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Abstract— Dynamic contrast-enhanced ultrasound
(DCEUS) is an imaging modality for assessing micro-
vascular perfusion and dispersion kinetics. However, the
presence of speckle noise may hamper the quantitative
analysis of the contrast kinetics. Common speckle
denoising techniques based on low-rank approximations
typically model the speckle noise as white Gaussian noise
(WGN) after the log transformation and apply matrix-based
algorithms. We address the high dimensionality of the 4D
DCEUS data and apply low-rank tensor decomposition
techniques to denoise speckles. Although there are many
tensor decompositions that can describe low rankness,
we limit our research to multilinear rank and tubal rank.
We introduce a gradient-based extension of the multilinear
singular value decomposition to model low multilinear
rankness, assuming that the log-transformed speckle
noise follows a Fisher-tippet distribution. In addition,
we apply an algorithm based on tensor singular value
decomposition to model low tubal rankness, assuming
that the log-transformed speckle noise is WGN with sparse
outliers. The effectiveness of the methods is evaluated
through simulations and phantom studies. Additionally,
the tensor-based algorithms’ real-world performance is
assessed using DCEUS prostate recordings. Comparative
analyses with existing DCEUS denoising literature are
conducted, and the algorithms’ capabilities are showcased
in the context of prostate cancer classification. The addition
of Fisher-tippet distribution did not improve the results
of tr-MLSVD in the in vivo case. However, most cancer
markers are better distinguishable when using a tensor
denoising technique than state-of-the-art approaches.

Index Terms— Dynamic contrast-enhanced ultrasound,
low-rank tensor decomposition, multilinear singular value
decomposition, prostate cancer, speckle denoising.
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I. INTRODUCTION

DYNAMIC contrast-enhanced ultrasound (DCEUS) is an
ultrasound imaging modality that enables the char-

acterization of the blood perfusion patterns through the
microvasculature [1]. DCEUS is investigated for many applica-
tions, such as the localization of prostate cancer. With the help
of intravenously injected microbubbles, 4D DCEUS enables
the visualization and analysis of the entire prostate gland.
The newly formed angiogenic vessels associated with the
tumor growth create a distinctive and irregular microvascular
architecture that is used as an indicator of prostate cancer [2].
Through analysis of the DCEUS loops by convective disper-
sion modeling, a number of quantitative dispersion parameters
that reflect angiogenic changes in the underlying microvas-
cular architecture have been proposed. The time evolution
of the microbubbles inside the vasculature, also called the
time-intensity curves (TICs), are fit with the local density
random walk model, and distinctive perfusion and disper-
sion dynamics have been observed in malignant and benign
regions [3]. Indeed, a significant amount of work has been
published that proves the benefit of using contrast-ultrasound
dispersion techniques (CUDI) to identify angiogenesis [4], [5],
[6], [7].

The general framework for the classification of angio-
genesis consists of several steps. Firstly, the microbubbles
are administrated intravenously, and the Digital Imaging and
Communications in Medicine (DICOM) data is recorded.
Commercial ultrasound scanners utilize various algorithms
such as harmonic imaging, phase inversion, or amplitude
modulation to enhance the non-linear echoes from the
microbubbles while suppressing the approximately linear
echoes from the tissue, especially at the employed low
ultrasound pressure [8]. The log-compressed envelope of the
resulting radio-frequency data is exported for further pre-
processing, feature extraction, and classification. Even after
the aforementioned contrast enhancement techniques, DCEUS
recordings suffer from speckle noise. This noise results from
the coherent imaging of microbubbles in a resolution cell.
Assuming that a large number of randomly distributed scat-
terers exist in this cell and there are no strong reflectors,
the real and the imaginary parts of the complex echo can
be modeled by a zero-mean Gaussian density [9], [10], [11].
The magnitude of this echo is Rayleigh distributed, where the
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mean is proportional to the standard deviation of the com-
plex echo. This creates multiplicative noise, which becomes
additive in the log domain after the log compression per-
formed by the scanner. At lower bubble concentrations, noise
is more dominated by the pharmacokinetic statistics of the
bubbles, i.e., their probability of being in or outside the
cell [12].

Many existing features are initially developed and tested
in 2D data [13], [14]. Although most of the CUDI features
are extended for the three-dimensional space [5], [6] [15],
the denoising algorithms do not take the multidimensional
structure of the recording into consideration. The two most
widely used denoising techniques for DCEUS sequences
include a wavelet [11], and an SVD-based [16] algorithm.
The authors in [11] model the log-transformed noise as WGN
with outliers. They apply the robust smoother-cleaner [17] to
the finest level of decomposition using a median filter with
a window of five and biorthogonal wavelets with three and
nine vanishing moments. The resulting signal is denoised using
a regular wavelet shrinkage algorithm with soft thresholding.
In [18], a low-pass filter is applied to TICs where the cut-off
frequency is set to be 0.5 Hz. In [16], the authors investigated
various matrix decomposition techniques and found that the
truncated singular value decomposition (SVD) gives the best
results for the localization of prostate cancer. The assumption
is that distinct columns of the resulting factor matrices will
capture the signal and noise subspace. Denoising is achieved
by reconstructing the data after setting the singular values of
the noise subspace to zero. The DCEUS recording is flattened
into a spatiotemporal matrix where the columns correspond
to the time, and the rows correspond to the space to apply
SVD. However, this flattening removes spatial information
and destroys the 3D structure. Therefore, previously in [19],
we applied the multilinear singular value decomposition to the
DCEUS recording and truncated the factor matrices at each
unfolding by ranks estimated by a robust information-theoretic
method [20]. When the dispersion and perfusion features were
used, a slightly better separation between the malignant and
benign regions was observed compared to [16]. We further
showed in [21] an improved classification performance in
a multi-parametric setting. The multilinear singular value
decomposition aims to decompose the tensor into its orthonor-
mal basis through least squares. This type of decomposition
is suitable for WGN noise [22].

We implement and compare various low-rank tensor-
based denoising techniques that incorporate the Fisher-tippet
assumption on the speckle noise. First, we propose a
tensor-based denoising algorithm that uses the prior noise
distribution to estimate a low-rank tensor via gradient descent
by utilizing the general estimation framework (GTE) [23]. The
difference between the proposed algorithm and [23] is twofold.
The derivatives are calculated more efficiently, enabling their
application for large recordings, and the noise is distributed
by Fisher-tippet. In [19], we investigated several low-rank
tensor denoising techniques for denoising Fisher-tippet noise
through simulation and found out that orientation invari-
ant tensor nuclear norm [24] performs well, especially
for low SNR scenarios. Hence, we apply the orientation

invariant tensor nuclear norm (OITNN) algorithm to model
the log-transformed DCEUS recordings as a low-rank tensor
with sparse and WGN, which has not been done before.
The performance of the aforementioned tensor techniques will
be compared with the denoising techniques proposed in the
literature, and the performance of prostate cancer localization
will be reported. We incorporate a linear classifier for each
feature and report the area under the ROC curve.

