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Single-Photon Avalanche Diode Imagers
Applied to Near-Infrared Imaging
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Abstract—Single-photon avalanche diodes (SPADs) can be inte-
grated into large pixel arrays. The aim of this paper is to present a
view on how these imagers change the paradigm of wide-field near-
infrared imaging (NIRI). Thanks to the large number of pixels that
they offer and to their advanced time-resolved measurement capa-
bilities, new approaches in the image reconstruction can be applied.
A SPAD imager was integrated in a NIRI setup to demonstrate
how it can improve spatial resolution in reconstructed images. The
SPAD imager has a time resolution of 97 ps and a picosecond laser
source with an average output power of 3 mW was employed. The
large amount of data produced by this new setup could not directly
be analyzed with state-of-the art image reconstruction algorithms.
Therefore a new theoretical framework was developed. Simula-
tions show that millimetric resolution is achievable with this setup.
Experimental results have demonstrated that a resolution of at
least 5 mm is possible with the current setup. A discussion about
how different characteristics of the SPAD imagers affect the NIRI
measurements is presented and possible future improvements are
introduced.

Index Terms—Inverse problems, near-infrared imaging (NIRI),
single-photon detector, time-resolved imaging.

1. INTRODUCTION

EAR-infrared imaging (NIRI) is a relatively novel method
N that employs near-infrared light from 650 to 950 nm ap-
proximately to image biological tissue up to a depth of a few cen-
timeters. When near-infrared light (NIR), travels through most
biological soft tissue, it undergoes 5 to 20 scattering events
per millimeter depending on the tissue. This process creates
diffusive light waves that can be modeled by the diffusion equa-
tion. The main absorbers in human tissue in the NIR range are
oxy- and deoxyhemoglobin (OoHb and HHb), although other
substances such as water and lipid also absorb light [1]. By
measuring the spectra of the light that is backscattered to the
tissue’s surface, it is possible to calculate the concentration of

Manuscript received February 1, 2014; revised March 20, 2014; accepted
March 24, 2014. This work was partly supported by the KFSP Tumor Oxygena-
tion and the KFSP Molecular Imaging of the University of Zurich, and by the
National Competence Center for Biomedical Imaging.

J. Mata Pavia is with the Quantum Architecture Group, Ecole Polytechnique
Federale de Lausanne, 1015 Lausanne, Switzerland and also with the Biomedi-
cal Optics Research Laboratory, Division of Neonatology, University Hospital
Zurich, 8091 Zurich, Switzerland (e-mail: juan.matapavia@epfl.ch).

M. Wolf is with the Biomedical Optics Research Laboratory, Division of
Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland (e-mail:
martin.wolf@usz.ch).

E. Charbon is with the Quantum Architecture Group, Ecole Polytechnique
Federale de Lausanne, 1015 Lausanne, Switzerland and with TU Delft, 2628CD
Delft, The Netherlands (e-mail: e.charbon @tudelft.nl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTQE.2014.2313983

2 = 0.06
i O;Hb [1/(mM*mm)]

1.5 wsassss HHb [1/mM*mm]

16 == ==H,0[1/mm] ey 0.05
— Lipid [1/mm] o\
E 14 ] !
E ! 0.04 —
=12 ! £
£ H =)
= 1 { 003 2
£ ' 3
Tos . e}
Fe] I
I
= 06

0.4

0.2

0
Wavelength [nm]
Fig. 1. Absorption spectra for Oo Hb, HHb, water, and lipid, the main ab-

sorbers in tissue in the near-infrared region.

the different absorbers in the tissue. Fig. 1 shows the absorption
spectra for the main absorbers in human soft biological tissue.

