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De in dit proefschrift beschreven technieken voor het modelleren en bepalen van
capaciteiten in VLSI layouts kunnen ook hun nut bewijzen bij het ontwikkelen en
optimaliseren van IC fabricageprocessen, daar ze toelaten direct het effect van
schaling en andere geometrische veranderingen op de prestatie van een schakeling
te kwantificeren.

Vanwege de fantastische snelheid en geheugencapaciteit van moderne computers,
kan bijna ieder probleem uit de lineaire analyse met een redelijke mate van
nauwkeurigheid opgelost worden.

[R.F. Harrington, Field Computation by Moment Methods, Macmillan, 1968.]

Bij het versnellen van computers wordt de nieuwe maximale grootte van een
probleem bepaald door de tijd-complexiteit van het gebruikte algoritme.

Lazy deletion is een praktische, efficiénte heuristiek voor het union-find-delete

probleem.

[N.P. van der Meijs and A.J. van Genderen, Space-Efficient Extraction Algorithms, accepted for
publication: Proc. IEEE 3rd European Design Automation Conference, Brussels, Belgium, March
1992.]

Gegeven een IC interconnectie die geen andere interconnecties kruist, met een
dikte ¢, hoogte boven het substraat A, totale omtrek P en bodem-oppervlakte A, dan
wordt zijn totale kortsluitcapaciteit C; goed benaderd door

C;=AXC,+P xC,,
met
C, =¢h de bodem-capaciteit,

C. = €{1.08 +0.53Vt/h } de rand-capaciteit.

[N.P. van der Meijs and J.T. Fokkema, VLSI Circuit Reconstruction from Mask Topology,
INTEGRATION, the VLSI Journal 2 (1984), pp. 85-119.]

Het feit dat software zo gemakkelijk verbeterd kan worden, in vergelijking met
bijvoorbeeld geintegreerde hardware, vormt een belangrijke oorzaak voor de
slechte kwaliteit van veel softwaresystemen.



Zogenaamde ‘‘profilers’’ zijn noodzakelijke hulpmiddelen om programmatuur te
optimaliseren, omdat keer op keer blijkt dat de rekentijd anders besteed wordt dan
in eerste instantie wordt aangenomen.

Een belangrijke oorzaak van het slecht functioneren van veel administratieve en
bestuurlijke systemen, is een fenomeen dat in de regeltechniek bekend staat als
“‘dode tijd’’.

Door het elimineren van de drempel opgeworpen door hoge zetkosten, is de laser-
printer een van de belangrijkste oorzaken van de explosieve toename van het aantal
technisch-wetenschappelijke boeken.

Een college ‘‘Datastructuren en Algoritmen voor CAD van IC’s”’ is nuttig voor
een grote groep studenten als het de nadruk legt op de probleem-aanpak, daar deze
een voorbeeld kan zijn voor het oplossen van een veelheid van andere technisch-
wetenschappelijke analyse-, synthese- en modelleringsproblemen.
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1. Introduction

1.1 The Extraction Problem

Extraction is defined in this dissertation as ‘‘the modeling and determination of
electrical characteristics of integrated circuits, given their layout and relevant data
concerning the fabrication process’’. The resulting model is in the form of an
equivalent circuit, consisting of active devices and passive circuit elements. The
correctness of the layout can then be verified before fabrication, for example by
simulating the equivalent circuit or by static (timing) analysis.

This verification step is becoming increasingly important. With the on-going decrease
in feature size and reduction of switching times, the electrical behavior of advanced
integrated circuits is being determined more and more by unintentional, parasitic
elements. These elements include parasitic active devices such as thyristor structures in
CMOS that cause latchup problems, capacitances, resistances and inductances
associated with the wires on the chip and substrate resistance.

In this dissertation, we focus on obtaining accurate models that reliably predict the
electrical behavior of integrated circuits: new techniques are required to capture effects
that were previously not important or for which standard techniques cannot obtain
sufficient accuracy.

Not only should the resulting models be accurate—they should also be efficient. That
is, they must be as simple and compact as possible and capture all relevant effects while
omitting irrelevant detail. For example, the models should not contain small coupling
capacitances between distant features. However, the total of all these small couplings
may have a non-negligible influence on the delay of the circuit. Therefore, small
coupling capacitances should not be neglected altogether, but should be collected with
the other capacitances instead. This point will be made precise in the course of the
work.

Like the resulting models, the algorithms used to determine them must also be efficient.
The CPU time needed by the algorithms as a function of the problem size (their time
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complexity), must be as low as possible. In particular, the suitability of algorithms
requiring computation times greater than linear in the size of the problem is easily
defeated by the exponential growth of the complexity of IC’s—the number of features
on a chip doubles approximately every two years. The increased speed of computers is
generally not much help: if we account for the increased speed by assuming a constant
ratio of computer speed and problem size, the computation time of a polynomial-time
algorithm continues to grow exponentially! Therefore, in this dissertation, we
emphasize linear-time algorithms.

Moreover, the amount of core memory needed by the algorithms (their space
complexity) must also be as low as possible. This is perhaps even more important than
their time complexity. For non-real time probiems, computation time is theoretically
unbounded, despite the foregoing discussion on time complexity. In practice, the size
of the largest design that can be handled is often hard-limited by available memory.
This is also true in a virtual memory environment, because even virtual memory is
bounded and because thrashing can severely degrade performance up to the point
where the effective throughput becomes (nearly) zero. When the exponential growth of
the number of features on an IC is considered with respect to time, it is essential to have
a sublinear space complexity of extraction algorithms.

Layout verification is most effective when it is part of the design loop. This is the only
way to avoid costly redesigns because of problems that are detected late when relying
on difficult-to-use, standalone verification tools. Therefore, the algorithms must be
integrated in a layout-to-circuit extractor that is feadily available on the designer’s
workstation and fits well into the design flow as a user-friendly tool. It must be easy to
use even by designers having no knowledge of the theory behind the program or how it
works internally.

An important consideration is also the compatibility of the various algorithms that
determine specific components of the resulting equivalent circuit. For example,
interconnect resistance and capacitance are determined by two completely different
methods, yet these methods must be coupled so as to create a consistent lumped model
that accurately describes the distributed RC characteristics of the interconnects.
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1.2 Overview and Summary
This dissertation is structured and can be summarized as follows:

In Chapter 2, we study the electrical behavior of IC interconnections. This behavior can
generally be described in terms of distributed resistance, capacitance and inductance,
and we analyze which simplifications are possible under which circumstances. We also
project these results onto future needs by considering the scaling behavior. One
conclusion of Chapter 2 is that while interconnect capacitance is important, the classical
estimation techniques for it are not sufficiently accurate for state-of-the-art technologies
and critical designs.

In Chapter 3, we consider the problem of efficiently handling and manipulating
VLSI/ULSI layout data, specifically with a view towards layout-to-circuit extraction.
We develop a combination of the so-called corner stitching data structure and the
scanline technique, which achieves an expected-case linear time and sublinear space
complexity.

In Chapter 4, we discuss the mathematics and, briefly, the theoretical background of a
boundary element method for accurate computation of the interconnect capacitances of
(critical parts of) integrated circuits. Using a new algorithm for approximating the
inverse of a matrix, we realize a linear time complexity and a constant space
complexity. The resulting capacitance network accurately reflects the total capacitive
load of all signals, without containing irrelevant, small capacitances between distant
features.

In Chapter 5, we take a look at how the mathematical concepts and tools developed in
Chapter 4 can be implemented in a practical and efficient program that puts their
modeling power under the fingertips of the designer. We develop detailed algorithms
and computational procedures necessary to build a full-fledged layout-to-circuit
extractor, of which the finite element based capacitance extraction is an integrated part.

We conclude the work in Chapter 6, and give some indication of further research which
may be carried out on the subject.
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2.1 Introduction

Integrated circuits consist of (localized) active devices and a (distributed)
interconnection network. The properties of the interconnections are increasingly
important factors affecting the performance and operation of the circuit as a whole. In
this chapter, we study the behavior of such interconnections, their electrical
significance, and what constitutes an effective model for them. This is primarily
intended as an overview of the subject and as motivation for the work that follows in
subsequent chapters. For additional information, see e.g. [Ling(1987)] and
[Bakoglu (1990)].

2.2 IC Interconnection Modeling

The electromagnetic behavior of IC interconnections is governed by Maxwell’s
equations. Because of the complexity of solving these equations, approximations are
needed. A very importaht approximation is that of a set of lossy coupled transmission
lines. We only consider otherwise ideal lines, i.e. those that are linear, frequency-
independent and have no skin effect, etc. Except for diffused conductors, this is usually
a valid approximation of IC interconnections when the operating frequencies are below
1 Ghz.

Thus, the transmission line model is an accurate model for IC interconnections.
However, in many cases (depending on e.g. the source, load, line length and frequency),
much simpler approximations are also accurate. In this section, we will discuss the
applicability of such approximations, in particular, that of lumped equivalent circuits
that model the distributed nature of the system of interconnects as a discrete network
consisting of ideal resistances and/or capacitances, without inductances.

For that purpose, let us first introduce the following notation:
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l Length of an interconnection line.
r.c,h Resistance, capacitance, inductance of a line, per unit length.
R,C,L Total resistance, capacitance, inductance of a line.

The following equations are useful for calculating the delay caused by a line. The RC
delay of a line is given by:

tre = Yarcl®> =ARC 2.1
The transmission line (LC) delay of a line is given by:
t1c=Whe =VLC (2.2)

The characteristic impedance of a lossless transmission line is given by

Zy= \/ % 23)

The value of r is strongly dependent on the type of the material. For example, typical
sheet resistances of different wires (of typical thickness) are as follows:

polysilicon: 40 Q]  silicided poly: 4 Q43  aluminum: 40 mQ/J

Josephson Junction IC’s operate at superconducting temperatures, and their
interconnection wires have no resistance.

The value of ¢ exhibits much smaller variations. In Section 2.4, we will see that a value
of 150 pF/m is a useful estimate. Of course, this estimate is only valid for standard
technologies and not for technologies such as Silicon on Insulator.

In the case of lossless, homogeneous transmission lines, L and C are related as follows:

£

L= 2.4
C (24)
where € and p are the permitivity and permeability of the medium, respectively.
Although IC interconnections are neither lossless nor homogeneous, an effective € can
often be determined so that Equation (2.4) approximately holds. Consequently,
h =0.5uH/m is a reasonable value for the analysis in the remainder of this section.

Some typical interconnect parameter values, assuming 2 um wide lines, are summarized
in Table 2.1. This table specifies non-zero values for all interconnect parameters.
However, not all three types of parasitics are always equally important. This depends,
for example, on the following.
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Table 2.1. Typical interconnect parameters

parameter value

Tpoly 20 MQ/m
Timetal 20 kQ/m
c 150 pF/m
h 0.5 uH/m

Length of interconnection. In general, the longer the line, the more important all
three types of parasitic elements will be. This does not necessarily mean that at high
speeds all effects are always important. Rather, it means that if an effect is marginally
important at a certain speed, it is generally more important at a higher speed.

More quantitatively, by comparing Equations (2.1) and (2.2), we find that we can
neglect the transmission line behavior of signal lines when

Ire >t
or

RC >\]ZE

L
R=rl>» — =Z
14 Vc 0

We can immediately conclude that for polysilicon lines, inductance is never important:
Even for short lines, the resistance will already be much larger than Z,,.

or

For power lines, interconnect inductance can be important because it introduces so-
called dI/dT noise [Bakoglu (1990)].

Signal rise time and driver impedance. To determine their significance, fzc and #;¢
must be compared with the signal rise time z,. The signal rise time depends on the
circuit characteristics and speed of the signal that drives the line driver, but also on the
ratio between driver impedance Z; and line impedance Z, [Bakoglu (1990)]. It turns
out that if Z, 3 Z,, the line inductance can be ignored. This condition is usually true
for MOS technologies, but not for bipolar technologies.
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An attempt to summarize (and generalize) which circuit elements are required to model
on-chip interconnections is presented in Table 2.2, which is taken from [Ling (1987)].

Table 2.2. Dominant circuit components for interconnections in typical technologies

Technology transistor impedance level of current wire length | dominant circuit elements
low short C
FET high long C,R
high short C,R, (L)
long C,R,L
low short C
Bipolar intermediate long GR ML)
high short C,L,R)
long C,R,L
Josephson Junction low Determined by Z short L
long L,C

2.3 Interconnection Scaling

The continuous improvement in the characteristics of integrated circuits (their
functionality, performance, device dimensions etc.) is the result of scaling. With
scaling, physical dimensions are reduced. In order to avoid problems caused by high
electrical field strengths, voltages are also reduced while doping levels are increased.
As aresult, the speed of the devices and the circuits improve.

A scaling theory, relating speed improvement and the amount of scaling, was first
developed for MOS devices [Dennard (1974)]. Using this approach to scaling, a scaling
factor S (S > 1) is defined, expressing the proportional reduction of the physical
dimensions and voltage levels, and increase in the doping level. The results are
summarized in Table 2.3. Uniform scaling as defined above is often called ideal
scaling, because it ignores many second-order effécts, making it easy to determine and
analyze the effects of scaling. However, in practice, the multitude of second-order
effects make scaling more problematic than predicted by ideal scaling theory. These
effects include the non-scalability of material parameters (the silicon bandgap, junction
potentials etc.), resulting in so-called short-channel effects.

Another problem of ideal scaling is related to the RC delay of the interconnections. To
describe this effect, we must distinguish between local and global interconnections.
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Table 2.3. Ideal scaling of devices.

parameter factor
physical dimensions 1/8
substrate doping S
voltages 1/5
intrinsic device delay /5
device area 1/82

Local interconnections are between individual devices, forming higher-level building
blocks such as gates, flip-flops, counters, and so on. The length of these interconnects is
proportional to 1/S. Global interconnections are between modules on a chip. Their
length is proportional to the size of the chip, which increases with every new
technology generation. When S, is used to denote this chip scaling factor, the length of
the global interconnections is thus proportional to S,.

With respect to an interconnect as shown in Figure 2.1, the delay caused by such
interconnections is proportional to RC, where R is the total resistance and C is the total
capacitance of the line. (Source resistance and load capacitance are ignored.)

t

h -——

w

Figure 2.1. Piece of interconnect to illustrate scaling.
The resistance of a piece of interconnect equals

r=£t 2.5)
wit
where p is the specific resistance (material constant), ! is the length of the line, w the
width and ¢ the thickness of the line. This interconnect resistance can be written as rl,
where r = p/wt o S? is the resistance per unit length,
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The capacitance of such interconnects is given by cl, where c is the capacitance per unit
length. This value depends on the cross-sectional dimensions 4, w and ¢, and on the
dielectric constant € of the material. In the case of ideal scaling, c is a constant.

Together with the scaling behavior of /, the RC delay of interconnections is thus
described by RC = rcl* = /252, Since the intrinsic gate delay scales as 1/, the ratio
between the local interconnect delay and the gate delay increases by a factor of S and
the ratio of the global interconnect delay and the gate delay increases by a factor of
5352, These results are summarized in Table 2.4 in the column labeled ‘‘ideal
scaling’’. (The column labeled ‘‘lateral scaling’’ is explained below.)

Table 2.4. Scaling of interconnections.
ideal lateral

parameter \ scaling  scaling
unit length interconnect resistance (r) 52 S
unit length interconnect capacitance (c) 1 1
length of local interconnects 1/8 /S
RC delay of local interconnects 1 JVAY
ratio of local interconnect delay and device delay M 1
length of global interconnects S, S,
RC delay of global interconnects ‘ 5252 552
ratio of global interconnect delay and device delay ~ $352 5282

So, with ideal scaling, the performance of a chip is determined to an increasing extent
by the interconnections. To diminish this effect, circuit techniques such as repeater
circuits are being used, and IC technology development is being concentrated on low
resistance interconnects. Nevertheless, the problem is sufficiently severe so that ideal
scaling is not strictly applied. Instead, the lateral dimensions of the interconnections are
scaled more than the vertical dimensions. The thickness of the conductors is kept
approximately constant.

For purposes of illustration, we will consider the case in which vertical dimensions are
not scaled at all, which we will call lateral scaling. The interconnection delay resulting
from lateral scaling is also indicated in Table 2.4, assuming that the unit length
interconnect capacitance c is still constant. While this is not strictly the case, we will
see in Section 2.4 that this assumption is justified up to line widths around 0.5 - 1.0 .

Another reason to maintain the thickness of the interconnections is the occurrence of
electromigration. When the current density in a metal line exceeds a certain material-
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dependent value, material of the line is displaced and the line can break, resulting in an
open circuit. Although some technological measures to decrease electromigration can
be taken, they usually have the adverse effect of increasing the resistance. While lines
are not readily made wider because it decreases packing density, their current
conduction capability must be maintained by (relatively) large vertical dimensions.
Large vertical dimensions imply lateral scaling.

2.4 Interconnection Capacitance

With lateral scaling, the cross-sectional dimensions of the interconnects change. As a
result, the coupling capacitance between interconnects is becoming far more important.
In this section, we investigate these effects and we illustrate their relevance to the
electrical behavior of the chip through some examples.

For the sake of concreteness, we assume in this section that we are dealing with a
hypothetical but realistic double metal CMOS process with perfect planarization and
layer thicknesses as given in Table 2.5. The dielectric (assumed to be of infinite
thickness) is SiO,.

Table 2.5. Layer thicknesses

gate oxide 250A
inter-wire oxides 0.75u
poly 0.5
metal 1 0.75u
metal 2 1.0p

2.4.1 Case of Parallel Lines
Consider the parallel metal 2 interconnects (cf. Table 2.5) as illustrated in Figure 2.2.

Figure 2.3(a) presents several characteristic capacitance values per unit length for the
middle conductor, as a function of the lateral dimensions. Figure 2.3(b) presents the
same capacitances normalized to the parallel-plate capacitance to show the relative
magnitudes at small dimensions more clearly. In Figure 2.3, C,, denotes the ground
capacitance computed using the parallel-plate formula, C,,, the total ground
capacitance including the effects of the fringe field and C; the so-called short-circuit
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capacitance of conductor 2. This is its total capacitance when all other conductors have
a low impedance (see Chapter 4).

I T T

150 30

100 - 20

50 4 ¢ Cop 104

Cr
0 0
1 2 3 ! 5 1 2 3 4 5
space and width (microns) space and width (microns)
(a) ®)

Figure 2.3. Absolute (a) and normalized (b) capacitances for the middle conductor of
Figure 2.2 as a function of the lateral dimensions.

It is clear that C; increases with smaller dimensions, thereby increasing the delay
caused by the interconnect. However, as this effect is not so strong until w =5 = 0.5\,
we are justified in assuming a constant capacitance with lateral scaling, as we did in
Section 2.3.

It is also clear that the total coupling capacitance 2 X C, dominates Cg,;s for w,s <24.
In Section 2.4.2, we will see that such strong coupling can easily lead to incorrect
circuit behavior.
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2.4.2 Electrical Analysis of Capacitive Coupling

The strong capacitive coupling between parallel lines that readily occurs in state-of-
the-art VLSI circuits can cause intolerable crosstalk as well as increased delay because
of a phenomenon similar to the Miller effect: signal delay can depend on the signal
waveforms on neighboring lines. This introduces a certain unpredictability that, in
effect, worsens the problem of predicting electrical behavior. If the electrical behavior
cannot be predicted accurately enough, large safety margins that reduce performance
and/or increase area, must be maintained during the design phase. By way of
illustration, consider the case of five parallel lines as shown in Figure 2.4.

In Figure 2.4, each line is driven by an inverter and different input patterns are applied
as shown. Each input pattern (or excitation) has a label that indicates what type of
electrical behavior will be observed at the end of the middle line, when the input pattern
is applied. The result of SPICE simulations of this network for each of these excitations
is presented in Figure 2.5. The waveforms show the output of the middle line in Figure
2.4, labeled “‘response’’. For each excitation, the correspondence between waveform
and excitation is indicated by the labels in front of the waveforms. The timing and
shape of the excitations is indicated by the signal *‘in_1"" in Figure 2.5. This analysis
clearly demonstrates the significance of capacitive coupling on the electrical behavior.
While it can be argued that the present case is somewhat extreme, it can also be argued
that many circuits cannot tolerate even a fraction of the coupling capacitance assumed
in this analysis. Such circuit examples are easily found in analog circuits, digital
circuits employing precharge schemes and/or tri-state buffers, memory arrays
employing sense amplifiers and so on. Indeed, a discussion of the capacitive coupling
problem for bit lines in DRAM’s can be found in [Konishi (1989)] and [Hidaka (1989)].

2.4.3 Case of Crossing Lines

While the previous section considered a 2-dimensional situation, we now consider a 3-
dimensional situation. One of the most simple 3-dimensional configurations is that of
two crossing metal 1 and metal 2 lines, as shown in Figure 2.6. An analysis of the
coupling capacitance between the lines as a function of line width shows the necessity
of a 3-dimensional treatment for state-of-the-art technologies. For the purposes of this
section, we can assume the length of both lines to be infinite.
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Figure 2.4. Five-conductor bus illustrating the effects of coupling capacitance.
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09 0.0 0.5 1.0 1.5 2,0 2,5 3.0
Figure 2.5. SPICE analysis of the network and excitations in Figure 2.4.
. Figure 2.7 presents the coupling capacitance computed in three ways:

C,, Parallel-plate calculation.

Cys Parallel-plate calculation with first-order correction for fringe fields by
summing 2-dimensional components (see e.g. [Meijs (1984)] ).

Cs, Fully 3-dimensional computation.
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Absolute values of the computed capacitance are shown in Figure 2.7(a). In order to
show the relative magnitude of the values computed for small line widths more clearly,
Figure 2.7(b) shows the same capacitances normalized to the paraliel-plate value.

&
[ B/ width

“width

Figure 2.6. Crossing metal 1 and metal 2 conductors.

25 20
(fF) 2 4 Cs 15 4
1.5 Caa C3a/Cpp
10
14 /C.
Cop 5 2w
0.5 T
0 0
0 1 2 3 4 5 0 1 2 3 4 5
width (microns) width (microns)
(a) ®)

" Figure 2.7. Absolute (a) and normalized (b) capacitances for Figure 2.6 as a function
of line width.

From this analysis we can conclude that parallel-plate calculations are totally
inadequate, even for conservative technologies. For state-of-the-art technologies and
critical designs, however, 2-dimensional computations are also shown to be inadequate.

To overcome this problem, we can attempt to devise a heuristic approach that improves
the 2-dimensional approximations to better reflect the 3-dimensional reality. For
example, the coupling capacitance between two crossing lines as shown in Figure 2.6,
can be estimated by adding a constant correction term to the capacitance obtained from
the 2-dimensional approximation (or one correction term for each corner of the overlap
region). However, there is a very large number of different interconnect configurations
all needing their own calibrated correction terms that strongly depend on the distance to
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and geometry of neighboring wires. This is especially true with an increased number of
interconnects (double poly and 3 or even 4 metal interconnect layers), with 45 degree or -
unconstrained geometry, and with gridless (or with a very fine grid) coordinate systems.
Therefore, such heuristics will not work in practice.

We thus conclude that for state-of-the-art technologies and critical designs, rigorous
mathematical techniques that model the 3-dimensional nature of the electric field
explicitly, are required to obtain sufficiently accurate estimates of interconnect
capacitance. ’

2.5 Conclusion

In this chapter, we have illustrated the significance of interconnection parasitics and
shown that they become even more significant with scaling. Consequently, these
parasitics must be considered in the design loop. A failure to do so may result in lower
than expected performance, higher than expected dissipation and/or unreliable or
incorrect circuit behavior.

The parasitic behavior exhibited by interconnections depends on many factors, For
MOS technologies, however, RC behavior (as opposed to LC or RLC behavior) is most
important and great priority must be given to accurate modeling. While they become
more important, these parasitic effects also become harder to determine. Verification
tools that accurately model 3-dimensional field effects are needed. In Chapters 4 and 5, -
we will therefore develop a finite element technique for capacitance extraction that is
integrated into a layout-to-circuit extractor. This extractor indeed enables the parasitics
to be predicted and evaluated during the layout design phase.
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3. Geometric Algorithms for Extraction

3.1 Introduction

One of the problems in developing an accurate and efficient layout-to-circuit extractor
is that of geometric algorithms to handle the layout data. These algorithms must
implement geometrical operations that support, for example, transistor recognition,
connectivity analysis, and calculation of parasitic (or intended) capacitance values, all
being important components in an extraction system. The main requirements and
conditions that the geometry module of the extractor must fulfill can be stated as
follows: '

1.

The module, and the resulting extractor, must perform well on conventional
workstations and minicomputers, even in the case of very large and flat layouts.
This requires a (near) linear time complexity and a sublinear space complexity,
since we must assume that the available main memory is not enough to contain
the complete layout at one time, and we run the risk of extensive thrashing if we
completely rely on virtual memory.

" The module must provide natural and efficient operations for handling contextual

or neighborhood information. These operations must support, for example, the
calculation of capacitances between neighboring geometries.

The module must support arbitrary polygonal geometries. Restricting the module
to orthogonal geometries would be inappropriate since the extractor is intended to
be used for advanced designs aiming at getting the most from the fabrication
technology—especially these designs employ non-orthogonal geometries. A
solution in which non-orthogonal geometries are approximated by orthogonal
“‘staircases’’ is unacceptable since this would impair the accuracy of the
resistance and capacitance calculation. It would also impair the efficiency
because of the increased amount of data to be processed.