In the literature, the low-rank despeckling techniques are
commonly applied to the nonlocal patches extracted from the
ultrasound recording [25], [26], [27]. The DCEUS recordings
are different than the fundamental mode ultrasound images.
Rather than imaging a static morphology, in DCEUS, moving
bubbles inside the vasculature are imaged. Therefore, we take
a different approach motivated by [16] where SVD is applied
to the spatiotemporal matrix generated by flattening the whole
DCEUS recording. We are motivated to model low rankness in
spatial dimensions separately for several reasons. The voxels
around a cancerous region show similar dispersion and per-
fusion characteristics [5], [28]. Significantly grown cancerous
tumors will create spatial regions that can captured by the
low-rank approximation. In addition, we postulate that the
orthogonality assumption in the factor matrices will aid the
separation between the tissue and the microvasculature, as well
as the cancerous TICs and the benign TICs.

The paper is organized as follows. Section II describes
the notation and a brief introduction to the tensor algebra
and the decompositions. Section III formulates the prob-
lem and describes the tensor-based denoising algorithms.
Section IV introduces the simulation, in vitro, and in vivo
setups. Section V reports the simulation and in vitro results
and the discriminative power of the CUDI features extracted
from the DCEUS recordings of the prostate. We elaborate on
the results in Section VI and conclude with possible future
work in Section VII.

II. NOTATION

Tensors are represented by underlined boldface letters such
as Y. Matrices are represented by boldface letters such as
U(1) and I. The numbers given as superscripts in parenthe-
ses are used to refer to the different matrices that share a
similar property. For example, the three-factor matrices of
the multilinear singular value decomposition for a third-order
tensor are denoted by U(1), U(2), and U(3) [22]. Vectors are
represented by lowercase boldface letters such as b. Scalars
are represented by lower case letters such as ai j that represent
element at the i th row and j th column of A ∈ RI×J . The
MATLAB notation is used to describe the slicing of a tensor;
for example, the first R1, R2, R3 and R4 elements of the
tensor S are S(1 : R1, 1 : R2, 1 : R3, 1 : R4). The Hadamard
product is shown with ⊙. The Frobenius norm is the square
root of the sum of each element and is shown by ∥ · ∥F . The
spectral norm of a matrix is shown with ∥ · ∥. The number
of iterations is shown with superscript lowercase letters such
as Lk or U(1)k

. The initialization of an iteration is shown
with L0. The estimated variables are shown with a hat sign
such as L̂.
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A. Tensor Notation and Preliminaries
The mode-n unfolding of Y ∈ RI1×I2×...×IN is Y(n) ∈

RIn×I1...In−1 In+1...IN . The mode-n product of tensor Y ∈

RI1×I2×...×IN and a matrix U(n)
∈ RJ×In yields a ten-

sor Y×n U(n)
= C ∈ RI1×...×In−1×J×In+1×...IN with

entries ci1...in−1 j in+1...iN =
∑In

in=1 ai1....in ...iN b j in . Mode-
(n,n+1) unfolding of a tensor is described further in the
paper and shown with Y[n] ∈ RIn×D/(In In+1)×In+1 , where D =∏N

n=1 In is the number of elements in the tensor Y. A diagram
representation of the tensors and matrices is used. Tensors are
represented by circles with at least three lines, and matrices
are represented by circles with two lines. The lines represent
the different dimensions, and the sizes of the dimensions are
written on the lines. For more information regarding tensor
notations and decompositions, we refer to [29].

III. LOW-RANK APPROXIMATION OF
DCEUS SEQUENCES

A. Signal Model
The DCEUS recordings are four-dimensional recordings

where the first three dimensions represent the spatial domain,
and the last dimension represents the time domain. Due to
the difference between the resolution cell and the size of the
microbubbles, the recordings suffer from the speckle noise.
Let M̃ ∈ RI1×I2×I3×I4 represent the speckle noise where each
entry is Rayleigh distributed with a scaling parameter of 1. The
DCEUS recording, represented by Ỹ ∈ RI1×I2×I3×I4 , is the
multiplication of the parameter of interest L̃ ∈ RI1×I2×I3×I4

with M̃. This can be shown as

Ỹ = L̃⊙ M̃ . (1)

It has been shown in [4] and [11] that there is a linear relation
between the microbubble concentration and L̃. Hence, the
magnitude of each entry at L̃ can be used as an indirect
measure of the bubble concentration.

Commonly, in ultrasound devices, logarithmic compression
is applied for visualization purposes. This operation is given
by

c ln Ỹ, (2)

where

c = 255 log10(e)10/DR (3)

is a function of the dynamic range (DR). This operation affects
the probability density function of the noise. We have

c ln Ỹ = c ln L̃+ c ln M̃ . (4)

Let c ln M̃ = M, c ln L̃ = L and c ln Ỹ = Y. With this
notation, we will have

Y = L+M . (5)

The log-transformed Rayleigh noise follows the Fisher-
tippet distribution [9]. The goal of this paper is to recover
the DCEUS recording L from the signal model given in (5),
assuming that the recording shows a low-rank structure.
We introduce two algorithms and compare them with the

literature on DCEUS denoising. These algorithms differ in
the assumption of the noise and the low-rank structure. These
algorithms are
• general tensor estimation framework (GTE) [23] that

assumes M follows Fisher-tippet distribution and L is
low rank in mode-n unfoldings,

• orientation invariant tubal nuclear norm (OITNN) [24]
that assumes L is low tubal rank in mode-(n,n+1) unfold-
ings and models the noise M as the summation of a WGN
and sparse outliers.

The truncated multilinear singular value decomposition [19],
[21] is used as a warm initialization for the GTE algorithm.
For completeness, we briefly introduce tr-MLSVD.

B. Tr-MLSVD
In this section, we estimate denoised recording L̂ by the

application of the MLSVD on Y, estimating the ranks in each
mode, and finally truncating the core tensor and the factor
matrices according to the estimated ranks and reconstructing
the tensor.

1) MLSVD: We apply MLSVD to the preprocessed Y to
obtain

Y = S×1 U(1)
×2 U(2)

×3 U(3)
×4 U(4) , (6)

where S ∈ RI1×I2×I3×I4 is the core tensor and U(n)
∈ RIn×In

for n ∈ {1, . . . , 4} are the factor matrices. The MLSVD is
the application of four SVDs to all the unfoldings Y(n) for
n ∈ {1, . . . , 4} and assigning the factor matrices U(n) for
n ∈ {1, . . . , 4} as the left singular vectors. In addition, the
all-orthogonal core tensor S can be found by multiplying the Y
with the transpose of the factor matrices in the corresponding
mode. We estimate the tensor L related to the microbubble
movement by truncating the core tensor and the factor matrices
according to the estimated ranks.

2) Rank Estimation: The mode-n singular values φ(n) are
defined as the squared sum of the columns of the mode-n
unfolding of S, that is,

φ(n)
=

1
(D/In)

diag(ST
(n) S(n)) , (7)

where D/In represents the multiplication of the sizes of all
dimensions except the nth dimension. The most contributing
columns are selected for the minimum description length
estimation [30]. In each mode, the sparse representation is
executed by the parameter ρ, which is suggested to be between
0.0001 and 0.01. Let P(n)

∈ RD/In×D/In denote the matrix
that selects the ρD/In columns of S(n) with the highest norm,
while discarding the rest. We have the robust eigenvalues s(n)

at the diagonal of S(n) P(n) P(n)T ST
(n), that is,

s(n)
=

1
(ρD/In)

diag(S(n) P(n) P(n)T ST
(n)) .