By positioning light sources on the surface of the tissue and
measuring the backscattered light at different locations, one can
perform tomographic reconstructions of the different absorbers.
These image reconstructions from NIRI data require primarily
the definition of a model for the propagation of light in highly
scattering media. Several authors have proposed a variety of
models with different levels of computational complexity such
as perturbation models [1], finite element methods [2], [3] or
Monte Carlo methods [4]. Once the so-called forward model is
established, an inverse problem is formulated using this model
in which the optical properties of the object under reconstruction
are obtained from the measurements at its surface [5]. Due to the
scattering and absorbing characteristics of tissue, the problem
is ill-posed by nature; this is not the case in other tomographic
methods such as magnetic resonance imaging or computerized
tomography. In NIRI there is always unrecoverable information
encoded in light that was absorbed in the tissue. In most of
the cases, the inverse problem will be underdetermined as well,
because the amount of reconstructed voxels is frequently much
higher than the measured information.

In an attempt to recover most of the backscattered light from
the tissue and to reduce interferences from ambient light, NIRI
devices have traditionally employed point sources and detectors.
Such optical probes were directly attached to the surface of the
tissue. This has limited the scalability of NIRI devices, making it
impossible to construct systems with more than a few dozens of
sources and detectors. It is thus desirable to increase the number
of sources and detectors to obtain more information in order to
reduce the ill-posed nature of the reconstruction problem.
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Another option to increase the amount of information is to
employ frequency or time domain (TD) measurements [6], [7].
TD measurements have traditionally been the preferred experi-
mental method for better resolving scattering and absorption and
to obtain higher spatial resolution. TD measurements provide a
larger amount of information than continuous wave (CW) or fre-
quency domain (FD) measurements unless several frequencies
are used. On the other hand, FD measurements usually include
more photons in the statistics, which increases the signal-to-
noise ratio (SNR), as the main source of noise is shot noise.

The photodetectors required for TD systems must have pi-
cosecond time resolution, while the evaluation of photon time-
of-arrival is generally implemented with discrete time-to-digital
converters (TDCs) that are often bulky and difficult to scale. In
addition, converting the inverse problem from an underdeter-
mined problem to a determined one requires a massive amount
of data available for the image reconstruction. For this reason,
researchers have employed large CCD cameras in NIRI with
a variety of illumination systems [8]-[11]. However, CCDs do
not usually have high time resolutions, and are not suited for
ultra-fast and continuous operation.

The integration of single-photon avalanche diode (SPAD)
detectors in CMOS technology [12] made it possible to detect
single photons in compact and scalable sensors, thus paving
the way to massively parallel photon counting image sensors.
In particular, the integration of SPADs with TDCs in the same
chip made it possible to perform simultaneous time-resolved
measurements with a very large number of detectors [13]. This
was so far impossible in conventional image sensors.

CW systems based on CCD cameras, although producing
large datasets, lack information on photon’s time of arrival.
Moreover, as previously mentioned, time-resolved measure-
ments provide higher resolution of scattering and absorbing
objects, as well as higher depth sensitivity. Thus, SPAD image
sensors fill the gap between these two approaches, bringing the
best of both worlds to NIRI.

The aim of this paper is to present a NIRI setup based on
a SPAD image sensor with 16 384 detectors, each capable of
providing independent timing information [14]-[16] with pi-
cosecond resolution. We also systematically analyze the bene-
fits and limitations of current SPAD image sensors when operat-
ing in time-correlated single photon counting (TCSPC) regime
with an emphasis in NIRI applications. The paper is organized
as follows, Section II presents the architecture of the setup.
Section III outlines the proposed reconstruction algorithm.
Section IV presents the results of the experimentation and
Section V discusses the results giving a perspective for future
sensors. Section VI concludes the paper.

II. SETUP
A. SPAD Image Sensor

The SPAD image sensor integrated in the NIRI setup was,
to our knowledge, the first SPAD array that integrated on-chip
TDCs [13]. It consists of a SPAD array of 128 x 128 SPAD
pixels connected to a bank of 32 TDCs. The pixel’s active area
fill-factor is 6%. The TDCs have a time resolution of 97 ps
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Fig. 2. (a) Microphotograph of the SPAD image sensor. It was fabricated in
a standard CMOS HV 0.35 pm process. The dimensions of the active area are
3.2 x 3.2 mm?. (b) Block diagram of the SPAD image sensor.

and a range of 100 ns. When a row of pixels is selected, a
direct connection between those pixels and the TDCs’ bank is
established. The pixels in a row are then divided in groups of
four SPADs that are connected to a TDC using an event-driven
mechanism. Consequently the sensor is capable of providing
time resolved measurements for each of its pixels independently,
making it suitable for TCSPC measurements. Fig. 2 shows a
microphotograph of the chip and a schematic of the sensor’s
architecture.

