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This article proposes a compressed-domain signal processing
(CSP) multiple-input multiple-output (MIMO) radar, a MIMO radar
approach that achieves substantial sample complexity reduction by
exploiting the idea of CSP. CSP MIMO radar involves two levels
of data compression followed by target detection at the compressed
domain. First, compressive sensing is applied at the receive antennas,
followed by a Capon beamformer, which is designed to suppress
clutter. Exploiting the sparse nature of the beamformer output, a
second compression is applied to the filtered data. Target detection
is subsequently conducted by formulating and solving a hypothesis
testing problem at each grid point of the discretized angle space.
The proposed approach enables an eightfold reduction of the sample
complexity in some settings as compared to a conventional compressed
sensing (CS) MIMO radar, thus enabling faster target detection.
Receiver operating characteristic curves of the proposed detector
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are provided. Simulation results show that the proposed approach
outperforms recovery-based CS algorithms.

[. INTRODUCTION

The emergence of a multiple-input multiple-output
(MIMO) radar opened up a wide research area, promising
the same resolution as phased array technology but with
significantly fewer antennas elements, or higher resolution
with the same number of antennas. MIMO radar transmit
different waveforms from their antennas. Based on antennas
distances, a MIMO radar is categorized into widely sepa-
rated and colocated. Large distances among antennas in a
widely separated MIMO radar cause different transmitter—
receiver pairs to look at a target from different angles;
this provides spatial diversity and results in high-resolution
target localization and enhanced target detection and esti-
mation [1]-[3]. In the colocated MIMO radar, exploiting
waveform diversity results in flexible beampattern design
and improved angular resolution [4]-[7]. In this article,
we focus on the colocated MIMO radar. Despite many
advantages, the requirement for a large amount of data
and associated computational complexity are viewed as the
main drawbacks of the MIMO radar [8], [9]. Fortunately,
due to the low number of targets in the target space (angle,
range, and speed), the target echoes are sparse [10]-[15].
This characteristic enables the incorporation of compressed
sensing (CS) theory, which, under certain conditions, allows
for lower than Nyquist rate sampling with a negligible
performance reduction [16], [17]. A general discussion of
CS applied to radar can be found in [10] and [18]. MIMO
radar’s ability to achieve high angle resolution with small
numbers of elements renders them indispensable for au-
tomotive applications. This advantage has been exploited
by almost all major automotive Tier-1 suppliers in their
different types of radar products, such as short-range radar,
medium-range radar, and long-range radar [19]-[22].

CS application to MIMO radar has received a lot of
attention recently, e.g., [9], [23]-[31]. For instance, target
detection and localization in the MIMO radar using CS
is discussed in [25] and [26], while improving angular
resolution with a lower number of elements in a colocated
MIMO radar is studied in [9], [23], and [27]. Similarly,
power allocation and waveform design in CS MIMO radar
is investigated in [24] and [28]. In all aforementioned
works, the signal used for detection and/or estimation is
first reconstructed by using a general-purpose CS recovery
algorithm such as orthogonal matching pursuit (OMP) [25],
basis pursuit denoising or compressive sampling matching
pursuit [32], alternating direction method of multipliers
[26], or problem-specific algorithms [33], [34]. In the cited
methods, CS is used to reduce the amount of data collected
and transmitted to a fusion center, where sparse signal re-
covery is carried out. However, recovering the sparse signal
switches the problem back to the high rate domain and, thus,
does not take full advantage of the CS-enabled reduction
of a large amount of data. In many radar applications, the
original signal may not be of interest, and the main aim
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is to accomplish radar inference tasks (e.g., detection and
estimation). Therefore, signal processing in the CS domain
(i.e., without reconstruction) is desirable. Note that from
an information-theoretic aspect, signal reconstruction does
not increase the available information. Furthermore, if the
sensing matrix does not have low coherence, the recovery
may be incorrect. In this article, we go one step further on
the use of the CS idea; we do not recover the underlying
sparse signal, but rather perform target detection in the
compressed domain, using compressed-domain signal pro-
cessing (CSP). We show that CSP-based target detection and
parameter estimation not only preserves the performance
and significantly reduces the number of computations, but
also prevents the high flow of data after recovery, which is
one of the fundamental motivations of employing CS [35].