The rank R̂n for each mode n ∈ {1, . . . , 4} are estimated using
the MDL criterion,

R̂n = argmin
r
− 2 log

(∏In
i=r+1(s

(n)
i )1/(In−r)

1
In−r

∑In
i=r+1 s(n)

i

)ρ(D/In)(In−r)

+ r(2In − r) log(ρ(D/In)). (8)
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Fig. 1. The truncated multilinear singular value decomposition of a 3D
tensor with ranks (R1,R2,R3).

3) Truncation: After estimating the ranks, we reconstruct the
tensor by truncating the core tensor and the factor matrices
according to the estimated ranks. This is done by taking the
first R̂n columns of U(n) for n ∈ {1, . . . , 4}, i.e., Ûn = U(n)

(:, 1 : R̂n) and taking the corresponding elements of the core
tensor, i.e., Ŝ = S(1 : R̂1, 1 : R̂2, 1 : R̂3, 1 : R̂4). The denoised
DCEUS recording is given by

L̂ = Ŝ×1 Û1×2 Û2×3 Û3×4 Û4, (9)

This algorithm is described in Algorithm 1. Previously, in [19]
and [21], we implemented this algorithm and found improved
performance in the classification of prostate cancer. In this
paper, we extend the analysis to a higher number of patients
and compare it with the results from the literature and the
methods proposed in this paper.

Algorithm 1 The Tr-MLSVD Framework for Denoising
DCEUS Sequences

Input :Y ρ,
MLSVD :Y← S×1 U(1)

×2 U(2)
×3 U(3)

×4 U(4)

Rank Estimation :{R̂1, R̂2, R̂3, R̂4} using (8)

Truncation : Ŝ← S(1 : R̂1, 1 : R̂2, 1 : R̂3, 1 : R̂4)

Ûn← U(n)(:, 1 : R̂n) for n ∈ {1, . . . , 4}
Return :L̂← Ŝ×1 Û1×2 Û2×3 Û3×4 Û4

C. GTE

The authors in [23] proposed a low-rank tensor estimation
framework that incorporates the prior distribution of the noise.
They solve

L̂ = argmin
L is low rank

− ln(p(Y;L)) (10)

where p(Y;L) is the probability distribution function of 4D
DCEUS recording Y parameterized by the low multilinear
rank tensor L. The paper solves the problem for Poisson,
Gaussian, and Binomial noise. The difference between [23]
and the proposed method is the characteristics of the
noise and the calculation of derivatives. We will extend
the analysis to the Fisher-tippet noise in Section III-C1.
In Section III-C2, we will calculate the derivatives of the loss
function without the Kronecker products, which are shown in
Appendix B and C.

1) Probability Distribution of the Fisher-Tippet Noise: Let
the probability density distribution of M be the Rayleigh
distribution with a scaling parameter of 1, that is,

p(M; 1) =

I1∏
i1=1

I2∏
i2=1

I3∏
i3=1

I4∏
i4=1

mi1i2i3i4 exp
−m2

i1i2i3i4

2
, (11)

assuming that the noise is independent between voxels. The
log compression, as described in (4), changes the probability
density function of the noise. The Fisher-tippet distribution [9]
with the log compression is

p(Y;L)

=

I1∏
i1=1

I2∏
i2=1

I3∏
i3=1

I4∏
i4=1

exp(2(y − l)/c − exp 2(y−l)/c
2 )

c
. (12)

Note that the indices yi1i2i3i4 and li1i2i3i4 in (12) are dropped
for notational convenience. The argument that minimizes the
negative log-likelihood of (12) is the maximum likelihood
estimate of L with Fisher-tippet noise.

2) Gradient Descent: In addition to the maximum likelihood,
the authors in [23] proposed to add the redundant term

a
2

4∑
n=1

∥(U(n))T U(n)
−b2 I ∥2F , (13)

to prevent the factor matrices from being singular throughout
the gradient descent. Let the loss function be denoted by F .
With the addition of these terms, the loss function F becomes

F(Y, L) = − ln p(Y;L)+
a
2

4∑
n=1

∥(U(n))T U(n)
−b2 I ∥2F .

(14)

The two regularization weights a and b given in (14) are
selected using the spectral norm of the initial estimate L0.
The initialization, along with the estimation of the ranks,
is done with the MLSVD-based algorithm from [19]. Four
spectral norms can be defined using the four unfoldings of L0.
Let q denote the maximum spectral norm, that is,

q = max(∥L0
(1) ∥, ∥L0

(2) ∥, ∥L0
(3) ∥, ∥L0

(4) ∥). (15)

Two regularization weights are assigned as b = q1/4 and
a = q . The initial factor matrices {U(1)0

. . . U(4)0
} are mul-

tiplied by q1/4, whereas the core tensor S0 is divided by q.
This is done to guarantee the local convergence with a high
probability [23].

If we incorporate the probability distribution into (14),
we have

F(Y, L) = − ln p(Y;L)+
a
2

4∑
n=1

∥(U(n))T U(n)
−b2 I ∥2F

=

I1∑
i1

I2∑
i2

I3∑
i3

I4∑
i4

ln c − 2
y − l

c
+

exp(2(y − l)/c)
2

+
a
2

4∑
n=1

∥(U(n))T U(n)
−b2 I ∥2F . (16)
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Define the element-wise derivative operator as ∂ F
∂ L :

RI1×I2×I3×I4 → RI1×I2×I3×I4 . The derivative of F with
respect to U(1) follows the chain rule

∂ F

∂ U(1)
=

∂ F
∂ L

∂ L
∂ U(1)

(17)

We can write
∂ F
∂ L
=

2− exp (2(Y−L)/c)
c

. (18)

We modified the derivatives ∂ L
∂ U(1) given in [23] as described

in Appendix B. With this modification, the derivatives can be
calculated for large tensors using less random access memory,
which is further explained in Section VI.

An early stopping condition is defined as the relative change
of the L at each iteration to the change of the first iteration,
that is,

1 Lk < ϵ =
∥Lk
−Lk−1

∥F

∥L1
−L0

∥F
, (19)

where k is the iteration number, and the iterations stop
when 1 Lk is smaller than ϵ or the maximum number of
iterations K is reached. The pseudo-code for the algorithm
is defined in Algorithm 2.

Algorithm 2 The GTE Framework for Estimating a Low-Rank
Tensor With Fisher-Tippet Distribution

Input :Y, E{M}, η, K , ϵ

Debias :Y← Y−E{M}
Initialization :L← S×1 U(1)

×2 U(2)
×3 U(3)

×4 U(4)
▷

Using Algorithm 1
U(n)0

← q1/4 U(n) for n ∈ {1 . . . 4}
S0
← S /q see (15)

while k < K or 1 Lk > ϵ do
k ← k + 1
U(n)k

← U(n)k−1
− η ∂ F

∂U(n)k−1 for n ∈ {1 . . . 4} see (34).

Sk
← Sk−1

−η ∂ F
∂ Sk−1 see (35)

Lk
← Sk−1

×1U(1)k−1
×2 U(2)k−1

×3 U(3)k−1
×4 U(4)k−1

if k > 1 then
1 Lk

←
∥Lk
−Lk−1

∥F
∥L1
−L0

∥F
see (19)

end if
if 1 Lk > 1 Lk−1 and k > 2 then

η← η/10
k ← 0

end if
end while
Return :Lk

D. OITNN
In this section, we describe the OITNN algorithm for

denoising DCEUS recordings. OITNN considers low rankness
in mode-(n,n+1) unfoldings, and it is based on a framework
called t-SVD [31]. We will first describe the basics of this
framework.