Since only one row can be selected at any time, the readout
of all rows requires a relatively long acquisition time. This is
a drawback, because the ultimate aim is to perform measure-
ments on human subjects in, or close to, real time to avoid
artifacts from physiological changes and from the motion of the
subject. Recently, SPAD image sensors have integrated TDCs
in-pixel [17], i.e. all pixels in the sensor may simultaneously per-
form time-resolved measurements. However, this has resulted
in pixels with a very low fill-factor, typically ~1%, which is
impractical for NIRI.

B. Optical Setup

NIRI systems can be classified into two types depending
on the position of its sources and detectors. In transmission
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mode, the subject under study is illuminated from one side
and the backscattered light is measured at its opposite side.
This approach restricts the range of objects that can be studied,
because for objects thicker than 6 cm almost no light will reach
the detectors. For this reason we decided to implement a NIRI
setup in reflection mode where sources and detectors are placed
on the same side of the object. This reflection approach enables
the study of a wider range of tissues, and it is therefore clinically
more relevant, however it limits the depth sensitivity to ~3 cm.
The light backscattered close to the sources has a very fast
response that cannot accurately be measured by TCSPC in our
SPAD image sensor. Therefore a sufficient distance between
sources and detectors is necessary. To measure backscattered
light at very short source-detector distances requires dedicated
discrete SPADs [18], [19].

Fast reconstruction algorithms published so far [11], [20] re-
quire placing the light sources inside the field of view of the
camera when working in reflection mode, which is not possible
as mentioned previously for our SPAD sensor. Therefore a new
illumination system was conceived that reduces the complexity
of the reconstruction algorithm, as explained in the next sec-
tion, while taking the time information provided by the SPAD
image sensor into consideration. The solution was to illuminate
the object with parallel lines outside the field of view of the
camera.

Fig. 3(a) shows the schematic of the NIRI setup and Fig. 3(b)
a picture of its implementation. The light source is a 780 nm,
10 mW laser (Becker&Hickl BHLP-700). The repetition rate
of the laser was 80 MHz, and it was set to deliver an average
output power of 3 mW in order to keep the laser’s time point
spread function much faster than the measured signals. The lines
are generated by a collimator and a line diffuser; a telecentric
objective lens with a magnification factor 8 = 0.07, projects
the backscattered light at the surface of the intralipid phantom
to the SPAD image sensor. For each line source an acquisition
is performed. Fig. 3(c) shows the typical response obtained in
time resolved NIRI measurements. The pulse shape is captured
by TCSPC as a reconstructed time histogram and its shape is
determined by the absorption and scattering properties of the
medium.

Intralipid phantoms with similar absorption and scattering
properties as human tissue are produced for the experiments.
These phantoms generally consist of a tank filled with a liquid
composed of distilled water, intralipid emulsion, and Indian
ink. These components can be mixed in different proportions to
adjust the absorption and scattering coefficients. In this liquid
we immersed the targets of the reconstructions. They were small
objects made of silicon, carbon powder, and TiO,. Although in
principle it is possible to resolve scattering and absorption of
these targets, in this paper we only focused on absorbing targets,
because they are clinically more relevant.