CSP has been studied in various applications. For in-
stance, CSP is used in [36] to detect sparse signals in
additive white Gaussian noise and estimate the degree of
sparsity. Similarly, a CSP-based symbol detector for ul-
trawideband communications is proposed in [37]. Also,
CSP is used in [38] to accomplish joint compressive single
target detection and parameter estimation in a radar. Algo-
rithms for solving inference problems, such as detection,
classification, estimation, and filtering based on CSP, are
proposed in [38], while in [39], the idea of using CSP for
space—time adaptive processing is presented. The task of
inferring the modulation of a communication signal directly
in the compressed domain is considered in [40] and [41].
Furthermore, in [42], a minimum-variance distortionless
response (MVDR) beamformer is used in the compressed
domain for the task of spectrum sensing. However, clutter
is not considered in the signal model, and the performance
is only evaluated through simulations.

Clutter is a critical nuisance component in radar signal
processing [43], and clutter suppression is a very important
task [44]-[47]. Clutter changes the target scene, making it
less sparse. Therefore, the performance of CS-based radar
detection methods deteriorates in the presence of clutter.
The Capon beamformer, also known as the MVDR, is a
common clutter suppression approach that relies on the
availability of clutter statistics (i.e., the clutter covariance
matrix). In the context of CS-based colocated MIMO radar,
Yu et al. [48] applies Capon beamforming on the com-
pressed clutter contaminated target echoes, before proceed-
ing with CS-based sparse signal recovery. In this article,
we consider the same scenario as in [48]. We apply Capon
beamforming on the compressed radar returns, but unlike
[48], we proceed with target detection by operating directly
in the compressed domain.

A. Contributions

The main contribution of this article is a CSP approach
for detection and parameter estimation of a noise and clutter
contaminated target in a colocated MIMO radar scenario.
In particular, we have the following.

*  We formulate and solve a hypothesis testing problem by
operating in the compressed samples domain.
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*  We employ a Capon beamformer as a preprocessing step
to reduce the clutter power. The beamformer sparsifies
the target scene, which allows us to use a second com-
pression at the beamformer output, thus achieving further
sample complexity savings.

* Through receiver operating characteristic (ROC) anal-
ysis, and also simulations, we illustrate that the CSP
MIMO radar performs well achieving an eightfold sam-
ple complexity reduction in some settings as compared
to recovery-based methods. This translates to faster de-
tection, making the proposed approach a good candidate
for low-latency applications, such as automotive radar.
Interestingly, in addition to having lower complexity,
the proposed approach outperforms recovery-based al-
gorithms in terms of angle estimation accuracy in the
case of multiple targets.

B. Outline and Notations

The rest of this article is organized as follows. Section II
provides the required preliminaries. The signal model is
introduced in Section IIl. The CSP algorithm is proposed
in Section I'V. Simulation results are reported in Section V.
Finally, Section VI concludes this article.

We adopt the notation of using boldface lowercase for
vectors a, and bold face uppercase for matrices A, where
a; is the ith column of the matrix A. The transpose, Hermi-
tian, complex conjugate, and pseudoinverse operators are
denoted by the symbols (.)”, (.), (.)*,and ()", respectively.
Given a set of indices S, A[S] is a matrix composed of
the columns of A with indices in the set S. RV™ and
CN*M are the set of N x M real and complex matrices,
respectively. Finally, diag (A, ..., Ay) indicates the block
diagonal matrix formed by matrices Ay, ..., Ay along the
main diagonal.

II. SYSTEM MODEL

Consider a colocated MIMO radar with I transmitters
and R receivers. We assume that the transmitters and re-
ceivers form a uniform linear array with A /2 spacing, where
A is the wavelength. The antenna configuration is shown in
Fig. 1(a) (similar to the configuration in [49] and [50]). Let
s;(n) denote the discrete-time baseband signal transmitted
by the ith transmitter. The transmit steering vector is given
by

a(9) = [exp(j27 f.71(0)), . .., exp(j2r fers(ON]" (1)

where 7;(0),i = 1, ..., 1, is the propagation delay from the
ith transmitter to the target at angle 6 with respect to the
array axis and f, is the carrier frequency (i.e., f, = c/A,
where ¢ is the speed of light). Furthermore, the receive
steering vector is

b)) = [exp(j2r f.71(0)), ..., exp(j2n f.3ON]"  (2)

where 7,(0),r =1, ..., R, is the propagation delay from
a target at angle 0 to the rth receiver. Let us assume that
there are Q targets in the region of interest. On sampling the
received signals with the Nyquist sampling interval 7, the
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(d)