Definition 1: The t-product: Given two 3D tensors
T ∈ RI×J×I3 and H ∈ RJ×M×I3 , the t-product

Fig. 2. The illustration of a low tubal rank t-SVD decomposition defined
in Section III-D with rank R.

G = T ⋆ H ∈ RI×M×I3 is computed by taking the 1D Fourier
transform of each tensor in the last axis, matrix multiplication
of each frontal slice, and returning the 1D inverse Fourier
transform in the last axis. The t-product is shown with the ⋆

sign.
Definition 2: t-SVD: The t-SVD of the tensor L ∈

RI1×I2×I3 is defined as L = U ⋆ λ ⋆ VT with orthogonal U ∈
RI1×I1×I3 and V ∈ RI2×I2×I3 . The real and positive valued
λ ∈ RI1×I2×I3 has diagonal frontal slices. More information
is provided regarding the tensor identity and orthogonality
in [31]. The number of non-zero vectors λ(i1, i2, :) is called
the tubal rank.

Definition 3: Tensor nuclear norm (TNN): Given L =

U ⋆ λ ⋆ VT the tubal nuclear norm is given by the average of
the sum of the frontal slices of the core tensor, that is,

∥L ∥TNN =
1
I3

I3∑
i3=1

Tr(λ(:, :, i3)). (20)

The authors in [24] extended the analysis to higher dimensions
and solved the robust tensor denoising problem using invariant
tubal nuclear norm (OITNN). Tensors that have dimensions
greater than three are unfolded into 3D tensors using mode-
(n,n+1) unfolding, which is defined as the following.

Definition 4: Mode-(n,n+1) unfolding: The mode-(n,n+1)
unfolding of L ∈ RI1×I2×I3×I4 , creates a 3D tensor L(n,n+1) ∈

RIn×D/In In+1×In+1 by permuting the nth dimension of L to
the first, n+1th dimension to the last and grouping the rest.
Here D is defined as

∏N
n=1 In . This unfolding is simply shown

as L[n].
The OITNN is defined using the mode-(n,n+1) operation

as

∥L ∥OITNN =
1
4

4∑
n=1

∥L[n] ∥TNN. (21)

We refer back to the original problem formulation given
in (5). The authors in [9] approximate the Fisher-tippet noise
M as the summation of WGN W ∈ RI1×···×I4 and sparse
outliers O ∈ RI1×···×I4 , that is,

Y = L+W+O . (22)

The OITNN considers the low rankness in all orientations
mode-(n,n+1) for n ∈ {1, 2, 3, 4} and solves the optimization
problem that is defined as

min
L,O

{
1
2
∥L+O−Y ∥2F + γL∥L∥OITNN + γO∥O ∥1

}
s.t. ∥L ∥∞ ≤ α. (23)
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Fig. 3. Overview of the tensor-based DCEUS denoising methods.

Similar to GTE, the DCEUS recording is first preprocessed
by subtracting the median of the first twelve seconds from the
signal. The infinity norm α in (23) is assigned by median
filtering preprocessed Y with a window of 5 seconds and
taking the maximum. This algorithm is solved by using the
algorithm in [24] until the stopping convergence given in (19)
or the maximum iteration number K is reached. An overview
of the methods is shown in Fig. 3.

IV. VALIDATION METHOLOGY

In this section, we introduce the setup for simulation,
in vitro, and in vivo studies and report the results in
Section V. We first compare the denoising performance of
tr-MLSVD, GTE, and OITNN using synthetic data. Previ-
ously, in [19], we compared the performance of SVD and
tr-MLSVD methods through simulation, where tr-MLSVD was
found to perform better. For that reason, the SVD method
is omitted from the simulation. Additionally, wavelet-based
denoising [10] is omitted from the simulation because the
assumption that the time evolutions are smooth does not hold
for the general case. For this reason, we only compare the
tensor-based denoising techniques. Following the simulations,
we will conduct an in vitro study, report the model-fitting
performance, and visualize the phantom recordings after
denoising. Finally, we will compare the single-feature clas-
sification performance of the tensor-based methods with the
state-of-the-art DCEUS denoising techniques.

A. Simulation

We generated three 4-dimensional tensors L ∈

R20×20×20×20 with three different ranks. First the core
tensor was generated S ∈ RR1×R2×R3×R4 from the
normal distribution with sizes [6, 6, 6, 6], [4, 8, 12, 16]
and [12, 12, 12, 12]. The core matrix was multiplied
in each mode with the orthonormal matrices to get
L̃ = S×1 U(1)

×2 U(2)
×3 U(3)

×4 U(4). The orthonormal
matrices U(1)

∈ R20×R1 , U(2)
∈ R20×R2 , U(3)

∈ R20×R3 and
U(4)
∈ R20×R4 were generated according to the Haar measure

as described in [32]. We selected such ranks to cover three
cases that might occur in actual DCEUS recordings. An actual
DCEUS recording might have low or high multilinear ranks

Fig. 4. Phantom setup.

in all dimensions, or it can have a lower rank in some of the
dimensions than others. Since we expect the recording to be
low-rank, we selected a value close to half of the tensor size
for high-rank cases.

The L̃ values were scaled to the range [10, 255]. The
noisy tensor Ỹ was obtained by multiplying L̃ with Rayleigh-
shaped M̃ with scaling parameter 1 as shown in (11). The
logarithmically transformed tensor L was obtained using (4)
with a dynamic range of 42. The denoising algorithm given in
Algorithm 2 was applied to L. The theoretical noise statistics
were taken from [33] and assigned as E[M] = 0.0579c, where
c was given in (3). The preprocessing step was skipped. The
ranks were assumed to be known. The step size was η = 10−7.
The total number of iterations was defined as K = 105. The
iterations stopped with the condition 1 Lk < ϵ = 0.1. The true
ranks were used for tr-MLSVD and GTE. For OITNN, four
values for γL and γO in the range (1000, 4000) and (10, 40),
respectively, have been traversed. Furthermore, the true infinity
norm of the original tensor is used. The minimum normalized
mean error is reported.

B. In Vitro

We conducted a phantom study using the LOGIQ E10
scanner equipped with a RIC5-9-D endocavity transducer
driven at 3.5 Mhz, a porous medium, and a sponge to prevent
reverberations. The setup can be seen in Fig. 4. The porous
media phantom was built by packing alginate beads of size
2.5 mm in a polyurethane tube with a diameter of 20 mm.
The obtained alginate beads of the same size were packed
into a polyurethane tube, and the cylinder shape was fixed
with two circular nets on two sides of the phantoms. After
that, we gently squeezed and shook the phantom to ensure
a more homogeneous packing structure. The length of the
phantoms was about 43 mm. The water pump is set to a flow
rate of 0.22 mL/s. We mixed 1 mL of Sonovue with 100 mL
of water and injected it into the tube before imaging. The
model is fitted to each voxel using (25). The MFR-RMSE is
calculated by taking the root mean square of the difference
between the fitted and filtered TICs and multiplying it with a
sigmoid-shaped weighting function that exponentially penal-
izes the error starting from 20 seconds after the peak time.
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Fig. 5. The normalized amplitudes of noisy and denoised phantom recordings during the early appearance, peak, and wash-out times. The xz slice
at the middle of the phantom is plotted.

