effective number of bits

ESA European space agency

FFT fast Fourier transform

FIM Fisher information matrix

FLOPS floating point operations

FX Fourier transform followed by correlation

GTWR generalized two-way ranging



Glossary

ISL inter-satellite link

KKT Karush-Kuhn-Tucker

LOFAR low frequency array

MDS multidimensional scaling

OBC on-board computer

OCXO oven-controlled crystal oscillator

OLFAR orbiting low frequency antennas for radio astronomy

PFB poly-phase filterbank

PSF point spread function

RAFS rubidium atomic frequency standard

RF radio frequency

RFIM radio frequency interference mitigation

S/H sample and hold

SNR signal to noise ratio

SPOF single point of failure

SURO space-based ultra-long wavelength radio observatory

TDOA time difference of arrival

TOA time of arrival

TWR two-way ranging

ULW ultra-long wavelength

VCSEL vertical cavity surface emitting laser

WLS weighted least squares

WSN wireless sensor networks

XF correlation followed by Fourier transform
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Glossary

Notations

Symbols

a,A lower or uppercase characters denote scalars

a bold lower case characters denote column vectors

A bold upper case characters denote matrices

R space of real numbers

σ2 variance

IN N ×N identity matrix

1N N × 1 column vector of ones

0N N × 1 column vector of zeros

0M,N M ×N matrix of zeros

j square root of −1

Operators

(·)T transpose

(̂·) estimated value

(·)† Moore-penrose pseudo-inverse

(·)⊙N element-wise matrix exponent

exp(·) exponential function

vec(·) vectorize matrix argument

diag(·) diagonalize vector argument

bdiag(·) block diagonal matrix from input arguments

Tr(·) trace of a matrix
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Glossary

var(·) variance of the argument

‖ · ‖ Euclidean norm

⊙ Hadamard or element-wise product of two matrices or vectors

⊘ element-wise division of two matrices or vectors

⊗ Kronecker product of two matrices or vectors

N (µ, σ) normal distribution with mean µ and variance σ

N (µ,Σ) multivariate normal distribution with mean µ and covariance Σ

Matrix relations

In this dissertation, various matrix operators and properties are exploited, e.g., Kro-

necker and Hadamard products. Here is an overview of their definitions and some of

the key properties.

Definition 1: Let A and B be matrices of dimensions M × N and K × L re-

spectively, then the Kronecker product is a MK ×NL block matrix defined as

A⊗B =



a11B . . . a1NB

...
. . .

...

aM1B . . . aMNB


 .

Definition 2: Let A and B be matrices of dimension M ×N , then the Hadmard

product or element-wise product is a M ×N matrix defined as

A⊙B =




a11b11 . . . a1Nb1N
...

. . .
...

aM1bM1 . . . aMNbMN


 .

Key properties: Let A,B and C be matrices of compatible dimensions, then

(A⊗B)T = AT ⊗BT

vec(ABC) =
(
CT ⊗A

)
vec
(
B
)

vec(A) = Jvec(AT )

where J is an orthogonal permutation matrix.
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Röttgering, H. et al. (2011). “LOFAR and APERTIF surveys of the radio sky: probing

shocks and magnetic fields in galaxy clusters”. In: Journal of Astrophysics and

Astronomy 32.4, pp. 557–566.

Saks, N. et al. (2010). “DARIS, A Fleet of Passive Formation Flying Small Satellites

for Low Frequency Radio Astronomy”. In: The 4S Symposium (Small Satellites

Systems & Services Symposium), Madeira, Portugal, 31 May - 4 June 2010 (ESA

and CNES conference).

Samama, N. (2007). “A Brief History of Navigation and Positioning”. In: Global

Positioning. John Wiley & Sons, Inc., pp. 1–27.
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Propositions

1. In an era of cheaper, lighter and more accurate clocks, the first-order model

is a sufficient representation of the clock discrepancies for a certain coherence

time (this thesis, Chapter 3)

2. For a cluster of asynchronous mobile nodes, both the clock discrepancies and

the time-varying pairwise distance in Euclidean space can be jointly estimated

under non-relativistic conditions (this thesis, Chapter 4)

3. Under independent linear-velocity assumptions, the relative velocities of an an-

chorless network of mobile nodes can be estimated via time-varying pairwise

distance measurements (this thesis, Chapter 5)

4. The generalized Mth order relative kinematic motion of an anchorless network

of mobile nodes can be estimated under certain relative immobility constraints,

although common sense dictates this assumption is not needed (this thesis,

Chapter 6)

5. Space-based radio astronomy for ultra-long wavelength observations has come

of age, but lacks political will and therefore funding for a launch

6. All models are approximations, some approximately better than the rest –an

ode to George E. P. Box

7. The failure to value life and respect natural resources is the most expensive

crime of man kind



Propositions

8. Every person is an embodiment of the opportunities presented to them, the

choices they made and the courage they have shown to live by them

9. Valorization based research funding likely turns aspiring scientists into glori-

fied engineers

10. A publication delayed, is a publication denied

These propositions are regarded as opposable and defendable, and have been ap-

proved as such by the promotor, Prof. dr. ir. A. -J. van der Veen.
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