'Many geometric data structures and algorithms have been proposed and extractors have
been described that use the bitmap approach [Losleben (1979), Willigen (1986)], one of
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many quad-tree variations, see e.g. [Kedem (1982), Berger (1988)], the kd-tree method
[Su(1987)], the bucket method [Nabar(1986)] and the corner stitching method
[Scott (1985)]. In fact, most extractors use a scanline algorithm as first presented in
[Baird (1977)], see also e.g. [Szymanski(1983)]. However, none of these data
structures completely satisfies the criteria stated above.

Scanline algorithms operate by sweeping a vertical line from left to right over the plane
containing the layout data to be processed, and all operations take place on the objects
intersected by the scanline at each of its successive positions. (Alternatively, a
horizontal scanline or a right to left sweep is also possible.) They are ideally suited for
solving problems based on the intersections of objects (see e.g. [Bentley (1979)}), since
these can be found by analyzing the cross-sections of the plane at each scanline
position. Scanline algorithms can be efficient; they often achieve linear or even
sublinear space complexities and time complexities of (ONlogN).

However, scanline algorithms are generally weak at manipulating contextual
information as delineated in the second requirement above. For decision problems—i.e.
problems whose answer is chosen from a fixed number of possible answers—a solution
can be obtained by growing and/or shrinking the individual shapes. For example, with
design rule checking, the set of answers is violation or no violation. The problem of
verifying a minimum distance between geometric features is solved by growing. This
operation transforms the original problem into an intersection problem: features that are
not separated enough in the original problem intersect in the transformed problem.

For measuring problems—i.e. problems requiring numerical calculation, e.g. the
calculation of the distance between two features—these solutions are not applicable.
An example of this type of problem is the extraction of the capacitance between parallel
wires. In response, we have developed a scanline algorithm that enables neighborhood
operations by combining it with the corner stitching method. The algorithm represents
the geometry in a (narrow) band of adjustable width immediately to the left of the
scanline by using a corner stitching data structure. This data structure is created at the
front of the (moving) scanline, and is destroyed a fixed distance to the left of the
scanline. The algorithm thus combines the advantages of the scanline algorithm (low
storage requirement) with those of the corner stitching method (powerful neighborhood
operations). To meet the third requirement stated above, the corner stitching method
has been modified for non-rectangular geometries. Furthermore, by implementing the
scanline data structure as a doubly linked list, we have improved the expected-case time
bounds of the scanline algorithm to O(N).
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The rest of this chapter is structured as follows. After a review of the corner stitching
method (Section 3.2) and the scanline method (Section 3.3), we develop a general
scanline algorithm in Section 3.4. Subsequently, we use that algorithm in Section 3.5 to
develop an algorithm for the contour of a union of polygons. That algorithm provides
the input data for the combined scanline-corner stitching algorithm that we describe in
Section 3.6. In Section 3.7, we describe the Space layout-to-circuit extractor that
implements the algorithms developed in this chapter, together with measurements
confirming good performance. We conclude in Section 3.8.

3.2 Corner Stitching

A data structuring technique that has been shown to be advantageous for representing
and analyzing VLSI layout data is corner stitching [Ousterhout (1984)]. This method
basically provides a form of 2-dimensional sorting of the layout data (in a sense, it may
be viewed as a 2-dimensional extension of a linked list data structure) and hence
provides a notion of proximity. That is, neighboring features are stored logically close
together in the data structure. Consequently, it can efficiently support neighborhood
search operations. The corner stitching data structure was employed successfully in a
VLSI layout design system called Magic [Ousterhout (1984a), Ousterhout (1985)].

As originally presented, corner stitching was limited to layout data containing only
isothetic (or orthogonal or manhattan) features (i.e. polygonal features with edges
parallel to one of the coordinate axes). However, at least two extensions for non-
orthogonal polygonal geometries have been presented [Marple (1988), Meijs (1989)].
In this section, we first present the corer stitching method for orthogonal layout and
subsequently our non-orthogonal extension.

3.2.1 Data Structure

For purposes of explanation, we first consider a system with only one mask layer. The
orthogonal layout polygons need not be simple, but may have holes in them.

The corner stitching data structure represents the layout according to the paint paradigm
[Ousterhout (1984b)], i.e. for each point in the plane it represents the presence and
absence of the mask layer. This has to be contrasted with the object paradigm, which
explicitly represents individual rectangles or other features that can overlap each other.
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The paint paradigm is more natural and efficient for many layout applications, including
extraction and editing.

With corner stitching, the 2-dimensional plane containing the layout pattern is
partitioned into a set of disjoint (non-overlapping) rectangles, called tiles. Tiles are
either totally opaque (solid tiles) or totally transparent (space tiles). Every point in the
plane is contained in one and only one tile; tiles contain their lower and left edges and
their lower-left corner. Conceptually, the 2-dimensional plane extends to infinity on all
sides. (In a practical implementation, the largest and smallest possible values of the
data type used to store the coordinates can be used.)

Tiles are made first as tall as possible, then as wide as possible'. This particular
subdivision provides a unique canonical form, which prevents the generation of many
small tiles which would cost storage space and slow down the algorithms working on
the data structure. An example of a corner-stitched plane is given in Figure 3.1.

Figure 3.1. Illustration of the canonical tile subdivision of a layout. Solid (space) tiles
have a solid (dotted) outline.

The dissection is represented in a data structure in which tiles are linked to their
neighbors at the bottom-left and top-right corners. These links are called corner
stitches. Each tile has four stitches, labeled bl, Ib, tr and rt. For each tile ¢, they are

1. In Magic, tiles are made first as wide as possible, then as tall as possible. This change does not affect the
functionality of the data structure, and only requires some trivial changes to be made to the comner stitching
algorithms. The reason for the change here will become clear later on in this chapter.
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defined as follows:

bl points to the bottom-most tile sharing a finite segment of the left edge of z.
Ib points to the left-most tile sharing a finite segment of the bottom edge of z.
tr points to the top-most tile sharing a finite segment of the right edge of z.
rt points to the right-most tile sharing a finite segment of the top edge of ¢.

This is illustrated in Figure 3.2. The stitches point in each of the four directions, and
enable various algorithms to efficiently search for and enumerate neighboring features,
as will be discussed in Section 3.2.2.

bl -

!
b

Figure 3.2. Illustration of the stitches of tile ¢.

When more than one mask layer is present, as in practice, the corner stitching method
described above must be generalized to provide for multiple mask layers. There are
basically two ways to accomplish this:

1. Use multiple tile types, one type for each combination of mask layers (2"
different tile types for n mask layers). This will result in a fragmented corner
stitched plane with many small tiles.

2. Use multiple tile planes, one plane for each mask layer. This will require more
work for the detection and registration of relevant overlaps.

In Magic, the first solution would take up too much memory, since in that system the
complete layout must fit in the computer’s memory. It would also take up too much
disk space, since the database is also stored in tile format. The second solution is not
efficient with respect to CPU time, since the algorithms then involve many complicated
shape computations. For example, in MOS circuits, the transistor shapes are defined by
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~the overlap of polysilicon and diffusion masks, but in the case of the multiple tile plane,
they are only available implicitly.

As a solution, Magic implements a combination of both approaches. By conveniently
combining strongly interacting mask layers into a small number of tile planes, this
approach results in efficient algorithms for applications such as design rule checking
and circuit extraction. For example, with a MOS process, the polysilicon mask layer
and the diffusion layer are stored together in one plane and metal is stored in another
plane. Contact holes are duplicated in each of the planes they connect. This
combination is convenient in several ways. For example, it facilitates circuit extraction
because the corner stitching representation is almost a direct representation of the
electrical circuit and it facilitates design rule checking because most planes can be
checked almost independently.

3.2.2 Corner Stitching Algorithms

The most attractive features of corner stitching are that it provides fast geometrical
searches and permits fast incremental modification. This latter aspect is extremely
important in interactive layout synthesis systems such as Magic. Here, the term
“‘synthesis’’ includes activities such as layout editing, compaction and routing.
However, this feature is irrelevant in batch verification (analysis) tools, such as used for
extraction. As many concrete descriptions of corner stitching algorithms can be found
in, for example, [Ousterhout(1984)] and [Marple (1990)], we will only touch on this
topic here. A summary of corner-stitching operations and their running times is given
in [Ousterhout (1984)].

Fast geometric searches are facilitated by the corner stitches—to reach neighboring tiles
only a few well-defined stitches must be traversed. For example, all direct neighbors of
a tile are visited by edge walks along the tiles’ edges. To find all tiles along the right
edge of tile ¢, one starts with the ¢r stitch of tile ¢, and then traverses [b stitches until the
bottom of tile ¢ has been reached, as illustrated in Figure 3.3.
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Figure 3.3. An edge walk along the right edge of tile .
3.2.3 Trapezoidal Corner Stitching

Although the restriction to orthogonal layout is often acceptable, it is in conflict with
our objectives. Thus, we need a generalization of the corner stitching principles to
accommodate non-orthogonal polygonal layout. Such a generalization has been
presented in [Marple (1988)] and [Meijs (1989)].

In this type of generalization, tiles are trapezoids instead of rectangles and we refer to
trapezoidal corner stitching instead of rectangular corner stitching. While trapezoidal
tiles have vertical left and right boundaries as rectangular tiles do, their upper and lower
boundaries can have any slope (except vertical). Trapezoids may degenerate into
triangles when the length of either the left or the right boundary becomes zero.

With trapezoidal corner stitching, the upward and downward pointing stitches (rz and
Ib) can be defined the same as for rectangular corner stitching. However, the definition
of the left and right pointing stitches (bl and #r) is no longer applicable, because a
shared segment need not exist in the case of a triangular tile, see Figure 3.4. Therefore,
the definition of these stitches is adapted as follows. When ‘‘contains’’ is defined in
such a way that the end points of the edges are considered part of the edges, then for
each tile #:
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Figure 3.4. Illustration of the ambiguity of the left (and right) pointing stitch definition.

bl points to the bottom-most tile whose right edge contains the lower-left corner of .
tr points to the top-most tile whose left edge contains the upper-right corner of ¢.

This definition means that in Figure 3.4 the left pointing stitch of tile 5 would point to
tile 1. This stitch could also be defined as pointing to tile 2. This definition, which
would be consistent with the definition for rectangular corner stitching, was originally
considered. However, it would result in more complicated algorithms, for example, for
shadow searching. Shadow searching [Ousterhout (1984)] involves the detection of
parallel edges in, for example, design rule checking and capacitance extraction.

3.3 Introduction to Scanline Algorithms

Scanline algorithms form an important class of algorithms for geometric problems in
CAD. These algorithms offer efficient solutions to many geometrical and topological
problems, such as the detection, reporting and processing of intersections.

The method can best be introduced using an example, which is taken from
{Bentley (1979)]. The problem is to report all intersecting pairs among a set of
horizontal and vertical line segments. For purposes of explanation, degenerate cases
are neglected. For example, it is assumed that no two line segments overlap.
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Imagine a straight line (the scanline) that, by convention, is vertical and sweeps the
layout from left to right. During the sweep operation, the scanline encounters the input
line segments. Projected onto the scanline, the horizontal segments are points and the
vertical segments are intervals. The algorithm maintains a data structure S that captures
the projections of the horizontal edges, and is queried using projections of the vertical
edges. When the scanline reaches the left end point of a horizontal edge #, its
projection is inserted in S and when the scanline reaches the right end point of 4, its
projection is deleted from S. When the scanline encounters a vertical segment v, § is
searched for all points in the interval defined by v. For each point p found in this way,
an intersection between v and the horizontal segment represented by p is reported.

It is of course only necessary to update or query S (to ‘‘stop the scanline’’) at the
abscissas defined by the projections of the end points of all segments on the x-axis. The
sweeping of the scanline is then implemented by first sorting these abscissas in
increasing x-order and then processing them in that order. The abscissas are called
event points.

The data structure S must support the insertion and deletion operations, as well as
interval queries that ask for all points in the interval. A suitable and efficient
implementation is by using a height balanced binary tree sorting the points with their
ordinate as the key, in which the leaves are linked together in a sorted doubly linked
list. The interval queries then involve locating the lowest point in the tree covered by
the interval, and from there traversing the linked list.

The performance of the algorithm can be established as follows. Let there be N line
segments and thus at most 2N event points. The time needed to sort these points is
bounded by O(NlogN). For each event point, we need to perform an insertion in the
tree, a deletion from the tree or a range query. The first two can be completed in
O(logN) time per operation if height balanced binary trees are used. The range query
can be performed in time O(logN+k,), where k, is the number of intersections found by
the query g. Thus, the total time needed is bound by O(NlogN+k), where & is the total
number of all intersections. The worst-case space complexity is trivially O(N).

Generalizing from this example, we can rnake the following remarks:

1. There are two data structures common to all scanline algorithms. The first
records the relevant information at each cross-section of the plane defined by a
particular position of the scanline. This data structure, in essence, maintains the
state of the algorithm, and is called the state ruler in [Fokkema (1983)] or the
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sweep-line status in [Preparata (1985)]. In the above algorithm, the state ruler is
implemented by the data structure S. '

For specific applications, specific state ruler data structures are needed to achieve
optimal space and time complexities. The state ruler is often implemented as
some kind of balanced binary tree, as in the example above. Other typical state
ruler implementations are the segment tree [Bentley (1980)] and the interval tree
[McCreight (1980), Edqlsbrunner(1981)]. See [Preparata (1985)] for a discussion
of these data structures. Combinations of these data structures are also useful
[Edelsbrunner (1981)].

The second data structure is the evenr schedule. This schedule controls the
operation of the algorithm. It is often the input data itself, suitably sorted, but it
can also be derived from the input data as in the above example. Sometimes, the
scanning operation involves inserting new events in this schedule, see eg.
[Nievergelt (1982)]. In that case, a priority queue is usually used. If new events
do not need to be inserted, the events can be presorted and stored in a disk file.

The suitability of scanline algorithms for many applications stems from its ability
to transform a 2-dimensional, static problem into a 1-dimensional, dynamic
problem. A static problem is a problem in which all input data are fixed before
the algorithm is executed. A dynamic problem is a problem in which the relevant
data are continuously updated. In the above example, the 2-dimensional static
problem is defined by the set of horizontal and vertical line segments, and the 1-
dimensional dynamic problem by the continuously updated state ruler. Although
the scanline technique generalizes to higher dimensions and then transforms static
N-dimensional problems into dynamic N-l-dimensional problems, it is
particularly efficient in the 2-dimensional case because the resulting 1-
dimensional problems can often be solved efficiently.

With scanline algorithms, we can usually distinguish between scanline
maintenance and scanline processing. Scanline maintenance involves all
operations for updating the state ruler when the scanline is moved from scanline
stop to scanline stop. Scanline processing involves the analysis of the state ruler
in order to realize specific applications. In the above example, scanline
maintenance is the insertion and deletion of points, and scanline processing is
formed by the interval queries. '
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4. At each scanline position, the state ruler usually contains only the objects
intersected by the scanline. This is also the case in the above example. The
worst-case space complexity is O(N), since pathological cases in which it is
possible to draw a vertical line intersecting all objects do trivially exist.
However, the expected-case space complexity is much better because most
layouts show a fairly regular distribution of features. For practical applications,
this low expected-case space complexity is one of the most attractive features of
the scanline method.

3.4 The Scanline Maintenance Algorithm

We have distinguished between scanline maintenance and scanline processing. As we
will see, this distinction allows the scanline maintenance to be a generic step for a
common set of applications that mainly differ in their scanline processing algorithm. In
this section we will develop a scanline maintenance algorithm that we will indeed use
(as described in subsequent sections) for different applications, namely, contour edge
generation and region enumeration.

3.4.1 Algorithm

The input of the algorithm is formed by the edges of the polygons making up the mask
geometry. Only the non-vertical edges are explicitly present; the vertical edges are
implicit in this description [Lauther (1981)]. The edges are described by their end
points (x;,y) and (x,,y,) with x; < x,, and data that identify the side of the opaque
region. The edges are sorted lexicographically, first on increasing x;, then on increasing
y; and finally on their slope.

The state ruler contains the edges that intersect the scanline at its current x-position, in
the order of the increasing y-coordinate of their intersection with the scanline. Edges
with the same scanline intercept are ordered according to the slope of the edge. Such a
lexicographic ordering on <y;,, slope > is called the <, (smaller at x) ordering (see
also [Preparata (1985)]) and edges intersecting a vertical line at x are said to be
comparable at x. Other edge relations can be defined analogously.

The state ruler is implemented as a doubly-linked list of edges. At every scanline stop,
this list is traversed from head to tail. Because of the <, ordering, this corresponds to
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an wpward motion in the slice of the plane represented by the state ruler: the y-
coordinate never decreases.

The <, ordering is the scanline invariant; scanline maintenance corresponds to
maintaining its truth. This involves the following actions: (1) inserting edges starting at
the current scanline position, (2) deleting edges ending at the current scanline position
and (3) updating the order of intersecting edges in the state ruler when the scanline
reaches the x-position of their intersection point.

Edges in the state ruler may have an application-dependent type or, in general, may
have application dependent attributes associated with it. Edge attributes are data, such
as topological data or data indicating the origin of an edge, facilitating the specific
application. An example of a topological attribute is a bit that identifies the side of the
opaque region, i.e. the region above or below the edge. An example of data indicating
the origin of an edge is, in layout verification, a proper identification of the mask layer
of which the edge is part.

When edges can overlap each other, there must be a rule or a set of rules that defines
how attributes combine when two (or possibly more) edges overlap. For example, in
the case of a bit denoting opacity, there can be a rule stating that two overlapping edges,
one with and one without the bit set, cancel each other’s effect. In what follows, we
will distinguish between simple edges and manifold edges.

Furthermore, there must usually be a rule or a set of rules to compute certain properties
of the regions in the plane. We will refer to these properties as the plane state and we
will consider the plane state to be a function of the position in the plane defined
incrementally as follows: The plane state above an edge is a combinatorial function of
the plane state below that edge and the attributes of the edge. The plane state at y = —oo
has, by definition, a value that we shall denote as the null value. An example of a plane
state is opacity. Opacity above an edge follows from opacity below the edge and the
opacity bit of the edge. More complex plane states for example allow Boolean mask
operations to be formulated elegantly.

Clearly, the encoding of the attributes can have a pronounced effect on the
implementation of the rules maintaining the edge attributes and, consequently, on the
efficiency of the scanline algorithm. For example, consider using an integer polarity
instead of a bit to indicate opacity. The polarity is +1 for an edge with the opaque side
above it and -1 for an edge with the opaque side below it. The combined polarity of
manifold edges is then simply given by the arithmetic sum of the polarities of each
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component edge.

Thus, developing an application that uses the scanline maintenance algorithm described
in this section generally also means defining the attributes to be associated with an edge,
including the encoding of the attributes and the rules for combining them, as well as
defining the plane state function. We therefore describe these aspects along with the
specific applications in subsequent sections.

The scanline algorithm that we have developed is based on the principles described
above and is shown in Algorithm 3.1. It is structured such that all steps of the
algorithm, including the determination of the next scanline stop and the scanline
processing operations, are executed during a single traversal of the state ruler at each
scanline stop. Some of the features of the algorithm are elucidated below.

Head and tail.  The state ruler is implemented as a doubly-linked list of edges, with a
head and a tail sentinel edge of infinite length respectively below and above every input
edge. More formally, head <, e <, tail for every input edge e. The head and tail
sentinels are, by definition, the initial and final contents of the state ruler. These initial
contents satisfy the scanline invariant and therefore form a valid starting configuration
for the scanline maintenance algorithm. The final contents also satisfy the scanline
invariant.

Input. Given a certain position and state of the scanline, the next input edge is
returned by the fetch operation. The head of the input queue, i.e. the edge returned by
the next execution of fetch, is available in the global variable nextEdge. If the input has
been exhausted, nextEdge contains a sentinel edge with xl1 = oo so that the algorithm
terminates.

Manifold edges. We can describe the proper scanline maintenance by using abstract
attributes as follows: Edges from different polygons can overlap each other. In the state
ruler, such edges are represented as a single edge with composite attributes, where
attributes are composed according to an application-specific rule. When edges only
partially overlap, the attributes of an edge change with the scanline’s x-position.
Therefore, a list is maintained, containing ‘‘partial edges’’ according to the attributes of
the parts. The bundle operation adds edges to the list and unbundle deletes the first
element when the scanline has reached a position where the attributes of the edge
changes. The next position where an edge changes attributes is always in the xc field of
the edge. If an edge does not change attributes, this field is greater than the xr field of
the edge. Insofar as they implement the rules for combining edge attributes, the bundle
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x := nextEdge.xl
next_x :=oo

while x < oo
edge := head.fwd
while edge <, tail or nextEdge.xl = x
if edge.xi = x
edge = split (edge)

if edge.xc =x
unbundle (edge)

if nextEdge <, edge
insert (fetch (), edge)
edge :=edge.bwd

if nextEdge =, edge
do
bundle (fetch (), edge)
while nextEdge =, edge
intersect (edge, edge.fwd)
intersect (edge, edge.bwd)

ifedge.xr =x
handle (x, edge)
edge :=edge.fwd
delete (edge.bwd)
intersect (edge, edge.bwd)

else
if edge.xl = x or edge.bwd.xl = x
intersect (edge, edge.bwd)
handle (x, edge)

# current scanline abscissa
# next scanline abscissa

# state ruler advancing loop
# state ruler traversal pointer
# state ruler traversal loop

# edge intersection

# edge changes attributes
# partly application-specific

# insert new edge below edge
# new edge becomes current

# manifold edges

# partly application-specific

# edge should be deleted
# application-specific

# edge has new neighbors
# application-specific

next_x := Min (next_x, edge.xi, edge.xc, edge.xr)

edge .= edge.fwd
x := Min (next_x, nextEdge.xl)
next_x :=eo

Algorithm 3.1. The Scanline Algorithm

# set next scanline abscissa
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and unbundle operations are application-specific.

Intersection handling. All edge intersections are correctly detected by checking all
pairs of edges that are new neighbors of each other [Bentley (1979), Lauther (1981)].
This is done by the intersect operation, when edges are inserted or deleted. In our
algorithm, the bundle operation may make the edges longer and these edges are also
checked to see if they intersect with their upper and lower neighbors. If two edges
intersect, and if neither of them has another intersection to the right of the scanline but
to the left of their mutual intersection, the intersection abscissa is recorded with the
edges in their xi field.

Once the scanline reaches the intersection point of an edge e, i.e. when x = e.xi, the
parts of the edges to the right of the scanline are split off and inserted in the state ruler
such that the <, ordering of the edges is satisfied again. Thus, if there are K
intersecting edges, they are replaced by 2K edges: K ending and X starting at the current
x-position. The lowest of these 2K edges is returned by the split operation and becomes
the ‘‘current’’ edge in the scanline algorithm.

As far as scanline maintenance is concerned, there is a certain freedom allowed in
defining the <, ordering. The two intersecting edges shown in Figure 3.5(a) can be
replaced by the four edges shown in Figure 3.5(b) or in Figure 3.5(c). In fact, any order
in which the ending edges are ordered according to decreasing slope and the starting
edges are ordered according to increasing slope, is valid for scanline maintenance.
Ending and starting edges can otherwise be intermixed. On the other hand, there is
often a strong preference for a particular ordering rule from the point of view of
scanline processing. Thus, the <, order can be refined to optimize or simplify the
scanline processing.

N\ /
X X X

(@ (b) (©
Figure 3.5. Splitting edges and inserting the new pieces in the state ruler.
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Only the left-most intersection to the right of the scanline of an edge is remembered and
stored in the xi field of an edge. This means that intersections may be discovered more
than once. For example, in Figure 3.6, intersection point I, is discovered when the
scanline is at x; and ¢, becomes a new neighbor of ¢,, and recorded with e, and e,.
However, when the scanline reaches x,, the intersection between e, and e; is
discovered and recorded with e, and e3;. The intersection of e, at I, obscures the
intersection of e, at J,. Only when the scanline advances to x is I, rediscovered as an
intersection between ¢; and ¢’,, where ¢’, is the part of e, to the right of 7,

Figure 3.6. Some edge intersections are discovered more than once.

We note that while remembering only the left-most intersection to the right of the
scanline and storing the intersection abscissa with the edge differs from the usual
practice, it is vital to the performance of the algorithm. For example, in
[Lauther (1981)], edges are split into parts to the left and to the right of an intersection
as soon as the intersection has been discovered. The right-hand parts are then merged
with the input edges, to automatically show up again when the scanline has reached the
intersection abscissa. This involves maintaining a priority queue for the input edges.
With N being the number of edges in the queue, which are initially all input edges, this
takes O(logN) time per intersection operation [Aho(1974)]. The method presented
here only requires a constant time per intersection operation. In the section on
complexity, we will use this fact to show that the algorithm runs in linear expected time.

Historically, this technique was proposed in [Brde (1981)] as an improvement to the
algorithm of [Bentley (1979)]. There, it resulted in lower memory requirements without
altering the time complexity.
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Scanline processing.  Scanline processing is accomplished via the handle operation.
It is executed for every edge present in the state ruler, at every scanline position. The
semantics of this operation are application-specific—the operation must be
implemented separately for each application. It can maintain state information
internally, or state information can be attached to the edges in the state ruler. In other
words, the edge data structure can contain data that are manipulated by the scanline
processing only, and not by the scanline maintenance. In the sections on scanline
processing, we will return to this subject.