C. In Vivo
Recordings of 32 patients from the Amsterdam University

Medical Center and 62 patients from the Netherlands Cancer
Institute were obtained. This study obtained IRB approval,
and the patients provided written consent to be enrolled in
the study. A 4D recording in contrast mode was obtained
with the LOGIQ E10 scanner equipped with an RIC5-9-D
endocavity transducer driven at 3.5 Mhz. The volume rate was
fixed to 0.9 Hz by setting the image quality to BQMid1, and
a low mechanical index of 0.1 was employed to minimize
the bubble destruction. The patients went through radical
prostatectomy after the recording because of biopsy-proven
prostate cancer. The prostate was sliced with 4 mm thickness,
and for each slice, an annotation was made by the pathologist.

The annotations were registered back to the domain of
the recording, and the ground truth was obtained. Signifi-
cant malignant voxels, at least with a grade of 3 + 4 are
selected [34]. There were approximately seven million benign
voxels and two hundred thousand malignant voxels.

The DCEUS recording was transformed from spherical
to cartesian domain with a voxel size of 0.25 mm ×

0.25 mm × 0.25 mm. The spatial resolution was regularized
across space through a dedicated Wiener filter [14], and the
data was downsampled by 3 such that a voxel size of 0.75 mm
was obtained. The warm initialization is obtained using
tr-MLSVD. The gain is estimated as the median of the first
12 seconds, which is subsequently subtracted from the TICs
of both the tr-MLSVD and the noisy tensor. A step size of
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η = 10−7 was used. The maximum number of iterations
was set to K = 10e5. The stopping condition was set at
1 Lk < ϵ = 0.1.

The CUDI features were extracted from each voxel after
denoising with either of the five denoising methods, i.e.,
OITNN, GTE, tr-MLSVD, SVD, and wavelet-based denois-
ing and without denoising. The extracted features were the
following:
• model fitting features that quantify TIC perfusion and

dispersion based on the local density random walk model
denoted as MFR-κ and MFR-µ [35], [36], [37],

• similarity-based metrics, such as correlation (SA-ρ),
spectral coherence (SA-r), and mutual information
(SA-MI) [3], [5], [14], [28],

• the solution of the convective-dispersion equation [6], [7],
denoted by CD-D and CD-v to represent dispersion and
velocity, respectively,

• entropy and conditional entropy [38], denoted by VE-Ev
and VE-CEv, respectively.

Among all the features, computing the model fitting took the
most time. Therefore, the model fitting was approximated
using the Exponential Linear Unit (ELU) function, which
resulted in faster processing. The approximation is shown
in Appendix A. Similarly to the process proposed in the
literature [4], a windowing was applied where a higher weight
was given to the first pass of the microbubbles. Adam opti-
mizer [39] was used for fitting the model.

V. RESULTS

A. Simulation
The performance metric was the normalized mean error

given by

NME =
∥L̂− L ∥F

∥L ∥F
, (24)

where L̂ was the estimate of L. For both GTE and OITNN,
the convergence is achieved with 1 Lk < ϵ = 0.1 defined
in (19). We compared the performance of tr-MLSVD, GTE,
and OITNN and reported the results in Fig. 6. We ran pair-
wise t-tests to compare the denoising performances. Only
tr-MLSVD and OITNN for the rank (6,6,6,6) showed insignif-
icant differences with p < 0.0001. For rank (6,6,6,6), the GTE
gave the best NME. For ranks (4,8,12,16) and (12,12,12,12)
OITNN performed better.

B. In Vitro
We applied the tensor-based speckle denoising algorithms

to the phantom recordings. The rank estimation parameter for
tr-MLSVD is selected to be ρ = 10e − 5. The sparsity and
low rankness related parameters γL and γO are selected after
a 100 values between (1, 20000) and (1, 100), respectively,
are swept. The value that gave the least MFR-RMSE is
found to be 10000 and 30 for γL and γS , respectively. The
GTE algorithm is run with η = 10e − 7. In Fig. 5, the
early appearance, peak, and wash-out times of the phantom
recordings are shown on an xz slice at the middle of the

Fig. 6. The normalized mean error for random tensors of
size [20,20,20,20] and multilinear rank [6,6,6,6], [4,8,12,16] and
[12,12,12,12]. The median NME over 105 Monte Carlo simulations
are shown with a flat line, the box ranges represent the 25th and
75th quantiles, and the whiskers represent the inter-quartile ranges.

Fig. 7. The median, 25th and 75th percentiles of loss ∆ Lk that is defined
in (19) calculated for all the patients when the GTE and OITNN algorithm
given at Algorithm 2 is run. Subplot (a) represents the GTE, and subplot
(b) represents the OITNN. The red line represents the median, and the
blue shade represents the percentiles, and the y-axis is shown in dB.

phantom, and the averaged MFR-RMSE values are reported.
Only the voxels inside the phantom are fitted with the model.
The OITNN method resulted in the best fit of the model
described in Appendix A. The tr-MLSVD and GTE performed
similarly, while a better suppression of the speckle artifacts
in the background surrounding the phantom was observed
for GTE. Finally, SVD, Wavelet methods showed worse
model-fitting performance than the tensor-based counterparts.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 08,2025 at 08:59:01 UTC from IEEE Xplore.  Restrictions apply. 



2862 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 44, NO. 7, JULY 2025

Fig. 8. The denoised signals for a random malignant and benign voxel
and the corresponding fitted models. The upper row, defined with labels
(a) and (b), represents the malignant voxels. The bottom row, defined
with the labels (c) and (d), represents the benign voxels. Only the wash-in
period is shown.

We ran pairwise t-tests, and only tr-MLSVD and GTE gave
statistically insignificant MFR-RMSE distributions inside the
phantom with p < 0.0001.

C. In Vivo
We used the same parameters as the in vitro for the

tensor-based denoising methods (MLSVD, GTE, OITNN), i.e.
the rank selection parameter ρ = 10e − 5 for tr-MLSVD,
and the γO = 30, γL = 10e4 for the OITNN. The features
extracted after tensor-based denoising methods were compared
against features extracted after matrix-based (SVD) denoising
and a state-of-the-art wavelet-based denoising, as well as
no denoising. The denoising results are illustrated for an
arbitrarily selected malignant and benign voxel in Fig. 8 (a)
and (c). In the same figure, the results of the modified linear
random walk model fitting described in Appendix A are shown
in the subplots (b) and (d). Furthermore, in Fig. 9, we illustrate
the model fit parameter MFR-κ on a slice with the highest
number of malignant voxels of an arbitrarily selected patient.

The mean and the standard deviation of all features are
given in Table II. The mean and the standard deviation
of the model fit-related features did not change after the
various denoising algorithms. To investigate further, we also
compared the goodness of the model fit in terms of the

Fig. 9. The κ values for a z slice that has the most malignant voxels for
various denoising schemes of a random patient.

