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ABSTRACT
Existing industry-practice statistical static timing analysis (SSTA) 
engines use black-box gate-level models for standard cells, which 
have accuracy problems as well as require massive amounts of 
CPU time in Monte-Carlo (MC) simulation. In this paper we 
present a new transistor-level non-Monte Carlo statistical analysis 
method based on solving random differential equations (RDE) 
computed from modified nodal analysis (MNA). In order to 
maintain both high accuracy and efficiency, we introduce a 
simplified statistical transistor model for 45nm technology and 
below. The model is combined with our new simulation-like 
engine which can do both implicit non-MC statistical simulation 
and deterministic simulation fast and accurately. The statistics of 
delay and slew are calculated by means of the proposed analysis 
method. Experiments show the proposed method is both run time 
efficient and very accurate. 

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided Design; 
I.6.5 [Simulation and Modeling]: Model Development; G.1.7 
[Ordinary Differential Equations]: Differential-Algebraic 
Equations;  

General Terms
Algorithms, Performance, Design, Theory 

Keywords
transistor-level modeling, non-Monte Carlo, statistical static 
timing analysis. 

1. INTRODUCTION 
In recent years, the increasing impact of process variations (PVs) 
in the successive technology nodes has made timing analysis more 
and more challenging. One way to analyze the impact of the PVs 
is to use statistical representations of timing in SSTA. This paper 
tries to pave the road for highly accurate yet run time efficient 
SSTA. We see several weaknesses in the current industry practice 
SSTA solutions, which are getting worse for every technology 
generation. Firstly, SSTA primarily uses gate-level models 
(GLMs), such as current source models, for standard cells. 
Therefore, the accuracy of GLMs is crucial for timing analysis. 

However, GLMs fail to work with a multi-port coupled 
interconnect load since the complicated load is modeled as an 
effective capacitance (Ceff) only in order to simplify the model. 
They also fail to deal with noisy or atypical input signals which 
are modeled as a saturated ramp only, and fail to capture (near-) 
simultaneous multi-input switching (MIS) and internal charging 
effect for high-stack and some complicated cells [1-2]. Secondly, 
separate calculations for cell and wire delay adds to the 
inaccuracy, as does just representing signal waveforms by the 
delay and slew. Thirdly, generating SSTA models for all standard 
cells of a library takes a huge amount of CPU time due to the 
necessary MC-based simulations, up to several months [3]. The 
accuracy issues result mainly from the black-box-based property 
of GLMs, ignoring intrinsic circuit behaviors. 

Intensive efforts have been made to obtain more accurate GLMs. 
For the input waveform, a Weibull-based waveform model is 
proposed in [4]. Some other papers model gate current and 
capacitance (or node charge) as a function of port voltages to 
build waveform-independent models [1-2, 5]. In [5] a non-linear 
Ceff model is described although its accuracy still needs to be 
evaluated further.  Some more advanced GLMs for MIS issues 
model internal nodes to achieve better accuracy [2]. They attempt 
to optimize GLMs to maintain acceptable accuracy for all types of 
gates but unfortunately the black-box-based property is the 
essential root of those issues. A good model should be 
independent of input waveform and output load, should get full 
access to waveform data, should be able to capture the important 
circuit behaviors, and should have high accuracy and efficiency as 
well. The extreme method is running Spice or Spectre to do 
transistor-level simulation using sophisticated transistor models 
like BSIM4 model. However, the complicated device models 
dramatically slow down the simulation. Therefore, a fast transistor 
model is necessary for transistor-level timing analysis. Simplified 
transistor models can be categorized to three types:�i) look-up 
table (LUT) methods combined with advanced interpolation [6], ii)
polynomial function of terminal voltages [7], and iii) simplified 
transistor models based on device physical properties [8-9]. The 
first two methods ignore the device physical behaviors which do 
not allow statistical extension easily. For instance, by using LUTs, 
the sensitivities of current to process variations are functions of 
time-varying terminal voltages, requiring a lot of CPU time to 
characterize the sensitivity LUTs. In contrast, by using closed 
forms, the sensitivities to variations can be obtained from the 
partial differential of the current expressions directly.  