Next scanline position. During the traversal of the state ruler, a variable next_x is
maintained. This variable contains the minimum of the intersection abscissa of e (e.xi),
the change attribute abscissa (e.xc), and the right abscissa (e.xr), of all edges ¢ in the
state ruler. The next scanline position is then the minimum of this value and the left
abscissa of the next input edge (nextEdge.xl).

3.4.2 Complexity

In this section, we discuss the time and space complexity of the scanline algorithm with
an empty implementation of the handle operation used in Algorithm 3.1. This means
that we discuss scanline maintenance only, without considering scanline processing.
This 1s useful since the same scanline algorithm has several applications. For the same
reason, we ignore the cost of an initial sorting step to prepare the input edges, since this
has to be done only once and since this cost can (partly) be credited to other
applications of the scanline algorithm. Throughout this section, we let N denote the
number of input edges and K the number of all intersections among these edges. In the

worst case, K = O (N?) since N edges can generate g, =0(N?) intersectionsi

Scanline maintenance requires a complete traversal of the state ruler at each scanline
abscissa. During this traversal, fetching, insertion, deletion, splitting, intersection and
overlap operations are performed. The ferch, insert and delete operations take a
constant time per edge. However, the time for split, intersect and overlap operations
depends on the number of edges involved. In practice, if we exclude pathological
cases, this number is bounded by a small constant. Hence, we assume that all
operations to be performed during state ruler traversal, including the latter three, take a
constant time per operation and thus that the time for one state ruler traversal is
proportional to its length.
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In the worst case, all edge end points and intersections have different x-abscissas that
require the <, order to be updated. Thus, the number of scanline positions is O (N + K)
in the worst case. At the same time, the length of the state ruler may be as high as
O(N). Hence, the worst-case time complexity of the algorithm is O (N2 + KN) or
O(N?®). The worst-case space complexity of the algorithm is O (N).

The worst-case time complexity is clearly suboptimal. For example, the algorithm in
[Bentley (1979)] achieves a ((N+K)logN) worst-case time complexity. Because that
algorithm involves a balanced tree, this is also the expected-case time complexity. Our
algorithm, however, achieves a better expected-case time complexity. This is due to the
linked-list implementation of the state ruler, which in fact results in a trade-off between
a good worst-case and a good expected-case time complexity.

An expected-case analysis requires the characteristics of the expected-case, or average,
input to be analyzed. For that purpose, we assume that we have a discrete coordinate
system, i.e., all edge end points as well as intersections are assumed to lie on an integer
grid. This is usually the case in design systems in which only orthogonal and 45-degree
angles are allowed. Under this assumption, the expected-case number of scanline stops
as well as the scanline length are assumed to be O (\/Iv ) [Bentley (1980a),
Lauther (1981)]. Consequently, the expected-case time and space complexities of the
algorithm are O (N) and O (\/ﬁ ), respectively.

This assumption can be made plausible by considering the case of array-structured
repetitions of a basic cell [Lauther (1981)]: Starting with a single cell containing N
edges and placing them in a 2 X 2 array quadruples the number of edges, but only
doubles the length of the scanlines and the number of scanline stops.

3.4.3 Measurements

Some experimental support for the preceding analysis was obtained by analyzing a
large number of layouts designed in our environment. Figure 3.7 plots the number of
input edges, which is taken as a measure of the complexity of the layout, versus the
accumulated state ruler length. This accumulated state ruler length, denoted by A, is the
sum of all state ruler lengths over all scanline stops.

We investigate the accumulated state ruler length instead of the length of the scanlines
and the number of scanline stops directly, in order to eliminate the influence of the
aspect ratios of the layouts. Let the theoretically expected length of the scanline and the
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Figure 3.7. Scanline algorithm performance data.

number of scanline stops be denoted by E(L) and E(S ) respectively. With E(L) = E(S)
=0 (\/N ), the theoretically expected value of A, E (A), is given by

EA)=E(LYXE(S)=0(N) 3.1

In Figure 3.7, this means that the trend indicated by the data points must be a straight
line parallel to the line A = N. Clearly, this is not exactly the case. When a straight line
is fitted through all data points (a least-squares fit on the log-log data), the accumulated
state ruler length is given by

A=153N"1

However, when the same fitting is performed for all data points with N = 1000, we
obtain
A =153N'%

which is much closer to the theoretical analysis. This result can (partly) be explained
by the fact that with larger input sizes, the number of scanline stops approaches an
upper limit imposed by the discrete coordinate system.
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3.4.4 Sorting Input Edges

Before they can serve as input for the scanline algorithm, the edges must be sorted in
lexicographical order. Several issues are involved in this sorting step:

1. If we want to be able to deal with very large, flat layouts, we cannot use a
standard in-core (or ‘‘internal’’) sorting algorithm [Knuth (1973)]. This would
render the (OVN) space complexity of the scanline algorithm useless. Instead,
we should revert to external sorting methods.

2. Although straightforward, comparison-based sorting techniques result in a time
complexity of O(NlogN), we can exploit the properties of the layout data to
improve on this. For example, in an environment supporting hierarchical design,
the edges from different instances can be sorted separately and efficiently merged
together.

3. In addition, we can exploit radix sorting techniques [Knuth (1973)] to exploit the
fact that the coordinates are discrete values, thereby reducing the time complexity.
even more.

3.5 Contour Edge Generation
3.5.1 Algorithm

In this section, we investigate an algorithm that determines the contour of the union of a
set of polygonal regions. This algorithm operates on each mask of the layout
individually, and each mask is transformed into a mask without overlapping features.
The algorithm is sometimes also called an overlap removal algorithm. It forms the first
step in our extraction program; the actual extraction algorithms work on a layout
description of which the individual masks are overlap-free. The algorithm is a variation
of the algorithm proposed in [Lauther (1981)].

The input of the algorithm is formed by the non-vertical edges of the input polygons, as
discussed in Section 3.4, sorted in lexicographic order. The output is in the same
format and order, since it is the input of subsequent scanline algorithms. However, the
output edges describe the boundary of the polygonal regions formed by the union of all
the input polygonal regions.
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We define a polarity as the attribute of an edge. The polarity is an integer number, the
polarity of a simple edge is +1 if the opaque side is above the edge and —1 if it is below
the edge. The polarity of a manifold edge is defined as the arithmetic sum of the
polarities of the component edges.

A plane state above an edge is defined by an integer number that is the arithmetic sum
of the plane state below that edge and the polarity of the edge, whereby the plane state
aty = —oo is 0. We refer to the plane state of a region (or a point) as the polarity of the
region (or the point). A polarity > O indicates an opaque region and a polarity =0
indicates a transparent region. When the polarity of a region changes from 0 to > 0 or
vice versa, we have crossed a contour edge. Begin and end points of such contour
edges follow from the polarity in each of the four quadrants defined by all the
intersections of an edge with the scanline, as detailed below.

The algorithm can be connected to the scanline algorithm in Algorithm 3.1 by replacing
the handle operation in that algorithm by the contour operation of Algorithm 3.2. In
this algorithm, the sign operation is defined as returning 1 for positive numbers, -1 for
negative numbers and O otherwise. Also, code is an encoding of the 16 different
possible ways to intersect an edge in the state ruler with the scanline. Such an
intersection naturally defines four quadrants, and code is a binary four-tuple with each
bit representing the transparency/opacity of a particular quadrant. This is depicted in
Figure 3.8(a).

For example, an intersection encoded as ‘“2”” is an intersection between an edge and the
scanline, whereby only the north-east quadrant is opaque. In most cases, this is not a
true intersection, but merely a touching of the left end point of an edge with the
scanline. An intersection encoded as ‘‘5’’ is an intersection with all four quadrants
being opaque. An example of an input geometry that shows all 16 encodings is given in
Figure 3.8(b). Using this figure, we can easily verify the correctness of the actions (the
execution of the beginContourEdge and endContourEdge operations) that are taken for
a particular type of intersection.

The state of the contour operation is partially maintained in persistent variables (sw, nw,
se and ne) that store the polarity (the plane state) in each quadrant, and partially
attached to the edges in the state ruler. Each edge has a previous polarity
(edge.polarityLeft) and a pointer to an output edge (edge.output).
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procedure contour (x, edge)

begin
# sw, nw, se and ne are persistent variables to maintain the plane state
ifedge.xl <x # edge extends to left of scanline
nw :=nw + edge.polarityLeft
if edge.xr > x # edge extends to right of scanline
‘ne := ne + edge.polarity
y :=7Y (edge, x) # ordinate of intersection with scanline

code := sign (se) + 2 X sign (ne) + 4 X sign (sw) + 8 X sign (nw)

if code € {1,2, 13, 14}
edge.output = beginContourEdge (x, y)
else if code € {4,7,8,11}
endContourEdge (edge.output, x, y)
else if code € {6, 9}
endContourEdge (edge.output, x, y)
edge.output = beginContourEdge (x, y)

SW :=nw, se :=ne
edge.polarityLeft := edge.polarity
end

Algorithm 3.2. The contour algorithm

3.5.2 Sorting Output Edges

Since the contour edges being produced serve as the input for other scanline programs,
they must be in lexicographic order. However, this is not the natural order in which
they are produced by the scanline algorithm. In fact, they are produced in
<xr, yr, slope> lexicographic order. One obvious way to sort the edges in the desired
order is to use an external sort algorithm like the one used to sort the original input
edges in the first place. However, a more efficient and elegant method was proposed in
[Szymanski (1983) 12. There, a scanline algorithm was presented that exploits the order
in which the edges are actually produced by the scanline. The algorithm does a reverse

2. However, in a later version of their layout verification program [Chiang (1988)], this algorithm was
replaced by a bucket sort technique, which reportedly improved performancc.
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Figure 3.8. Illustration of the encoding of the intersections between an edge in the state
ruler and the scanline.

(right to left) scan of the edges to produce the contour edges in reverse-sorted order.
The expected-case time and space complexities are O (NlogN) and O(Vﬁ),
respectively, although for fairly large designs the running time appears to be I/O
bounded.

As with the scanline algorithm in Section 3.4, we can improve the O (NlogN) time
complexity to O(N) by implementing the scanline as a linked list. However, this would
still produce the contour edges in reverse-sorted order. Therefore, we propose a
different solution.

Our solution is based on the observation that although the scanline produces the edges
in <x,,y,,slope > order, we can tell whether an edge will become an output edge at its
left end point. So, as soon as we discover the left end point of a contour edge, we place
the edge into a queue of unfinished edges and mark it as not ready. Then, for every
right end point of a contour edge, we mark the edge as being ready, and we inspect the
front of the queue to see which edges are ready and can be written out.

This method is implemented by the beginContourEdge and endContourEdge operations
executed by the contour operation of Algorithm 3.2. These operations are presented in
Algorithm 3.3. Here, O implements the queue of unfinished edges, the head operation
returns the head of the queue and the operations inject and eject insert and delete edges
into (and from) this queue, respectively. The eject operation returns the element that it
deletes.
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function beginContourEdge (x, y)

begin :
- edge := create contour_edge

edge.x] :=x

edge.yl .=y

edge.ready := false
inject (Q, edge)
return edge

end

procedure endContourEdge (edge, X, y)

begin
edge.xr ;=X
edge.yr =y

edge.ready := true

while head(Q).ready = true
output (eject (Q))

end

Algorithm 3.3. The beginContourEdge and endContourEdge operations

This method, however, increases the space complexity of the algorithm to O (N). This
is not just a theoretical inconvenience, but of practical importance too. For example, it
is very possible that the layout contains very long horizontal edges from, say, supply or
clock lines. As long as these edges remain in the queue, the other edges will remain
there too.

As a solution, when the number of finished edges in the queue exceeds a certain
threshold, we write these edges to a temporary file and reclaim their core memory.
Afterwards, these individually sorted blocks of contour edges are merged using a k-way
merge algorithm, where k is the number of partitions created. This can be done in
O(Nlogk) time, which is almost linear in practice since k will be small. At the cost of
one extra I/O step, we have re-established an O "N space complexity.
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3.6 Region Enumeration.

In the introduction to this chapter, we announced a combined scanline and corner
stitching technique as a powerful tool to handle the geometry in layout verification
programs. In this section, we describe how this can be accomplished given the scanline
maintenance algorithm of Section 3.4 and the trapezoidal comer stitching algorithm of
Section 3.2.3. While building the corner stitching data structure, the algorithm
enumerates all tiles and pairs of abutting tiles in a canonical order. Since the tiles form
(trapezoidal) regions, we call this algoﬁthm a region enumeration algorithm. The order
of enumeration appears to be eminently suited to extraction purposes. The input of the
algorithm is in the form of non-vertical edges of the contour of each mask. In other
words, the output of the contour edge algorithm described in the previous section serves
as this algorithm’s input.

In this section, we refer to the attributes of an edge as its color. For a simple edge, the
color defines its mask layer. For a manifold edge, the color likewise defines its
component mask layers. The color of an edge is defined as a binary n-tuple, or bit
mask, with one bit for each mask layer. The combination rule for manifold edges is a
bitwise Boolean OR operation. Since the input edges form the contour of each layer
(i.e. they are overlap-free) we do not need a polarity of an edge as defined in the
previous section. The polarity is implicit in the <, order of edges when they intersect
the scanline.

Furthermore, in this section we refer to the plane-state of a region (or a point) as the
color of the region (or the point), which is defined by using the same bit masks as for
the color of an edge. Since the edges are contour edges, the color in a region above an
edge can be found (the definition of the plane-state function) by a bitwise exclusive-OR
operation on the color below the edge and the color of the edge. The color at y = — is
0, a bit mask with all bits cleared.

While the original corner stitching method [Ousterhout (1984)] uses multiple linked tile
planes to achieve a higher storage efficiency, we can use one single tile plane because
the corner stitching data structure will never exist for the entire layout at the same time.
We naturally let the type of a tile (defining the set of masks present at its position)
coincide with the plane-state or color of a region. In what follows, we refer to the type
of atile as its color. Space tiles have a color bit mask with all bits cleared.

Since the edges are contour edges, the color above an edge must be different from the
color below an edge, and since tiles are regions of one color, all edges must coincide
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with upper and lower tile boundaries. It is then natural to avoid further upper and lower
tile boundaries and to make the tiles as tall as possible, so that if two tiles abut
vertically, they are of different color. Vertical tile boundaries are then created so as to
make the tiles as wide as possible. Unlike vertically abutting tiles, horizontally abutting
tiles can be of the same color. The result will be a trapezoidal tile dissection as defined
in Section 3.2. '

We first describe the principle of the region enumeration algorithm, momentarily
disregarding how it is implemented with the scanline algorithm. Afterwards, we
describe this implementation.

At the start of the algorithm, there is one space tile conceptually covering an infinite
plane. In the state ruler, tiles are bordered by the edges present in the state ruler. The
initial infinite tile is bordered by the head and tail sentinel edges of the state ruler, which
is schematically illustrated in Figure 3.9(a). In Figure 3.9, solid lines denote the non-
vertical tile boundaries, which coincide with the edges in the state ruler, while the
dotted vertical lines denote the vertical tile boundaries.

This infinite plane is then traversed in scanline order, from left to right and from bottom
to top. During this traversal, the subdivision of the plane in a set of covering but non-
overlapping tiles is refined. For example, when the left end point of an edge is
encountered, we have discovered the lower-left corner of a new tile above the edge and
the upper-left corner of the tile below the edge. This is illustrated in Figure 3.9(b).

When a right end point of an edge is encountered, we have discovered the lower-right
corner of the tile above the edge and the upper-right corner of the tile below the edge,
as depicted in Figure 3.9(c). Note from Figure 3.9(d) that an edge can have an arbitrary
number of horizontally abutting tiles above and below it.

(@) ®) () ()

Figure 3.9. Refinement of tile subdivision.
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The traversal of the plane is performed by the previously introduced scanline algorithm,
in which the handle operation is replaced by the updateTiles operation defined below.
The updateTiles operation is executed for every edge in the state ruler during the
bottom-to-top traversal at every x-position. This operation then refines the tile
subdivision. The updateTiles operation evaluates the plane-state function for all edges
incident to the scanline. Based on the colors of the regions around the intersection of an
edge with the scanline, tiles are completed and new tiles are begun.

A pseudocode description of the updateTiles operation appears in Algorithm 3.4. All
edges contain a pointer to the tile directly above it in the slice of the plane represented
by the state ruler. As the state ruler is traversed. a tile immediately to left of the current
x,y position whose upper-right corner has not yet been determined, might be present.
This tile is denoted by freeTile.

Tiles are created in stages. The updateTiles operation executes four operations, each
one fixing one of the corners of a tile. These operation are newTile, fixTL, fixBR and
fixTR, and for each individual tile they are executed in the sequence indicated. When a
tile is completed, i.e. as a result of executing fixTR, it can be passed to the (application
specific) visit operation. This operation, enumTile, is actually executed from within
fixTR. Likewise, enumPair is executed from within fixTL, fixBR, and fixTR. For that
purpose, these operations require some extra arguments specifying neighboring tiles.
For the sake of conciseness, these arguments are omitted in Algorithm 3.4.

The operation of the algorithm is elucidated in Figure 3.10, where the numbered hooks
refer to the line numbers in Algorithm 3.4. For an NMOS inverter, Figure 3.11
illustrates the layout (a), the tile subdivision, where the tile’s color is represented by an
octal number (b), and the tile subdivision for a rotated inverter (c). Figure 3.11(c) does
not present a typical case, but clearly shows the trapezoidal and triangular shapes of the
tiles. :

3.6.1 Maintenance of a Corner Stitching Band

The enumPair operation already provides a certain amount of contextual information
fully enabling non-trivial applications such as connectivity extraction, MOS device
recognition, and. overlap and sidewall capacitance computation [Meijs (1989),
Meijs (1992)]. However, for other applications, for example those needing to measure
the distance between neighboring features (like design rule checking or extraction of
the capacitance between neighboring wires), the corner stitches that link the tiles
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procedure updateTiles (x, edge)
begin
y =Y (edge, x) #y ordinate at current abscissa
prev_y := Y (edge.bwd, x) # y ordinate of lower neighbor edge
if x =edge.xl ‘ # left end point
color := color xor edge.color
if freeTile = null
freeTile := edge.bwd.tile
fixBR (freeTile, x, prev_y)
edge.bwd.tile := newTile (x, prev_y, freeTile.color)

fixTL (edge.bwd.tile, y)
edge.tile := newTile (x, y, color)

W=

else if x = edge.xr # right end point
if freeTile = null
freeTile := edge.bwd.tile
fixBR (freeTile, x, prev_y)
6 edge.bwd.tile := newTile (x, prev_y, freeTile.color)

7 fixTR (freeTile, y)
freeTile := edge.tile
8 fixBR (freeTile, x, y)

W

else # edge straddling scanline
color := color xor edge.color
if freeTile # null # two tiles below edge
9 fixTR (freeTile, y)
freeTile := null
10 fixTL (edge.bwd.tile, y)
if edge.tile.color # color # two tiles above edge
freeTile := edge.tile # because edge changes color
11 fixBR (freeTile, x, y)
12 edge.tile := newTile (x, y, color)
end

Algorithm 3.4. The updateTiles algorithm

together can easily be maintained in the updateTiles operation. For conciseness,
however, we have omitted these details from Algorithm 3.4.
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Figure 3.10. Illustration of the operation of updateTiles. The numbers correspond to
the line numbers in Algorithm 3.4.
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Figure 3.11. Layout of an inverter (a), its tile subdivision (b) and tiles for a rotated
inverter (c).

A moving band of corner-stitched tiles can be realized by maintaining a FIFO-queue of
completed tiles. A tile is put into the queue as soon as it is completed. Thus, the queue
contains the tiles ordered according to their right abscissa, since this is the order in
which the tiles are completed. (They are also ordered according to the ordinate of their
upper-right corner, but this is irrelevant here.) Each time the scanline advances, the
front of the queue is inspected to see which tiles leave the band so that their storage
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space can be reclaimed.

When the storage space of a tile is reclaimed, any stitches pointing to the tile become
invalid. For most applications performing a neighborhood search, this will not appear
to be a problem because invalid stitches are never traversed since they point outside the
region of interest. Alternatively, it is possible to let the invalid stitches point to a
special space tile or to explicitly check the left abscissa of a tile before traversing its
left-pointing or down-pointing stitch. ‘

Just prior to actually reclaiming storage, an application-specific clearTile operation is
executed, enabling the application to take appropriate action. When there is no corner
stitching band, the execution of enumTile is always immediately followed by the
execution of clearTile and the actual deletion of the tile.

3.7 The Space Layout-to-Circuit Extractor
3.7.1 Description '

The algorithms developed in this chapter have been implemented in an efficient layout-
to-circuit extractor called Space. Space is a full-featured layout-to-circuit extractor that
was developed with both accuracy and efficiency in mind. All extraction operations are
performed in one scanline pass over the layout. These operations include device
recognition, connectivity extraction, capacitance extraction and resistance extraction.
While we will not describe the actual extraction algorithms (they are briefly described
in [Meijs (1989)] and [Meijs (1992)] ), we make the following remarks:

1. It must be noted that the operation of the circuit extractor differs fundamentally
from that of the Magic circuit extractor [Scott(1985)]. Basically, the Magic
extractor works net-wise. That is, the algorithm starts with one tile, marks it as
belonging to net n if it has not yet been marked, and recursively marks all tiles
connected to the first tile. Our algorithm works tile-wise and connectivity is
resolved via a set-merging algorithm. There is a standard algorithm for
efficiently performing set merging: a so-called union-find algorithm [Aho (1974),
Tarjan (1983)].

2. Adopting a strategy to output all network elements as soon as possible, instead of
keeping them in the computer’s core memory, makes the (measured) space
complexity almost proportional to the square root of the size of the input. To
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implement this strategy efficiently, however, the standard union-find algorithm
mentioned above has been extended to also implement deletions of elements from
sets, as presented in [Meijs (1992)]. The efficiency of this latter operation
appears to be paramount to the overall efficiency of the extractor.

The following is, in no particular order, an enumeration of some characteristics of
Space.

Integrated in NELSIS. Space is an integrated part of the NELSIS IC Design
System, a modular and open system consisting of a framework and a set of tools for
chip design and verification [Wolf (1990)]. It works comfortably together with other
tools in the system such as a layout editor and a network-comparison (graph
isomorphism) tool. Tight integration of tools in NELSIS is achieved by adhering to
common data formats and by using a standard Dara Management Interface
[Meijs (1987)] to obtain access to the design data and to register the actions of a tool
with the framework. In this way, Space can intelligently deal with framework-specific
aspects such as design versions, concurrency control and design flow management.

Capacitance Extraction. Besides a finite element method for capacitance extraction,
to be described in Chapter 5, Space implements the capacitance model that was
described in [Meijs(1984)]. The model implements first-order corrections to
conventional area-perimeter models, resulting in reasonably accurate values of the
ground and coupling capacitances. This model includes the coupling capacitance
between neighboring conductors.

Resistance Extraction. Space implements a finite element method for resistance
extraction as presented in [Genderen (1988), Genderen (1991)]. This method is much
more accurate than polygon-partitioning-based heuristics, while nearly as efficient.

Lumped Approximation of RC Lines. Space employs a new, Elmore time-
constant-preserving algorithm to transform a detailed finite element RC mesh into a low
complexity lumped network that accurately models the distributed nature of the
parasitic resistance and capacitance of IC interconnects [Genderen (1988),
Genderen (1991)]. :

Hierarchical or Flat Mode of Operation.  Space can operate in a hierarchical or a
flat mode.

External Interfaces. The NELSIS system provides interfaces to several external
formats, including the GDSII and CIF layout formats and the SPICE and EDIF net-list



50 Geometric Algorithms for Extraction

formats.

Technology Compiler. Crucial to the efficiency of Space is an element lookup table.
Based on the color of a tile and the differences in color between two abutting tiles, this
table can quickly be searched to find out which circuit elements are present in a tile.
Since the construction and optimization of the lookup table from a user-defined
technology file may take a long time (several CPU minutes) this task is separated into a
dedicated technology compiler. Since Space then only has to read the pre-constructed
lookup table, it can provide instant response for small designs.

45 Degree Geometries. The current version of Space can handle 45° polygonal
geometry rather than general polygonal geometry. This allows the program to use
integer calculations, which improves the efficiency.

MOS Devices only. The current version of Space can only recognize MOS devices.
For complex MOS devices, such as those found in off-chip drivers, Space implements
an algorithm to approximate the effective width and length of the device.

3.7.2 Performance

In this section, we will briefly present some measurements concerning the performance
of Space. These results were obtained by a flat extraction of a number of randomly
selected layouts of varying sizes (measured by the number of tiles and transistors) on an
HP 9000/720 workstation. In the figures that follow, each data point corresponds to

another design. i

Figure 3.12 displays the maximum number of tiles in the core memory of the computer
versus the total number of tiles. The straight line denotes a O(\N) behavior, for visual
comparison. Of course, the deviations between observed and O(W ) behavior can
partly be attributed to the fact that the aspect ratios of the layout are not unity.

Figure 3.13 displays the actual memory requirements. From the amount of memory
used, we have subtracted the size of an internal table for element recognition, in order
not to clutter the design size - memory relationship. The size of this table, typically
100-350 kbyte, depends only on the technology file—not on the size of the design.
Although the results shown in Figure 3.13 clearly demonstrate a sub-linear space
complexity, it is actually worse than OMN). This can (partly) be explained by the fact
that the average interconnection length increases with increased chip dimensions.
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Finally, Figure 3.14 displays the extraction time versus the transistor count. This figure
demonstrates that reducing space complexity need not be at the cost of increased
computation times. The solid line represents a O(N) complexity of 100
transistors/second.

