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Abstract— People-counting data can be used in building-control systems to
improve comfort and in space management applications to optimize building
space. In this work, we consider a combi-sensor with a single-pixel thermopile
and passive infrared sensor for people counting. We first develop a thermopile
signal model for object temperature measurements under multiple people
occupancy. We then propose a people counting method based on: cumulative
sum (CUSUM) change detection in the object temperature signal, forming
a people count estimate using likelihoods of differential mean temperature
in detected changes, and decision fusion with an infrared vacancy sensor.
The proposed method is evaluated with data generated using the developed
signal model as well as experimental data from a cell office/meeting room
environment. We obtain an average counting error of 0.11 and 0.19 for 90% of
the instants respectively when considering 15 minute windows for simulated
and experimental datasets.

Index Terms— Single pixel thermopile sensor, infrared sensing, people count-
ing, temperature model, change detection.

I. INTRODUCTION

People count in an indoor space is the amount of users
dwelling in that space. In office buildings, people count data
can be used in smart lighting and HVAC (Heating, Ventila-
tion and Air Conditioning) control systems to improve user
comfort, and in space management applications to improve
utilization of workspaces. The amount of heating, cooling
and air circulation may be adapted in HVAC control sys-
tems based on the amount of people in an area [1], thus
providing higher levels of comfort to users while optimizing
energy consumption based on spatio-temporal people count
patterns [2], [3]. Space management applications like space
portfolio management and workspace recommendation use
people counting data with the objective of achieving higher
utilization of building space in a way that matches user and
business needs [4]–[7]. Historical people counting data may
be used to identify area of low utilization, assess the existing
building space portfolio and then tailor it to evolving usage
patterns and future space needs. In workspace recommendation
applications, people counting data is used to assist users in
real time to find available workspaces in a flexible workplace
environment.

1 The authors are with Signify, High Tech Campus, Eindhoven, The
Netherlands. Email: {erik.hagenaars, ashish.p}@signify.com

2 The author is with Signify, Cambridge, USA. Email: ab-
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3 The author is with Delft University of Technology, Delft, The Nether-
lands. Email: g.j.t.leus@tudelft.nl

A. Our approach to people counting and contributions

We consider a thermopile infrared sensing solution for
people counting. We use a combi-sensor with a single-pixel
thermopile sensor and a passive infrared (PIR) sensor. Indi-
vidually, these sensors are used respectively for remote tem-
perature measurements (used for HVAC control applications)
and occupancy based controls (e.g. turning on/off lighting in
an area). In our approach, we consider these sensor modalities
in combination for people counting. A single-pixel thermopile
sensor measures the radiated infrared temperature of objects.
Multiple challenges need to be addressed to estimate people
count using these measurements. One, the background tem-
perature is affected by ambient effects like HVAC activation
or air drafts. Two, the measured temperature depends on
object characteristics like position and orientation of users with
respect to the sensor. Three, the impact of a user entering an
area on the temperature measurement differs from the user
leaving the area.

To address these challenges, we consider the following
approach. A CUSUM-based change detector is applied to
a recursive least squares (RLS) estimate of the temperature
signal to detect abrupt changes, associated with a change in
people count in an area, in the slowly varying temperature
signal. A differential mean temperature between change points
is computed and then mapped to a people count estimate using
a likelihood approach. Finally, a decision fusion of the people
count estimate with vacancy detection from the PIR sensor is
used to determine vacancy.

To facilitate performance analysis of our approach, we
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develop an analytical model of the thermopile sensor signal
under people occupancy. The model allows us to evaluate the
performance with respect to several parameters: noise levels,
temperature changes under people occupancy and temperature
transition speed. Using both simulation data and experimental
data from cell office and meeting room setups, we achieve an
average counting error of 0.11 (0.19) and 0.19 (0.25) for 90%
of instants respectively when considering 15 minute (1 minute)
windows for simulated and experimental datasets.

In Section II, we describe the thermopile signal model.
The proposed sensor signal processing steps are described
in Section III. In Section IV, simulation and experimental
results evaluating people counting estimation are presented.
We conclude in Section V.