Relatively few papers mention the stochastic waveform 
propagation problem for SSTA, because the dominant method is 
MC simulation. A stochastic waveform propagation method based 
on current-source-based GLMs in [10] is efficient for simple 
GLMs without input and Miller capacitors. Nevertheless, the 
Miller capacitor is important for GLMs [11] and the elements of 
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the gates (current source and capacitances) could be statistical as 
well. Once these issues are considered, it is not clear whether the 
method in [10] is still practical. 

In this paper, we propose three new building blocks:  
1) A statistical simplified transistor model (SSTM) for 

transistor-level SSTA: no more black-box models; 
2) A non-Monte Carlo statistical simulation method based on 

solving RDEs [12] which describe the statistical behavior of 
the circuits. Given the mean (�) and standard deviation (�) of 
process variations and/or input waveforms at every time 
point, the proposed simulation method calculate the �(t), �(t) 
and covariance of output voltages and probability density 
functions (pdf) of �% crossing time, which are used to derive 
the pdf of delay and output slew;  

3) Full access to waveforms rather than abstracting them to 
delay and slew values. A stochastic waveform propagation 
method is provided in the RDE-based statistical method. 

Our simulation engine supports statistical models intrinsically, no 
more need for lengthy MC runs. The proposed design flow is 
shown in Fig 1. The simulation results show high accuracy for 
both deterministic and statistical timing analysis.
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Fig 1 The flowchart of our proposed method 

2. STATISTICAL SIMPLIFIED 
TRANSISTOR MODEL  
The critical foundation of transistor-level timing analysis is the 
transistor model, which must be carefully built, considering an 
accuracy-efficiency trade-off. Our target is to develop a transistor 
model which captures sufficient second-order effects to allow 
accurate waveform and delay calculation in digital design.  
The BSIM4 model is regarded as one of the most accurate 
transistor models but it is also the most complicated model with 
several hundred parameters. The currents and capacitances of the 
BSIM4 model are determined by solving complex equations, 
which are functions of many process parameters. Consequently, 
when they are applied to simulators which calculate node voltages 
and branch currents by solving ordinary differential equations, 
simulation becomes unacceptably slow for large digital circuits. 
The widely-used gate-level models are the so-called current 
source models which typically model every gate by several 
capacitors and a current source [11], as shown in Fig 2a. Every 
gate (or, more accurately, arc) is basically modeled as a single 
transistor. Although the current-source GLM is less accurate in its 
representation of a gate for nanometer technology, the simple 
model is, however, appropriate for transistors. The proposed 

SSTM shown in Fig 2b represents transistors by a nominal current 
source Ids, a statistical current source *ids caused by process 
variations and five parasitic capacitances which have statistical 
parts with respect to random parameters of interest as well. 
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Fig 2 a) Current-source model; b) Proposed SSTM 

2.1 I-V model 
Conventionally, the Shockley-Sah MOSFET model was widely 
used for fast circuit simulation due to its simplicity. Since it is 
unable to reproduce I-V characteristics of short channel transistors, 
the Shichman-Hodges model was proposed to take channel length 
modulation into account. As these models do not consider the 
second-order effects of deep sub-micron MOSFETs, they were 
gradually replaced by deep submicron MOSFET models (DSMM) 
[13]. Although, in general, this model improves accuracy 
substantially for sub-micron MOSFET behavior, our experiments 
in a 45nm CMOS technology still show significant errors: i) due 
to channel length modulation, drain induced barrier lowering 
(DIBL) and the substrate current induced body effect, the channel 
length modulation parameter 3 is a complicated function of Vgs
and Vds. As a consequence, the method to model the saturation 
current as a linear function of Vds with constant slope starting 
from Ids(Vdsat) is not accurate enough; ii) in the linear region, Ids is 
no longer proportional to (Vgs-Vth-½Vds). In fact, the ½ should be 
replaced by a factor which depends on Vgs-Vth; iii) in 45nm and 
below, the cut-off current can not be ignored any more. 
Simulation results show that if Vgs is smaller than Vth by a small 
amount, the current still has similar shape as the currents when 
Vgs>Vth, which cannot be modeled as zero if the input slew and 
load capacitance are small. 
Similarly, the 4-power law MOSFET model [9] is also widely 
used in digital circuit simulation. This model assumes that near- 
and sub-threshold region modeling is not important in delay 
calculation for digital circuits, so the linear region current is only 
approximated by linear lines and the saturation region current is 
constant. However, if the load capacitance and input slew are both 
quite small, the inaccuracy of the linear-region current 
significantly impacts the output waveform at the end of the 
transition, introducing a large error for output slew. Taking these 
issues into consideration, the proposed BSIM4-based nominal I-V
model of SSTM in equation form is given below: 