5000
1000 —
core
tiles
100 —
10 ; | T

1 10 100 1000 5000
all tiles, N x 1000

Figure 3.12. Tiles in core vs. all tiles.

3.8 Conclusion

We have presented an algorithm that combines the corner stitching method with the
scanline technique. It performs a directed enumeration of all tiles and pairs of abutting
tiles in linear time. This enumeration appears to be a valuable extension to the
repertoire of corner stitching algorithms as originally presented in {Ousterhout (1984)].
Since the tiles only need to be retained in a narrow band sweeping over the layout, the
memory requirements are reduced from O (N) to almost O (VN), yielding a practical
solution for batch-mode analysis of very large and relatively flat layouts. The tiles can
have a trapezoidal (or triangular) shape to accommodate oblique geometry.

A key factor in the linear time complexity of the algorithm is the implementation of the
scanline part, i.e. the linked list representation of the state ruler in combination with the
method of handling edge intersections. It is worthwhile in this context to note that the
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Figure 3.13. Memory vs. number of transistors.
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Figure 3.14. Extraction time vs. number of transistors, on an HP 9000/720.

edge intersection strategy presented in this chapter would allow a significant
simplification of the scanline processor proposed in [Carlson(1986)] and
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[Carlson (1987)]. In particular, it would be possible to omit the ‘‘temporary queue’’
used to store the results of edge intersections and all the associated hardware (the bus)
and software (to sort the edges in this queue).

Many other applications of the region enumeration algorithm can be envisaged. Design
rule checking is one obvious example: a moving corner stitching band whose width is
slightly greater than the largest design rule distance enables all design rule violations to
be detected. Other notable examples include raster plotting, fault extraction
{Shen (1985)], pattern generator tape generation, and bipolar device recognition.

The reduced memory requirements eliminate the need to employ multiple corner
stitched planes as in Magic [Ousterhout (1984), Ousterhout (1984a)], thereby avoiding
plane cross-registering overhead. This is especially convenient in the case of strong
interactions between different masks. For example, the fragmentation of the tile
structure simplifies the computation of coupling capacitances: The exact overlap region
(for parallel plate capacitance) as well as the edges bordering the region (for fringing
capacitance) are explicitly represented in a fragmented single plane tile structure, while
they must be computed in a multiple plane tile structure.

On the other hand, for applications such as design rule checking, the fragmentation
resulting from the combination of all masks might be unprofitable, since in that case
many mask interactions are really irrelevant. This problem can be overcome by
separately checking unrelated rules. For pattern generator tape generation, a mask-wise
operation seems to be most appropriate.

The geometrical algorithms developed in this chapter are used in Chapter 5, where we
develop an algorithm for generating a 3-dimensional boundary element mesh from a 2-
dimensional layout and a suitable description of the fabrication process. Moreover, we
will implement a complex finite element method for capacitance extraction in a scanline
fashion—using the enumPair/enumTile interface defined in Section 3.6.
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4. A Boundary Element Method for Capacitance
Extraction

4.1 Introduction

As indicated in Chapter 2, there is an increasing need for accurate prediction of
interconnect capacitances, to verify the correct functionality of a chip before
fabrication. At the same time, however, this problem becomes more difficult because
the lateral dimensions are decreasing more rapidly than the vertical dimensions. In fact,
traditional approaches based on parallel-plate computations and heuristic, calibrated
formulas to estimate the capacitances are becoming inaccurate. Instead, rigorous,
mathematically sound techniques are required to model and determine the
interconnection capacitance.

Many of these techniques are known, including the finite difference method
[Dang (1981), Dierking (1982), Guerrieri (1987), Seidl (1988)], the finite element
method in which the finite elements model the electrical field {Cottrell (1985)] and the
boundary or Green’s function finite element method [Ruehli(1975), Ruehli (1979),
McCormick (1984), Ning (1987)], in which the finite elements model the conductor
charges.

In this chapter, we present the mathematics and give some theoretical background of
one of these methods, which we have implemented in our layout verification system.
Chapter 5 describes experimental results as well as aspects involved in the method’s
actual implementation. Before proceeding, we first list the main requirements that must
be satisfied by a successful mathematical technique for accurate extraction of IC
interconnect capacitances.

First, the numerical procedures involved generally require a great deal of computer time
and memory. Long computation times cannot be tolerated when these techniques are
applied inside the IC design loop. Thus, it is imperative to choose the most efficient
technique possible.

Second, the resulting capacitance model must contain all relevant capacitive couplings.
However, it is not useful to determine each individual component with high precision.
Because of tolerances in the fabrication process, the capacitance values present on the
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actual silicon display relatively large statistical variations. Hence, an accuracy on the
- order of 10% in each component is sufficient.

Third, the final result must be a reduced, lumped model of the distributed capacitance
network formed by the interconnections. In other words, it must be as simple and
compact as accuracy allows. The model must not contain small capacitances that only
add irrelevant detail and, for example, unnecessarily complicate simulation of the
circuit.

Fourth and last, the method must be suitable for implementation in a layout-to-circuit
extractor, together with a (finite element) method for resistance extraction so that the
distributed RC networks formed by the interconnections will be modeled accurately.

Based on these criteria, we have adopted a boundary finite element method that can be
described briefly as follows:

1. For the purpose of modeling IC interconnections, it is sufficient to suppose that
the chip is a stratified medium in which the conductors are floating. For such a
medium, the potential in a point p can be written as

p)= [ G q)p@ dg
all charge
where the so-called Green’s function G(p, ¢) can be interpreted as the potential
induced at point p = (x,, y,, z,), due to a unit point charge at point g = (Xgs Ygr Zg)-

2. The above equation can be transformed into a matrix equation by discretizing the
charge that is present on the conductors as a piecewise linear and continuous
distribution on a set of finite elements.

3. This matrix equation can be written as:
¢$=Go

where ¢ = [¢; ¢, - ¢y}’ and 6 = [0, 0, - - - op]T collect the finite element
potentials and the finite element charges respectively, and G;; is the potential
induced at node i by the charge at finite element j.

4. Using this equation, we can compute the conductor capacitances as follows: Let
A be an incidence matrix relating finite elements to conductors, i.e. A;; is | if
element i lies on conductor j, and 0 otherwise. Also,let V = [V, V, -+ Vy]’
be the vector of conductor potentials and Q = [Q, @, -+ Qu]” the vector of
charges on the conductors. Then:
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0=ATo=ATG'o=ATG'AV =C,V
Here,

C, = ATG'A
is the capacitance matrix to be obtained.

Consequently, we need to invert a matrix G. G can be very large: for a circuit with 500
conductors and only 50 finite elements per conductor, G is 25000 x 25000 in size. The
computation of G~! requires O (N %) time and O (NV?) storage. These values are clearly
prohibitive and restrict the applicability of the method to small test cases without any
practical significance. Moreover, C; is a full matrix. That is, it specifies a capacitance
between every pair of conductors—clearly not a reduced model.

However, [Nelis (1989)] defines an algorithm that avoids the complete inversion of G
and with much greater efficiency delivers a sparse approximation of G™'. The result is
a reduced capacitance model which ignores small capacitances between conductors that
are physically ‘‘far”’ from each other. The time complexity of the approximate matrix
inversion technique is optimal: proportional to the square of the number of pairs of
nearby finite elements. Consequently, since the average density of finite elements in
actual layouts can be considered constant, the running time is proportional to the size of
the layout.

Before detailing the technique in subsequent subsections, we make the following
assumptions/restrictions:

First, we consider the electrostatic case only. In the majority of cases, this assumption
is a valid approximation of the physical situation, it only becomes invalid with signals
approaching the Giga-hertz spectrum. A very important practical consequence for the
electromagnetic behavior of macroscopic matter is that Maxwell’s equations are
reduced to electrostatic equations, such as the Laplace equation.

Second, we assume that the silicon substrate forms a ground plane. In effect, the field
implant functions as a highly conducting electrical plate. At very high operating
frequencies, however, the entire substrate plays a role [Hasegawa (1971)].

Third, we shall assume that the medium is a stratified medium with each layer i having
a known and constant permitivity €;. In practice, these layers may be SiO,, Siz;N, or
air. This assumption corresponds to the case in which the surface of the IC is perfectly
planarized between each interconnect deposition step. Planarization is becoming
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standard, in order to decrease step coverage problems and depth-of-focus problems that
would otherwise become more severe when the dimensions are reduced. However, the
method can be extended to the case of no planarization.

Fourth and last, for purposes of this discussion we assume that the conductors are
perfect and that each conductor forms an equipotential. Resistivity of the conductors is
brought in later, by subdividing them into parts for which the equipotential assumption
is approximately valid.

The rest of this chapter is structured as follows. In Section 4.2, we give some relevant
definitions for multiconductor capacitance networks. Subsequently (Section 4.3), we
present the Green’s function formulation as a solution to the electrostatic field equations
and explain how it can be solved using the boundary finite element method (Section
4.4). Section 4.5 discusses the resulting matrix inversion problem, for which an
effective algorithm is described in Sections 4.6 and 4.7.

4.2 Multiconductor Capacitances
4.2.1 Electrostatics

Consider a system of charged conducting bodies embedded in a homogeneous dielectric
medium with permitivity € and of infinite dimensions, as illustrated in Figure 4.1. The
electric field surrounding the conductors is governed by the Laplace equation
VZop) =0 4.1)

with suitable boundary conditions, where V2 denotes the Laplacian
R S

ox2  9y? 9z
for a three-dimensional space, and ®(p) is the electrostatic potential in a point p =
(xp; y f:-1 ZP).

A formal solution of this equation can be written (see e.g. [Stakgold (1968)] ) as
follows:

% 4.2)

1
() = — P(q) d 43)
? allcharg¢4n£|p —-ql plar e

Here, p(g) is the charge density at point ¢ = (x, »Ygr Zg)» and Ip—q| denotes the
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Figure 4.1. Charged conducting bodies in an infinite dielectric medium.

Euclidian distance between two points p and g. The factor 1/4nelp —g| can be
interpreted as the potential induced at point p due to a unit point charge at g. Given this
interpretation, the integral over all charge in Equation (4.3) can be understood
intuitively by noting that the Laplace equation is linear and applying the superposition
principle. Thus, given p(q), the electrostatic potential ®(p) follows from Equation
4.3).

While Equation (4.3) establishes a global relationship between potential and charge for
a multiconductor system, there exists a similar relationship among the conductors. This
is written in matrix notation as: ‘

V=GQ 4.4)

where V = [V, V,---Vyl¥and Q = [0, 0, -~ On17 collect the conductor voltages
and charges, respectively, and G is an N XN matrix whose entries G;; are called the
“‘coefficients of potential’’ [Ruehli (1975)]. It can be shown that G is symmetrical and
positive definite.

4.2.2 Short Circuit Capacitance Matrix

The inverse C, of G is the so-called short-circuit capacitance matrix of the system of
conductors. It expresses the charge Q; on conductor i as a function of the voltages
Vi, Vg, -+ V!

Q=CV 4.5)

The short-circuit capacitance matrix derives its name from the fact that entry Cs,j is the
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charge on conductor i when the j-th conductor is held at unit potential and all other

conductors are short-circuited to ground. Like G, C is also symmetrical and positive
definite. :

4.2.3 Network or two-terminal capacitances

In an equivalent circuit, the value of a capacitor is the ratio of the free charge associated
with a voltage difference between two conductors or between a conductor and the
reference (e.g. the ground plane or the point at infinity), and that voltage difference.
The values of these capacitors are known as the two-terminal or network capacitances.
We are usually interested in these values instead of in the short-circuit capacitance
matrix because an equivalent circuit is the most common input for circuit simulators
and other timing verification tools. As an example, the equivalent circuit of Figure 4.1

is given in Figure 4.2.
KI: Cn J— Cs

| R

Figure 4.2. Equivalent circuit of the interconnections of Figure 4.1.

From Equation (4.5), we have with V;; =V, -V, i # j:
01 = (G + G, + slN)Vl G,V —GCVis— - =G \Viy
Qr = (Copy +Copy + 0 + C, WV =C, Vo =C ) Vi = - =G Von
: (4.6)
Onv = (Coyy + Gy + 7 + CopdVn— Gy, Vna = Cops Vs — - - =Gy Viw

This can be written as
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Q =GV, + %Cij(vi_vj) i=12-N 4.7)
j=1
where the two-terminal capacitances are given by
C; = incsij i=12 -,N (4.8a)
j=
Cij=-C i#j (4.8b)

C; is the ground capacitance between conductor i and the reference and Cj; is the
coupling capacitance between conductors i and j.

The inverse relationship of Equation (4.8) specifies the short-circuit capacitances in
terms of the network capacitances:

N

G, =Y Cy i=12 N (4.92)
j=1

Cs‘.j = - C,} i#j (49b)

and we note that the diagonal entries C;,, of C; are important characteristic figures of a
multiconductor system. They are the sums of the ground and coupling capacitances for
each conductor i. As such, they represent the total capacitive load a conductor forms
for its driving stages when all other conductors are shorted to ground or driven by low
impedance sources. Therefore, they are frequently used for delay calculations in digital
circuits, see e.g. [Genderen (1989)].

4.2.4 Total Capacitance

Alternatively, the total capacitance C,; of conductor i is the load it forms for its driving
stage when all other conductors are floating:

C =-é% AQ: =0, j=#i (4.10)

Ni T AV, J g -
For a system of conductors as in Figure 4.1, we can determine C,; as follows: Assume
an initial distribution of charges over the conductors. Changing the potential of
conductor i by an amount AV;, changes its charge by an amount AQ;. When the other
conductors are floating, their potential will change by an amount AV;, while their
charges will not change: AQ; = 0. Since the system is linear, we get from Equation
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4.4).
AV = G AQ “4.11)

where AV = [AV, AV, ---AV;---AVy]T and AQ = [00---AQ;---0]" and we
conclude that AV; = G; AQ;. Hence:

1
C.=— 4.12
tii G; ( )
The total capacitance between conductors i and j is similarly defined as the amount of
charge moved from conductor i to j when a voltage is applied to these conductors, with
all other conductors floating. Using Equation (4.11), where AQ = [00--- AQ;"--
AQ; - -~ 0" with AQ; = —AQ;, we find AV,—AV; = (G;—2G;; + G;;)AQ;. Hence:
1

Clij = Gi—2G; + G, 4.13)

4.2.5 Crosstalk

Crosstalk is the noise on an interconnection caused by the switching of other
interconnections. Capacitive coupling is frequently the primary cause of crosstalk.
This manifests itself most strongly when the non-driven conductors have a high
impedance. In this case, the crosstalk amplitude depends on the total capacitance
values. In particular, if there is a step AV; on conductor i, the resulting spike AV; on
conductor j can be computed by using Equation (4.11):

AV, = G; AQ; (4.14a)
By eliminating AQ;, we obtain

AV G::

- _ 4 4.15)

AV; G;

This relation can be used in circuit analysis tools to select, for example, the k most
strongly coupled pairs of conductors for further analysis.
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4.3 The Green’s Function

Equation (4.3) gives the electrostatic potential due to a number of conducting bodies in
a homogeneous dielectric medium of infinite dimensions. In this section, we wish to
find this potential for the case of on-chip integrated circuit interconnections. We shall
not perform a formal derivation of the equations dealt with here, but only justify them
intuitively. For a formal derivation, see e.g. [Dewilde (1990)].

First, reconsider Equation (4.3). We may rewrite this equation as

®p)= [ GO, 9)p(@dq 4.16)
all charge
where ‘
1
G, q) = m @17

is the so-called Green’s function for a uniform dielectric of infinite dimensions and with
permitivity €. The Green’s function can be interpreted as the potential induced at point
p, due to a unit point charge at ¢q. Point p is called the observation point and q is called
the source point. The Green’s function is symmetrical: G(p, ¢) = G(q, p). '

The Green’s function is characteristic of and dependent on the geometry of the
dielectric medium. In other words, Equation (4.16) can be used for cases with different
dielectric properties if a suitable Green’s function is available. The problem is then to
derive the Green’s function for the dielectric configurations that are encountered in
integrated circuits, as schematically illustrated in Figure 4.3. Under the simplifying—
but not unreasonable—assumptions made in Section 4.1, this will indeed appear to be
possible.

region 2

©) Y,
A 777/ d

777777777 777777 7777777777777777
ground

Figure 4.3. A 2-layer stratified dielectric.

Starting from Equation (4.17), the Green’s function for the case with a ground plane
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added to a uniform halfspace can be developed as follows, see e.g. [Silvester (1968)].
Consider a semi-infinite dielectric half space with a conducting ground plane at z = 0,
as in Figure 4.4(a). A system of point charges above this plane is equivalent to a system
without the ground plane, but with a “‘reflection’” of each charge about the ground
plane, where the charge is equal in magnitude but opposite in sign (Figure 4.4(b)).
These reflected charges are called ‘‘images’’.

(@) (b)
Figure 4.4. lllustration of the method of images.

With the coordinates of p and g denoted by (x,, ¥, 2,) and (x,, ¥, Z,), respectively,
and with r; the lateral distance between pand ¢, r; = \l (xj,,—xq)2 + (y,,—yq)2 , we have

1 1 1
G@p, q) = { - } (4.18)
dre NGz, + 13 NG, +2,)2 + 1
The second term can be seen as a correction to Equation (4.17) necessitated by the
presence of a ground plane. If the ground plane is moved to z = —oo, this term

vanishes, leaving Equation (4.17).

This way of developing the Green’s function, i.e. by transforming the domain to a
homogeneous domain while adding image charges, is called the method of images. It
can also be used for the case of a stratified dielectric medium as applicable to VLSI
interconnect capacitance. This was indeed done in, for example, [Weeks (1970)] for the
2-dimensional case. For the 3-dimensional case, however, it was found to be easier to
use a Fourier integral method [Ning (1987), Ning (1989)].

For illustrating the resulting Green’s functions, we consider a 2-layer dielectric as
shown in Figure 4.3. When both the source point and the observation point are in
dielectric layer 1, the Green’s function may be written as
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1 1 1
Gup. 9 = { - -
e gz 2 +7 N+ + 1
+ i (_1)nK(n+1)[ 1 _ I
n=0 N2 +Dd~z, +2)P +r7 A2 +Dd + @,—2) + 11
+ : - 1 ]} (4.19)
NR2(+)d +(z, + 2P+ 20 +1)d~(z,~2,)] + 1}

where €, and &, denote the dielectrical constant of region 1 and region 2, respectively, d
denotes the thickness of SiO, and K = (g; —€,)/(€; + &,). Similar formulas have
been developed for other locations of source and/or observation points and for more
complex dielectric configurations [Ning (1987), Ning (1989)].

This Green’s function also has a clear physical interpretation. In fact, the first two
terms of G;(p, ¢q) are identical to Equation (4.18). The third term now presents a
correction to that equation, due to the presence of an extra dielectric. It can easily be
verified that if &; = &,, Equation (4.18) remains.

4.4 Solution of the Green’s Function Formulation
4.4.1 Boundary Element Method

A formal solution of the Laplace equation was given by Equations (4.3) and (4.16).
Since the charge is only present on the surface S of the conductors, we can replace the
integration over all charge by an integration over S only. Equation (4.16) can then be
written as follows:

(@) = [G, 9) plg) dg (4.20)
S

In this equation, p and ¢ are 3-dimensional variables but the integration is a double
integration. We now investigate how, given a known Green’s function (see Section
4.3), we can actually solve this equation numerically on a computer.

The computational tool that we shall use belongs to the class of finite element methods.
It is specifically known as a boundary element method [Brebbia (1989)] or a method of
moments [Harrington (1968)]. With this method, the domain of a function f to be
approximated is partitioned into a number of sub-domains (finite elements). A local
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approximation of f is defined on each sub-domain, such that their assembly is a
piecewise approximation of f.

In our case, the function p(g) is approximated as
- N
P =plg) = X 0 fi(q) 4.21)
i=1

Here, the f’s are N independent shape functions (also called basis or expansion
functions), which are non-zero only on a part S; of S and which have unity weight. In
particular:

1ifi = j
[fi@da =10 s 4.22)
S;

We then obtain an approximation Ci)(p) of @(p) as follows:

-~ N
Dp) = [G(p, 9) ¥, 0; f: (g) dg
S i=1

N

Y 0. [G(p, 9) f:(q) dq 4.23)
S,

i=l

The o;’s are then N independent constants to be determined so as to obtain a good
approximation of ®(p). For N unknown constants, we need N independent equations.
These can be obtained by using the theory of the method of moments
[Harrington (1968)]. For that purpose, Equation (4.23) can be written as

~ N
O(p) = ¥, 0;8:(p) (4.24)

i=1
where g;(p) = _[G(p, q) fi (@) dq. The general method of moments formulation of
5
Equation (4.24) would be written as:
<®@), w;(p)> = < &)(p), w;(p) >

N
< X.0i8(p) w;i(p)>

i=1

N
>o;<gp) wi(p)> j=1---N (4.25)

i=1

where <.,.> is a suitable bi-linear product and w;(p), j=1"N, 1s a set of
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weighting functions aimed at ‘‘averaging out”’ the approximation error’. The weighting
functions are defined on the domain of ®(p), the surfaces of the conductors. The
solution of the simultaneous equations results in the desired linear combination of the N
independent basis functions f;.

A suitable bi-linear product for our problem is [Harrington (1968)]:

<®Qp), w;(p)> = [O(p)w; (p)dp
N

where the (two-dimensional) integral extends over the conductor surfaces.

Suitable weighting functions are defined below, but in the case of the finite element
method they are also defined in a piecewise fashion, like the shape functions. In that
case, w; (p) is non-zero only on the part S; of S. Hence, Equation (4.25) can be written
in matrix notation as:

0=Go (4.26)
where ¢ = [q)l, ¢2, Y ¢N]T’ G = [Gl» 02’ T, GN]T and
0; = <®P), w;(p)> = [©p)w; () dp 4.27)
SJ
Gi = <gip), w;@)> = [[ G, ) w; () fi(q) dq dp (4.28)
3.5,

We call G the influence matrix.

A convenient choice for the weighting functions is w; = f;, i.e. the weighting functions
are made equal to the shape functions. This is known as Galerkin’s method. A
Galerkin solution leads to symmetric matrices, which is attractive from a computational
point of view as well as from a physical one, since the physical system is symmetrical.
We should avoid non-symmetrical models because they do not conserve energy and,
under certain circumstances, give rise to numerical instabilities in circuit simulators.
This may be manifested as non-convergence of a simulation of the network.

1. By the linearity of the bi-linear product, this is equivalent to the weighted residual formulation, see e.g.
[Zienkiewicz (1983)): <®P@) - P@), w;(p)> =0,j = 1--*N.
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With Galerkin’s method, Equation (4.27) reduces to:
4 = @) (4.29)

where p; is some point on S;, because the potential is constant over a finite element and
because f w;(p)dp = 1 since the weighting functions are normalized. Equation (4.28)
S.

g

reduces in the case of Galerkin’s method to

Gy =G; = [[G®. 9) f; () f; (@) dq dp (4.30)
55,

We may also select w; (p) = 8(p — p;) where 0 is the Dirac delta function and p; is
some point on S;. This particular choice is called a point collocation (or point
matching) solution, since it matches the superposition of the basis functions to the
function to be approximated at N points p;. This choice make evaluating the bi-linear
product trivial and obtaining G as simple as possible. The resulting matrix is not
symmetrical, but can be made so by averaging the entries in symmetrical positions.
This is acceptable because, with a sufﬁciéntly regular finite element mesh, the entries
G;; and Gj; are close.

With the collocation method, Equation (4.27) also reduces to Equation (4.29). Equation
(4.28) reduces to:

Gi = [Gp; 9)fi(@ dg @“31)
5,

because

[G@. 93¢ -p) = Gp;, @)
s.i

A point collocation solution effectively amounts to evaluating &)(p) at N different
positions p;, j = 1---N, with p; € §; and requiring equality with ®(p) at those
positions. ‘

4.4.2 Incidence Between Finite Elements and Conductors

After having established a computational procedure for solving Equation (4.20), the
remaining problem is to relate the solution to the multiconductor capacitances. In order
to do that, we define an incidence matrix A with N rows (¥ is the total number of finite
elements in the system) and M columns (M is the number of conductors). Since, in
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general, each conductor contains many finite elements, A is non-square with N > M.
A is given a value as follows:

1 if finite element i is on conductor j
i = { (4.32)

0 otherwise

First, bear in mind that Q is the vector of conductor charges. The charge on a conductor
is the sum of all elemental charges, which can be expressed as

Q=ATc (4.33)

Second, bear in mind that V is the vector of conductor potentials. In the electrostatic
case, the element voltages are the same for all elements on a conductor. Hence, V and ¢
are related as follows:

0=AV 4.34)
Then, using Equations (4.26), (4.33) and (4.34), we have
Q=ATo=ATG ' o =ATG AV (4.35)

By comparing this with Equation (4.5), we find
C,=ATG'A (4.36)

which is the desired result.

4.4.3 Shape Functions

The discretization of the charge as required by Equation (4.21) can be accomplished in
various ways, with different results. For example, the surface S of all conductors can be
partitioned into N finite elements of uniform [Patel (1971)] or non-uniform area S,
k=1---N [Benedek (1972), Balaban (1973), Ruehli (1973)]. On each element, the
charge can be approximated by a constant [Patel (1971), Ruehli(1973)] or a non-
constant function [Benedek (1972), Balaban(1973)]. In all methods, the error is
reduced when the number of finite elements is increased, but this is obviously at the
cost of CPU time.