B. Past approaches to people counting

Different approaches to people counting in indoor envi-
ronments have been studied in the past. We shall briefly
discuss only the non-intrusive approaches; thus approaches
where users carry tags or use badges are not discussed.
Image sensors [8]–[11] can provide people count estimates
with high accuracy and have become cost-effective due to the
proliferation of camera-based smartphones; however imaging
modalities are perceived to be the most invasive on privacy
and influence the behaviour of the affected people [12], [13].
Thermopile arrays [14]–[17] use thermal images for people
counting. The accuracy is good and the sensors are less
invasive, but array sensors are still quite expensive. Ultrasonic
arrays [18], [19] and WiFi-based [20], [21] device-free passive
approaches are the least invasive, but potentially have lower
people counting accuracy.

Binary sensor networks, wherein each sensor (e.g. PIR)
produces a binary detection, together with advanced fusion
techniques have also been explored for people tracking and
counting [22], [23]. An advantage of this solution is that the
sensor infrastructure may be part of a pre-existing connected
lighting system, and thus people counting can be done without
the need of deploying extra hardware. A drawback of using
PIR sensor networks is however that the accuracy of people
counting is limited.

II. THERMOPILE TEMPERATURE SIGNAL MODEL

A thermopile sensor provides the temperature of objects
from a distance by detecting the combined object’s infrared
energy within its Field of View (FoV). This means that the
thermopile sensor has a different object temperature output
for different amounts of incident infrared energy, depending
on factors like object positions and orientations. In Figure 1,
the object temperature signal from a single-pixel thermopile
sensor mounted at the ceiling is shown for varying occupancy
levels. The temperature can be observed to gradually increase
in the first hour, even under constant occupancy, due to the
room temperature being controlled by the HVAC. It can also
be observed that the mean object temperature under vacancy
is not constant over time and depends on factors like HVAC
control and occupancy levels prior to occupancy (e.g., the
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Fig. 1. Example of thermopile object temperature data starting at
vacancy and ending in activity.

temperature decreases gradually when people count changes
from 2 to 0 around 14:40).

The signal model consists of three components: (i) signal
component under vacancy, (ii) attenuation model due to sensor
FoV, and (iii) signal component under presence of multiple
people.

A. Signal under vacancy
During periods of vacancy, the temperature variations are

typically slow and happen due to factors like daylight changes
and HVAC control. We model the thermopile temperature
signal over vacancy by a slowly varying value T0[n] with an
additive noise component v[n],

x[n] = T0[n] + v[n]. (1)

In Figure 2, we show object temperature data from three
thermopile sensors over a 7 hour period under vacancy. The
gradual temperature rise is on account of the HVAC system
being disabled at night. The measured object temperature
was tested for normality by testing the null hypothesis if
the sample given comes from a normal distribution. The test
combines the skew and kurtosis to test this property based
on the D’Agostino-Pearson test [24], [25]. The normality test
returns the probability that a null hypothesis can be rejected.
When the null hypothesis rejection probability is lower than a
threshold, a normal distribution can be assumed. We observed
that v[n] can be modeled as an additive white Gaussian noise
(AWGN) component when considering a short duration of
time. For a window of 9000 samples (15 min), and with a
typical threshold value of 10−3, 97% of the windows could
be considered normally distributed.

B. Attenuation model due to sensor FoV
The thermopile sensor is not omni-directional, but rather

has a limited FoV with variable signal attenuation. The signal
amplitude under occupancy thus depends on the location of the
object with respect to the center of the sensor. For instance,
for the thermopile sensor component from Melexis [26] we
use in our experiments, there is no attenuation when directly

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2021 at 10:02:37 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3029739, IEEE Sensors
Journal

HAGENAARS et al.: MANUSCRIPT FOR IEEE SENSORS JOURNAL 3

20.2

20.4

20.6

20.8

21.0

21.2
te

m
pe

ra
tu

re
 [

C]

20:00 21:01 22:02 23:04 00:05 01:07 02:08 03:09
timestamp [HH:mm]

10 4

10 3

10 2

10 1

100

nu
ll 

hy
po

th
es

is 
re

je
ct

io
n 

pr
ob

ab
ilit

y

Fig. 2. Top: Temperature data of three sensors under vacancy. Bottom:
Normality test for windows of 15 min (9000 samples).

under the sensor (around 0◦) and a 3 dB loss at an angle of
45◦.