MIMO radar system model. (a) Configuration of the radar with / transmitters and R receivers placed in a uniform linear array with 1 /2

spacing. (b) All the range and angle cells where a specific range cell (i.e., the colored one) is under test.

obtained samples across all receivers at sampling instance
n, i.e., x;(n), ..., xg(n), can be expressed in a vector form
as

Q
x(n) = Zaqb(Gq)aH(Gq)s(n) +en), n=1,...,N (3)
g=1

where x(n) = [x;(n), ..., xg(M)]"; a5, g =1,...,0,is the
complex amplitude of the gth target as seen by the re-
ceivers (due to the colocated MIMO radar assumption, the
radar cross section of each target seen by all transmitter—
receiver pairs is the same). Here, it is assumed that s
are constant during the observation interval (i.e., Swerling I
model), s(n) = [s;(n), ..., s;(n)]! is the nth time sample
of the transmit signal vector, and e(n) is the noise plus
clutter term at the receivers. €(n) is assumed to be com-
plex Gaussian with a covariance matrix Ry € CF*F e,
€(n) ~ CN(0, Ry). Also, we assume that o, ~ CN (0, 62)
[43]. For simplicity, let us assume that target’s angle is the
only parameter of interest. Adding velocity to (3) would
be addressed in a similar fashion, i.e., it would amount
to adding velocity to the hypothesis test and searching in
angle-velocity space for both detection and estimation tasks.
Also, similar to other works on the target angle of arrival
estimation (e.g., [9]), the data vector in (3) is considered for
a specific range cell, and therefore, the delay is known and
can be compensated [see Fig. 1(b)]. Henceforth, to cover
the whole range space, the entire procedure of detection
and estimation would have to be performed separately for
each range cell.

Suppose the angle space of interest has been discretized
into L uniform grid angles £ = {6y, ..., 0.} and the targets
lie on the grid. Then, (3) can be reformulated as

x(n) = ¥(n)B + €(n) 4)

where W(n) € CR*L is the nth sample of the measurement
matrix, in which the /th column, ¥,(n), is parameterized
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based on the grid angle 6; and equals
¥i(n) = b(Oa®)s(n). )

Moreover, B € CL*! is the target amplitude vector, deter-
mined as

o, if the gth target is at angle 6,

pr = (6)

0, otherwise.

Stacking the signals of N Nyquist samples obtained by all
antennas, the total received data vector is given by
w(l) €(1)

x= B+ /B )

Y(N) €(N)

where W € CEVN*L ig the total measurement matrix and € is
a complex Gaussian vector with a covariance matrix Ry €
CRNXBN je. €~ CN(O,Ry).

If there are a small number of targets within the range
cell under investigation, § will be sparse [18]. This implies
that under certain conditions [18], all information about g
is retained in the compressed vector X € CMi>1 for which
it holds that

=0V + ®re=AB+§ (8

where ®(;) € RM >RV 'with M, < RN being the compres-
sion matrix performing a joint temporal and spatial CS,
along the time and array domains, respectively, and we
define the first compression ratio CR; = %\I’ as the ratio
of the number of samples in regular sensing, RN, to the
number of compressed measurements, M;. In addition,
A= <I>(1)‘I’ e CMixL andE = q’(l)é € (CMIXI.

In the following, we address the problem of detecting
whether a target exists within the grid angles, and if it
does, we estimate the target’s angle by operating at the

compressed sample domain.
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[ll.  PROPOSED APPROACH Our estimate for R¢ can also be updated in time, based on

In a practical setting, the received data are contaminated
by clutter, which destroys the sparsity of the measured
signal X. Typically, the clutter arises due to reflections by
the landscape and thus can be studied when no targets
exist. Here, we assume that statistical information about
the clutter is available in the form of a clutter covariance
matrix. In such case, the Capon’s MVDR beamformer [51]
can be constructed and applied to the obtained data to reduce
clutter and thus make the scene sparser. The objective of
Capon’s MVDR beamformer is to design a filter so that at
the filter output, the noise and clutter power is minimized,
while leaving the desired signal without distortion [51]. The
Capon weighting vector for each angle cell is obtained by
solving the following optimization problem:

n;)in wfl Rcw,;
’ 9)
subjectto  wiA; = 1

where w; is the weighting vector matched to the /th angle
cell and Rec = @, >RN¢(T1) is the covariance matrix of the
measured clutter and noise, &. Moreover, A, is the /th column
of A. The optimization problem in (9) has a closed-form
solution given by [51]