The theoretical framework described in the next section
only takes into account changes in the absorption coefficient,
but could be further developed for absorption and scattering
changes. For this reason the targets and the intralipid phantom
have the same scattering coefficient and only the absorption
coefficient is varied in the targets in our experiments.
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Fig. 3. (a) Schematic of the optical setup. A picosecond laser generates pulses
of light that are projected as lines on the surface of the object under study.
The light propagates through the object (diffusion process) and light emerging
from the surface is captured by the objective lens and projected onto the SPAD
sensor. Data is digitized in the camera and transferred to a computer. (b) Picture
of the actual setup in the lab. (c) Response measured in an intralipid phantom
with 1, (r) = 0.07 cm™! and 4/, (r) = 5 cm ™ at a source-detector separation
of 2 cm.

III. RECONSTRUCTION ALGORITHM

A. Theory

The reconstruction algorithm is based on the well-known dif-
fusion equation [1], [14]. When a highly scattering medium,
with given absorption p,(r) and reduced scattering i’ (r)
coefficients, where (u(r) > 4 (r)), is excited by a source
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q (r,rs,w;), positioned at rg with a temporal modulation fre-
quency wy, the photon density in the medium u (r,rs,w;) is
governed by

V2u (r,rs,wr) + k (r,w;)” u (v, 15, wy)
:_q(r7r87wt)/D(r) (1)

where

D(r) = v/ (3/,(x)) @
k(rw)® = (~opa(r) +iw;) /D(r) 3)

and v is the speed of light in the medium. If the source
term is an infinite line in the x-axis direction ¢ (r,rs,w;) =
A(wt)d (y — ys, 2 — z5) where A (w;) is the amplitude at a
given w; frequency. The solution of (1) in a spatially homoge-
neous infinite medium where p, (r) = uflo) and 1, (r) = /,L§°>,
and therefore k (v, w;) = ko (wy), is

u(p, pgswr) = iHy" (ko (W) |p — psl) / (4D) (4

where HO<1> is a Hankel function of the first kind, p = (y, 2),
and p, = (ys, 2, ) is the position of the line source term.

In order to calculate u (r, w; ) when the medium is not homo-
geneous in terms of the absorption coefficient we decompose
o (r) = ,ug,,o) +0pa(r) and w(r,rs,w;) =up (r,rs,wy) +
us (r, rs,w; ) where ug (r,w;) is the photon density in a homo-
geneous medium with absorption coefficient u((lo) . If the medium
is illuminated by line shaped light sources, then w (r, rs,w;)
will equal (4). Substituting these terms in (1) results in

(V2 + ko (wt)2)u5 (r,rs,wt) = dpg (v)u (v, rs,wr) v/D.
()
If we assume that g (r,rs,w;) > u, (r, rs,w;) then (5) can
be expressed as

(V2 + kg (wt)Q)us (r,rs,wi) = dpe (r)ug (r,rs,wi) v/D.
(6)
This simplification step is commonly known as the first Born
approximation. Now (5) can be solved in terms of the equation’s
Green’s function

us(r,re,wi) = —///g(r\r’,wt)éua(r)uo(r/,rs,wt)v/Dd3r'
@)

where g(r|r’,w;) is the Green’s function of (5). Equation (7)
served as the basis for many reconstruction algorithms in pre-
vious studies [5]. It is essentially a linearized version of (6)
among others such as the Rytov approximation. The idea be-
hind these reconstruction algorithms is that it is possible to re-
cover O, (r) from a finite number of boundary measurements
of ug (r, rs,w; ). Measurements of ug (r, rs,w;) at different lo-
cations of the boundary, generated by sources placed at different
positions will create a collection of data to recover oy, (r). It is
also possible to increase the amount of information available to
calculate O, (r) by employing light sources with different tem-
poral modulation frequencies w; . With the acquired information,
it is possible to discretize (7) and to invert the three-dimensional
integral equation. In most of the cases the number of unknowns
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defined by 61, (r) is much higher than the number of measure-
ments ug (r,rs,w;), i.e. the problem is underdetermined and
therefore without a unique solution. These types of problems
are commonly known in physics as inverse problems. Their in-
version is non-trivial and in many cases it requires some kind
of regularization to obtain meaningful results. The aim is to
generate a large dataset of measurements to achieve an integral
equation that is not underdetermined anymore. In this case it is
possible to generate a full rank system in which the system’s
matrix can be inverted independently of the measured data. The
multiplication of this matrix by the measured data will generate
a unique solution to the problem.