We use a raised cosine function to model the attenuation
due to sensor FoV,

f(θ) =


1 θ ≤ 1−ρ

2T
1
2 + 1

2 cos
(
πT
ρ

[
θ − 1−ρ

2T

])
1−ρ
2T < θ ≤ 1+ρ

2T

0 θ > 1+ρ
2T ,

(2)

where θ is the angle between the user and center of the sensor,
and T and ρ are parameters. Parameter values T = 1/90 and
ρ = 0.4 are chosen to have an attenuation function close to
the FoV specifications of the chosen sensor [26]. Note that
in the above model, we have ignored the impact of object
distance from the sensor. In typical office applications, the
sensor is installed at the ceiling at heights between 2.5-3.5 m,
with the seated user/workspace 1-2.2 m away from the sensor.
Within this distance range, the temperature measurements
have negligible variation, and hence we have ignored range
dependence. The resultant raised cosine function to model the
FoV attenuation is shown in Figure 3.

C. Signal under presence of multiple people
The presence of one or more people produces a temperature

shift in the object temperature value of the thermopile sensor.
The shift depends on the number of people, their locations
and secondary aspects like orientation. Furthermore, the shift
in temperature value transitions faster during entry of people
and slower when people leave, due to occupants having heated
the environment and leaving a thermal footprint that fades with
time.
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Fig. 3. Attenuation function due to limited sensor FoV.

We model these temperature shifts using an exponential
model with parameters being the total temperature shift and
the transition speed as follows

di[n] = ∆T oi

(
1− e−αi(n−ni)

)
u[n− ni]. (3)

The parameter ∆T oi is the temperature shift for event i at
time sample ni and u[n] is the unit step function. Parameter
αi captures transition speed of temperature change due to an
occupancy event, and has a bigger value for an entry event
and a smaller value for an exit event.

D. Thermopile signal model
Putting together the earlier signal components, we can now

write the thermopile signal model for Km events preceded by
initial vacancy as

x[n] = T0[n] + v[n] +

Km∑
i=1

Ki∑
j=1

f(θij)dij [n]. (4)

In (4), till time sample n1, there is vacancy and the temper-
ature is at an initial temperature T0 with AWGN v[n]. At time
sample ni, we consider Ki occupants with the j-th occupant
at angle θij with respect to the sensor resulting in temperature
shift dij . At event i, there is an effective temperature change
of ∆Ti (taking into account users located at different angles).

A simulated example of the dataset using the model in (4)
with 10 occupancy events is shown in Figure 4. The ground
truth with actual people count is shown in dotted red line.
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Fig. 4. Example of a simulated dataset over a day.
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III. SENSOR SIGNAL PROCESSING

The various sensor signal processing blocks for people
counting are depicted in Figure 5. The thermopile object tem-
perature signal is pre-filtered to remove any outlier data. This
signal is then used to detect sudden changes in temperature
levels. The mean temperature change between change points is
then determined and a maximum likelihood estimate of people
count is obtained. The people count estimate is fused with the
vacancy detection output of the PIR sensor to obtain a final
people count estimate.

Thermopile PIR

Change
Detection

People
Count

Estimation

Vacancy
Estimation

Pre-
filtering

People
Count

Fig. 5. Overview of sensor signal processing blocks.

A. Pre-filtering

The first step in processing the thermopile object tempera-
ture data is to remove outliers, that may arise due to electrical
noise sources. A simple inter-quartile filter is used to remove
large outlier values. We calculate the z-score of every sample
in a window,

z[n] =
x[n]− µ̂

σ̂
(5)

where µ̂ and σ̂ are the sample mean and standard deviation
of values within the window. If the z-score exceeds a certain
threshold, the sample is removed. Denote the signal obtained
subsequent to this filtering by y[n].