TABLE I
THE STATISTICAL SIGNIFICANCE TEST RESULTS WITH (p < 0.0001)

BETWEEN THE NOISY AND FILTERED CUDI FEATURE DISTRIBUTIONS.
ONLY THE ONES THAT LACK STATISTICAL SIGNIFICANCE ARE SHOWN

weighted root mean square error of the fit (MFR-RMSE),
which is explained in Section IV-B. The mean and standard
deviation of MFR-RMSE are shown in the third column of
Table II. MFR-RMSE is found to be the lowest for the OITNN
method, with an average of 3.84 over all the malignant and
benign voxels. The OITNN method is followed by GTE, SVD,
MLSVD, and Wavelet methods with average RMSE of 4.11,
4.14, 4.80, and 5.12 respectively. The noisy RMSE fit has
an average RMSE of 7.81. Although the RMSE changed, the
model fit parameters stayed fairly close to each other, only
with an increase in the variance of the benign features in
GTE and OITNN. The similarity metrics SA-MI, SA-ρ, and
SA-r increased significantly when a low-rank decomposition
is applied. We ran pairwise t-tests to analyze the statistics of
the CUDI features before and after filtering.

We ran t-tests to assess the two categories: the effect of
filtering methods on the distribution of the features, and the
difference between malignant and benign features. For the first
one, we stacked the benign and malignant features and ran
a pair-wise t-test to compare the filtering methods. All the
filtering methods had statistically significant differences with
p < 0.0001 except for two cases: CD-V and SA-MI features
for GTE and SVD and MFR-κ feature for GTE and OITNN.
This is shown in Table I. For the second assessment, we ran
Welch’s t-test between the malignant and benign features
generated through each filtering method, including the noisy
one. Welch’s t-test was chosen due to the difference in the
number of malignant and benign voxels. In all cases, we can
differentiate the benign and malignant voxels with statistical
significance (p < 0.0001).
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TABLE II
THE MEAN AND THE STANDARD DEVIATION OF THE DCEUS FEATURES AFTER THE SIGNAL

IS DENOISED BY WAVELET, SVD, MLSVD, GTE ALGORITHMS

TABLE III
THE VOXEL-BASED AREA UNDER THE CURVE IS CALCULATED FOR

EACH DENOISING METHOD WHEN A SINGLE FEATURE CLASSIFIER

IS USED ACROSS 94 PATIENTS. THE THRESHOLD IS SELECTED

SUCH THAT THE HIGHEST AUC IS ACHIEVED

To quantify the discriminative power of the features, the
malignant and benign features from all the patients were
stacked, and simple single-feature classification was done by
varying a threshold over the entire range of each feature. The
values that were greater or lower than the threshold were
labeled as malignant or benign and the receiver operating
characteristics (ROC) curve was generated. The area under
the ROC curve (AUC) for the various methods and features
is shown in Table III. Five out of nine CUDI features (MFR-
µ, CD-v, SA-MI, VE-CEv, VE-EV) showed better separation
between malignant and benign voxels for tr-MLSVD. Three
out of the nine CUDI features (MFR-κ , CD-D, SA-ρ) had a
better classification result for OITNN. Only one feature (SA-r)
showed improved performance for SVD.

D. Memory and Computational Requirements

Low-rank decomposition methods enable the representation
of any data with fewer parameters. For tr-MLSVD and GTE,
compression is achieved by saving the factor matrices Ûn for
n ∈ {1, 2, 3, 4} and the core tensor Ŝ; for SVD, the left and
right singular vectors, and the singular values; for OITNN
t-compress algorithm from [31]. The t-compress algorithm is
applied to mode-(1,2) unfolding. The other possible mode-
(n,n+1) unfoldings resulted in similar results. Significantly
small singular values and their corresponding factors are
discarded, where the tolerance is set to the 1/100th of the
highest singular value. The highest compression is achieved for
tr-MLSVD and GTE algorithms. This is followed by SVD and
OITNN. Calculation of the features and the denoising is done
on a server with an Intel 2 × 10 Xeon CPU and 256 GB RAM.
SVD was the fastest algorithm, with 7 hours of computation

TABLE IV
THE COMPUTATIONAL TIME OF RUNNING THE DENOISING METHODS

AND THE MEMORY REQUIRED TO SAVE 94 PATIENT RECORDINGS,
ALONG WITH THEORETICAL COMPUTATIONAL COMPLEXITIES.
THE TOTAL ITERATIONS OF GTE AND OITNN ARE SET TO K

time. Consecutively, tr-MLSVD, Wavelet, GTE and OITNN
followed it with computation times of 8.3, 9.5, 17, and
42 hours, respectively. The full recordings of 94 patients
were 68 GB. After the compression, the reduction is shown
in Table IV.

In addition, the computational complexities of the algo-
rithms are presented in Table IV. All algorithms except
wavelet include SVD as its foundation. Here, we assume the
Golub-Reinsch algorithm is used to calculate the SVD [40].
We point out that with known ranks, iterative algorithms such
as [41] will have a reduced complexity. We consider the worst-
case scenario, where the ranks are as high as the sizes of the
corresponding mode. In [40], the complexity of SVD for an
I × J matrix is described as O(I 2 J ) given I < J . Therefore,
the SVD of the spatiotemporal matrix with size I4× I1 I2 I3 has
the complexity O(I1 I2 I3 I 2

4 ) = O(DI4). For tr-MLSVD,
the SVD of the tensor Y in the unfoldings dominates the
complexity and results in a complexity of O(D(

∑4
n=1 In)). For

GTE, the algorithm is initialized by the tr-MLSVD output. The
complexity per iteration is due to the tensor-matrix products
that generate the low-rank tensor Lk given in Algorithm 2.
Each mode-n tensor-matrix multiplication is a matrix multi-
plication of sizes D/In × In , and In × In , which results in
a complexity of Dmax{I1, . . . , I4}. For OITNN, the Fourier
transform, inverse Fourier transform, and the SVDs of four
unfoldings Y[n] dominate the complexity of each iteration. The
Fourier transform of unfoldings Y[n] for n ∈ {1, . . . , 4} results
in the complexity of O(Dlog(D)), and their SVD results
in the complexity of O(D(

∑4
n=1 In)). Finally, the wavelet

decomposition has a complexity of O(Dlog(I4) due to the
1D Fourier transform of D/I4 voxels with I4 samples.
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Avoiding the Kronecker products (described in
Section III-C2) made it possible for the GTE method
to be run with less random access memory (RAM). Assume
the calculation of the derivative with respect to the first-factor
matrix ∂ F

∂ U(1) . Calculation of the Kronecker product given
in (29) creates (U(4)

⊗U(3)
⊗U(2)) ∈ RI2 I3 I4×R2 R3 R4 . For

DCEUS recordings of size 100 × 80 × 100 × 120, and
ranks of 30 × 20 × 30 × 8, the resulting matrix is of size
960000× 4800, creating 34.3 GB of data. On the other hand,
consecutive mode-n multiplication in each mode, that is,(

∂ F
∂ L ×2 (U(2))T

×3 (U(3))T
×4 (U(4))T reduces the dimension

to 100× 20× 30× 8. The mode-1 unfolding of the resulting
tensor is of size 100× 4800, creating 0.00384 GB of data.