Choosing the finite elements and the shape functions in accordance with the form of the
exact solution, improves the convergence characteristics of the method. This means
that for a given number of finite elements, the computation time needed to achieve a
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certain accuracy is minimized. For example, [Ruehli (1973)] exploited the fact that the
charge distribution on a rectangular conductor in free space is much larger on the edges
than in the center, by making the finite elements near the edges smaller than those near
the center.

However, such heuristics are expected to be less useful with the irregular geometries of
crossing and neighboring interconnects found in actual IC’s. For this reason, and
because of the fact that a moderate accuracy is satisfactory, we did not experiment with
such heuristics. In our prototype implementation of the capacitance extraction method,
to be described in Chapter 5, we have implemented constant and linear elements of
non-uniform area.

When constant elements are used, the global charge distribution becomes a piecewise
constant function defined over the surfaces of the conductors, as illustrated in Figure
4.5(a). The geometrical shape of a constant element is really arbitrary, although
numerical procedures are greatly simplified when the elements have some simple and
regular shape. Triangles and quadrilaterals are often used. Figure 4.5(a) illustrates the
case of rectangular elements.

When linear elements are used, the global charge distribution becomes a piecewise
linear function, as shown in Figure 4.5(b). For this case, the finite element
discretization must be a triangulation. The global charge distribution becomes
continuous when individual elements have a form and shape function as illustrated in
Figure 4.5(c) and when they overlap each other such that every vertex of the
triangulation is a center node of a finite element.

’\

@ (®) (©)
Figure 4.5. IMustration of different shape functions.
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4.4.4 Discussion.

We assumed in Section 4.1 that the surface of an IC has a stratified structure. With this
assumption, a Green’s function could be developed (Section 4.3). Actually, this
assumption is only true when the surface of an IC is planarized between successive
patterning steps. Without planarization, the IC surface may actually be very irregular
and a Green’s function that assumes planarization will be inaccurate. In that case, the
Green’s function for one dielectric above a ground plane (Equation (4.18)) can be used
if the integration domain is extended to include the bound charge on the dielectric
interfaces as well. This approach was, for example, followed in [Ruehli (1979)] and for
the 2-dimensional case in [Wei (1984)]. In [Janak (1989)], an approach is described
that combines the use of a Green’s function for a stratified dielectric with explicit
treatment of the bound charge at finite and irregular dielectric interfaces.

4.5 Matrix Inversion

In Section 4.4 we obtained the following expression for the short-circuit capacitance
matrix:

C, =ATGA 4.37)

With N the number of finite elements, G is an NxN matrix of Green’s function
influences. As G is a full matrix, the time needed to construct G (the total time to
evaluate the Green’s functions) and its storage complexity are both O (N?). Even
worse, the inversion of G requires O(N?) time. An algorithm with such a time
complexity quickly becomes computationally intractable on even the fastest computer.

For example, consider a problem with M conductors containing 50 finite elements each.
Figure 4.6 illustrates the time needed for matrix inversion (double precision floating
point arithmetic) as a function of the number of conductors for 2 different types of
hardware. The first is an HP 9000/840 computer and the second is a hypothetical one
with 100 times the floating point performance.
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8
10° - 1 century
10° - — 1 year
CPU time HP 9000/840
(minutes)  10* - L 1 week
10?2 4 100 times faster |1 hour
10° |
10 100 1000

number of conductors

Figure 4.6. Illustration of the time needed for matrix inversion.

These results clearly indicate that matrix inversion is a costly step in the computation of
capacitances, and the Green’s function method seems therefore to be limited to small
problems of little practical significance. Indeed, results reported for 3-dimensional
capacitance computations are often for simple configurations with only a small number
of conductors.

This matrix inversion bottleneck was also realized in [Nabors (1989)]. Their iterative
algorithm for inversion of the matrix computes the iterates via a so-called multipole
approximation. Basically, that method replaces the charge in a cluster of closely
spaced finite elements by only a few charges located around their electrical center of
gravity. This approximation is then used to compute the aggregate contribution of all
the finite elements in the cluster to the potential at other points, at some distance from
the cluster. The accuracy of this approximation improves as the distance between the
cluster and the points in which the potential is computed increases.

This method is similar to efficient solutions of the classical N-body problem of
computing interactions between objects in a gravitational field. These solutions
approximate the force operating on individual objects by the force exerted by large
clusters.

With respect to the speedup, it is obvious that the time needed to compute the influence
matrix is decreased, since it does not need to be evaluated completely. The time for
matrix inversion also decreases. In fact, the multipole approximation reduces the time
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complexity from O (N 3) to O(mN), where m is the number of conductors.

Although this is a significant speedup, we will see in what follows that it is possible to
achieve even better results. However, there is another problem associated with
Equation (4.37), which is not solved by the multipole approximation: The inversion of
G gives a full matrix G™' and, consequently, a full C,. That is, C, specifies a
capacitance between every pair of conductors. However, most of the elements of C, are
small and have only a negligible effect on the circuit’s electrical characteristics such as
timing and crosstalk.

In addition, the large number of capacitances will require an excessively large amount
of disk space for the database storage of the circuit and will severely strain the
consumers of the circuit description, whether they are design tools that can break down
because of internal limits being exceeded or designers who cannot comprehend the
level of detail involved.

Thus, we should look for an approximation &s of C,, which can be computed
efficiently, which contains as many zeros as possible and yet accurately models the
electrical behavior of the circuit. This can be accomplished if the non-zeros in C;
correspond to interactions between neighboring conductors and the zeros correspond to
the negligible coupling between widely separated conductors.

To find E‘S, we might (erroneously) be tempted to neglect the influence between finite
elements that are far apart. That is, we wish not to compute the Green’s function
between these elements and to make the corresponding entry in the influence matrix
equal to zero. It might be hoped that it would then be more efficient to compute C;,
since we could use sparse matrix techniques [Duff (1986)] to invert the ~matrix with a
lower time complexity. However, making G sparse would not make C; sparse: the
inverse of a sparse matrix only is sparse in special cases. Thus, the capacitance matrix
would still correspond to a network containing capacitances between conductors that
are far apart. Moreover, E‘S may not even be positive definite, thus corresponding to a
non-physical situation. This is clearly not an accurate approximation of C;. '

What happens can be explained physically as follows. By zeroing entries in the
influence matrix we indeed make the mutual influence between two elements zero in
such a way that varying the potential of one conductor would not perturb the amount of
charge present on the other conductor. This can only be accomplished if the network
contains negative, non-physical, capacitances. These are the capacitances that make the
C, matrix non-sparse and non-positive.
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For example, consider a (hypothetical) four-conductor circuit whose Green’s function
matrix and its exact inverse are as shown below.

2.420 0.645 0.223 0.092 0.446 —0.118 —0.009 —0.004
0.645 2.380 0.635 0.223 . |o-118 0484 —0.116 -0.009.
G = 0.223 0.635 2.380 0.645 G = 120009 —0.116 0.484 —0.118
0.092 0.223 0.645 2.420 —0.004 —0.009 —0.118 0.446

If the G matrix is approximated by G; or G, as below, its inverse will contain positive
off-diagonal entries that correspond to negative coupling capacitances—see the
Equations (4.6) - (4.8):

2,420 0.645 0.223 0.000] [ 0.446 —0.118 -0.014 0.015]
0.645 2.380 0.635 0.223 |18 0484 -0.114 -0.014
G1 = 10223 0.635 2.380 0.645 I = [-0014 -0.114 0484 —0.118
0.000 0.223 0.645 2.420 0.015 —0.014 —0.118 0.446
[2.420 0.645 0.000 0.000] [ 0.448 —0.132  0.038 —0.010]
0.645 2.380 0.635 0.000 L |0132 0494 0142 0038
G2 = 10,000 0.635 2.380 0.645 G2’ = | 0038 —0.142 0.494 -0.132

0.000 0.000 0.645 2.420 -0.010 0.038 -0.132 0.448
L J L J

4.6 The Generalized Schur Algorithm

We are looking for an approximation 6} of C;, and we saw that making G sparse does
not help. Recall that we really need a method that makes C; sparsg._lBecause of the
structure of A, this is equivalent to searching for an approximation G of G™' that is
sparse. Such an approximation makes only the direct coupling between finite elements
zero, but not the indirect coupling.
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4.6.1 The Algorithm

For the case in which the support? of G has a staircase band structure, the problem is
solved by the so-called generalized Schur algorithm, as presented in [Dewilde (1987)].
A band is said to be a staircase band if its support S is such that for all i <k </ <,
(i, j) e S implies (k, I) € S. See Figure 4.7 for an example of a staircase band. The
algorithm gnlly utilizes entries in those positions (i, j) of G for which there are non-zero
entries in G . Thus, only a subset of the entries of G need to be specified. For a partly
specified matrix, we will refer to the set of pairs of indices of specified entries as the
specification support of the matrix.

Figure 4.7. An example of a matrix that is specified on a staircase band.

The generalized Schur algorithm produces an approximate positive definite inverse
G for a positive definite matrix G that is specified on a staircase band S. This
approximate inverse is called Gy since it actually is the inverse of the so-called
maximum entropy extension of G [Dym (1981)]. An extension of a partially specified
positive definite matrix M is any Hermitian matrix that matches M on its specified
entries. In [Dym (1981)], it has been shown that the maximum entropy extension is the
unique positive definite extension whose inverse has zeros in the positions
corresponding to the unspecified entries of the partially specified matrix. Of all possible
extensions, it is also the one with the maximum determinant.

2. The support of a matrix X is the set of pairs of indices (i, j) such that X;; # 0.
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The algorithm is given below, without proof, for which we refer to [Dewilde (1987)]
and also to [Nelis (1988)].

Algorithm 4.1. The generalized Schur algorithm

Input: a positive definite symmetrical matrix G of size N XN that is specified on a
staircase band S.

Output: the maximum entropy inverse G of G.

Method:

1. Let D be the diagonal matrix [G; G4, ‘** Gyy]. Let G, be the normalization
D™ G D™ of G, such that [G, ] =1,i=1"-"N.

2. Let V be a strictly upper triangular matrix, such that G, = V+I1+ V", and let
U=V+IL
3. Let © be a 2Nx2N identity matrix.
4. [Eliminate]
For (i, j) € {S | V;; # 0} in diagonal-major order do
[UV]l=(UV]edqj)
© = 006G, j)

Here, 0 (i, j) is an elementary hyperbolic rotation matrix as defined below, such
that V;; is eliminated. The diagonal-major order of entries to be eliminated is as
follows: first the first non-zero entry of the first diagonal, then the second non-
zero entry, etc. If the first diagonal of V has been eliminated, proceed with the
second diagonal, and so on.

After m = |S| steps, V is zero on the staircase band S.

5. Compute the triangular factors L™* and M~! of the maximum entropy inverse of
G,:
[L*M '] =[I11©

6. Evaluate G;',,.

and denormalize, resulting in G5

D—lﬂ L—*L—l D—l/l

= P2 a1 g% p-12

=DM "M D =

In the above algorithm, 0 (i, j) is a 2NX2N identity matrix, except for the following

-1
Gz
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entries:
0, /)i N (1-lp1?™2
06, Nijey = pl=1p1)™?
06 i = pU-lpl>”
0G, jjwnjw (1-1p 132

where the reflection coefficient p (ipl < 1) is given by p = -V;;/U;;.

Now, we consider the case in which G is a positive definite matrix that is not specified
on a staircase band, but for which there exists a permutation matrix P so that P G P" is
a positive definite matrix that is specified on such a band. We will say that such
matrices are staircase permutable. The maximum-entropy inverse of a staircase
permutable matrix G can be computed as

Gut=P" (PGP" )P (4.38)

When N denotes the size of the matrix and b the maximum width of the staircase band
of Gj/z, the generalized Schur algorithm can be implemented to run in O(Nb?) time and
O(b?) space [Genderen (1991)]. To achieve the low space complexity, the algorithm is
implemented as a pipeline, with the matrix being read row-by-row. As soon as O(b?)
rows have been read, the result matrix begins to be produced, row-by-row.

4.6.2 Approximation

To illustrate the approximation properties of the Schur algorithm, consider the 4-
conductor example in Section 4.5. The influence matrix G of that problem is
completely specified. Define the first-order maximum entropy approximation of G™! as
the inverse of the maximum entropy extension of the diagonal of G, the second-order
maximum entropy approximation of G~' as the inverse of the maximum entropy
extension of the diagonal and the first upper and lower diagonals of G, and so on. The
n-th order maximum entropy approximation of G~ is denoted as Gi,),,.. For an NxN

matrix G, we have G, = G™'.

The successive maximum entropy approximations of G~! are given below, and Figure
4.8 shows the corresponding capacitance networks. It can be seen that when the
approximation order is increased, the networks obtained converge to the network
corresponding to the exact inverse.
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Figure 4.8. Capacitance network corresponding to the first order (a), second order (b),_
third order (c) and exact Schur inversion (d).

. A property of all these approximations is that the total capacitance (see Section 4.2) of
any node i (i.e. between node i and the reference) is exact. Here, exact means equal to
the value in the network resulting from the exact inversion of the completely specified
influence matrix. For example, in Figure 4.8(a) the total capacitance of node 2 is 0.420.
When the series connection of 2 capacitances is denoted as ®, and has a higher
precedence than +, which denotes parallel connection, the total capacitance of node 2 in
Figure 4.8(b) can be computed as 0.121 ® 0.324 + 0.243 + 0.121 ® (0.243 + 0.121 ®
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0.324) = 0.420, clearly the same value as above.

This property directly follows from the observation that the capacitance network
corresponding to any extension (i.e. not just the maximum entropy extension) of G,
where G is specified on at least the main diagonal, has exact total capacitance values for
any node i. This observation follows immediately from the expression for the total
capacitance,

1
C. =— 4.39
W= 5 (4.39)
and the definition of the extension of a partially specified matrix.
By a similar reasoning, and using the expression
c. =—1 (4.40)

tij G,','—2G,'j + G.I.I

if the specification support of G contains the pair (i, j), the capacitance network
resulting from any extension of G has exact total capacitance values between node i and
J. For example, with the above expression, the total capacitance between nodes 1 and 2
is found to be 0.285. The same value results whe the capacitances in Figure 4.8(b) are
used for the computation: Cy, = 0.121 +0324 ® (0.243 + 0.121 ® (0.243 + 0.121 ®

0.324)) = 0.285.

These results can be extended for capacitance matrices resulting from the elimination of
any number of floating nodes from a system of conductors.

4.6.3 Finite Element Numbering

For circuit extraction purposes, the support S of Gy depends on the numbering of the
finite elements. Ideally, the finite elements must be numbered such that S only contains
entries corresponding to pairs of finite elements that are closer to each other than some
fixed distance w over which we consider coupling to be significant, and such that S does
not contain entries corresponding to pairs of boundary elements that are further apart—
this is the numberihg that will lead to the desired, sparse capacitance model. The
distance w (window size), should then be a parameter of the method trading accuracy
for computer time. Thus, we seek a numbering scheme in which, for any two boundary
elements numbered i and j, '
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G, j) e Siffdist (e;, ;) <w 4.41)

where dist (¢;, e;) denotes the distance between elements i and j. For constant
elements, this is the distance between the centers of the elements. For linear elements,
this is the distance between the center nodes of the (possibly overlapping) elements.

Such a numbering is trivially possible when the elements are located in a 1-dimensional
row, but is generally impossible when they are located in 2-dimensional or 3-
dimensional space.

To investigate the impact of this on the efficiency of the extraction method, we consider
a 2-dimensional grid and assume that there is a finite element located at each grid point.
This is an idealized model of the distribution of finite elements in real layouts, in which
the z-component of the finite element locations is neglected. This is acceptable because
the z-component is limited in magnitude by virtue of the dielectric structure of an IC,
and we will neglect it for finite element ordering purposes. We will take this grid model
as a reference model for computing asymptotic complexity measures.

Let us now assume that we only wish to compute influences between finite elements
that are located within a distance of 2 grid units of each other. If we choose a
numbering as in Figure 4.9(a)’, the entries of the influence matrix corresponding to
nearby elements are shown in Figure 4.9(b). This is a sparse band, which is however
not staircase-shaped. To make it staircase, the holes must be filled in by computing
some influences between pairs of boundary elements that are far apart. The Schur
algorithm can then be applied to a matrix with a structure as shown in 4.9(c).

Under this model, and with the finite element numbering as presented above, Equation
(4.41) becomes for large N

G, j) e Sifdist (e;, ¢;)<w (4.42a)
G, j) e Sifdist (e;, ) >\Nw? + N (4.42b)

where some (i, j) with w <dist (e;, ¢;) < \jw2 + N are in S and some are not.
Because S contains influences between elements that are separated more than a distance

3. This numbering is convenient in our scanline based extractor, but it can be shown that no asymptotically
better numbering exists. :
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Figure 4.9. Finite element numbering scheme (a), entries of the influence matrix
corresponding to pairs of nearby elements (b), and a staircase band
structure showing the fill-ins (c).

w, the asymptotic complexity is sub-optimal. Specifically, the width of the staircase
band can be seen to be O(W\/ﬁ ) and the time complexity O(Nb2) of the Schur
algorithm can be written more precisely as O (N?>w?). The space complexity O(b?)
then becomes O(Nw?).

4.7 Approximate Inversion of Multiple Band Matrices

A reduction in the time complexity for the matrix inversion step from O(N?) to
O (N*w?), with w a constant depending on the desired accuracy, is significant. Even so,
it is not satisfactory because a quadratic time complexity is still computationally
demanding, and the resulting capacitance network still contains direct capacitances
between distant conductors. We conclude that the limitation to matrices with a staircase
specification support is too stringent. However, there are no known efficient algorithms
to obtain G/ in the general case, in which the diagonal elements are given but the
specification support is arbitrary otherwise. For an exact solution of Gy in the general
case, we can only use iterative algorithms. These are very inefficient—they require a
complete inversion of a matrix of the same size as G in each iteration step. Therefore,
iterative algorithms for maximum entropy matrix extension are not useful in practice
[Nelis (1989)]. Although there are indications, see also [Nelis (1989)], it has in fact not
even been shown that in the general case, the maximum entropy extension is a close
approximation of the original matrix.
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However, in [Nelis (1988)] an algorithm is developed that, given certain assumptiogs,
efficiently computes a close approximation of G™' for a more general class of matrices
(to be defined below). As the algorithm is in fact a hierarchical extension of the Schur
algorithm, we will call it the ‘‘hierarchical Schur algorithm’’ for short. The resulting
approximation is the inverse of the maximum entropy extension of a matrix that is close
to G and, like Gk, it vanishes on the complement of S.

4.7.1 The Hierarchical Schur Algorithm

In order to describe the algorithm, we introduce the following notation. Block matrices
and entries of block matrices are denoted by bold uppercase letters. If we partition a
matrix G as a block matrix, we denote it by G. Conversely, if we interpret G as a
matrix with scalar entries, we denote it by G. For a block matrix G, the notation G(i, j)
denotes the principal block matrix that lies in the rows and columns of G indexed by
i,...,j. The symbol O[G;@i, /)] denotes the block matrix such that
OIG:;G, H)DG, j)=G and is zero on the other parts of O[G;(i,j)l. The size of
O[G;(i, /)] will be defined by its context. G(.,.) takes a block out of a matrix and
0[G;(., .)] embeds a matrix in a larger matrix such that it is surrounded by zeros.

Now, let G be a positive definite matrix that is specified on a multiple band. Let it be

partitioned as G = [G;;], i,j=1,...,N, where the blocks G;; are of size n; Xn;, such
that, for some band with support { (i, j) | li—j| £ M }, the partially specified principal
sub-matrices G(j,j +M), j=1,...,N—M, have a staircase support and such that the

blocks outside the band are unspecified.

The sparse-inverse approximation of G, denoted by G3}, is defined as [Nelis (1988)]

N-M
G5! = Y OIGG, j + M)ylg;G, j + M)] (4.432)
j=1
N-M-1
- Y OGG+1,j+MyeG+1,j+M) (4.43b)
j=1

It is shown there that G5} is close to G~ and that it has the desired sparsity pattern,
provided that G is not close to singular. Although G3' cannot be guaranteed to be
positive definite, it is conjectured in {Nelis (1988)] that it will fail to be so only if the
completely specified matrix G is close to singular. In practice, the algorithm performs
well; results are presented in Section 5.5.
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An example of how Equation (4.43) would produce the sparse-inverse of a block matrix
for N =3 and M =1 is given in Figure 4.10. '

G (1,

'—_1__

__4.._

@n

G (2. ik

|

|

-+
G

-

' 0 G2 9%

Figure 4.10. An example of Equation (4.43) for N=3and M = 1.

4.7.2 Finite Element Numbering

For the Schur algorithm, it is impossible to devise a finite element numbering scheme
that satisfies Equation (4.41), ie. such that the specification support S of G only
contains entries corresponding to pairs of nearby finite elements. We will now show
that the hierarchical Schur algorithm allows a numbering for which Equation (4.41) is
almost satisfied.

Let w again be the distance over which capacitive coupling is significant. Then,
partition the layout into non-overlapping vertical strips of width w. (The right-most
strip possibly has a width < w.) Number the strips from left to right as §,, S, .. .., S,.
and let strip S; correspond to block G(i,i) of G, and the abutment of some consecutive
strips S; -+ S; to the sub-matrices G(i,j) of G. Viewing the consecutive strips

*§8;, j =i+M, as one wider strip S;j» gives a one-to-one correspondence
between the terms in Equation 4.43 and the strips in the layout. This is illustrated in
Figure 4.11 for N=5and M =1.

Each strip then corresponds to a matrix that can be approximately inverted with the
Schur algorithm. Within each strip, a staircase support of the corresponding matrix is
obtained by numbering the boundary element nodes in order of increasing y-coordinates
and by neglecting the x- and z- components of the distance between the boundary
elements. (In Figure 4.11(a), the positive x-, y- and z-axes are respectively to the right,
up and out of the paper.) An illustration of this ordering and the resulting support of the
matrix is given in Figure 4.12.
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Figure 4.11. A strip partitioning of a layout (a) and the corresponding blocks of the
influence matrix (b).
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1234
(a) (b)
Figure 4.12. An example of a finite element ordering (a) and the resulting matrix
support (b).

While this one-dimensional distance measure clearly includes all interactions between
boundary elements at distances < w, it still does not exclude all interactions between
elements at distances > w. However, it is acceptable since the elements must be close
in the x-direction as well as in the z-direction, because they are all located in the same
strip and because of the dielectric structure of an IC, respectively. In fact, for M = 1in
Equation (4.43). we have at most 2 consecutive strips with a total width of 2w. Thus,
when we neglect the distance in the z-direction, we have for the hierarchical Schur
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algorithm:
(i, j) e Sifdist (e, e)<w (4.44a)
G, j) e Sifdist (e;, e;) > 2w (4.44b)

where some (i, j) with w < dist (¢;, ¢;)<2w are in S and some are not. (When ¢ is
taken as the thickness of the dielectric layer in which the conductors float, the distance

in the z-direction can be taken into account by replacing 2w by Vdw? + 1% )

In comparing Equations (4.42) and (4.44), it must be noted that in the latter there is no
dependence on the total size of the layout. This is reflected in the time complexity of
the algorithm. Assuming a square layout with the finite elements uniformly distributed,
the dimension of each block G(i, j) of G is proportional to the number of finite elements
in a strip, or O(W\lﬁ ). With the width of the staircase band being O(w?), the Schur
algorithm takes O (Nb?) = O (w\N) x O(w*) = O(w VN) time per block. Since

there are O(V—;}V—) blocks, the total time is O (Nw*), which is linear in the size of the

layout. Also, the space complexity O (b?) becomes O (w*), which is independent of the
size of the layout. These figures must be considered the main result of this section.

4.8 Conclusion

This chapter has dealt with the theory and mathematics of an efficient method for
accurately computing the capacitances of integrated circuit interconnections. The
method is a so-called boundary element method (also an integral equation method), in
which the equations for a static electric field are solved by discretizing the surfaces of
the conductors. An amount of charge is assumed on each of the discrete elements and
the charge on each individual element induces a potential in all other elements. The
capacitances are obtained by inverting an influence matrix which expresses the charge-
potential relation between elements.

In the past, the matrix inversion formed the computational bottleneck in this capacitance
extraction method, limiting its applicability to small problems. However, the
hierarchical Schur algorithm described in this chapter can be used to quickly
approximate the inverse, yielding a reduced capacitance network that exclusively
contains all significant capacitances.
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The efficiency of the hierarchical Schur algorithm is summarized in Table 4.1. For
contrast, the table also shows the computational cost of exact inversion as well the
Schur algorithm, of which the hierarchical Schur algorithm is an extension. These
results were obtained for the case of a square design with a uniform distribution of N
boundary elements of identical size. Thus, N is linear in the size of the layout. The
parameter w denotes the distance over which capacitive coupling is significant. It is a
constant that depends only on the desired accuracy of the capacitance network
extracted—not on the size of the layout.

Table 4.1. Time and space complexities

algorithm CPUtime memory
exact inversion N3 N?
Schur N*w? Nw?
hierarchical Schur Nw? w?

We conclude that the hierarchical Schur algorithm is an utterly efficient (optimal)
algorithm for inverting the influence matrix in the boundary element method for
capacitance extraction.