( / ) ( / )(1 )                                                         

1 1 1 ( )      
2

gst t ds tV nV V V
gs th

ds ds ds
gst dseff ds dseff gs th

b c
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−� − <
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where Vgst is Vgs-Vth and Vt is the thermal voltage. Other terms are 
described below: 

2b gst t c satV V V V E L= + = ⋅                                                          (2)                                                                  

( )21 ( ) 4
2dseff dsat dsat ds dsat ds dsatV V V V V V Vγ γ γ= − − − + − − +                (3) 

( ) ( )2 2dsat c gst t c gst tV V V V V V V= ⋅ + + +                                              (4) 

In order to link the continuous linear current with the saturation 
current, a smooth function (3) based on BSIM4 is used. Vdseff 
enables a unified expression for both linear and saturation 
currents. Since the Vdsat expression in BSIM4 is simple, we use it 
directly here. 5 in (3) partially determines the shape of the I-V
curve in the transition region between the linear and saturation 
regions. For the 45nm PTMLP technology [14], 5=0.06 is 
sufficiently accurate for NMOS and PMOS transistors. Instead of 
using complicated expressions, the parameter J considers several 
effects, including mobility degradation. It should be noticed that 
the cut-off current could simply be modeled as zero if sharp input 
ramps and extremely small load capacitances are rare in digital 
design. Then the proposed model is simplified further to the 2nd

equation in (1) where only J and 3 are obtained in the 
characterization stage. Threshold voltage Vth in (1) divides the I-V
plane to two parts, thus accurate Vth modeling is important. 
According to the BSIM4 model, a linear dependence of Vth on Vds
is a sufficient approximation. We simplify the Vth model as: 

0 1 2( )th th ds s bs s bsV V V K V K Vα= − ⋅ + Φ − − Φ − ⋅                             (5) 

where Vth0 is the zero-biased long-channel device Vth, and 4 is a 
coefficient for drain/source charge sharing and DIBL effects on 
Vth. The coefficients K1, K2 and surface potential 6s are obtained 
and derived from the technology library file. 

To include a statistical description of I-V model we evaluate the 
drain current Ids variation as: 

0
1 1

( , ) ( ) ( )
ds k k

m m
ds

i p p k k k
k kk

It t t
p

δ ξ ξ χ ξ=
= =

∂
= ⋅ = ⋅

∂� �                                     (6) 

0 ( 1 )k k kp p k mξ= + = �                                                             (7) 

where pk is the kth random process parameter which is the sum of 
nominal value pk0 and random variable 2k with zero mean value 
and same standard deviation as pk. 7k(t) is the differential function 
of Ids(t) by elements of the corresponding process variation.  