REIXI

= Fosi (10)
MR

w;
We construct a clutter suppression matrix via concatenat-
ing the weighting vectors of all angle cells, i.e., W =
[wy, ..., w,] € ZM>L We then apply the clutter suppres-
sion matrix to the compressed measurement vector of (8),
obtaining the clutter and noise mitigated data as

y=WIAB+WiE=0B+v (11)

where © is the dictionary matrix with ; corresponding to
the /th angle cell, and v is the clutter and noise residuals after
applying the Capon beamformer with covariance matrix
R; = WHR-W.

REMARK 1 When the radar platform is moving, prior obser-
vations can lead to models for clutter and consequently Rc.
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the received measurements. More precisely, in applications
that the clutter-plus-noise covariance matrix is changing
smoothly, we can apply a gradually updating technique such
as clutter map on an ordinary covariance matrix estimation
method. Since w; is dependent on the clutter statistics, a
change in R necessitates the recalculation of w;. However,
based on the way that R¢ is changing, it might be possible
to update its inverse using the matrix inversion lemma and
therefore recalculate w; with a low computational com-
plexity method. In this article, the analysis and simulations
are provided for a static case (i.e., one snapshot), while a
thorough analysis is required to study a dynamic scenario.

The spare nature of the Capon beamformer output al-
lows us to achieve further sample reduction by employing
another compression matrix ®) € RM2%L g5 follows [48]:

z2=®20B + P (12)

where CR, = A% is the second compression ratio.

The main problem is now reformulated as determining
B based on the data vector z containing the nuisance term
®,yv (see Fig. 2). Since we just consider a single range
cell, we can restrict our attention to scenarios with a low
number of targets. First, we present the single-target sce-
nario, propose detection and angle estimation algorithms,
and provide mathematical analytics for the ROC of the
proposed detector. Then, we proceed to the more realistic
multitarget scenario. We subsequently discuss the interrela-
tion of single- and multitarget scenarios, in order to properly
extend the proposed single-target algorithm based on such
a relationship.

A. Single-Target Scenario

In this part, we restrict our attention to the single-target
case, i.e., Q = 1. We can write the hypothesis test based on
the data vector in the following form:

@) (b, +v), H,:if atarget exists 13)
z =
D), Ho : otherwise
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where @ andt € {1, ..., L} are the unknown target’s ampli-
tude and index of angle cell, respectively. If a target exists, its
angle cell is not known a priori; hence, the usual likelihood
ratio test (LRT) cannot be computed and used for detection.
Instead, we will use the generalized likelihood ratio test
(GLRT), in which the LRT is maximized over all grid angles
to find the optimum angle cell. The LRT value at the optimal
point should then be compared with a proper threshold to
test if a target exists or not.

To determine the threshold, in the following, we com-
pute the probability density function (PDF) of the com-
pressed measurement vector for the two hypotheses. Since
v has a complex Gaussian distribution with covariance
matrix Ry, conditioned on Hy, z is a vector with distribution
CN(0, ®\Rr <I>(T2)). Thus, for the null hypothesis, we have
[52, p. 258]

f@IHo) = —z"A7z)

exp ( (14)

1
TMA|
where

A=®,Rr®),,. (15)
For hypothesis H,, the PDF of z conditioned on « and ¢ is
given by
fG@H,a,t) =CN(a®q)0;,A)

exp(—(z — a®)0,)"

M’; | A|

Tz —a®ny0,)) (16)

and as mentioned before, the PDF of o is f(a)=

02 ex p(— ) Consequently, the PDF of z under H; con-
ditioned on 7 is derived in the following theorem.

THEOREM 1 The PDF of z under H; conditioned on ¢ is

@M 1) = TP exp (—z"A7'z)
X ex —|et|2‘3
P\o2d, +1 (17)
where we have defined
d[ - OHQQ)A71¢(2)0[
e, =0"®! A (18)

@)
PROOF The proof is derived in Appendix A.