B. Change detection using CUSUM RLS

After the pre-filtering step, change points are detected in
signal y[n]. An important feature to detect a change in people
count is the resulting change in temperature level. To detect
sudden changes in a slowly varying signal with minimal
knowledge of the signal, we adopt the CUSUM RLS change
point detection proposed in [27]. Here a change point is
detected when the cumulative sum of the difference between
the RLS estimate of the signal and the actual value exceeds a
certain threshold. Denote the RLS estimate of signal y[n] by

T̂ [n] = βT̂ [n− 1] + (1− β)y[n], (6)

where 0 < β < 1 is a forgetting factor. At a sudden change
n = k and some samples beyond, the error term

ε[n] = y[n]− T̂ [n] (7)

will be large since the RLS estimation will introduce a delay
in the estimate’s response. If this transition is not sudden but
gradual, the cumulative sum of these terms

gp[n] = max [gp[n− 1] + ε[n]− ν, 0] (8)
gm[n] = min [gm[n− 1] + ε[n] + ν, 0] (9)

will add up to become big. In (8) and (9), gp and gm
respectively represent the cumulative sum of either the posi-
tive or negative changes. If the CUSUM surpasses a certain
threshold, a change will be detected. A drift parameter, ν, is
used to suppress noise in the CUSUM. An important design
consideration lies in the selection of the forgetting factor β,
the drift parameter ν and the threshold h. According to [27],
the drift should be chosen such that at least 50% of the
score is zero, while the forgetting factor should be chosen
based on the maximum latency of the algorithm. Finally, the
detection threshold is tuned to minimize the missed change
event detections.

The traditional CUSUM resets the score when it surpasses a
threshold. If the CUSUM would not reset the score gm and gp,
the drift would force the score to approach 0 over time when
the RLS estimate has settled to the new temperature level. At
this sample, a new estimate of the mean is obtained from the
RLS estimate.

C. People count estimation

We have two points of interest in the CUSUM score when
one of the CUSUM signals (gp or gm) exceeds threshold h at
sample np: (i) the last encountered zero index (nl) in the score
that exceeded the threshold and (ii) the first next zero index
(nr) encountered in the score that exceeded the threshold. The
first zero index corresponds to the start of the temperature
change. The CUSUM score continues to be calculated until it
encounters the next zero index, when the RLS estimate has
settled to the new temperature level:

g =

{
gp, if gp[np] > h

gm, if gm[np] < −h
(10)

with

nl = i, when g[i] = 0, g[j] 6= 0 for i < j < np, (11)

nr = i, when g[i] = 0, g[j] 6= 0 for np < j < i. (12)

Here, nl and nr denote the start and end respectively of the
transition and the settling point of the RLS estimate to the
new temperature level and g is either gp or gm depending
on which of the scores exceeded the threshold. Calculating
the difference of the RLS estimate at these points gives the
estimation of the mean temperature change:

∆̂T = T̂ [nr]− T̂ [nl]. (13)

The output of the algorithm on the example dataset consid-
ered in Figure 4 is shown in Figure 6.

The temperature differential in (13) is then used to estimate
the people count. This temperature change is dependent on
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Fig. 6. Example of CUSUM RLS processing.

various factors: the number of people leaving or entering the
room, the position at which the person(s) are located in the
FoV, and the previous number of people in the FoV.

For every possible transition for a changing people count,
we measure the temperature difference observed during that
transition. From these measurements, a probability distribution
of the temperature differential under various people count
states is constructed. In Figure 7, we show the kernel density
estimate with a Gaussian kernel for a sensor over an area
with a maximum of 2 people. The three people count states
(p = 0, p = 1 and p = 2) have two possible transitions each
for which the estimated densities using an experimental dataset
are shown. In general, for an area covered by a sensor with
capacity of C people, we would have C states and a total of
C(C − 1) probability distributions.
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Fig. 7. Kernel density estimates of effective temperature change.

The people count estimation algorithm works as follows.

For the current estimated people count, we consider the
corresponding distributions. When a change is detected, for
temperature differential ∆̂T , compute the posterior probabil-
ities L(c|p[n − 1], ∆̂T ). We then estimate the change in the
occupancy ĉ[n] corresponding to the temperature change by
choosing the change corresponding to the maximum posterior
and update the people count as follows,

ĉ[n] = arg max
c

L(c|p̂[n− 1], ∆̂T ), (14)

p̂[n] = p̂[n− 1] + ĉ[n]. (15)

The posterior in (14) can be computed using the likelihoods
shown in Fig. 7 and applying Bayes rule with uniform priors.
Contextual information, about the time-of-day and doorways
can be used to make the priors informative.