How to integrate the boundary element method presented in this chapter into a layout-
to-circuit extractor running on an IC designer’s workstation is the subject of Chapter 5.
For that purpose, we must solve many other issues, such as that of generating the
boundary element mesh. The result will be a practical software tool for 3-dimensional
IC capacitance extraction. Chapter 5 will also present data (such as measured
computation times and memory use, and capacitance data), obtained from an actual
implementation of the method. These data indeed confirm the efficiency and accuracy
of the method.
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5. 3-Dimensional Capacitance Extraction

5.1 Introduction

In this chapter, we study how the mathematical concepts and tools developed in Chapter
4 can be implemented in a practical and efficient program that puts their modeling
power under the fingertips of the designer. Our objective is to develop the detailed
algorithms and computational procedures necessary to build a full-fledged layout-to-
circuit extractor having the the finite element based capacitance extraction method of
Chapter 4 as an integrated part.

The following are the main issues to be resolved:

1. How to fully automatically generate an accurate 3-dimensional boundary element
mesh from a 2-dimensional layout and a suitable description of the fabrication
process, in an efficient way.

2. How to efficiently implement the arithmetic operations and algorithms to
compute and invert the influence matrix and how to convert the inverse of the
influence matrix into a capacitance network.

3. How to combine all these operations with the basic device, connectivity and
resistance extraction steps.

By way of introduction, we begin with a conceptual description of the overall finite
element based capacitance extraction algorithm. Individual steps of this algorithm are
then refined in subsequent sections.

With w the distance over which coupling capacitances are considered significant, the
algorithm defines a window of width 2w and height w that is swept over the layout in
scanline order (to be defined below). During the sweep, a finite element mesh is
created. Within the window, finite elements are assumed to be coupled to all other
finite elements in the window. The Green’s function is evaluated for all pairs of
coupled finite elements and the resulting influence matrix is inverted on the fly.
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Algorithm 5.1. 3-Dimensional Capacitance Extraction

Input: A layout of a VLSI (sub) circuit, in the form of a canonical edge

description as described in Chapter 3.

A parameter w, which specifies the distance over which coupling
capacitances are considered significant.

Output:  An equivalent circuit, in a form ready to be simulated by a program such as

Spice.

_ Method:

1.

[Scan Layout] A strip of width 2w is moved from left to right over the layout in
steps of size w, as a result of which neighboring strips overlap half of their width.
For each strip of width 2w and for each overlap of strips of width w, do steps 2-6.
For strips of width 2w these steps correspond to one term in the summation in
Equation (4.43a) and for overlaps of strips of width w, these steps correspond to
one term in the summation in Equation (4.43b).

During this step, circuit extraction (e.g. transistor identification, resistance
computation, connectivity resolution) takes place.

[Generate Mesh] A finite element mesh is created for the layout in the current
strip. The mesh is made fine enough to accurately model the differences in height
of the conductors above the substrate and to satisfy criteria regarding its
coarseness.

[Compute Influence Matrix] For every pair of nearby finite elements in the
current strip, their mutual influence is computed and inserted in the influence
matrix. The influence matrix is left unspecified for pairs of finite elements which
are not close together.

[Invert Influence Matrix] The influence matrix is inverted using the Schur
algorithm. The result is a short-circuit capacitance matrix C;, with non-zero
entries only on the positions for which the Green’s function has been specified.

[Update Circuit] The non-zero entries of the inverted influence matrix, ie. the
short-circuit capacitance matrix, are converted to two-terminal capacitances and
inserted in the extracted circuit. In case the current strip is of width w, i.e. it is an
overlap of two strips, the capacitances are made negative before being inserted in
the circuit. See also the last remark made under step 1.
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6. [Clean Up] As the strip moves, the finite elements to the left of the strip are
destroyed. Thus, the finite element mesh is only present in a sliding strip of width
2w. [ ]

The mesh generation, step 2, is worked out in detail in Section 5.2. The above
algorithm shows steps 3-5 as sequential steps, to be executed one after the other.
However, in Section 5.3 it is shown that they are actually executed together in an
interleaved fashion. This interleaving results in less storage space. Subsequently, the
actual software implementation of our 3-dimensional capacitance extraction method in
the Space layout-to-circuit extractor is described in Section 5.4. Section 5.5 contains an
experimental analysis of the accuracy and performance of the program. The results
appear to be in agreement with the theoretical figures obtained in Chapter 4. Finally, a
conclusion follows in Section 5.6.

5.2 Geometric IC Modeling and Mesh generation
5.2.1 Introduction

In this section, we study the problem of mesh generation. In other words, we are
looking for methods and algorithms that enable us to obtain a finite element mesh on the
surfaces of the conductors (see Chapter 4). Although user input of the actual 3-
dimensional geometry is comtnon, it is not acceptable here since the method must be
integrated in a layout to circuit extractor. Thus, given a suitable description of the chip
fabrication technology, the mesh must be derived from the layout automatically.

To understand and discuss the problem, it is convenient to consider two subproblems:

1. The problem of automatically deriving a 3-dimensional model of the IC structures
from a 2-dimensional specification in the form a a layout description.

2. The problem of generating a finite element mesh on the surfaces of the model.

Some work related to both of these problems has already been done. For example, the
problem of determining the geometry of I1C structures (and other characteristics, such as
doping profiles) is handled in so-called process simulators. These tools actually
simulate the IC processing steps like implantation, deposition and heat treatment with
the aim of developing and optimizing the processing modules. This is done via an
analysis (also using simulation) of the performance of the resulting devices.
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Although most of the process simulators only deal with the processing steps needed to
fabricate the active devices, some can handle lithography, etching, deposition and other
processing steps to model the geometry of interconnections. For example, 2-
dimensional interconnection modeling capabilities are provided by SAMPLE
[Oldham (1979), Oldham (1980)] and SIMPL [Grimm (1983), Lee (1985)]. Given a
layout description of a part of an IC and a sequence of parameterized processing steps,
these tools produce cross-sectional views of the IC. These cross-sections somewhat
resemble those obtained by SEM photography. They can subsequently be used to
determine interconnection parasitics. In fact, a postprocessor for SAMPLE which
enables studying resistance and capacitance of interconnections in relation to the step
coverage of crossing wires is presented in [Lee (1983)]. However, this program uses a
heuristic method for capacitance determination instead of a finite element method.

In [Koppelman (1983)], a comprehensive prototype system for the simulation and
analysis of IC processing steps, called OYSTER, is presented. This system is based on
a general-purpose 3-dimensional geometric modeling system [Wesley (1983)]. Its input
is an IC layout description and a description of the sequence of processing steps. Each
step of the sequence is ‘‘applied’” to a database containing 3-dimensional geometric
models of the IC device structures. After the last step, a 3-dimensional geometric
model of the IC structure is complete. This model may then be used to automatically
determine various geometric, mechanical, thermal and -electrical properties. In
particular, the authors have applied it to determine interconnect capacitances. For that
purpose, the system was extended to perform automatic mesh generation for a finite
element based capacitance modeling system. This is shown in Figures 5.1 and 5.2,
which are reproduced from [Koppelman (1983)].

The process simulators described above obtain the final geometry by means of
simulation. Although accurate geometrical models can then be obtained, this method
has some disadvantages when applied to the problem of capacitance extraction:

1. A detailed knowledge of the processing steps is needed, i.e. for every step, nearly
all the parameters (temperature, duration, etc.) must be available.

2. The problem solved is in fact far moré general than needed for capacitance
extraction. For that purpose, only the final 3-dimensional geometry is needed.
The physical shapes during the intermediate stages are irrelevant.



5.2 Geometric IC Modeling and Mesh generation 99

- Figure 5.1. Model of a polysilicon structure created by OYSTER. (Reproduced with
permission, IBM J. Res. Develop.)

Figure 5.2. Finite element decomposition of a polysilicon structure. (Reproduced with
permission, IBM J. Res. Develop.)

Therefore, we are lobking for an algorithm that directly produces a geometric model of
the finished IC, and avoids the intermediate results. This also benefits the efficiency of
the algorithm.,

The model that is produced should accurately describe the shape of the conductors. For
example, in the case of non-perfect planarization, the height differences of the
conductors above the substrate, which are a result from the presence or absence of other
conductors, should be modeled. The model should also account for the systematic
deviations of the dimensions on silicon from the designed dimensions. These
deviations may result in oversizing or undersizing the physical conductors relative to
the dimensions in the design database. Although this is often partly compensated
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before mask making, by applying appropriate grow and/or shrink operations, some
deviations remain. For example, the cross-section of a conductor often has a
trapezoidal shape.

5.2.2 Geometric IC Modeling

General Considerations

Obtaining a 3-dimensional geometric model of an IC is an application of the field of
geometric modeling. Geometric modeling is concerned with efficient and robust
representation of geometric information for the design and analysis of physical
structures, see, e.g. [Miller (1989)]. We define geometric IC modeling as the geometric
modeling of the 3-dimensional structures on an IC.

In a simple form of geometric modeling, called wire frame modeling, physical shapes
are represented by lines and points which lie on the surfaces of the objects. Surface
model:ng is a more elaborate form of geometric modeling that explicitly describes the
surfaces of the objects. Solid modeling, finally, also provides information on the
closure and connectivity of the physical structures.

Solid modeling is the most appropriate technique to solve our capacitance extraction
problem. For example, it is clear that a data structure that merely describes the surfaces
of the conductors (surface modeling) will have difficulty handling such aspects as
(electrical) connectedness.

Various solid modeling techniques have been developed, but two of them are most
important because of the power and generality of the algorithms that have been
developed for them. The first is called constructive solid geometry (CSG) and the
second is called boundary represeniation (B-rep) geometric modeling.

In the CSG approach, objects are defined by and represented as sequences of Boolean
operations and geometric transformations on simpler objects. Common operations are
the union and intersection of two objects. Due to its stepwise way of construction, CSG
is ideally suited to the simulation approach to geometric IC modeling. For example, the
geometric modeler [Wesley (1983)] that was used in the OYSTER system is in fact a
CSG system. Since the boundary of the objects is only represented implicitly, CSG is
less suited to mesh generation for the boundary element method that we use.

Instead, we employ the B-rep approach. In the B-rep approach, a graph data structure is
used to describe the objects by their boundary. Conceptually, a graph is mapped (drawn
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such that no two edges cross) onto the surfaces of the objects. The vertices of the graph
then correspond to particular points on the objects and the edges of the graph define
regions on the surfaces of the objects. In the B-rep approach, the bounding surfaces of
the objects are represented explicitly. If the graph data structure is suitably organized,
all the necessary information about the boundary of the objects can be obtained by
graph traversal algorithms.

The regions on the surfaces defined and bounded by the edges and vertices of the graph
are called faces. The boundary of a face may consist of a single, closed loop of edges
and vertices. Such faces are said to be simply connected. In the general case, the
boundary of a face may also consist of two or more loops, as in the case of surfaces
containing holes. Such faces are said to be mulriply connected. In our case, we use
only B-reps with simply connected faces.

The graph data structure captures the topology of the objects. The geometry is normally
added to the graph data structure via the coordinates of the vertices and/or a parametric
description of the faces. Therefore, the faces should be chosen in such a way that their
form can be described by the parametric function in use. In our case, as the faces will
be planar polygons, the parametric function will not be needed—the faces are described
implicitly by the vertex coordinates. When the boundary of a face consists of more than
three vertices, there will be some redundancy in this description and—because of
floating point imprecision—some inconsistency. In our case, this does not create
problems, although the problem of fixed resolution solid modeling deserves specific
attention, see e.g. [Hoffmann (1989)].

As an example, Figure 5.3 gives a B-rep model of an L-shaped conductor.

Figure 5.3. A B-rep model of an L-shaped conductor.
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Algorithm

The solid modeling algorithm is implemented on top of the geometrical algorithms and
data structures described in Chapter 3. Recall from that chapter that the layout is
represented as a tile dissection, where a rile is a trapezoidal region of one color. The
color of a tile is defined as a binary n-tuple or bit mask indicating the presence and
absence of masks. Space tiles have a color bit mask with all bits cleared.

The mesh is constructed while processing all pairs of abutting tiles, using the enumpair
operation described in Chapter 3. This is illustrated in Figure 5.4. Figure 5.4(a) shows
three tiles; the shaded tiles contain an interconnect layer, say, metal. If the interconnect
is present in one and only one tile of two abutting tiles, as in the case of tiles 1 and 2 or
2 and 3 in Figure 5.4(a), (a part of) a conductor side wall will be found. Then, the mesh
along that part will be generated. If the conductor is present in both tiles, the mesh will
only be created along the top and bottom surfaces of the conductor. The lateral position
of the mesh vertices will be adjusted a proper amount to model the actual shape of the
conductors more accurately.

For example, a side view of the mesh along the boundary between tiles 1 and 2 is given
in Figure 5.4(b). Note how the vertices are displaced laterally. The mesh along the
common boundary of tile 1 and 3 is shown in Figure 5.4(c). Thus, the mesh is explicitly
created along all tile boundaries. This implicitly creates the mesh at the top and bottom
sides of the conductors—a face for the top and bottom sides of each tile. The solid
model then becomes a model as shown in Figure 5.3. In the mesh refinement algorithm
that follows, each face of this model is individually refined into faces that are
sufficiently small.

The above idea is implemented using mesh recipes. A mesh recipe specifies the
topology of a part of the solid model, corresponding to the common boundary of two
abutting tiles. Basically, there are two types of mesh topology to be specified by the
mesh recipes—these correspond to the cases in Figures 5.4(b) and 5.4(c), respectively.
Mesh recipes also specify part of the mesh geometry. In particular, they specify the z-
position of the vertices and indicate how to adjust the positions of the vertices to model
D.0.S.! deviations. -

1. D.O.S. =Dimensions On Silicon.
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Figure 5.4. A layout (a), side view of the mesh on the boundary between tiles 1 and 2
(b) and between 1 and 3 (c).

Mesh recipes depend on the presence and absence of particular masks in both tiles, or
stated otherwise, on the color transitions between two abutting tiles. Then, for a given
pair of tiles, a list of vertex prototypes can be found by means of hashing with a key
constructed from the color of the tiles. (The hash table itself is compiled beforehand
from a suitable description of the fabrication process.) The principles described above
are formalized in Algorithm 5.2. :

Algorithm 5.2. Solid Model Generation

Input: A 2-dimensional layout in the form of a colored tile dissection.
Result: A 3-dimensional solid model of the resulting interconnections.
Method:

For each pair of abutting tiles, do steps 1 and 2 below. The pairs of abutting tiles are
found using the algorithms given in Chapter 3 and enumerated by the enumpair
operation defined in that chapter.

1. [Look up mesh recipes] Use the color of both tiles to construct a hash key, and
use this key to look up a list of mesh recipes. The list contains one recipe for
each of the interconnect layers present in one or both tiles. The look up table has
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been compiled beforehand from a suitable description of the fabrication process.

2. [Process recipes] For each recipe, do the following steps a-g.

a.

[Conditionally create side wall face] If the recipe is for a conductor side
wall, create a face for it. The face will model the part of the conductor side
wall along the common boundary of both tiles.

[Find or create top and bottom faces] For each of the two tiles, see if the
tile contains interconnect. If so, look up the top and bottom faces. The
faces can be found efficiently when maintaining appropriate connections
between tiles and faces. If a tile is encountered for the first time, its top and
bottom faces do not exist yet and must be created now.

[Find or create vertices] Look up the already existing vertices, if any,
required for the recipe. This can be accomplished efficiently when
maintaining appropriate connections between the tiles and vertices. Create
any required but not yet existing vertex.

[Conditionally find or create vertical edges] If the recipe is for a
conductor side wall, look up the already existing edges, if any, required for
the recipe. Create any required but not yet existing edge. The edges are
linked to the vertices as appropriate.

[Create lateral edges] Create the two edges, along the bottom and top
sides of the conductor, linking the vertices at both end points of the
common boundary between the two tiles.

[Update face pointers] For each of the two or four edges required for the
recipe, determine the faces bordered by the edge and update the face
pointers of the edge. The faces bordering the edges have already been
found in steps a and/or b, and connecting the faces and edges appropriately
is a straightforward process.

[Conditionally adjust position] To account for the systematic deviations

‘between layout dimensions and the dimensions-on-silicon, adjust the

position of the vertices on a conductor side wall by shifting them in the
direction orthogonal to the boundary between the tiles. The amount of
shifting may be different for the top and bottom of a conductor to enable
the modeling of non-rectangular cross-sections. ]
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5.2.3 Mesh Generation

General Considerations

Although we distinguish between the 3-dimensional modeling of the structures on an IC
and mesh generation, it turns out that these two problems can in fact share the same
data structure. That is, the finite element mesh can be represented by a graph data
structure identical to the one used for the B-rep model, although it contains more
vertices and has shorter edges and smaller faces than strictly needed for the B-rep alone.
Thus, the mesh generation algorithm that we have developed is the second stage (a
mesh refinement stage) in a combined solid modeling and mesh generation algorithm.

The required topological structure of the mesh depends on the type of boundary element
method used. For a method employing linear elements. generating a piecewise linear
charge distribution, a triangular mesh is required. In such a mesh, elements are
bordered by exactly three edges. There is no such requirement in the case of constant
elements, generating a constant charge distribution. Any subdivision suffices. In this
case, we may even employ a mixture of n-sided elements, in which »# can assume any
value > 3.

Although a strict triangular mesh could be employed in the case of constant elements,
which would be preferable for reasons of programming simplicity, it is better to use a
combination of n-sided elements to improve the efficiency. Depending on the required
accuracy, many of the faces in the unrefined solid model may already be small enough.
If the final triangulation step is omitted for these faces, there will be fewer elements.
Although the per-entry computation time of the influence matrix is increased because of
the more complex shape of the elements, the total time for influence matrix computation
and inversion is reduced, because the matrix will be smaller.

A regular mesh is preferred for reasons of numerical accuracy. Experiments have
shown that the influence matrix can become ill-conditioned (or even non-positive) with
(very) irregular meshes. Thus, areas as well as side lengths and internal angles of all
elements should be comparable.

Mesh refinement requires a measure of the elements to be defined; mesh refinement
stops when there are no elements left of which the measure exceeds a user-defined
threshold. An obvious measure is the area of the element. However, this measure is
not without problems since it can lead to meshes containing elements with large aspect
ratios that violate the requirement of regularity.
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Therefore, the stopping criterion of the mesh refinement must somehow include the
aspect ratio of the elements. A convenient way to do this is by also using the diameter
of a face, defined as the maximum of the distance between each pair of vertices of the
face. Mesh refinement then continues as long as there are elements of which the area
and/or the diameter exceeds the allowed maximum. Since some irregularity can be
tolerated, refinement based on the diameter alone is not appropriate. A good default for
the diameter is around 4 times the square root of the maximum area.

Algorithm

The solid model forms a coarse initial mesh that must still be refined according to a
prescribed granularity criterion. Moreover, in the case of first-order finite elements, it
must be transformed into a triangular mesh in which each face is bordered by exactly
three edges. As the mesh refinement algorithm for linear elements is obviously more
complex than that for constant elements, we only describe the former here. If desired,
an algorithm for the latter can be obtained by a trivial simplification.

It appears to be better in general, to not let the algorithm immediately begin to
triangulate a given face and then refine the triangles that are too large. For faces of the
solid model having a large aspect ratio, this would result in a relatively irregular mesh.
For such faces, it is better to subdivide them until their aspect ratio is around unity, and
then to perform the triangulation.

A recursive algorithm can elegantly perform the initial refinement. This is illustrated in
Figure 5.5(a), where the refinement steps are numbered (2) and (3). The final
triangulation step is numbered (4). For contrast, Figure 5.5(b) illustrates the case of
immediate triangulation, step (2), followed by a recursive refinement in which each
triangle is split into 4 similar triangles. While the element areas of the final mesh in
5.5(a) and 5.5(b) are equal, the first mesh is more regular.

During the mesh refinement, extra edges must be added that split an element so that the
aspect ratios of the two resulting elements are optimized. For that purpose, two edges
of the original element can be split to create two new vertices that become the end
points of the new edge. The locations of the new vertices can be chosen to optimize the
aspect ratio of the new elements. However, new vertices must not be created very close
to existing vertices, because this leads to a bad triangulation. Thus, instead of always
creating two new vertices, we must use any existing vertices that are close to the
intended location of the new vertices. This is illustrated in Figure 5.6. Figure 5.6(a)
displays the initial element, two refinement steps and a good triangulation. Figure
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Figure 5.6. Good and bad triangulations.
5.6(b) displays non-optimal refinement steps followed by a bad triangulation.

An algorithm that implements these ideas is given as Algorithm 5.3. The result of the
algorithm for the L-shaped conductor of Figure 5.4 is displayed in Figure 5.7.

Algorithm 5.3. Mesh Refinement on Tile Surfaces

Input: A solid model of a VLSI (sub) circuit, in the form of a B-rep as produced
by Algorithm 5.2.
A parameter maxarea, specifying the maximum size of the finite element
triangles.
A parameter maxdiameter, specifying the maximum diameter of the finite
element faces before triangulation.

Output: A boundary element triangulation.
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Method:

1. [Initialize Priority Queue] For each face f in the initial finite element mesh of
the current strip, insert f in Q. Q is a priority queue data structure ordered
according to the area of the faces.

2. [Refine]

while Q = &
f :=eject (Q)
if area (f) > 2 X maxarea or diameter (f) > maxdiameter
f,.f, := splitface (f)
inject (Q, f,)
inject (Q, f5)

The splitface operation takes a face as input and returns two smaller faces, each
of which have a smaller area and diameter. The inject operation inserts a face in
Q. The eject operation returns and deletes the largest element from Q.

The area of a face is compared with 2 times the maximum area, since a face will
be split into at least two triangles, usually approximately equal in area.

3. [Triangulate] For each face fin the refined finite element mesh, triangulate f. In
many cases, fis a quadrilateral face with 4 vertices and can be triangulated in a
trivial way. For the general case of a face consisting of a number of vertices, a
suitable algorithm is that of [Garey (1978)]. [ |

Figure 5.7. Result of Algorithm 5.3.
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5.3 Finite Element Arithmetic

5.3.1 Introduction

The central equation that must be evaluated is Equation (4.36) as reproduced below:
C,=ATG' A “(5.1)

where

C; is the so-called short-circuit capacitance matrix
A is an incidence matrix relating finite elements and conductors
G is the influence matrix.

In this equation, G™! is approximated as Gg' in Equation (4.43), which is also
reproduced below:

N-M :
G5/ = Y, OIGG,j+M)uie:(j,j+M)] (5.2a)
j=1
N-M-1
= ¥ OIGG+1,j+M)p;Gi+1,j+M)] (5.2b)
j=1

In this section we will develop efficient procedures to evaluate Equation (5.1) by using
the approximation in Equation (5.2). Each of the issues involved can have a great
impact on the overall efficiency:

1. Computation of the entries of G.

2. The implementation and use of the hierarchical Schur algorithm to evaluate
Equation (5.2). For example, since the storage cost of the complete influence
matrix—even when it is only partly specified—and its inverse is clearly
prohibitive, we should look for more efficient methods.

3. The exact implementation of the pre-multiplication (post-multiplication) of G
with AT (A). A straightforward implementation using a matrix multiplication
algorithm is impractical. Instead, a graph-based algorithm is more efficient.

4. The computation of the circuit capacitances from the values of C;.

In this section, we will focus on each of the issues in turn.
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5.3.2 Computation of the Entries of G.

In the case of a Galerkin solution, the influence matrix G is defined by Equation (4.30),
as reproduced below:

Gj=[]| G, ) f; @) f: (@) dg dp ' .3)
5,5;

In the case of a collocation solution, the influence matrix G is defined by Equation
(4.31), likewise reproduced below:

Gji=[Gw; 9)f (@) dg (5.4)
S;

To evaluate Equation (5.4) and the inner integral over S; in Equation (5.3), we use an
(exact) analytical formula that was presented in [Wilton(1984)]. To evaluate the
integral over S; in Equation (5.3), we use 2-dimensional numerical quadrature formulas,
as presented in [Stroud (1971)].

5.3.3 Matrix Construction and Inversion

The Schur algorithm can be implemented so as to operate in a pipeline fashion. That is,
with the input being consumed in a certain order—in our case, this order will be row-
by-row——and the output being produced in the same order, partial output is already
produced before the matrix is completely known [Genderen (1991)]. With w the
(maximum) width of the staircase band, the length of the pipeline and, consequently,
the amount of memory needed for matrix inversion is O (w?). This is actually a O(1)
complexity with respect to the size of the layout.

We do not consider the implementation of the Schur algorithm here—see
[Genderen (1991)] instead—but we present the interface of the software module that
implements the Schur algorithm below. These operations are considered primitives in
the algorithm for the evaluation of Equation (5.2) that we will develop.

schurln (v) Specify a new element v of the upper triangular part of the
' influence matrix.

schurNewRow () Signal the beginning of a new (possibly the first) row of the
influence matrix.
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schurStop () Signal the exhaustion of the input data.

schurOut (v) Called by the Schur module to pass back result values in v.
This operation has to be implemented by the client of the
Schur module.

The Schur module works on the upper triangular part of the influence matrix only. This
is appropriate since the matrices must be symmetrical.