2.2 C-V model 
The most accurate way to model non-linear capacitances is to 
represent them as voltage dependent terminal charge sources [15]. 
Characterization of such a model would involve generating charge 
tables for a range of terminal voltages. All capacitances are 
derived from the charge to ensure charge conservation. Each 
capacitance is computed by Cij=8Qi/8Vj at every time step, where i 
and j denote the transistor terminals. Although this approach 
might be the most accurate, performance would be a problem for 
SSTA. Furthermore, characterization also becomes a runtime 
intensive task. In the 45nm node and beyond, parasitic 
capacitances become more non-linear. As an example, Cgd is 
shown in Fig 3. In order to improve accuracy while maintaining 
good computational efficiency, SSTM treats the five capacitances 

differently. In each of the operating regions, gate channel 
capacitances (GCC) Cgs, Cgd and Cgb are modeled as constant 
values. For junction depletion capacitances Csb and Cdb, SSTM 
uses constant values through all regions of operations since they 
are one to two orders of magnitude smaller than GCCs. In the 
statistical C-V model (8), Cj0(t) is the nominal value of the jth

capacitance in Fig 2b and the sensitivities 9(t) are characterized by 
perturbing method: 

00 0
1 1

( , ) ( ) ( ) ( ) ( )
k k

m m
j

j j p p k j k k
k kk

C
C t C t t C t t

p
ξ ξ ζ ξ=

= =

∂
= + ⋅ = + ⋅

∂� �              (8) 
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Fig 3 The Cgd of a minimum-size NMOS transistor 

3. RDE-BASED STATISTICAL 
SIMULATION 
3.1 Random MNA for process variations and 
stochastic waveform propagation 
In general, for time-domain analysis, modified nodal analysis 
(MNA) leads to non-linear ordinary differential equations (ODE) 
or differential algebraic equations (DAE) system that, in most case, 
is transformed to a nonlinear algebraic system by means of 
numerical integration methods [16]. At every integration step, a 
Newton-like method is then used to solve this nonlinear algebraic 
system. Defining x' as the time derivative of the variable x, the 
MNA equations for any circuit can be expressed in compact form: 

0 0 0( ', , , ) 0 ( )F x x t p x t x= =                                                         (9) 

where x is the vector of the circuit state variables consisting of n
nodal voltages and e branch currents, and p0 is the nominal 
process parameter vector with elements pk0 introduced in (7). Let 
xs be the solution to (9). Transient analysis in a conventional 
circuit simulator solves for xs using numerical integration methods 
for ODEs and DC analysis solves for the initial vector before 
transient analysis is started. By introducing the process variations 
in (9), the deterministic ODE can be expanded as: 

00 0( ', , , ) 0 ( ) xF x x t p x t x δ= = +                                                  (10) 

where p is the random process parameter vector with elements pk
from (7), and *x0 is the initial variation caused by PVs. It is worth 
noticing that the main difficulty in solving (10) is related to the 
nonlinearity and a large set of correlated random variables. 
Therefore, in order to make the problem manageable, we linearize 
(10) with a truncated Taylor expansion and employ principal 
component analysis (PCA) to model a large set m in (7) of 
correlated random variables p to a m’-dimensional vector of   
uncorrelated random variables. To avoid notational cluttering, the 
notation p representing the uncorrelated process variables after 
PCA is further used in this paper. The linear Taylor expansion of 
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F around xs (Eq. 11) is used considering the possibility and 
complexity of solving the resulting random differential equations. 

0

0 0

0 ' '

' ' ' '

( ', , , ) ( ' , , , ) ( ', , , ) ( ' ' )
'

( ', , , ) ( ) ( ', , , )

s

s

s s

s s

s s x x s
p p
x x

x x s x x
p p p p
x x x x

F x x t p F x x t p F x x t p x x
x

F x x t p x x F x x t p
x p

ξ

=
=
=

= =
= =
= =

∂
≅ + −

∂

∂ ∂
+ − +

∂ ∂

   (11) 

Define y(t)=x(t)-xs(t) as the variation vector of x(t) due to process 
variation vector 2 with zero � and finite � mentioned in (7). 
Denoting the partial derivative of F to x’, x and p as C, A(t) and 
B(t) respectively, the compact expression of (11) is obtained as 

00'( ) ( ) ( ) ( ) 0 ( ) xCy t A t y t B t y tξ δ+ + = =                                       (12) 