Knowing both PDFs of z under H, and H; from (14)
and (17), respectively, the LRT can be derived as follows:

f@IHi 1) 1 o AR (19
FalHy  doz+1 P \do2+1)

In order to find the GLRT, L(z|t) should be maximized
over t

Liz|t) =

GLRT(2) = max, L(z|0). (20)

.....

As explained in Appendix B, the GLRT can then be obtained
as

GLRT(z) = |e;| = 1 (21)
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where 7 = argmax, ., ,,L(z[t) is the estimation of the
index of the target’s angle cell and 7 is defined as the
detection threshold. Since we employ the Neyman—Pearson
detector [53], 1 is determined based on the desired false
alarm probability Py,.

1) Detector Performance: Here, we analyze the ROC

of the proposed detector. It holds that
ej|Ho ~ CN(0, dy) (22)

and the false alarm probability equals

P = p(le;| > nlHo) =/ f (x| Ho)dx
n

’72
) @

and hence x|Hy ~

U
=1- / Jf(x|Ho)dx = exp (—

where we introduce x = |e;|
Rayleigh(yy) with yp = (%)0'5.
Also, it holds that

e|Hi, a ~ CN(ad;, dy)
fle|Hy) = /f(€i|Hl,Ol)f(Oé)dOt.

We work out (24) in Appendix C and show that the PDF of
e; conditioned on H; is given by

ej|Hi ~ CN(0,d; + dio)).

(24)

(25)

The detection probability thus equals

Py = p(le;l > n|H1) = / J(xHy)dx
n

[ _ Ui
=1 /oo f(xl'Hl)dx = exp < df+—di20‘§ (26)

where x|H; ~ Rayleigh(y;) with y; = (_dfﬂzl?%%)o'5

Rearranging (23), it is possible to obtain n from P, as

n? = —d; In Py 27)
Thus, the ROC equation is obtained as
d; In Pr, (I+d;o2)™!
P, = — | =P 28
d eXp (df +di20'§) fa ( )

where P, is derived as a function of Py,.

2) Measurement Signal-to-Noise-and-Clutter Ratio
(SNCR) at Input and Output: In this part, we analyze the
SNCR both at input and output of the detector.

For input, we need to calculate the SNCR for (7).
The signal power is E{||omﬁ,||§} = ojRNP, where P is
the transmit power. Also, the noise plus clutter power is
E{||€]l3} = Tr(Ry). Therefore, the input SNCR is

o RNP
SNCRj, = —%——. (29)
Tr(Ry)
Based on (21), the statistic for GLRT is
x=le| = 16 @A 2. (30)
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In Appendix D, we derive an approximation of x in the
following form:

||
(3D

x = |a|d, + N {70?<1>{2)A—1<1>(2)v} .

Denoting « in the polar form as o = |a|e!, (31) can be
simplified as

x = lald + Sﬂ{e_j“’0{'[<l>(Tz)A_' <I>(2)v}. 32)
In (32), the signal term is |«|d,, while the noise plus clut-
ter term is R{e 6, ®{, A~ ®,v}. Calculation of signal
power is straightforward and is equal to o;>d>. For the noise

and clutter term, defining g £ 6" @/, A" ® v, the noise
plus clutter term can be expressed as

m{e_jwafl‘l’(Tz)A_l‘l’@)V} = N{ge )
=g, cosw+gisinw (33)

where g, and g; are the real and imaginary parts of g,
respectively. Subsequently, the noise plus clutter power is
given by

E{(g,cosw + g;sin w)*)

= E{g% cos’ w + g? sin? w 4 2g,g; cos w sin w}
2 2

= [E{g; cos” w} (34)
since v is circular normal, its real and imaginary parts
are statistically independent, and both are zero mean. In
addition, g and @ are independent and w has a uniform
distribution in the interval [0, 277]. Thus, noise plus clutter
power P, is calculated as follows:

1 1 1
P. = SE{g; + g} = 5E{g’) = 5 d;. (35)
2 2 2
As a consequence, we have
SNCR oy = 2024, (36)
and using (28), the SNCR is obtained as
In Pfa
SNCRyy =2 —1). 37
In Pd

B. Multitarget Scenario

To address the multitarget scenario, we can use a
deflation-type approach for detecting one target at a time,
along the lines of [54]. In each iteration, using the single-
target algorithm, the strongest target is extracted. If the tar-
get is greater than the threshold n, the target is detected, and
its contribution is eliminated from the compressed measure-
ment vector z. Then, iterations continue with the residual
of the measurement vector, until no target is detected. The
idea of residual updating is similar to the procedure done in
OMP [54].