Due to the restrictions of the setup described in the first
part, we decided to develop a new reconstruction algorithm that
traded off computation power with the number of measurements
required to obtain a reconstructed image. The starting point of
the algorithm is (6), in the presence of line-like illumination,
resulting in

(V2 + ko (wi)*us (r, 76, 01) = Sp1a (t)ug (p, ps, wi) v/ D
(®)
where ug (p, ps,w;) is defined in (4). If we apply the Fourier
transformation defined by

i(p,q,wy) = /us (r,wi) e """ dx )
then (8) results in
(vaz + P)’(q; WI)Q)'&S (p7 Ps,q, wt)

= 6/1(1([)7(])“0(9’ psawt)U/D (10)
2 _ _

where 7 (q,w;)” = —q? + ko (wt)2 . The solution of (10) in an
infinite medium has the following integral expression

Ug (pa Ps qth)
. / / 9 (Pl 4 0) e () w0 (0, pos ) v/ D2l

(11)
where

g(plp’sq,wr) = iHYY (v (qwi) [p— P /4 (12)

is the Green’s function of (10) in an infinite medium. Equation
(11) can be independently inverted for each q component. When
Ofia (p,q) is calculated for a range of equidistant q it is possible
to apply the Fourier inversion operator to calculate 0, (r). The
advantage of (11) with respect to (7) lies in the computational
complexity of the inversion problem. Since in (11) the integral
equation is only two dimensional, although many more equa-
tions need to be inverted, the computational power required to
reconstruct dyu, (r) is much lower than that for the three dimen-
sional equation in (7). As an example, we compare the computa-
tional complexity necessary to calculate dy, (r) when singular
value decomposition is used to invert the integral equations. In
an infinite medium with N x N x N voxels, measurements are
acquired at N x P points at Q different modulation frequencies.
The computational complexity of a reconstruction algorithm
based on (7) then is O((N x P x Q)% x N x N x N) whereas
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for (11) it is O(((P x Q)% +1logN) x N x N x N). Not only
is the complexity considerably reduced, but the algorithm based
on (11) requires solving many independent inverse problems
and could therefore easily be parallelized. An algorithm based
on (7) would only have a single inverse problem, which would
be very difficult to parallelize.

The proposed algorithm has been formulated for an infinite
medium, but it could be applied to any medium that was infinite
in at least one spatial direction. It has been recently suggested
that boundary removal techniques [21] could be applied in fast
reconstruction algorithms so they can work with media with
arbitrary geometries [5]. As previously mentioned, although in
this paper the target of the reconstructions were only absorption
changes in the medium, it is possible to expand the algorithm to
simultaneously reconstruct changes in scattering and absorption
[22].

B. Implementation

The implemented reconstruction algorithm was based on
(11), where instead of using the Green’s function for an infi-
nite medium, the Green’s function was calculated for a semi-
infinite medium using extrapolated boundary conditions [23].
The main requirement for the algorithm was to work with a re-
duced number of rows of pixels and source positions to perform
measurements in a short period of time. For each source position
and pixel row a new acquisition needs to be performed. In the
implementation of the algorithm presented in this contribution,
only three rows of pixels and two source lines placed at oppo-
site sides of the detector were necessary. With more sources and
detectors it would be possible to increase the volume that can
be reconstructed and the accuracy of the reconstructions would
improve as well. However, since the ultimate goal is to perform
measurements on human subjects the total acquisition time is a
critical factor that needs to be kept as short as possible.

The data obtained from the detector is time-resolved, how-
ever the presented algorithm only works with frequency-domain
data. Therefore a fast Fourier transform is required to convert the
measured signals in frequency domain data. Since the time reso-
lution of the TDC is 97 ps, the maximum modulation frequency
is ~5 GHz.