The nonlinear equation (10) is converted to a linear random 
differential equation (RDE) in y with time-varying coefficient 
matrices A and B. C is constant since a nominal value is selected 
for every capacitor at every operating state. We rewrite (12) as: 

00'( ) ( ) ( ) ( ) ( ) xy t E t y t F t y tξ δ= + =                                             (13) 

Let 6(t,t0) be the homogeneous solution of (13) satisfying 
6’(t,t0)=E(t)6(t,t0). According to the mean square (m.s.) integral 
theorem [13], there exists a unique m.s. solution which can be 
represented by: 

( )
0

0 0( ) , ( , ) ( )
t

t

y t t t y t u F u duξ= Φ + Φ                                             (14) 

Even if the random variable 2 is not strictly Gaussian, a second-
order probabilistic characterization yields sufficient information 
for most practical problems: 

{ }( ) 0E y t =                                                                               (15) 

{ } { } { }

{ } { }

0

0 0

0 0 0 0

0 0 0 0

( ) ( , ) ( , ) ( , ) ( ) ( ) ( , )

( , ) , ( , ) ( ) ( , ) ( ) , ( , )

T T T

t t

T
t t

T T T

t t

Var y t t t Var y t t t u F u F v v t dudv Var

t t Cov y t u F u du t u F u du Cov y t t

ξ

ξ ξ

� �
� �=Φ Φ + Φ Φ� �
� �

� � � �
� � � �+Φ Φ + Φ Φ� � � �
� � � �

  

  

�  (16) 

Assuming that the initial condition x0 is set to a fixed value, y(t) 
and variance of y(t) can be written as: 

0

( ) ( , ) ( ) ( )
t

t

y t t u F u du tξ α ξ
� �
� �= Φ ⋅ = ⋅� �
� �
                                           (17) 

{ } { } { }
'

2 2

1
( ) ( ) ( )

m

j j jk k
k

Var y t E y t t Varα ξ
=

= = �                                   (18) 

where yj(t) is the jth element of the y(t) vector. Since the variation 
vector y(t) is proportional to 2, the coefficient 4(t) can be 
calculated by substituting y(t) with 4(t)2 in (13). As a result, the 
solution of y(t) becomes the solution of a linear ODE: 

0'( ) ( ) ( ) ( ) ( ) 0t E t t F t tα α α= + =                                         (19) 

which can be solved by fast numerical methods. The mean and 
variance of x(t)=xs(t)+y(t) are expressed as: 

{ } { }( ) ( ) ( ) ( )s sE x t E x t y t x t= + =                                                  (20) 

{ } { } { }
'

2 2

1
( ) ( ) ( )

m

j j jk k
k

Var x t E y t t Varα ξ
=

= = �                                   (21) 

where xj(t) is the jth element of vector x(t). As long as 4(t) is 
calculated, the expression for y(t) is known, thus the covariance 
matrix of the solution x(t) at two different time points ta and tb can 
be written as: 

{ }( ) { }( ){ } { }
( ) ( ){ } ( ) { } { }( ) ( )1 '

( , )

, ,

T T
a b a a b b a b

T T T
a b a m b

Cov x x E x E x x E x E y y

E t t t diag Var Var tα ξξ α α ξ ξ α

= − ⋅ − = ⋅

= = ⋅ ⋅ ⋅ ⋅ ⋅
(22) 

The jth diagonal entries of Cov(xa,xb) is the covariance of the jth

element of x at the time ta and tb, which is crucial for statistical 
slew calculation. If the covariance of different node voltages is 
required (e.g. statistical delay calculation), the corresponding non-
diagonal entries are kept. Otherwise, the non-diagonal entries can 
be set to zero without calculation.   

The results of the proposed analysis are elements of x(t) and their 
variations y(t) which are linear functions of 2. If the input signal 
xj(t) is deterministic, the elements yj:(t) and yj(t) corresponding to 
it, and the jth column of C, A and B matrices in (12) are all zeros. 
However, if the input signals are stochastic processes, those 
entries will have non-zero values, and in essence provide the 
means to propagate stochastic signals. For STA, the output is a 
time-indexed voltage array x(t). For SSTA, the statistical output 
waveform is modeled by its mean, variance and covariance values. 