D. Vacancy estimation
One of the challenges with people counting with the ther-

mopile sensor is slow variation of temperature under vacancy.
Furthermore, the dependence of mean temperature differential
on human orientation characteristics may lead to errors in
people count estimation, and thus possible error propagation.
On the other hand, the PIR sensor is typically configured
to have low false alarms (at the expense of high missed
detections) [28], i.e., it can detect vacancy reliably. Instead
of using the raw signal of a typical PIR sensor, the processed
signal that controls lighting with built-in delay will be used.
We adopt the following decision rule to combine the people
count estimate of the thermopile sensor with the PIR sensor,

p̂[n] =


p̂[n− 1] + ĉ[n], if PIR occupancy
(p̂[n− 1] + ĉ[n])r, PIR vacancy and p̂[n− 1] ≥ 0.1

0, otherwise
(16)

with 0 < r < 1 a decay factor when vacancy is determined,
and where ĉ is the estimated people count from the temperature
differential. The result of (16) will be that the people count is
gradually set to 0 when the processed PIR signal determines
vacancy. Since the people count estimate with the decay factor
will never be zero, we force it to zero when small enough as
indicated in the second condition in (16).

IV. PERFORMANCE EVALUATION

We evaluate the proposed method through exhaustive sim-
ulations using the signal model in (4) and using experimental
data. The sampling frequency of raw sensor data was 10 Hz.
A threshold of 3 was used in the pre-filtering step. The
influence of various model parameters on the performance of
the method is evaluated in subsection IV-A. The experimental
evaluation is done in a cell office/meeting room environment
in subsection IV-B and characterizes the performance of the
method in a realistic indoor office environment.

Consider the error over a window of M samples,

εkj = pkj − p̂kj , j = 1, · · · ,M, (17)

where pkj and p̂kj are respectively the true people count and
the estimated people count at sample k in window j.
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We consider an error metric by discarding a portion of the
errors, specifically the largest and smallest errors. This choice
is driven by application considerations - small latencies or
errors do not matter (e.g. a workspace where a user is away for
a few minutes’ break need not be considered vacant). Define
the trimmed average counting error as

ε
(M)
k =

1

(1− 2δ)M

(1−δ)M∑
j=δM

∣∣εk[j]∣∣ (18)

where εk[j] is the ordered sequence of error terms εkj within
the k-th window. The average counting error (ACE) is then
given by

ACE(M) =
1

K

K∑
k=1

ε
(M)
k . (19)

For M = 1, ACE(1) is simply the point-wise counting error.
For other values of M , (19) provides an average error with the
largest and smallest δ fraction of values removed; in the perfor-
mance evaluation to follow, we choose δ = 0.1. For instance,
ACE(600) gives the average counting error for windows of
duration 1 minute ignoring a few errors within this window.
Such a performance metric better captures requirements for
space management applications where a people counting value
needs to be delivered every few minutes.

A. Simulation results
We use the signal model in (4) under different occupancy

patterns to generate simulated data to evaluate the impact of
various model parameters on performance. Three parameters
are of interest: (i) the effective temperature, ∆Ti, which
depends on angle of object with respect to sensor, user
orientation and the sensor height, (ii) the transition speed,
α, of an event, and (iii) sensor noise level, under normality
assumption.

The distribution of the effective temperature change ∆Ti
values are used to characterize the distributions based on
which likelihood probabilities are computed and people count
estimation done as per (14). In Figure 8, we see the per-
formance based on this temperature change. The example is
given for a zero to one transition event with varying values
of effective temperature change. If the effective temperature
change increase is too small, then it is difficult to detect an
increase in people count leading to possible underestimation,
and if the effective temperature change is too large then an
overestimation in people count is likely to occur. We thus
observe that ACE first decreases with the effective temperature
change and then again increases.