VI. DISCUSSION

We introduced two tensor-based algorithms for denoising
DCEUS data that incorporate two approaches to model the
Fisher-tippet speckle noise. The GTE algorithm models low
rankness in the mode-n unfoldings and uses the log-likelihood
to reduce noise. On the other hand, the OITNN algorithm
considers low rankness in the mode-(n,n+1) unfoldings and
models the speckle noise as WGN and sparse outliers. In this
section, we discuss the results and propose research directions
for the future.

Inspired by the success of the application of SVD [16]
for denoising DCEUS data, we extended the idea of
low-rank approximation for denoising DCEUS data to multi-
dimensions. Previously we introduced tr-MLSVD algorithm
in [19] and [21] and showed an improved performance of
prostate cancer classification. The tr-MLSVD algorithm is
more suitable for denoising WGN. This introduces artifacts
that can be seen in the phantom slice depicted at the early
appearance time of tr-MLSVD in Fig. 5. The speckles around
the phantom at tr-MLSVD and the noisy recording do not exist
in GTE and OITNN. We believe this can aid the visualization
of bubble movement. Furthermore, in the simulation given in
Fig. 6, we observed that OITNN and GTE perform better than
tr-MLSVD for denoising speckle noise in nearly all cases.
This justifies the benefit of incorporating the prior distribution
and the assumption regarding the orthogonality of the factor
matrices.

On the other hand, improved performance was not observed
for the in vivo classification. We made several assumptions
that might affect the performance. Noise is assumed to be
independent between voxels. We deconvolved the recording
with a Wiener filter such that a resolution of 0.8 mm is
obtained as proposed in [5]. We sampled the recording with a
voxel size of 0.75 mm. Since each voxel is comparable to the
resolution of the system, we assumed that the assumption of
independence holds. There can be other factors, such as the
movement of the probe, that can violate the independence.

A reason for the inferior performance of the GTE algorithm
could be the mismatch of the assumed noise characteristics.
The DCEUS recordings suffer from various noise types such
as clutter, shadowing, ring-comet, reflection, refraction, and
reverberation artifacts [42]. The GTE algorithm aimed to
remove the speckle noise with the assumption of the Rayleigh

noise. At lower bubble concentrations, this assumption is
known to be invalid, as reported in [12]. Furthermore, dis-
tributions such as Gamma [10] or Nakagami [43] have been
reported to be a better choice for describing the speckle statis-
tics. Incorporating such a model could improve the results.
On the other hand, OITNN assumes that the Fisher-tippet noise
can be modeled as WGN with sparse outliers. The aforemen-
tioned artifacts might violate this assumption. However, the
two regularization parameters γL and γO allow a direction
of future work where each parameter can be tweaked for the
removal of different artifacts. The reduced performance of the
wavelet-based denoising could be due to the reduced temporal
frequency. The results in the literature have been reported
for 25 frames/s, whereas the 4D DCEUS recordings provide
1 frame/s. The assumption that the noise and the signal have
separate subspaces in the wavelet domain might fail for such
temporal frequencies.

The new model fitting algorithm described in Appendix A
is found to be fairly robust to noise. As supported by Fig. 8
and Table II, the model fitting algorithm gave similar features
for all the denoised signals. This is further supported by the
close performance of the model fit features in Table III. When
the noisy data is used to extract the model fit features, the
performance of the voxel-based classifier is found to be similar
to the features extracted from the denoised signals. In the
literature, various fitting algorithms were compared for model
fitting, such as the maximum likelihood and non-linear least
squares [12]. In this paper, we used an ADAM optimizer for
faster processing with the relaxation proposed in Appendix A.
This could explain the closeness between the noisy and the
denoised model fitting features. A significant increase in the
similarity metrics (SA-ρ, SA-r, SA-MI) can be observed in
Table II after the low-rank decompositions. This is expected
since the low-rank decompositions explain the data using the
components that describe the majority of the variance. Using
a few components results in mostly similar TICs. This is
especially observed in malignant regions. Finally, only tem-
poral correlation SA-r gave better classification performance
compared to tensor approaches. In SVD, low rankness is con-
sidered only in the fourth unfolding. In such a spatiotemporal
matrix, temporal information gets smoothened out, resulting
in similar TIC appearance times across the whole DCEUS
recording. Hence, the temporal correlation SA-ρ is performing
worse for SVD, and the spectral correlation SA-r, which only
considers the frequency content, performs better.

In our study, we have used the same LOGIQ E10 and
the probe in both Amsterdam University Medical Center and
the Netherlands Cancer Institute. All the machine settings
were fixed, and the outcome of the single feature classi-
fication was consistent across both datasets. We have not
included a study regarding the generalizability of the proposed
algorithms in diverse clinical settings. The generalizability of
the proposed tensor-based techniques is dependent on several
parameters, such as the variability in equipment settings,
patient demographics, and disease presentations. We selected
the low-rank-related γL and the sparsity-related γO hyperpa-
rameters defined in Section III-D, as well as the rank-related
parameter ρ defined in Section III-B using phantom studies.
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We recommend a study that explores variability between
different machines, which can shed light on good parameter
settings for all future users. An analysis of model-fitting
performance, such as the one given in Fig. 5, can be conducted.
If a phantom study is not available, we recommend an analysis
of model fitting or the classification performance on a subset of
the patient data. Equipment settings can be incorporated into
the classifier so that the classifier can utilize the variability
between different devices and settings.

The preprocessing steps, such as subtracting the median of
the first few seconds and the varying step size in optimization
algorithms, are still applicable to all DCEUS equipment.
This is due to the similarity of protocols regarding DCEUS
imaging [44]. The gain is increased such that the background
noise is observed without microbubbles, and the intravenous
injection is done after starting the imaging sequence. There-
fore, the first few frames are expected to represent the gain
of the system, which can be subsequently subtracted from the
TICs. The subtraction of the gain helps the algorithm focus
on learning relative changes related to microbubbles rather
than an arbitrary baseline. The algorithm becomes more stable,
and a faster convergence is achieved. Similarly, the varying
step size η given in Algorithm 2 increases the convergence
speed and improves the robustness. If the tensor unfoldings
are well-conditioned, the algorithms will converge faster with
a high step size. On the contrary, if the tensor unfoldings
are ill-conditioned, a smaller step size is required to aid
the convergence. In this paper, convergence is achieved for
all the patient recordings. However, GTE is a non-convex
algorithm, and the convergence is dependent on several factors,
such as the amplitude of the noise, the condition number of
the tensor unfoldings, and the regularity condition [23]. The
OITNN is a convex algorithm with theoretical convergence
guarantees [24]. We selected the stopping condition of the
iterative algorithms as ϵ = 0.1 given in (19). A lower
stopping condition will improve the denoising performance
while increasing the convergence time.