Due to the ill-posed nature of the problem, the specific al-
gorithm inverting (11) has a large impact on the quality of the
reconstructions. Therefore, inversion algorithms require some
type of regularization. In our implementation, the subspace pre-
conditioned LSQR algorithm presented in [24] was chosen to
solve the inversion problem due to its iterative nature and its
Tikhonov regularization scheme [24].

IV. RESULTS
A. Simulations

We performed simulations to evaluate the performance of
the reconstruction algorithm in the absence of noise. In order
to assess the ideal resolution of our setup together with the
algorithm, a testbench that mimicked the experimental setup
was implemented. Fig. 4(a) shows a schematic of the setup
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Fig. 4. (a) Three dimensional representation of the setup in the simulation

testbench. In a semi-infinite medium three objects with higher absorption coef-
ficients are placed at different positions. The XY plane at z = 0 is the boundary
of the medium. Two infinite lines of light are projected on the boundary plane
at y = [—3.5,3.5] to illuminate the medium. Three lines of 64 pixels located
aty = [—1,0, 1] measure the backscattered light from the medium. (b) Recon-
structed three dimensional images of the objects superimposed on top of the
original targets.

where the sources, detectors, and objects with increased ab-
sorption coefficient are visible. In the testbench a semi-infinite
medium with z1, = 0.1 cm™" and z//, = 10 cm ™! with three dif-
ferently shaped objects with optical properties ji, = 0.30 cm ™
and i/, = 10 cm ™! was modeled. This resulted in an absorption
contrast ratio of 3, which is a moderate contrast in NIRI, e.g.
the optical contrast between blood vessels and its surrounding
tissue is usually two orders of magnitude higher.

Fig. 4(b) shows the targets and the corresponding reconstruc-
tion. As expected the edges of the objects are not well detected,
however the position and shape of the reconstructions match the
targets with high accuracy. The reconstruction of the long cube-
shaped object is particularly remarkable since traditionally NIRI
algorithms lack accurate depth resolution. In the cross-sections
of Fig. 5 the high accuracy of the absorption coefficient is dis-
played. In the pictures it is visible that in certain areas negative
absorption values are reconstructed. Although this is physically
not possible, it often occurs in NIRI reconstructions when in the
inversion step no restrictions are set on the sign of the solution.
Reconstructions with 1.25 mm x 1.25 mm X 1.25 mm voxels
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Fig. 6. Superimposition of the three reconstructions of a sphere placed at

different depths of the phantom.

and 32 temporal modulation frequencies required ~20 s of CPU
time on a desktop computer.

To assess the depth sensitivity of our algorithm a testbench
with a single absorbing sphere placed at different depths was
simulated. Fig. 6 shows the superimposed results from the three
different simulations. These simulations showed much better
results than previous time resolved NIRI algorithms based on
the usage of discrete components [25].

B. Experimental Results

Experimental measurements were performed with an in-
tralipid phantom with optical properties s, = 0.07 cm™! and
', =5 cm™ ! which contained two cylinders of 5 mm diameter
separated by 5 mm placed at z = —1 cm with optical proper-
ties f1, = 0.25cm ™ and g, =5cm ', y, and 4, have been
reduced compared to those employed in the simulation in order
to increase the intensity of the measured light, consequently re-
ducing the influence of noise, and to ensure that the measured
signals had a much slower response than the system’s impulse
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response function (IRF). If the system’s IRF was comparable or
slower than the measured signals, then it would be necessary to
deconvolve the measured signal with the system’s IRF before
performing any reconstruction. Trials with higher absorption
and scattering showed poor results in terms of SNR indicating
that the setup needs to be improved for higher absorbing or scat-
tering media. The position of the sources and detectors was also
modified to increase the SNR: the sources are in this case closer
to the detectors to increase the intensity of the measured signal,
and the distance between detectors has been reduced so that the
difference of signal level among them is smaller. In the current
setup the source lights are placed at y = [—2.65, 2.65], whereas
the detectors are placed at y = [—0.6,0,0.6]. In this case the
128 pixels in each row were binned into 32 detectors to improve
the SNR. The acquisition time for each row of pixels was about
6 min. The power of the laser and the source-detector distances
were adjusted so that the maximum detection rate in the pixels
was never higher than 1% of 1/T,,, where T is the TDC’s con-
version period, which in this particular case was 100 ns. This
was done in order to avoid pile-up effects in the histograms
and to ensure that the pixels were always working in single-
photon detection regime. In the reconstruction a voxel of size
0.94 mm X 1.44 mm x 1.25 mm and 32 temporal modulation
frequencies were employed. Fig. 7(a) shows the experimental
setup and Fig. 7(b) the reconstructed image. Both cylinders are
clearly resolved indicating that a resolution of at least 5 mm is
achieved with the current setup and reconstruction algorithm.