In Figure 9, we evaluate ACE over a range of transition
speed, α, values. We see that ACE reduces for higher values
of α. The transition speed determines how fast the temperature
level increases or decreases under an occupancy event. A
higher value of transition speed indicates that the temperature
change under an occupancy event is faster. The transition
speed affects the size of peaks in the score of CUSUM RLS
processing. For slower transitions, the RLS has a smaller error
with the current sample, resulting in smaller peaks. It was
found that the performance for slower transitions could be
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Fig. 8. ACE vs effective temperature change.

increased by increasing the forgetting factor. Another effect
found when dealing with slower transitions was the increase in
underestimating the mean temperature change since the score
could prematurely converge to zero.
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Fig. 9. ACE vs transition speed.

The noise levels which were encountered from real sensor
data measurements were found to have minimal effect on the
performance of the algorithm as can be seen in Figure 10. The
ACE is lower for higher values of M ; errors for M = 1 are
largely due to the inherent latency of the algorithm.

People counting estimation results of the example simula-
tion in Figure 4 for a single day is shown in Figure 11. In
this case, it is observed that the people count estimate (green
dashed line) matches with the ground truth (red dotted line)
across all occupancy event scenarios.

Lastly, we show the cumulative distribution function (cdf)
of ACE using simulated data in Figure 12. The range for the
transition speed is used between 0.07 and 0.1 and the range of
the effective temperature change is between 0.1 and 0.15. The
noise level was chosen to be 0.05. From Figure 12, we see
that with probability 0.9, ACE(1) = 0.23, ACE(600) = 0.19
and ACE(9000) = 0.11.
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Fig. 11. Results of a simulated dataset.

B. Experimental results

Experiments were conducted in a room emulating a cell
office/ meeting room environment, with the setup shown in
Figure 13. There were 4 combi-sensors at the ceiling at a
height of 3.2 meter from the floor. There were 4 workspaces
within the FoV of the sensors.

During measurements, occupancy events were recorded
manually each day and served as the ground truth. Mea-
surements were also collected overnight to collect sufficient
data under vacancy conditions. Data collection was done over
three weeks, with diverse people count patterns. Users working
at their workspaces (or being away from the workspace)
accounted for longer time durations of the data collected as
would be expected in typical office environments, including
short durations of being at (or away from) the workspace
or walking to another user for a discussion. At maximum
capacity, 4 people were present in the room.

Results of these experiments are shown in Figure 14. From
this figure, we see that with probability 0.9, ACE(1) = 0.28,
ACE(600) = 0.25, and ACE(9000) = 0.19. When increasing
the window, the performance improves due to instantaneous
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Fig. 12. Cumulative distribution for the results of the simulation for
parameters in the range of the most common observed values.

Fig. 13. Experimental setup of indoor space with four workspaces, with
a zoomed view of the sensor setup at the ceiling.

errors being removed as well as temporal filtering.
An example of results from a dataset over a day is shown

in Figure 15. The example shows a good estimation of
the number of people and also depicts situations where the
algorithm results in errors. As we can see, occupancy events
that are short in duration (due to situations like having a short
coffee break) are not detected at times. We also observe that
an overestimation of people count may occur (3 instead of the
ground truth 2) - this is likely due to the larger than usual
impact of occupancy on temperature.

V. CONCLUSIONS AND DISCUSSION

We showed that a single-pixel thermopile infrared sensing
solution can provide people counting data with high accuracy.
We extended the CUSUM-RLS filter by considering temper-
ature change estimation, in turn using this to estimate people
count. The proposed approach was shown to achieve an ACE
of 0.11 and 0.19 for 90% of instants respectively when con-
sidering 15 minute windows for simulated and experimental
datasets.

A number of extensions to this work may be explored in
future. In the thermopile signal model in (4), we considered
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Fig. 14. Cumulative distribution for the results of the real experiment
results.
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Fig. 15. People count estimation of an experiment dataset.

a memoryless approach to model the influence of the number
of people on temperature. This model may be improved by
incorporating the memory of the previous state of the number
of people before the count changes.

We considered people counting with a thermopile infrared
combi-sensor. In an office deployment, a single area (e.g. large
meeting room or open office) may have multiple such sensors
with partially overlapping FoVs. Estimating people count in
such a sensor system would be a topic of further exploration.
Extending this work to consider user mobility and alternate
sensor deployments are also topics of future study.
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