TOHIDI ET AL.: COMPRESSED-DOMAIN DETECTION AND ESTIMATION FOR COLOCATED MIMO RADAR

The multitarget detection algorithm proceeds as follows.

1) Initialization:

i =%
P=0 (38)
A=0.
2) Estimation:
Tpil = arg maxL(z|t).
e refl,...,L} " (39)
3) Detection:
GLRT(z()) = leg,,, | 2 . (40)

If no target is detected, terminate the algorithm.
4) Residual updating:

P=P+1
A=AU {/t;ﬂ}
o= (O[A]"®], @, 0[A) OLA" &,z
iy =2 — Q(z)@[A]&
5) Go to step 2.

(41)

Executing this multitarget detector and estimator algo-
rithm, P is the estimated number of targets, A is the set
of detected angle cell indices, and 671, and’t;, p=1,...,P,
are the estimated targets’ amplitude and angle cell index,
respectively. Subsequently, B is a zero vector except for
the entries ?,,, p=1,..., P which are equal to b?,,, p=
I,...,P.

IV.  SIMULATION RESULTS

In this section, we present three sets of simulations to
evaluate the proposed algorithm from different perspectives.
First, the single-target case is considered, and four scenar-
ios are simulated. The first scenario studies the effects of
the number of antennas and the SNR on the performance
of the proposed algorithm, while the second scenario is
dedicated to the problem of grid mismatch. In the third
and fourth scenarios, the proposed algorithm is compared
to a state-of-the-art algorithm investigating the effect of
the compression ratio and grid mismatch, respectively. The
multitarget case is also considered, and the performance of
the proposed approach is evaluated for different numbers
of targets. Finally, a comparison between the CSP MIMO
radar and the conventional CS MIMO radar in terms of sav-
ing in sample complexity is presented. Unless specifically
mentioned, targets are assumed to fall on the grid.

We evaluate the performance of the proposed detection
approach through an ROC analysis. We also provide the
bias and standard deviation (std) of the proposed angle
estimator and investigate the impact of parameters such as
the number of antennas, SNR, and compression ratio, on
the performance. Furthermore, we compare the proposed
algorithm with one of the state-of-the-art CS recovery-based
algorithms, NESTA [55], in terms of ROC, estimation ac-
curacy, and execution time in various scenarios. NESTA is
chosen, because it is a fast and accurate sparse recovery
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Fig. 3.
TABLE I
Simulation Parameters

Description Parameter Value
Number of receive antennas R 8
Number of transmit antennas 1 10
Number of samples N 20

Signal to noise ratio SNR 0 dB
First compression ratio CRy 4
Second compression ratio CRe 2

Clutter to noise ratio CNR 30dB

0 span -50 to +50
degree
0 resolution 2 degree

algorithm and is shown to perform well on the problem
of signal reconstruction in the MIMO radar [3]. For the
multitarget case, the OMP algorithm is also compared with
the proposed algorithm. We considered the OMP algorithm
for the multitarget scenario because it has a similar residual
update as our proposed algorithm. It should be mentioned
that the procedure for all the algorithms, i.e., CSP, NESTA,
and OMP, is the same, and all are performed on z (except
the last simulation), i.e., (12). A Monte Carlo simulation
with 10,000 runs is employed, where unless mentioned
specifically, parameters are selected based on Table I. In
the following simulations, without loss of generality, the
compression matrices are chosen to be Gaussian with in-
dependent identically distributed entries having zero mean
and unit variance. Simulations are performed ina MATLAB
R2017b environment, using an Intel Core (TM) i7-4790K,
4-GHz processor with 64 GB of memory, and under a 64-bit
Microsoft Windows 10 operating system. We first present
simulations for single-target scenarios and then proceed to
multitarget scenarios.

A. Single-Target Scenario

Fig. 3 presents the ROC and estimation accuracy for
different values of SNR and number of receive antennas, R.
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Performance of the proposed CSP approach for different SNR and R values. (a) ROC. (b) Angle estimation bias and std.