3.2 Probability density function of delay 
The time-domain analysis of a non-linear dynamic circuit consists 
of the successive solutions of many linear resistive circuits 
approximating the original circuit at special operating points. 
Therefore, from a numerical point of view, the output signal is 
discrete rather than continuous thus the pdf of crossing time as 
well as delay have discrete pdfs. Unlike [17], where firstly the 
cumulative distribution function (cdf) of crossing time is 
calculated to find a discrete pdf at any time point, we compute the 
pdf of the crossing time for both rising tr� and falling tf� output 
voltage Vo, directly: 

Pr( ) Pr( ( ) ( ) )
Pr( ( ) ) Pr( ( ) ( ) )

r o o

o o o

t t V t t V V t V
V t t V V t t V V t V

η η η

η η η

= = − ≤ ∩ ≥

= − ≤ − − ≤ ∩ ≤

�
� �

       (23) 

Pr( ) Pr( ( ) ( ) )
Pr( ( ) ) Pr( ( ) ( ) )

f o o

o o o

t t V t t V V t V
V t V V t t V V t V

η η η

η η η

= = − ≥ ∩ ≤

= ≤ − − ≤ ∩ ≤

�
�

             (24) 

where the crossing time t� is the time for node voltage to cross any 
corresponding threshold voltage V�=�%·Vdd and Pr(Vo(t-;t)�V��
Vo(t)�V�) is the joint cdf of Vo at two successive time steps. Since 
the node voltages are assumed Gaussian distributed, the joint cdf
is straightforwardly calculated based on (20)-(22). Similarly, 
given the pdfs of tr� and tf� in (23) and (24) respectively, the mean 
and variance of crossing time can be found. Note that in contrast 
to [10], computing a pdf in such a way includes the correlation of 
Vo at two time steps.  

Given mean and variance of crossing time, the mean and variance 
of delay and slew can be calculated. It is worth noting that the pdf 
of crossing time is calculated only during the corresponding 
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transition time period rather than throughout the whole transient 
analysis period.  

4. EXPERIMENTAL RESULTS 
The characterization time of gate-level models for SSTA is quite 
long (often several months) since standard-cell libraries consist of 
hundreds of cells with different sizes and process corners. On the 
other hand, by using transistor-based models, such as SSTM, the 
characterization time is reduced significantly as only the 
transistors required in standard-cells need to be characterized. For 
our model, data for characterization is obtained from Spectre 
using BSIM4 model for the 45nm PTMLP technology [14], and 
imported to Matlab to acquire the required parameters.  
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Fig 4 Top: irregular input; Bottom: simultaneous multi-input 
switching for a 2-input NAND gate 

Firstly, we evaluated the nominal SSTM, when no process 
variation data is included in the model, in a minimum-sized 
inverter and 2-input NAND with different input slew and output 
capacitances. The input slew ranges from 1ps to 500ps and the 
load capacitance spans from 0.5fF to 40fF. In comparison with the 
Spectre BSIM4 model, the results show that the maximum relative 
error is within 5%. Actually, 99.2% of the output rise delay error 
and 93.9% of the output fall delay error are within 1.6%. The 
average relative errors of output rise delay and output fall delay 
are 0.44% and 1.34% respectively. The average relative error of 
output slew calculation using the nominal SSTM is 1.2%, 
including maximum error 3.3% without load capacitance and 
minimum error 0%. Fig 4 illustrates the accuracy of the nominal 
SSTM used in a minimum-sized inverter with irregular input and 
a 2-input NAND in simultaneous multi-input switching scenario. 
All the results and waveforms mentioned above show a very good 
match between the nominal SSTM and the BSIM4 model.