We have already indicated that a graph-based implementation of the incidence matrix
multiplications is the most efficient. In such a graph-based algorithm, the finite
elements are not numbered and the elements of G and G™' do not carry indices. (They
can carry indices inside the Schur module, but this is not part of the external interface of
the module). This implies the need for maintaining a correspondence between the
entries of the influence matrix G or its inverse G~! and the pair of finite elements that
produced the entry in G. This can be implemented by a second pipeline (actually, a
queue or FIFO data structure) operating in parallel with and synchronous to the matrix
inversion pipeline. When at time ¢ an entry of G, say, G;;, is injected in the Schur
pipeline, the corresponding pair of finite elements (e;, ¢;) is injected in the finite
element queue. At time 7 + 3z the entry G,-‘]-l is ejected from the Schur pipeline, and the
éorresponding pair of finite elements is ejected from the finite element queue. The pair
of finite elements ejected from the finite element queue then correspond to the entry of
G™! that is ejected from the Schur pipeline. This is illustrated in Figure 5.8.

G = Schur N N Schur o Gl
Y algorithm| algorithm| Y
(eire) = = = | FIFO | = (e;e))
(@) (b)

Figure 5.8. Illustration of the Schur pipeline and finite element queue operating in
parallel, at time ¢ (a) and at time ¢ + 8¢ (b).

These concepts are formalized as follows. We recall from Section 4.7 and Algorithm
5.1 that the layout is partitioned into strips and that for each strip a matrix has to be
inverted with the Schur algorithm. Within each strip, the finite elements are ordered
according to increasing y-coordinate. The doStrip operation in Algorithm 5.4
corresponds to step 1.3 of Algorithm 5.1, and the operation is executed for every strip.
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It takes two parameters: the head of a list of finite elements e; and a window size w.
The list of finite elements has been sorted in order of increasing y-coordinate, and the
specific traversal of the list conducted by this algorithm results in a staircase
specification support as discussed in Section 4.6. This algorithm produces the upper
triangular part of the the matrix only, as required by the Schur module. The operations
schurNewRow, schurln, and schurStop are implemented by the Schur module, as
discussed above. The inject operation inserts a pair of finite elements in the queue
identified by feq. The operation green (e,, e,) evaluates the entry in the influence
matrix for the two finite elements ¢, and e,.

procedure doStrip (e, w)
begin
while e ; # null
schurNewRow ()
€y =€
whilee, #nullande,.y-¢e,.y<=w
inject (feq, e, e,)
schurln (green (e, e,))
€y =€y .next

€; :=e;.next

schurStop ()
end

Algorithm 5.4. Construction of the influence matrix, step 1.3 of Algorithm 5.1

5.3.4 Processing the entries of G!

The entries of G~ are reported back from the Schur module by the schurOut operation.
This operation is implemented by the client of the Schur module, as presented below.
The circuit capacitances have to be updated from the entries of G'. There are two
issues involved:

1. The incidence between finite elements and conductors.
2. The conversion of short-circuit capacitances to two-terminal capacitances.

In Equation (5.1), post-multiplying G~ by A results in a matrix in which the columns of
G™! that correspond to finite elements lying on the same conductor are replaced by one
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column containing the vector sum of the original columns. Similarly, pre-multiplying
this result by A7 gives a matrix in which the rows that correspond to finite elements
lying on the same conductor are replaced by one row containing their row-vector sum.
Together, this results in a matrix in which the entries of G~ that correspond to the same
finite elements are taken together in a summation. More precisely, when there are N
finite elements and M conductors, and when the sets /, of indices of finite elements
incident to conductor k, k =1 - - - M, are defined by

Ik ={i 1 ie[1--- N]and element i incident to conductor k}. k=1---M  (5.5)
the entries of C; can be written as?

Cskl = (A TG—IA)H = Z 2 G,—j] (56)
i€l jel,

This is illustrated in Equation (5.7) for an example with 3 finite elements and 2
conductors such that I, = {1,2} and 7, = {3}. Thus,

: ]
G—l G—l G—l
110 S I L
001| |62 Gz G| |10 =
Gii G G| U1
| (5.7)
(-1 -1 1]
G G GTl +G11+G3] +G3} Gi+G3

110
G351 +G3 G| = e _
[0 0 1} 2R T (;311*'632l G3
G31+G3; G3)

This means that, after the initialization of all Cy, to 0, the multiplications with AT and A
in Equation (5.1) can be implemented as in Algorithm 5.5. This algorithm is a first,
incomplete, version of the schurOut operation toward which we are aiming.

2. In this and subsequent equations, the notation G;;' must be read as (G™'); and not as (G;;)™.
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for all G;}'
k=xliel,
l=xlje I,
Caa =Cyq + Gjj'

Algorithm 5.5. The schurOut operation, version 1.

This algorithm does not account for the fact that the schurOut operation only produces
the upper triangular part of G™'. Besides a modification for this, we need another one
to convert the short-circuit capacitances into two-terminal capacitances. These
modifications can be combined, and the new algorithm is shown in Algorithm 5.6. In
this algorithm, C,; is the ground capacitance of conductor k, and Ci, k#l, is the
coupling capacitance between conductors kand .

for all G}, j2i

k=xliel,
I=xlje I,
ifi=j # diagonal entry
‘ Ciy =Cix + (;,_Jl
elseifk =1 # same conductor
Cu =Cik +2% G}
else # coupling capacitance
Ci =Cu +Gjf
Cn = Cu + G',;l
Ckl = Ckl - (;,_1l

Algorithm 5.6. The schurOut operation, version 2.

One issue remains, namely, when the current strip is an overlap of 2 strips and is of
width w, the capacitances have to be subtracted from the capacitances in the circuit,
since they correspond to the second summation in Equation (5.2). This can be
implemented by first negating the value of G7;'.

The first two linés in the body of Algorithm 5.6 implement the incidence relationship of
finite elements and conductors. In the actual program, this incidence relationship is
implemented with pointers from the finite elements to the conductors, together with the
queue of finite element pairs. Taking this and the negation of G,le as discussed above
into account, Algorithm 5.6 can finally be rewritten as Algorithm 5.7.
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In this algorithm, the eject operation removes the tail of the finite element queue and
returns it. The variable OverlapStrip serves as a flag for negating or not negating G,-’jl,
and is controlled outside Algorithm 5.7. The addCapacitance operation is the interface
with the network module of the program. This operation accumulates the capacitance
values between distinct nodes.

procedure schurQut (val)
begin
e, e, :=eject (feq)
if OverlapStrip
val = —val

ife, =e, # diagonal entry in matrix
addCapacitance (e, .node, gndNode, val)

else if e ,.node = e, .node # finite elements are on same conductor
addCapacitance (e | .node, gndNode, 2 x val)

else # finite elements are on different conductors
addCapacitance (e .node, gndNode, val)
addCapacitance (e,.node, gndNode, val)
addCapacitance (e, .node, €,.node, —val)
end

Algorithm 5.7. The schurQOut operation, final version, step 1.5 of Algorithm 5.1.

5.4 The Space Layout-to-Circuit Extractor

In Section 3.7, we have described a layout-to-circuit extractor called Space. Space is
an efficient program that performs, in one scanline pass over the layout, all basic
extraction tasks such as device and connectivity extraction, interconnect resistance
calculation and calculation of interconnect capacitance based on area/perimeter
calculations.

However, the 3-dimensional capacitance model that was developed in Chapter 4 and the
present chapter, has also been implemented in Space as an integrated part running
together with all other extraction operations. All the steps of the 3-dimensional
capacitance computation method (such as boundary element mesh generation and
matrix operations) are executed while scanning the layout. The result is an efficient
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program that performs one single pass over the input data in such a way that complete
intermediate results (e.g. the complete finite element mesh or the complete influence
matrix) never exist, neither in the memory of the computer nor in temporary files on the
disk. Since the basic extraction operations take place as usual, the input is a layout
description and the output is a circuit description, ready to be simulated by, for
example, SPICE.

With respect to the 3-dimensional capacitance model, the implemented version of Space
includes the following characteristics:

Conductors in first dielectric layer. All conductors must be in the first dielectric
layer (region 1 of Figure 4.3). The thickness of this layer as well as its relative
dielectric constant can assume any value >0.

Also infinite or semi-infinite dielectric layers. In the evaluation of the Green’s
function, all terms but the first can be omitted, in which case the results are for a
uniform dielectric medium of infinite dimensions (vacuum when €, = 1). All terms but
the first two can be omitted, in which case the results are for a uniform dielectric half
space.

Planarization. Perfect planarization of the ground plane, dielectric interface and
conductors is assumed. This is becoming more true with modern IC technologies
[Small (1990)].

Orthogonal layout. The layout must be orthogonal with sides parallel to the x- and
y-axes. '

Trapezoidal conductor cross-section. To more accurately model their cross-
sectional shapes, conductors are modeled as trapezoids. More complex shapes (e.g.
shapes with rounded edges [Zemanian (1989)] ) are not implemented.

Diffused conductors. Diffused conductors are handled as described in Appendix 5.1.

Different element types. The program can employ either constant (zeroth order) or
linear (first order) elements.

Galerkin and collocation methods. Space implements both the Galerkin and the
collocation method.

Adjustable parameters. The granularity of the finite element mesh and the size of
the influence window can be adjusted. With a very large window, the program does a
complete and exact computation and inversion of the influence matrix. The sizes of the
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influence window in the x-direction and the y-direction are independent. With a very
large value in the x-direction (the direction of scanline movement), the program
effectively implements the non-hierarchical Schur algorithm for approximate matrix
inversion.

Parameter file. All important parameters such as layer thickness, dielectric constants
and D.O.S. corrections can conveniently be specified in a parameter file that is read at
program start-up.

Resistance extraction. The 3-dimensional capacitance extraction works together
with resistance extraction using a method explained in Appendix 5.2.

Computational optimizations. = The program can optionally perform various
heuristic computational optimizations and short-cuts for improving the computation
speed. An example is mixed Galerkin (for nearby interactions) and collocation (for
remote interactions) or even point-point computations.

Although the computation time increases linearly with the size of the layout, there
remain numerous ways to further improve the speed. Some of these are discussed in
Appendix 5.3.

5.5 Numerical Results
5.5.1 Introduction

In this section, we present some experimental results that were obtained using Space.
The main issues involved are:

1. Comparison and assessment of the relative merits (accuracy and efficiency) of
each the four methods implemented (zeroth-order collocation, zeroth-order
Galerkin, first-order collocation, first-order Galerkin). Our objective is to identify
the method that requires the least amount of computation time to obtain sufficient
accuracy.

2. The effects of program parameters (such as the size of the window and
granularity of the finite element mesh) on the accuracy and efficiency.

3. Evaluvation of the overall accuracy and efficiency.
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4. Comparison with other results.
This analysis confirms the usefulness and practicality of the method.

In the rest of this section, we often use a layout consisting of two crossing buses as a
benchmark. This is the same benchmark as the one used in [Nabors (1991)] and is
easily parameterized in the number of conductors. The thickness and width of the
conductors as well as the vertical separation between both buses is in all cases 1. In
[Nabors (1991)], the dimensions were all given in meters and the conductors were
embedded in a uniform dielectric, with a dielectric constant of 1 (vacuum). To be more
specific to the case of VLSI, we use microns. To compare with the results of
[Nabors (1991)}, we scale their capacitance values by a factor of 107%. In addition, we
use a ground plane in most cases. In these cases, the height of the conductors above the
ground plane is also 1y and the dielectric constant of the medium is 3.9 (SiO,) instead
of 1.0.

As an example, a 2 X 5 conductor crossing bus is shown in Figure 5.9. This figure also
illustrates the numbering scheme used. When a ground plane is present, conductors 1-5
are in the top layer and conductors 6-10 are in the bottom layer closest to the ground
plane.

10 [ |

o | |
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Figure 5.9. Layout of a 2 X 5 conductor crossing bus.
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As a measure of complexity, in most cases we use the number of finite elements in the
mesh that is created for it, instead of the number of conductors. An example of such a
mesh is shown in Figure 5.10.

Figure 5.10. Finite element mesh for a 2 x 5 conductor crossing bus.

In this section, we use the following notation:

0oC Zeroth-order collocation method.
1C First-order collocation method.
0G Zeroth-order Galerkin method.
1G First-order Galerkin method.

n Number of conductors.

Number of finite element nodes.

w Size of the window for the hierarchical Schur algorithm as defined in
Algorithm 5.1, in um.
s Maximum area of finite elements, in pm?.

Unless otherwise noted:

» These experiments were carried out on a HP 9000/720 computer with a 32 Mbyte
main memory.

o CPU times are total values, including the reading of input and technology data,
mesh generation, output of results, etc.

e Memory figures are net amounts, excluding memory allocation overhead.
Typically, the memory is allocated in big chunks. Excluding the overhead gives
smoother curves.
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5.5.2 Accuracy vs. Element Size

This section discusses the accuracy and convergence properties of Space in relation to
the granularity of the finite element mesh. The following remarks must be made first:

1. The accuracy of Space should preferably be checked by comparing with known
results. The literature provides many results for many different geometries.
Although comparatively few of them are obtained or confirmed by
measurements, we can consider (nearly) identical results obtained via two or
more different methods as sufficiently reliable reference data.

However, out of the many results available in the literature, we must however
select those for configurations that match the capabilities of our prototype
extractor, as listed in the previous section. On the other hand, they must not be
trivial either. For the purposes of this section, we have selected two useful
comparisons.

2. For the intended application area, we are usually satisfied with accuracies in the
range of 5-10%. Therefore, in most cases, we can suffice with relatively coarse
meshes. However, since the purpose of this section is to confirm the consistency
of the finite element method used (and the correctness of the implementation), we
also use very small finite elements that result in large numbers of nodes and high
accuracies. Moreover, the results in this section use fully populated matrices and
exact matrix inversions, as well as high-order numerical integration formulas.

Cube in Vacuum

A frequently used benchmark is that of a perfectly conducting cube in vacuum, whose
dimensions are 1m X 1m X 1m. For example, in {[Ruehli (1973)] this benchmark is also
used to compare different solution methods in order to demonstrate, for example, the
accuracy of the Galerkin method when compared to the collocation method. Our results
are consistent with those of [Ruehli (1973)], as confirmed in Figure 5.11. This figure
gives the value of the capacitance found by each of the 4 methods that have been
implemented, in relation to the number of nodes (the size of the matrix to be inverted).
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Figure 5.11. Computed capacitance results for a cube in vacuum for 4 different
methods, in relation to the number of finite elements.

While the exact value of the capacitance is not known, useful upper and lower bounds
are given in [Ruehli (1973)]:

73.3pF < C <743 pF
These bounds can be used to define a maximum approximation error as follows:

| Coupprox—713.3 I I Capprox—14.3 I
73.3 743

error = max X 100% (5.8)

This error is displayed in Figure 5.12, which displays the relative accuracy of each
method more clearly than Figure 5.11.

We make the following remarks:

1. As expected, the collocation method is less accurate than the Galerkin method
and a zeroth-order method is less accurate than the corresponding first-order
method.

2. With a coarse mesh, the relative accuracy of first-order collocation compared to
both zeroth-order solutions is surprisingly low. A possible explanation for this is
that when the collocation method is viewed as an approximation of the outer 2
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integrations in the Galerkin method, the first-order shape functions apparently
require more accurate integration than the zeroth-order shape functions do.

20
Error (%)
T 15 |
10—
5
0 I I T -
0 100 200 300 400

number of nodes (N) — =

Figure 5.12. The relative error, as defined in Equation (5.8), for each of the 4 methods.

Two Crossing Lines
Figure 5.13 shows two crossing lines. With [ denoting the conductor length, ¢; the
thickness of conductor i, and h; the height of conductor i above the substrate, the

geometry is as follows: [ = 254, t; =0.54, ¢, = 1, h; = 0.8y, A, =2

Figure 5.13. Two crossing lines, with the dimensions as in given in the text.
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Table 5.1 presents the capacitances found for this structure in [Ruehli (1975)] (also
using a boundary finite element method) and by Space, using 4 different methods.
Except for the bad performance of the first-order collocation method, as was already
observed in the case of the cube in vacuum, these results appear to be in agreement with
each other. In fact, the differences lie clearly within the variations resulting from the
inaccuracies of the fabrication process and certainly are small enough to be used to
analyze parasitic capacitances in VLSI circuits.

Table 5.1. Comparison of Ruehli/Brennan and Space.
(Capacitances in fF.)

Space (w =)

R/B 0C,s=5 0G,s=5 IC,s=4 1G,s=4
Ci, 2.25 2.22 2.29 2.77 2.29
C 1 gnd 8.38 8.25 8.38 9.55 8.35
C3 gna 430 4.22 4.29 4.61 431

5.5.3 Computation Time

It is expected that linear elements will yield a better accuracy than constant elements
and that a Galerkin will method yield a better accuracy than a point collocation method.
However, the accuracy is improved at the cost of computation time. It is essential to
minimize the computation time needed to obtain a sufficient accuracy. '

It is very hard to accurately predict, for each method, the computational resources
necessary to obtain a certain accuracy. Therefore, the methods must be compared on
the basis of computation time measurements. For these measurements, we have
selected the 2 X 2 crossing bus example, with a ground plane. Compared to, say, the
cube in vacuum, the crossing bus is more typical of the intended application area.

The two main components of the total CPU time are the time needed for matrix
computation and that needed for matrix inversion. Their relative magnitudes depend on
the method used and on the size of the window, since they have an asymptotic
complexity of O(Nw?) and O(Nw*), respectively (see Chapter 4). Thus, in order to
make a fair comparison of the methods, we must use a reasonable window size. For the
analysis in this section, we use a window size of w = 5. For the present case of a2 x 2
bus, this is in fact equivalent to using an infinite window, since the dlmensmns of the
layout itself are 5u x Sp.
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Figure 5.14. C, as a function of the CPU time.

Figure 5.14 shows the capacitance between conductors 1 and 2, the coupling between
the two upper conductors. While these results confirm the convergence properties
found for the case of the cube in vacuum (cf. Figures 5.11 and 5.12), they actually show
that the improved accuracies of the zeroth-order and first-order Galerkin methods are
achieved at the cost of long computation times.

That the extra CPU time is spent in the time for evaluating the Green’s functions is
confirmed in Figure 5.15. This figure shows the CPU time as a function of the number

of elements, N, for each of the 4 methods, together with the time needed for matrix
inversion.

Although this section presents only the results for the coupling between conductors 1
and 2 in the 2 X 2 crossing bus example, further experiments have revealed that the

indicated tendency is valid in general. Therefore, we can draw the following
conclusions:

1.  The zeroth-order collocation method is the fastest method and can be used for a
quick, rough analysis.

2. The bad accuracy of the first-order collocation method is not compensated for by
decreased CPU times, and this method does not appear to be very useful.
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Figure 5.15. CPU time as a function of the number of elements, log-log scale.

3. The zeroth-order Galerkin method is accurate and does not take too much CPU
time. It will often be the preferred method.

4. The accuracy of the first-order Galerkin method is improved at a high cost in
CPU time, and its use can only be justified when absolutely the highest accuracy
is necessary.

5.5.4 Effects of Window Size

To investigate the effects of the size of the window on the efficiency (the run time and
memory use) and the accuracy of the result, we consider the 2 x5 crossing bus
benchmark with a ground plane as defined in Section 5.5.1. For this benchmark, we
extract the capacitance using the zeroth-order Galerkin method and a variable window
size. The finite element mesh that is created is the same in all cases. It consists of 460
equally sized elements (1pt X 1 large) located on the top, bottom and sides of the
conductors as shown in Figure 5.10.-

Table 5.2 shows some of the capacitances for this structure. Because of symmetry,
Ci10=Ci6,Ci9=Cy7and C,5 = Cy5. The case ‘‘window = 11u’" corresponds to an
exact inversion of the influence matrix, and the capacitance values depend on the
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accuracy of the finite element method (determined by, for example, the granularity of
the finite element mesh) only. Note that smaller window sizes result in considerably
lower memory use and CPU times, and that a window size of 3 already gives
reasonably accurate approximations lying within the variations resulting from
fabrication tolerances.

Table 5.2. 2 X 5 crossing bus benchmark, s = 1, method = 0G, with a ground plane.

w time mem capacitances (1 o8 F)

W (sec) (Mbyte) Cigng C12 Ciz Ciy Cis Cys Cur Cs1
11.0 3084 2071 4584 638.1 43.1 185 129 157.8 141.0 1909.2
10.0 3069 20.72 458.5 638.1 431 185 129 157.8 141.0 1909.2
9.0 299.3 20.72 458.8 638.0 43.1 184 128 1578 1410 1909.4
8.0 2844 16.72 4596 6379 430 183 127 1577 1410 1909.7
70 2622 10.72 4609 6377 428 182 126 1576 1410 1910.3
6.0 2345 10.72 463.3 6373 425 180 124 1574 141.2 1911.3
50 2029 6.46 467.6 6366 421 178 124 157.0 1414 1913.2

40 1399 3.58 4812 6358 419 222 156.6 1409  1916.7
30 917 1.97 5022 633.7 49.2 1561 1406 19196
20 531 097 565.2 6559 1556 1403  1953.1
1.0 213 0.65 581.1 5279 151.0 1378 18249

Note that when the window size is decreased, the extracted coupling among conductors
that are far apart becomes zero. Also note that the short-circuit capacitance C;—which
is the sum of a conductor’s ground and coupling capacitances, giving the total load
formed by a conductor for its driver assuming that other conductors have a low
impedance, and therefore largely determining the timing of the circuit—is already
accurate for very small window sizes. In fact, if the window size decreases, the
‘“‘nearby’’ capacitances increase slightly (especially the capacitances to the ground
plane), thereby compensating for not computing the ‘‘far’’ capacitances.

These data show that a reduction of the window size increases the efficiency. They also
confirm an optimal trade-off between the level of detail of the model obtained—which

is in a sense a more appropriate denotation than the ‘‘accuracy’’ of the model—and the
requisite computer resources. '
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5.5.5 Performance vs. Layout Size

To investigate the effects of the size of the layout on the extraction performance (the
CPU time and memory use), we again consider the parameterized crossing bus
benchmark. To compare our results with the results obtained by FastCap
[Nabors (1991)], we do not use a ground plane in this case. Some capacitance values
obtained by Space and FastCap for the 2 x 4 bus are compared in Table 5.3. This table
shows results for both the zeroth and first-order Galerkin methods, the latter mainly as a
reference for estimating the accuracy of the OG and FastCap results. However, for
Space to obtain an accuracy comparable to that of FastCap, it is sufficient to use the
zeroth-order Galerkin method, a 3p or a 5it window and 1 x 1 large finite elements.

Table 5.3. Comparison of results for 2 X 4 crossing bus, without a ground plane.

method Cigi C2 Cin Ciy Ci5 Cig Cpp Cix Gy

FastCap (direct) 70.63 137.0 12.04 7910 4842 40.09 40.09 4842 404.6
FastCap (MGCR, 1=2) 70.50 137.8 1191 8.079 48.36 40.09 4001 4845 4052
Space (0G, w=3, s=1) 79.63 1374 15.11 0.000 46.82 40.08 40.10 4699 406.2
Space (0G, w=5, s=1) 7201 1376 1124 7.668 4791 4034 4034 48.07 4052
Space (0G, w=eo, s=1) 7071 1379 11.41 7859 4831 3995 3995 4846 4045

Space (1G, w=e0,s=0.50)  70.54 135.3 12.82 7.839 47.76 39.50 39.49 47.77 401.0
Space (1G, w=,5=0.25)  70.70 137.0 1220 7919 4846 40.08 40.08 4846 4049

Figure 5.16 shows the amount of CPU time needed in relation to the problem size, for
Space with 3 different window sizes and for FastCap. FastCap results were obtained on
an IBM R6000 computer’. To make this comparison, we cannot use the number of
finite elements () as the common variable, since the multipole method employed by
FastCap apparently needs more elements than Space does to obtain comparable
accuracy. Therefore, we use the number of conductors as the common variable.
. However, the number of finite elements is a better measure of problem size than the
number of conductors. Thus, we use N as the scale of the x-axis. For convenience,
however, the number of conductors is indicated at the top of the graph.

3. Depending on the exact model, an IBM R6000 achieves a performance that is approximately between 0.5
and 1.0 times the performance of an HP 9000/720 computer, which we have used. In comparing the CPU
times, we have ignored this performance difference.
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The results confirm the efficiency of Space. One can see that the CPU time increases
linearly with the size of the layout when the size of the window is kept constant. We
should not conclude from this figure, that Space using an exact matrix inversion (w=co)
is faster than FastCap: the time complexity of exact matrix inversion is O(N>), while
the time complexity of FastCap is O(nN). We can, however, conclude that the
associated constant in the asymptotic time-complexity of FastCap is rather high.

Figure 5.17 illustrates the memory use of Space in relation to the problem size.
(FastCap memory data are not known to us.) As expected, with exact matrix inversion
(w = o), the amount of memory needed is quadratic in the problem size. With a
bounded window, the amount of memory needed for matrix inversion is also bounded.
Only a small, non-constant but sub-linear, term for the rest of the program remains.
The total amount of memory needed is thus practically constant.

number of conductors, n

246 8 10 12 14 16 18 20

2000 —A11 1 | I [ | | |
o FastCap (MGCR, 1=2)
o Space (0G, w=cs, s=1)
1500 v Space (0G, w=5, s=1)
A Space (0G, w=3, s=1)
CPU
time 1000 —
(sec.)
500 —
0 -

T I | ]
0 500 1000 1500 2000

number of elements, N (Space only)

Figure 5.16. CPU time versus problem size.
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Figure 5.17. Memory use versus problem size.

From these results, we may conclude that Space is an efficient program. The low
memory needs of the hierarchical Schur algorithm combined with the method’s
linearity, make comprehensive finite element based capacitance extraction feaslble on
minicomputers and even on workstations.