In Fig. 3(a), the ROC related to the Monte Carlo simula-
tions is plotted. The theoretical calculation in (28) is also
shown, where we use the true target location ¢ instead of 7.
Therefore, the theoretical ROC should be an upper bound
for the simulated ROC; however, it appears to match well
the simulations results. In addition, increasing the SNR
and R leads to a higher probability of detection for the
same false alarm probability. Fig. 3(b) demonstrates the
bias and std of the proposed angle estimation algorithm.
Again, a reduction in estimation bias (i.e., approaching
the real value) and std when increasing SNR and R is
observed.

For the next scenario, we examine the performance of
the proposed approach when the targets do not fall on the
grid. The sensitivity of CS-based target estimation methods
to grid mismatch has been extensively discussed in the
literature [56]-[59]. Fig. 4 depicts the effect of both R
and mismatch values on the ROC and estimation accuracy.
We consider a grid mismatch equal to 0.1° and 1°. It is
observed from Fig. 4(a) that increasing R, improves the
ROC. Although the ROC is not very sensitive to the mis-
match values, an increasing mismatch results in a slightly
lower probability of detection for the same false alarm
probability. As demonstrated in Fig. 4(b), the proposed
algorithm achieves a higher angle estimation accuracy as
the number of antennas increases. In addition, it is depicted
that increasing the mismatch value increases the estimation
std.

As mentioned earlier, some of the important advantages
of processing in the compressed domain are the reduced
amounts of data, computational complexity, and memory
usage in the system. Here, we compare the proposed CSP
approach with one of the more recent sparse recovery
methods, NESTA, from various aspects. Fig. 5 presents the
comparison for different values of compression ratio CR;.
The superiority of the proposed algorithm in terms of ROC
is plotted in Fig. 5(a). The theoretical calculations are also
shown to be well matched with the simulation results. More-
over, as shown in Fig. 5(b), the proposed method slightly
outperforms NESTA based on angle estimation accuracy.
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Furthermore, Fig. 5(c) compares the algorithms from the
execution time point of view. A significant reduction in the
execution time is observed in this figure.

Fig. 6 presents a comparison with NESTA for scenarios
with grid mismatch. In this case, the target grid mismatch
equals 0.1°, 0.3°, 0.5°, and 1°. Although the ROC curves
of both methods are close, the proposed algorithm achieves
better ROC curves, which are plotted in Fig. 6(a). Also, an
improved estimation accuracy of the proposed method for
different values of mismatch is depicted in Fig. 6(b).

TOHIDI ET AL.: COMPRESSED-DOMAIN DETECTION AND ESTIMATION FOR COLOCATED MIMO RADAR

B. Multitarget Scenario

Here, we evaluate the performance of the proposed al-
gorithm in comparison with NESTA and OMP, considering
multitarget scenarios. For the following simulations, the
angular cells of the targets are randomly selected with a uni-
form distribution. To provide a fair comparison, we assume
that the number of targets Q is known for all methods. Fig. 7
depicts a sample multitarget scenario with Q = 5. In this
figure, different amplitudes are used to improve the display.
Neither the proposed CSP approach nor the NESTA and
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Fig. 8. Comparison of the proposed CSP approach with NESTA and
OMP based on angle estimation std versus number of targets for different
values of SNR.

OMP algorithms find the angles exactly. Still, the proposed
method provides a better estimation.

Fig. 8 presents a comparison with NESTA and OMP,
where estimation std versus number of targets Q is plotted.
As intuitively expected, increasing the number of targets
increases the estimation std. This issue is the result of cor-
relation among columns of the dictionary matrix @, which
leads to an estimation error in multitarget scenarios. In other
words, a linear combination of a subset of columns of @
could be close to a linear combination of another subset of
columns of ®. This issue especially affects the performance
of recovery-based algorithms. For instance, the objective
of NESTA is to minimize the norm of the residual. With
correlated columns of the dictionary matrix as well as
noise and clutter contaminated measurements, this leads
to a faulty reconstruction of the targets, since the focus is
on minimizing the difference between the synthesized data
vector and the measured data vector. In contrast, for the
proposed CSP-based algorithm, at each step, the most likely
column is selected, which leads to a smaller estimation error.
Another reason for the better performance of the proposed
method is the implicit whitening procedure in the procedure.
Although employing the Capon beamformer, the clutter and
noise power is reduced, yet the small residual effects the
performance where the CSP method compensates it with
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Fig. 9. Percentage of correct angle estimation versus the targets angle
difference for different values of compression ratio.