In order to evaluate the worst cases of 45nm technology, we 
examined minimum-sized (since they are most sensitive) 2-input 
NAND, NOR and Buffer cells loaded with 20fF capacitance (Fig 
5-7). Standard deviations of 9nm and 12nm are set for the 
transistors length L and width W respectively. The pdf of t50% is 
magnified in Fig 5-6. The statistical waveform propagation is 
illustrated in Fig 7 where vout1 designates the first inverter output 
which has limited � (s.d.vout1) due to the two order smaller 
parasitic capacitances in comparison with the buffer load 

capacitance. The stochastic waveform vout1 is applied to the input 
of the second inverter. Note that in this case, the method covers 
both the statistical input waveform and the random process 
variables. The achieved � error within 1.0% and � error within 
8.0% of t50% crossing time confirm the accuracy of the proposed 
model and RDE-based method for these minimum-sized gates. 
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Fig 5 Statistical analysis of a 2-input NAND 
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We also applied the SSTM and RDE-based statistical analysis 
method to a larger number of standard cells. The uncorrelated 
process variations are length and width variations with zero �. The 
3� of length and width are 20% and 15% of the nominal length 
and the largest width of every cell, respectively. The �, � and CPU 
time of rise delay are listed in Table 1. The results of fall delay are 
similar to the rise delay. In comparison with 1000 Monte Carlo 
trials in Spectre, the proposed model and analysis method 
achieved a relative error of within 1.4% for � and of within 6.8% 
for � with an average 40× speedup. 
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5. CONCLUSION  
Statistical simulation is one of the most important steps in the 
evaluation of successful high-performance IC designs due to 
process variations that strongly affect devices behavior in today’s 
nanometer technologies. In this paper, instead of performing 
statistical static timing analysis (SSTA) using thousands of Monte 
Carlo trials based on gate-level models, we present a transistor-
level non-Monte Carlo approach, where the statistics of delay and 
slew are found by solving random differential equations (RDE) 
derived from modified nodal analysis (MNA). In order to 
maintain practical runtime, a statistical simplified transistor model 
(SSTM) is introduced without the loss of high-level accuracy. 
Note, however, that our non-Monte Carlo approach can be used 
for other transistor models and gate-level models. The logic gates 
built based on the SSTM are independent of input waveform and 
output load and are able to deal with multi-input switching. The 
effectiveness of the proposed SSTM and RDE-based statistical 
analysis was evaluated on 45nm PTMLP minimum-size gates and 
standard cells. As the results indicate, the suggested numerical 
methods provide accurate and CPU time efficient solutions.   
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Table 1 Comparison of the mean �, standard deviation � and CPU time of delay between Spectre and the RDE-based method 
Standard cells �_Spectre  

(e-9) 
�_RDE   

(e-9)     
relative 

erro_�
�_Spectr
e  (e-11)

�_RDE      
(e-11) 

relative 
error_�

cputime_ 
Spectre(s)

cputime_
RDE (s)

INX_X1 0.3777  0.3779 0.00% 3.3407 3.4753  4.03% 91 1.35 

INV_X2 0.1986  0.1998 0.60% 1.6113 1.7140  6.37% 91 1.35 

INV_X4 0.1148 0.1135 1.10% 0.7103 0.7308  2.98% 91 1.35 

BUF_X1 0.3914 0.3915 0.00% 3.7228 3.5644  4.25% 200 5.9 

BUF_X2 0.2215  0.2217 0.01% 1.4150 1.5100  6.71% 200 6.0 

BUF_X4 0.1554  0.1535 1.20% 0.9995 1.0481 4.80% 200 6.0 

NAND_X1 0.3830  0.3842 0.31% 3.4579 3.5618  3.01% 197 6.6 

NAND_X2 0.2063  0.2080 0.82% 1.7487 1.7843  2.03% 197 6.6 

NOR_X1 0.5040  0.4974 1.31% 4.4148 4.2930  2.70% 198 10 

NOR_X2 0.2635  0.2598 1.40% 2.2557 2.1389 5.18% 198 10 
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