The patient demographics can affect the performance of
the classification. Commonly, the maximum imaging depth is
selected on the ultrasound device to cover all possible sizes of
prostates. The patient age in our study ranged from 60 to 87.
An interesting research direction can be to investigate the
effect of age on the extracted DCEUS features. Additionally,
the disease presentation might affect the low-rank assump-
tion. Several factors signify prostate cancer’s significance:
the tumor size, Gleason score (or grade), and extracapsular
extension [45]. Tumors require an increased supply of oxygen
and nutrients beyond 1 − 2 mm in diameter [46]. Clinically
significant prostate cancer are tumors with at least size 0.5 cm3

[45] and a grade of 3+4 or higher. Subsequently, we selected
tumor samples with at least a grade of 3 + 4 Gleason score.
We considered regions that are 2 mm in diameter accounting
for the system’s spatial resolution as described in Section IV-C,
since the main focus of this paper was voxel-based classifi-
cation. We propose a future study to analyze the effect of
different Gleason scores and tumor sizes on the classification
results. We expect the large regions to be identified more easily
using low-rank tensor decomposition methods compared to

early-stage tumors. This is due to their relative contribution to
explaining the full DCEUS tensor. Regions that are small and
have different TICs compared to the majority of the regions
are expected to be captured in the smaller singular values.
The signal subspace is assumed to be in the highest singular
values in all the tensor-based denoising algorithms. Therefore,
regions with low spatial structure and low temporal power
will be ignored. Experimental validation of this hypothesis
was not conducted, and we leave the comparison between
the early-stage and significant prostate cancer classification
as future work. Such a research direction requires annotations
of malignant regions with different Gleason scores, the con-
sideration of tumors with sizes varying between 2 − 25 mm
in diameter, and the inclusion of cases with extracapsular
extension of the tumor. A possible research direction is to
apply the aforementioned denoising techniques to subsets of
the data rather than the full tensor so that the lower-grade
or smaller tumor can be identified. Spatially, the input tensor
can be divided into blocks, and the denoising can be applied
to their time evolution. An analysis of the low-rank and
sparsity-related hyperparameters, the selection of the ranks,
and the effect of the block size on the classification results
are recommended.

We calculated the DCEUS features by transforming the
low-rank tensor back to the original size. Instead, the low-rank
format could be kept for calculating the features without form-
ing the tensor. This will further relax the RAM requirements
and speed up the CUDI feature calculation time. In addition,
low-rank decomposition allows the estimation of possibly
missing or corrupted temporal frames [47].

VII. CONCLUSION

In this paper, we investigate low-rank tensor
decomposition-based denoising of dynamic contrast-enhanced
ultrasound data. Besides the use of MLSVD, we introduced
a low-rank denoising algorithm suitable for Rayleigh-shaped
multiplicative noise based on a gradient descent algorithm
and a low-rank denoising algorithm based on the OITNN
framework. The proposed algorithms perform better than the
truncated MLSVD in the simulation. In the in vivo recordings,
the same improvement was not observed for distinguishing
benign and malignant voxels. However, low-rank tensor-based
denoising using MLSVD outperformed other state-of-the-art
approaches. In addition, the tr-MLSVD resulted in the best
compression of the DCEUS recordings with a factor of
80. Although the addition of the noise distribution aids
the visualization of DCEUS recordings, we did not find
any improvement in the classification of prostate cancer.
Considering these aspects and the added processing time of
the GTE and OITNN methods, we believe approximating the
noise as WGN, i.e. the use of tr-MLSVD is the best approach
for denoising and compressing DCEUS recordings.

APPENDIX A
RELAXATION OF THE MODEL FITTING WITH

EXPONENTIAL LINEAR UNIT (ELU) FUNCTION

The model-fitting is the most time-consuming DCEUS
feature, as described in Section IV-C. Here, we describe the
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relaxation of the model fitting through the ELU function,
which resulted in a faster convergence. The modified local
density random walk [4] was described as

lxyz(t) = c ln
(

α

√
κ

2π(t − t0)
e−

κ(t−t0−µ)2

2(t−t0) + 1
)

. (25)

where c is the dynamic range-related scaling parameter given
in (4), κ is the local dispersion-related parameter independent
of the injection site’s distance, µ is the convective time, and the
t0 is the injection time, α is the area under the time intensity
curve. Using the ELU function, we could approximate the
modified local density walk model as

lxyz(t) ≈ E LU
(

θ1 −
1
2

c ln t − t0 −
θ2(t − θ3)

2(t − t0)

)
, (26)

with

E LU (x) =

{
x, if x > 0,

ex
− 1, if x ≤ 0,

(27)

and

θ1 = c ln α +
c
2

ln (
κ

2π
), θ2 = cκ, θ3 = µ+ t0. (28)

The model is fitted starting from the appearance time, which
is estimated separately.

APPENDIX B
MODIFICATION OF THE DERIVATIVES OF GTE

The derivative of the loss function in (14) with respect to
the first factor matrix ∂ F

∂ U(1) is described in [23] as

∂ F

∂ U(1)
=

( ∂ F
∂ L

)
(1)

(U(4)
⊗U(3)

⊗U(2)) ST
(1)

+ a U(1)
(
(U(1))T U(1)

−b2 I
)

. (29)

We describe the modification of the derivatives on the first-
factor matrix, which can be applied to the other factor matrices
by changing the unfoldings.

Proposition 1: The kronecker products given in (29) can be
avoided by rewriting it as

∂ F

∂ U(1)
=

( ∂ F
∂ L
×2 (U(2))T

×3 (U(3))T
×4 (U(4))T

)
(1)

× (S(1))
T
+ a U(1)

(
(U(1))T U(1)

−b2 I
)
. (30)

Proof: Using the relation [48] between

(S×1 U(1)
×2 U(2)

×3 U(3)
×4 U(4))(k), (31)

and

U(k) S(k)(U(4)
⊗ . . . U(k+1)

⊗U(k−1)
⊗ . . . U(1))T , (32)

the equality between the equations (29) and (34) can be
proven. This can be shown by( ∂ F

∂ L
×2 (U(2))T

×3 (U(3))T
×4 (U(4))T

)
(1)

=

( ∂ F
∂ L
×1 I ×2(U(2))T

×3 (U(3))T
×4 (U(4))T

)
(1)

,

=

( ∂ F
∂ L

)
(1)

(U(4)
⊗ U(3)

⊗U(2)). (33)

In a similar fashion, the derivative of the loss function with
respect to the other factor matrices can be shown.

APPENDIX C
DERIVATIVES OF GTE

Define the element-wise derivative operator as ∂ F
∂ L :

RI1×I2×I3×I4 → RI1×I2×I3×I4 . The derivative of F with
respect to the factor matrices are

∂ F

∂ U(1)
=

( ∂ F
∂ L
×2 (U(2))T

×3 (U(3))T
×4 (U(4))T

)
(1)

× (S(1))
T
+ a U(1)

(
(U(1))T U(1)

−b2 I
)
,

∂ F

∂ U(2)
=

( ∂ F
∂ L
×1 (U(1))T

×3 (U(3))T
×4 (U(4))T

)
(2)

× (S(2))
T
+ a U(2)

(
(U(2))T U(2)

−b2 I
)
,

∂ F

∂ U(3)
=

( ∂ F
∂ L
×1 (U(1))T

×2 (U(2))T
×4 (U(4))T

)
(3)

× (S(3))
T
+ a U(3)

(
(U(3))T U(3)

−b2 I
)
,

∂ F

∂ U(4)
=

( ∂ F
∂ L
×1 (U(1))T

×2 (U(2))T
×3 (U(3))T

)
(4)

× (S(4))
T
+ a U(4)

(
(U(4))T U(4)

−b2 I
)
. (34)

Finally, the derivative with respect to S has the form,

∂ F
∂ S
=

∂ F
∂ L
×1 (U(1))T

×2 (U(2))T
×3 (U(3))T

×4 (U(4))T .

(35)
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