5.5.6 Ram Cell Example

As an example of a practical application of the program, we now present the results of
an extraction of a 6 transistor SRAM cell in a double metal CMOS technology. The
technology assumed is a hypothetical but realistic Iu CMOS process (A = 0.5u), with a
perfect planarization and the following layer thicknesses, which are are the same as
assumed in Section 2.4:
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gate oxide 250 &
inter wire oxides 0.75p
poly 0.5
metal 1 0.75n
metal 2 1.0u

The finite element model employed is based on metallic conductors embedded in a
stratified dielectric above a ground plane. Diffused conductors, which appear in real
layouts, do not fit in this model. However, Appendix 5.1 describes a heuristic method
so that diffused conductors can be handled anyway.

The layout is shown in Figure 5.18 and the finite element mesh that was created, from
the layout and a technology description implementing the values from the above table,
is shown in Figure 5.19.

The results, using the zeroth-order collocation method, are summarized in Figure 5.20.
In this figure, the height of the boxes is proportional to the capacitances. The boxes
labeled ‘‘gate’” denote intrinsic device capacitances, those labeled ‘‘ground’’ denote
capacitances to the substrate and those labeled ‘‘coupling’’ denote inter-wire
capacitances. Below each bar, the name (or number) of the node and its short-circuit
capacitance are given.

word

meftal 2
)

vdd

Figure 5.18. Layout of the SRAM cell.
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Figure 5.19. Finite element mesh of the SRAM cell.

coupling | coupling

ground ground

coupling
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gate gate gate coupling | coupling
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Figure 5.20. Results of the SRAM cell extraction.

With respect to these results, we make the foliowing remarks:

1. Nodes 1 and 2 are diffused conductors (transistor source and drain regions). This
explains the relatively large ground capacitance for these nodes.

2. The bit line and inverted bit line have relatively large coupling capacitances.
This coupling can cause severe signal degradation, and must be taken into
account in the design of the memory chip. See also [Konishi (1989)], who used a
three-dimensional capacitance extractor to analyze bit line coupling noise in
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DRAM circuits.

3. Coupling capacitances determined from the extraction of a single cell, as done
here, actually underestimate the coupling compared to the same cell embedded in
an array. This can be explained by noting that, for e.g. the bit lines, there is now
a significant contribution to the ground capacitance from both ends of the bit line.
If the cell were embedded in an array, this would not be the case.

Finally, some statistics of the program are shown in Table 5.4.

Table 5.4. SRAM Extraction Results

number of finite elements 839
number of Green evaluations 232663
window size (M) 4
number of strips 5
maximum matrix dimension 466
maximum width of band 177
memory needed (Mbyte) 3.33
CPU time (min:sec) 2:42

5.6 Conclusion

In this chapter, we have developed algorithms and data structures for finite element
based capacitance extraction, implementing the mathematical techniques described in
Chapter 4. The algorithms have been implemented in the Space layout-to-circuit
extractor, and experimentally verified. In particular, the results obtained with Space
demonstrate the efficiency, accuracy and general practicality of the new algorithms.
They do indeed satisfy their main goal: accurate layout-to-circuit extraction on the
designer’s workstation as a one-step transformation from a layout to an equivalent
circuit.

Of course, the program as implemented, and described in Section 5.4, is only a
prototype. On the one hand, it will have to be extended, for example, to handle more
dielectric layers and ‘to relieve the requirement of perfect planarization. Preferably,
some optimizations as discussed in Appendix 5.3 must also be included. Most of these
extensions and optimizations, however, are straightforward to implement and do not
present scientific challenges. Chapter 6 discusses some extensions that do present
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scientific challengeé.

On the other hand, the program can be simplified: the results obtained with our
prototype indicate that, for the purpose of layout verification, zeroth-order elements
provide sufficient accuracy.
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Appendix 5.1 Diffused Conductors

The finite element model employed is based on metallic conductors embedded in a
stratified dielectric above a good conducting ground plane. In practice, diffused
conductors (which implement the transistor source and drain regions) do not fit into this
model. However, to be able to evaluate our finite element method on real layouts, we
used a heuristic approach to incorporate these diffusion paths in the capacitance
extraction method. This approach is illustrated in Figure 5.21.

metal metal

diff model
1 ™~
0CoS —

ficld implant ground

@ (b)

Figure 5.21. Illustration of the heuristic approach to incorporate diffusion
capacitances, physical structure (a) and finite element model (b).

Figure 5.21(a) shows a cross-sectional view of a diffused conductor. The finite element
model employed for such a conductor is shown in Figure 5.21(b), where the diffused
interconnect is replaced by a thin sheet conductor. The sheet conductor is positioned
half the thickness of the field oxide above the ground plane, which is flat and
continuous, and must be thought of as modeling the top side of the diffused conductors.

The program replaces all the diffusion conductors by such sheet conductors and, using
the finite element method, computes the coupling capacitances between these sheet
conductors and the other conductors, and mutually between sheet conductors. These
capacitances are inserted in the extracted circuit. For the sheet conductors, the finite
element method also yields the capacitances to the substrate. These are then discarded
by the program and the values that result from conventional area/perimeter calculations
are inserted in the circuit instead.

Although this approach is purely heuristic, its results are satisfactory when the width of
the diffusion paths is significantly larger than the height of the sheet conductors above
the ground plane. However, in Chapter 6 we propose further research to incorporate the
diffused conductors in the finite element model.
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Appendix 5.2 Combination with Resistance Extraction

The Space program also implements a finite element method for resistance extraction,
as described in [Genderen (1988)] and [Genderen (1991)]. With this method, the
conductors are modeled as thin sheet resistances on which a finite element mesh is
formed, consisting of triangles and rectangles as shown in Figure 5.22.

]
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@ (b)
Figure 5.22. A layout example (a) and the resistance finite element mesh for the
polysilicon mask (b).

The edges of this mesh can be viewed as resistances in a resistance network, of which
the nodes are formed by the vertices of the finite element mesh. Capacitances are added
to this mesh using geometric calculations. Capacitances associated with a conductor
edge are equally divided over the two vertices in the resistance mesh that delimit the
edge, and capacitances associated with a conductor surface are divided according to the
areas that are bounded by the lines of gravity of the boxes and triangles. The latter is
illustrated in Figure 5.23.
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Figure 523. Assignment of capacitances to vertices.

The resulting detailed RC model is reduced (ie. simplified) by an optimal node
elimination algorithm that preserves the first-order or Elmore [Elmore (1948)] time
constants.

The two techniques, finite element based resistance extraction and finite element based
capacitance extraction, can be combined by setting up a suitable incidence relationship
between the vertices in the resistance mesh (r-vertices) and the finite elements in the
capacitance mesh (c-elements). This should be based on proximity: a c-element must
be incident to the closest r-vertex.



Appendix 5.3 Discussion on Optimization 137

Appendix 5.3 Discussion on Optimization

Although the algorithms for capacitance extraction developed in this dissertation result
in a O (N) time complexity, with N representing the size of the layout, the associated
constant factor is relatively high. There are two bottlenecks that mainly determine its
magnitude: the computation of the entries of the influence matrix and the inversion of
the matrix*. In this appendix, we present a number of possibilities for optimizing the
speed of these steps. Some of these have indeed been implemented in Space.

I.

Most of the finite elements are in three strips: one of width 2w, one of width 2w
displaced over a distance w to the right and one of width w corresponding to an
overlap of two 2w strips. Thus, many finite element interactions are evaluated 2
or 3 times. As a result, the number of such computations is 5/3 times the
minimum possible. Compared to recomputation, the storage and reuse of
previous results is faster. For that purpose, 2 FIFO data structures are sufficient.
Instead of relying on the virtual memory performance of the system, these queues
are conveniently maintained in temporary files.

Even when the number of Green’s function computations is reduced by using the
technique described above, it remains desirable to further reduce the computer
time associated with this step. A particular heuristic approach avoids the exact
integration of the finite element shape functions for finite elements that are far
apart. Instead, a multipole approximation of the integral can be carried out much
faster [Newman (1986)].

In the case of constant boundary elements, we have seen that it is advantageous to
apply a mixture of n-sided elements with n=>3. In such a boundary element mesh,
many of the elements will have n25. In general, the 2-dimensional integrations
over n-sided elements require the integration boundaries to consist of n parts.
Numerical integration can then be performed by decomposing the integration
domain into n—2 triangles and using a 2-dimensional integration formula for a
triangular domain [Stroud (1971), Hammer (1956)]. In practice, this integration
can be accelerated significantly by disregarding, for the triangulation, vertices

4. Of course, since the complexity of evaluating the influence matrix is O (w?) and of inverting it is O (w*),

the inversion will dominate for large window sizes w.
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common to two co-linear edges. It can be accelerated even further when
elements with a rectangular shape are not subdivided at all, but are integrated
directly using a 2-dimensional integration formula for a rectangular domain
[Stroud (1971)].

Influence matrix computation can also be accelerated by using a table lookup
mechanism. Probably the best way to implement this lookup table is to turn it
into a hash table indexed by a key constructed from the parameters describing the
shape and (relative) location of the finite elements. The size of the hash table
should be limited, and it should operate like a cache. The hit/miss ratio of this
cache can be optimized if the finite element mesh generated is as regular and
repetitive as possible.

For the hierarchical Schur algorithm, coarse-grain parallelism is trivially possible
by allocating different blocks of the matrix to different processors. The
communication and scheduling overhead will be low enough to justify this
method even when the processors are individual (UNIX) computers or
workstations coupled together in a local area network.

The Schur algorithm can be implemented to run efficiently on a vector computer
[Lossie (1988)].

Alternatively, special purpose hardware can be developed. A CORDIC chip
[Lange (1988)], for example, can be a processor in a systolic architecture for the
Schur algorithm [Bu (1990), Dewilde (1988)].



References

References
Bu (1990)

Dewilde (1988)

Elmore (1948)

Garey (1978)

Genderen (1988)

Genderen (1991)

Grimm (1983)

Hammer (1956)

139

J. Bu, “‘Systematic Design of Regular VLSI Processor Arrays,’”
Ph.D. Dissertation, Delft University of Technology, Delft, the
Netherlands (May 1990).

P. Dewilde, ‘“New Algebraic Methods for Modelling Large-Scale
Integrated Circuits,”” International Journal of Circuit Theorv and
Applications 16 pp. 473-503 (1988).

W.C. Elmore, ““The Transient Response of Damped Linear
Networks with Particular Regard to Wideband Amplifiers,”” J.
Applied Physics 19 pp. 55-63 (Jan. 1948).

M. Garey, D.S. Johnson, F.P. Preparata, and R.E. Tarjan,
““Triangulating a simple polygon,”” Inform. Processing Lett. 7(4) pp.
175-180 (1978).

A.J. van Genderen and N.P. van der Meijs, ‘‘Extracting Simple but
Accurate RC Models for VLSI Interconnect,”” Proc. ISCAS-88,
Helsinki, Finland, pp. 2351-2354 (June 7-9, 1988).

A.J. van Genderen, ‘‘Reduced Models for the Behavior of VLSI
Circuits,”” Ph.D. Dissertation, Delft University of Technology,
Delft, the Netherlands (1991).

M.A. Grimm, K.Lee, and A.R. Neureuther, ‘‘SIMPL-1 (Simulated
Profiles from the Layout—Version 1),”” IEDM Technical Digest, pp.
255-258 (1983).

P.C. Hammer, O.J. Marlowe, and A.H. Stroud, ‘‘Numerical
Integration over Simplexes and Cones,”” Math. Tables Aids Comput.
10 pp. 130-137 (1956).

Hoffmann (1989) C.M. Hoffmann, ‘“The Problems of Accuracy and Robustness in

Konishi (1989)

Geometric Computation,”” IEEE Computer Magazine 22(3) pp. 31-
41 (March 1989).

Y. Konishi, M. Kumanoya, H. Yamasaki, K. Dosaka, and T.
Yoshihara, ‘‘Analysis of Coupling Noise Between Adjacent Bit
Lines in Megabit DRAMS,”’ IEEE Journal of Solid-State Circuits
SC-24(1) pp. 35-42 (Feb. 1989).



140

3-Dimensional Capacitance Extraction

Koppelman (1983) George M. Koppelman and Michael A. Wesley, ““OYSTER: A

Lange (1988)

Lee (1983)

Lee (1985)

Lossie (1988)

Miller (1989)

Nabors (1991)

Newman (1986)

Oldham (1979)

Oldham (1980)

Study of Integrated Circuits as Three-Dimensional Structures,”” IBM
J. Res. Develop. 27(2) pp. 149-163 (Mar. 1983).

A.AlJ. de Lange, A.J. van der Hoeven, E.F Deprettere, and J. Bu,
““‘An Optimal Floating Point Pipelined CMOS CORDIC Processor,”’
Proc. ISCAS 1988, Helsinki, Finland, pp. 2043-2047 (June, 1988).

K. Lee, Y. Sakai, and A.R. Neureuther, ‘“Topography-Dependent
Electrical Parameter Simulation for VLSI Design,”’ IEEE Trans.
Electron Devices ED-30(11) pp. 1469-1474 (Nov. 1983).

K. Lee and A R. Neureuther, ‘‘SIMPL-2 (SIMulated Profiles from
the Layout—Version 2),”” 1985 Symposium on VLSI Technology,
Digest of Technical Papers, Kobe, Japan, pp. 64-65 (1985).

M.LF. Lossie, ‘““The Generalized Schur Algorithm: Roundoff
Analysis, Vectorization, and an Application to VLSI Modelling,”
Internal Report, Delft University of Technology, Delft, the
Netherlands (Feb. 1988).

JR. Miller, ‘‘Architectural Issues in Solid Modelers,”” IEEE
Computer Graphics and Applications, pp. 72-87 (Sept. 1989).

K. Nabors and J. White, ‘‘FastCap: A Multipole Accelerated 3-D
Capacitance Extraction Program,”” [EEE Trans. on CAD CAD-
10(10) pp. 1447-1459 (Nov. 1991).

J.N Newman, ‘‘Distributions of Sources and Normal Dipoles over a
Quadrilateral Panel,”” Journal of Engineering Mathematics 20 pp.
113-126 (1986).

W.G. Oldham, S.N. Nandgaonkar, MM O’Toole, and A.R.
Neureuther, ‘“‘A General Simulator for VLSI Lithography and
Etching Processes: Part 1—Application to Projection Lithography,”’
IEEE Trans. on Electron Devices ED-26(4) pp. 717-722 (Apr. 1979).

W.G. Oldham, A.R. Neureuther, C. Sung, J.L. Reynolds, and S.N.
Nandgaonkar, ‘“A General Simulator for VLSI Lithography and
Etching Processes: Part 2—Application to Deposition and Etching,’”
IEEE Trans. on Electron Devices ED-27(8) pp. 1455-1459 (Aug.



References

Ruehli (1973)

Ruehli (1975)

Small (1990)

Stroud (1971)

Wesley (1983)

Wilton (1984)

141

1980).

AE. Ruehli and P.A. Brennan, ‘‘Efficient capacitance calculations
for three-dimensional multiconductor systems,”” IEEE Trans. on
Microwave Theory and Technigues MTT-21(2) pp. 76-82 (Feb.
1973).

A.E. Ruehli and P.A. Brennan, ‘‘Capacitance models for integrated
circuit metallization wires,”” IEEE Journal of Solid-State Circuits
SC-10(6) pp. 530-536 (Dec. 1975).

M.B. Small and D.J. Pearson, *‘On-chip Wiring for VLSI: Status and
Directions,”” IBM J. Res. Develop. 34(6) pp. 858-867 (Nov. 1990).

A H. Stroud, Approximate Calculation of Multiple Integrals, Prentice
Hall, New Jersey (1971).

M.A. Wesley, T. Lozano Perez, L.I. Liebermann, M.A. Lavin, and
D.D. Grossman, ‘A Geometric Modeling System for Automated
Mechanical Assembly,”” IBM J. Res. Develop. 27(2) pp. 149-163
(Mar. 1983).

D.R. Wilton, S.M. Rao, A.W. Glisson, D.H. Schaubert, O.M. Al-
Bundak, and C.M Butler, ‘‘Potential Integrals for Uniform and
Linear Source Distributions on Polygonal and Polyhedral Domains,”’
IEEE Trans. on Antennas and Propagation AP-32(3) pp. 276-281
(Mar. 1984).

Zemanian (1989) A.H. Zemanian, R.P. Tewarson, C.P. Ju, and J.F. Jen, ‘“Three-

Dimensional ~ Capacitance  Computations  for ~ VLSI/ULSI
Interconnections.,”” IEEE Trans. on CAD CAD-8(12) pp. 1319-1326
(Dec. 1989).



6. Conclusion

In this dissertation, we have developed new techniques for accurate and efficient
layout-to-circuit extraction. Compared to traditional approaches., the increased
accuracy and efficiency are needed because of the continuous increase in integration
density.

The algorithms and data structures developed have been implemented in a layout-to-
circuit extractor called Space, which is briefly described in Sections 3.7 and 5.4. The
success and practicality of the new algorithms were verified by experimental results
obtained with the program. These results where evaluated and compared to other
results available in the literature.

Despite the great step forward in accuracy offered by the finite element technique
described in Chapter 4, further improvements are necessary. In particular, we have
treated the problem of modeling IC interconnections assuming that there is a perfect
planarization of the dielectric layers and that the substrate is a perfect ground plane, as
shown in Figure 6.1.
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Figure 6.1. The silicon substrate as a ground plane with stratified dielectrics.

Further research must be aimed at relaxing these assumptions and including new
effects. In particular, the method must be extended to:
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1. Model and determine interconnect capacitances in non-planar technologies
~ accurately and efficiently.

2. Include the bulk interconnects (the so called ‘‘diffusion paths’’) in the resulting
capacitance model.

3. Model and determine the substrate resistance and its effects. These include
substrate current flow, feedback, crosstalk, noise and electromagnetic losses.

As we have seen in Chapter 2, parasitic inductance is also becoming important. Future
research must therefore be aimed at accurate extraction of inductances, or transmission
line effects in general, as well. This is especially important because of the proliferation
of bipolar (or BICMOS) integrated circuits.

The determination of parasitics (i.e. the values of the parasitic elements) is but one step
in the verification process—it results in the electrical model of the chip. This model
must subsequently be analyzed, thereby extrapolating the behavior of the integrated
circuit. This analysis can be accomplished through simulation or static (timing)
analysis. However, when the extracted models become more complex (i.e. when their
size or their number of components increase), the effectiveness of traditional analysis
tools is often unsatisfactory. This subject will therefore also require additional research.
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Samenvatting

Nauwkeurige en Efficiénte Layout-extractie

Extractie wordt in dit proefschrift gedefinieerd als ‘‘het modelleren en bepalen van de
elektrische eigenschappen van geintegreerde schakelingen (IC’s), vitgaande van de
layout en relevante gegevens over het fabricageproces’’. Als resultaat ontstaat een
equivalent circuit, bestaande uit actieve en passieve elementen zoals transistoren,
weerstanden en capaciteiten. De correctheid van de schakeling kan dan gecontroleerd
worden, vodrdat de schakeling gefabriceerd wordt, door middel van simulatie of
statische analyse van het equivalente circuit.

Deze verificatie stap wordt steeds belangrijker. Met de steeds maar verdergaande
verkleining van de afmetingen van de elementen op een IC. en de afname van hun
schakeltijden, wordt het elektrische gedrag van geavanceerde IC’s steeds sterker
bepaald door onbedoelde, parasitaire effecten. Voorbeelden van zulke effecten zijn
thyristor structuren in CMOS schakelingen die latch-up kunnen veroorzaken, de
capaciteiten, weerstanden en inductanties van de bedrading op een chip, en de
weerstand van het substraat.

In dit proefschrift zoeken we naar modelleringstechnieken die nauwkeurig en
betrouwbaar het elektrische gedrag van geintegreerde schakelingen voorspellen: nieuwe
technieken zijn nodig om effecten te beschrijven die vroeger niet belangrijk waren of
waarvoor de nauwkeurigheid van standaardtechnieken te wensen overlaat.

De zo verkregen modellen moeten niet alleen nauwkeurig zijn, maar ook efficiént. Ze
moeten zo eenvoudig en compact als mogelijk zijn, en alle belangrijke effecten
beschrijven en de onbelangrijke weglaten. De modellen moeten, bijvoorbeeld, geen
kleine capaciteiten tussen ver uit elkaar liggende elementen bevatten. Echter, het totaal
van al deze kleine capaciteiten kan toch een niet-verwaarloosbare invloed hebben op de
vertraging van de schakeling, dus zomaar weglaten van deze capaciteiten is vaak
ontoelaatbaar. Ze kunnen vaak wel verdisconteerd worden in de andere capaciteiten.

Net als de modellen, moeten ook de algoritmen (programma’s) om deze modellen te
bepalen efficiént zijn. De rekentijd, benodigd door de algoritmen als functie van de
grootte van de schakeling (hun tijd-complexiteit), moet zo laag mogelijk zijn. In dit
proefschrift leggen we de nadruk op lineaire-tijd algoritmen. Zulke algoritmen zijn
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belangrijk in het licht van de steeds verder toenemende complexiteit van IC’s.

Ook het geheugenbeslag van de algoritmen (hun geheugen-complexiteit) moet zo laag
mogelijk zijn. Ondanks het belang van snelle algoritmen is de rekentijd in theorie
onbegrensd. In de praktijk wordt de maximale grootte van een probleem dat opgelost
kan worden veelal onbarmhartig beperkt door de grootte van het werkgeheugen van de
gebruikte computer. Ook virtueel geheugen vormt geen oplossing, omdat dat 66k
begrensd is en omdat veelvuldig wisselen van de data tussen werkgeheugen en
achtergrondgeheugen te veel tijd kan kosten. De geheugen-complexiteit van de
algoritmen is dus eigenlijk nog belangrijker als hun tijd-complexiteit. In dit proefschrift
streven we naar algoritmen met een sub-lineaire geheugen-complexiteit.

De technieken uit dit proefschrift zijn het meest effectief wanneer ze toegepast worden
in de layout ontwerp-lus. Alleen dan is het mogelijk om kostbare redesigns, als gevolg
van het te laat ontdekken van een probleem, te voorkomen. De modelleringstechnieken
vit dit proefschrift moeten dus ingebouwd (kunnen) worden in de verificatie-
programmatuur zoals een IC ontwerper die op zijn werkstation ter beschikking heeft.
Het resulterende programma moet gebruikersvriendelijk zijn, en moet van de IC
ontwerper geen kennis vereisen van de achterliggende wiskundigé theorieén. Dit stelt
eisen aan de opbouw van de algoritmen.

Gegeven bovengenoemde uitgangspunten, is dit proefschrift als volgt ingedeeld:

In hoofdstuk 2 wordt eerst het elektrische gedrag van de bedrading op een IC
bestudeerd. Dit gedrag kan in de regel worden beschreven in termen van verdeelde
weerstanden, capaciteiten en inductanties. We gaan na hoe, en onder welke
omstandigheden, zo’n beschrijving vereenvoudigd kan worden. Ook gaan we na wat
het effect is van de verkleining van de afmetingen op IC’s op het elektrische gedrag van
de bedrading. Een van de conclusies die in dit hoofdstuk getrokken wordt is dat
bedradingscapaciteit steeds belangrijker wordt, maar dat de gangbare technieken om
deze te bepalen niet voldoen voor geavanceerde IC technologieén en kritische
ontwerpen.

In hoofdstuk 3 behandelen we het probleem efficiént om te gaan met de enorme
hoeveelheid geometrische gegevens die de layout van een VLSI (Very Large Scale
Integration) schakeling beschrijven, met name toegespitst op het layout-extractie-
probleem. We ontwikkelen onder andere een combinatie van de zogenaamde corner-
stitching en scanline methoden, welke een lineaire tijd-complexiteit en een sub-lineaire
geheugen-complexiteit realiseert. De algoritmen uit dit hoofdstuk zijn



Samenvatting 147

geimplementeerd in een layout-extractieprogramma, genaamd Space, en de resultaten
verkregen met dit programma bevestigen hun goede prestaties. Space is opgenomen in
het NELSIS IC ontwerpsysteem.

In hoofdstuk 4 bespreken we de mathematiek en, in het kort, de theoretische
achtergrond van een zogenaamde rand-elementenmethode voor de nauwkeurige
berekening van de bedradingscapaciteiten van geintegreerde schakelingen. Dankzij een
nieuw algoritme voor het benaderen van de inverse van een matrix, onstaat een lineaire
tijd-complexiteit en een constante geheugen-complexiteit. Het resulterende capaciteits-
netwerk beschrijft nauwkeurig de totale belasting van alle signalen, maar bevat geen
kleine, irrelevante, capaciteiten tussen afgelegen elementen.

In hoofdstuk 5 bekijken we hoe de mathematische concepten en technieken uit
hoofdstuk 4 omgezet kunnen worden in praktische, efficiénte en krachtige algoritmen,
die in een layout-extractieprogramma ingebouwd kunnen worden. Zaken die hierbij
aan de orde komen zijn, onder andere, de generatie van een 3-dimensionaal rand-
elementenmodel van de schakeling en de koppeling met de eigenlijke netwerk-
herkenningsalgoritmen van het extractieprogramma. De algoritmen zijn inderdaad ge-
implementeerd in het programma Space, en de resultaten verkregen met het programma
tonen aan dat de ontwikkelde technieken het mogelijk maken nauwkeurige capaciteits-
extractie op te nemen in de layout ontwerp-lus.

Het proefschrift eindigt in hoofdstuk 6 met conclusies en suggesties voor verder onder-
zoek.
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