The limited field of view of the setup (only three pixel rows
placed at intervals of 6 mm were employed) naturally limited
the volume in which the objects were reconstructed. This is the
reason why the ends of the cylinders were not visible in the
reconstructed image, since they were outside the field of view
of the sensor.

Fig. 8 shows the cross section of the reconstruction at dif-
ferent depths. In these cross sections both cylinders are clearly
differentiated reaching an absorption coefficient of ~0.2 cm™!,
which is close to the real absorption coefficient of the target
cylinders.

V. DISCUSSION AND PERSPECTIVES

The possibility of performing high-resolution time resolved
measurements with SPAD image sensors opened a new era in
many biomedical and biological imaging fields [26]. Their suit-
ability for NIRI has been probed in this paper, enabling for the
first time NIRI devices with high spatial resolution and time
resolved measurements.

There are certain limitations in actual SPAD image sensors
that could have a large impact in the performance of NIRI
devices if they were addressed. The relatively small field of
view of the presented system was limited by the size of the
sensor’s active area (3.2 mm x 3.2 mm). Although sensors
with larger active areas have been developed [17], they are still
small in comparison to commercial CCD and CMOS sensors. So
far most SPAD pixels integrated in image sensors exhibit low
fill-factors, making them inefficient in low light applications
like NIRI. Although we recently showed how microlenses can
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(a) Representation of the intralipid phantom with the two cylinders in

it. The XY plane at z = 0 represents the wall of the tank on which the light is
projected and where the backscattered photons are measured. (b) Reconstructed
three-dimensional images of the objects superimposed on top of the original
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improve the fill-factor in SPAD image sensors [27], their per-
formance strongly depends on the optical system where they
are integrated. In particular the image sensor that was employed
in the presented experiments did not have microlenses. Never-
theless there have been recent advances in the development of
SPAD pixels [28], showing that it is possible to reach fill-factors
similar to those in commercial CMOS sensors by implementing
square SPADs with rounded corners.

At the moment the most critical factor for SPAD image sen-
sors when applied in in-vivo biomedical application is the mea-
surement time. Most sensors architectures are based on sequen-
tial reading of the pixels similar to those used in CMOS sensors.
However due to the low activity rate of the pixels in time re-
solved measurements it is necessary to read every pixel for
long periods of time to obtain enough statistics of the photons.
Event-driven approaches similar to the ones implemented in
digital SiPMs [28], in which concurrent reading of the pixels
is possible will drastically reduce the measurement time with
SPADs sensors making them suitable for in-vivo measurements.

VI. CONCLUSION

In this contribution it has been demonstrated how NIRI can
benefit from high accuracy time-resolved measurements offered
by SPAD image sensors. Reconstructed images with millimetric
resolution were obtained with a SPAD image sensor prototype.
NIRI will benefit in the coming years from the new advances
that are undergoing in this still young technology.

We believe that high resolution NIRI systems with fast acqui-
sition times can open a new dimension in clinical applications,
by enabling the measurement of oxygenation state of organs,
e.g. the brain, muscle, liver among others, in real time and with
sub-centimeter resolution.
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of the absorption coefficient in the reconstructed objects should be similar to
the integral of the absorption coefficient in the target objects.
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