8

Fig. 10. Second compression ratio CR; versus the first compression
ratio CR in order to achieve the same performance for both CSP MIMO
and CS MIMO radars.

an implicit whitening filter. As shown in Fig. 8, increasing
the SNR reduces the estimation error. Also, in all scenarios,
the proposed approach outperforms both NESTA and OMP.

For the next simulation, we aim to observe how the
proposed algorithm performs when two targets are in close
angle cells and also investigate the effect of the compression
ratio on its performance. Therefore, we consider a scenario
with two targets and changing their angle difference, i.e.,
AO = 6, — 6,; we calculate the percentage of correct esti-
mation of both angles denoted as Pcg. In this simulation,
we assume SNR = 20dB and R = 20. The rest of the pa-
rameters are similar to those in Table I. Fig. 9 presents the
percentage of correct angle estimation versus the two targets
angular difference for different values of the compression
ratio. As expected, the estimation accuracy drops when
the targets are closer. In addition, with the increase in the
compression ratio, the resolvability of targets is reduced.
This reduction in resolvability is due to the loss in the
SNR, as the SNR is directly proportional to the number of
samples. In order to prevent such an SNR loss, techniques
such as compressive data acquisition directly at reception
are proved to be useful [60].

C. CSP MIMO Versus CS MIMO

Here, we aim to compare the proposed CSP MIMO
radar versus a conventional CS MIMO radar in terms of the
number of required samples conditioned on achieving the
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same performance. Considering the same first compression
matrix and Capon beamformer for both approaches, the
second compression matrix is only employed for the CSP
MIMO radar. Moreover, the second compression ratio CR,
is determined such that both methods achieve the same
performance, i.e., estimation accuracy. For the following
simulation, angle estimation accuracy is considered as the
performance metric. As depicted in Fig. 10, CR; starting
from around 2 for CR; = 1, we can increase CR; up to 8
for CR; = 16.

V. CONCLUSION

The MIMO radar has been receiving a lot of attention
for automotive radar applications. A high data rate and
computational complexity are the main drawbacks of the
MIMO radar. The proposed method consists of performing
temporal and spatial CS, applying the Capon beamformer
to reduce the clutter, applying a second compression, and,
then, formulation and solving a target detection problem on
each grid of the angle space. The proposed method achieves
significant sample and computational complexity and is
particularly suited in applications that require low latency,
such as automotive radar. Through simulations, we have
illustrated that performing the signal processing in the com-
pressed domain not only reduces sample complexity, but
also improves the detection probability and angle estimation
accuracy, especially in multitarget scenarios. Additionally,
we have provided a mathematical analysis for the detector’s
ROC that was well aligned with the simulation results. As
future work, we will implement the proposed algorithm over
atest bed using real-world datasets in order to obtain a more
realistic evaluation.

APPENDIX A
PROOF OF THEOREM 1

Using the PDF of z for hypothesis #;, conditioned on
« and ¢ given in (16), we prove that the PDF of z under
is

1
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where d; and ¢, are defined in (18).
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Note that d; = d;* by definition. Using the definitions in
(18) for d; and e;, (43) can be reformulated as
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APPENDIX B
PROOF OF (21)
The LRT is derived as
zZ|Hq, t
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dio2 +1 P dio2 +1 = 1 — po (48)

where py is the a priori probability of the H( hypothesis. It
is clear that d; is not dependent on the measurement vector,
and we can simplify the LRT through the following steps:
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As a result, we have
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which leads to

Lizlt) = le| = |0/ ®(, A"z = n (52)

where we define n as the detection threshold, which is
determined based on the desired false alarm probability Pr,.

If L4(zjt) is maximized over ¢, the GLRT
will be GLRT(z) = ?1ax L4(z|t), in which 7=

.....

GLRT(z) = Ly(z|f) =

arg max, ¢

2 (53)

APPENDIX C
PROOF OF (25)

The PDF of ¢; conditioned on H; can be computed as
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APPENDIX D PROOF OF (31)
Assuming ¢ = 7, we will have
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Since the Capon beamformer is applied to obtain y, we
assume that ||aé;||, > ||v||. As a consequence, x can be
approximated as follows:
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