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Abstract—One of the cornerstones of the field of signal process-
ing on graphs are graph filters, direct analogs of classical filters,
but intended for signals defined on graphs. This paper brings forth
new insights on the distributed graph filtering problem. We design
a family of autoregressive moving average (ARMA) recursions,
which are able to approximate any desired graph frequency re-
sponse, and give exact solutions for specific graph signal denoising
and interpolation problems. The philosophy to design the ARMA
coefficients independently from the underlying graph renders the
ARMA graph filters suitable in static and, particularly, time-
varying settings. The latter occur when the graph signal and/or
graph topology are changing over time. We show that in case of
a time-varying graph signal, our approach extends naturally to
a two-dimensional filter, operating concurrently in the graph and
regular time domain. We also derive the graph filter behavior, as
well as sufficient conditions for filter stability when the graph and
signal are time varying. The analytical and numerical results pre-
sented in this paper illustrate that ARMA graph filters are prac-
tically appealing for static and time-varying settings, as predicted
by theoretical derivations.

Index Terms—Distributed graph filtering, signal processing on
graphs, infinite impulse response graph filters, autoregressive mov-
ing average graph filters, time-varying graph signals, time-varying
graphs.

I. INTRODUCTION

DUE to their ability to capture the complex relationships
present in many high-dimensional datasets, graphs have

emerged as a favorite tool for data analysis. Indeed, in recent
years we have seen significant efforts to extend classical sig-
nal processing methods to the graph setting, where, instead of
regular low-dimensional signals (e.g., a temporal or spatial sig-
nals), one is interested in graph signals, i.e., signals defined
over the nodes of a graph [2]. The introduction of a Fourier-like
transform for graph signals brought the tool to analyze these
signals not only in the node domain, but also in the graph fre-
quency domain [2]–[4]. One of the key tools of graph signal
analysis are graph filters. In a direct analogy to classical filters,
graph filters process a graph signal by selectively amplifying its
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graph Fourier coefficients. This renders them ideal for a wide
range of tasks, ranging from graph signal smoothing and de-
noising [5], [6], classification [7]–[9] and interpolation [10],
segmentation [11], wavelet construction [12], and dictionary
learning [13]—among others.

Distributed implementations of filters on graphs emerged as a
way of increasing the scalability of computation [6], [14]–[16].
In this way, a desired graph filtering operation is performed by
only local information exchange between neighbors and there is
no need for a node to have access to all the data. Nevertheless,
being inspired by finite impulse response (FIR) graph filters,
these methods are sensitive to time variations, such as time-
varying signals and/or graphs. An alternative approach, namely
distributed infinite impulse response (IIR) graph filtering, was
recently proposed [17], [18]. Compared to FIR graph filters, IIR
filters allow for the computation of a larger family of responses,
and give exact rather than approximate solutions to specific
denoising [5] and interpolation [10] problems. Yet the issue of
time variations has so far been unresolved.

In a different context, we introduced IIR filter design (in
fact, prior to [18]) using an autoregressive process called the
potential kernel [11], [19]. These graph filters were shown to
facilitate information processing tasks in sensor networks, such
as smoothing and event region detection, but, due to their ad-
hoc design, they only accomplished a limited subset of filtering
objectives. In this paper, we build upon our prior work to develop
more general autoregressive moving average (ARMA) graph
filters of any order, using parallel or periodic concatenations of
the potential kernel. The design philosophy of these graph filters
allows for the approximation of any desired graph frequency
response without knowing the structure of the underlying graph.
In this way, we design the filter coefficients independently of the
particular graph. This allows the ARMA filters to be universally
applicable for any graph structure, and in particular when the
graph varies over time, or when the graph structure is unknown
to the designer.

Though ARMA graph filters belong to the class of IIR graph
filters, they have a distinct design philosophy which bestows
them the ability to filter graph signals not only in the graph
frequency domain, but also in the regular temporal frequency
domain (in case the graph signal is time-varying). Specifically,
our design extends naturally to time-varying signals leading to
two-dimensional ARMA filters: a filter in the graph domain as
well as a filter in the time domain.
Our contributions are twofold:

(i) Distributed graph filters (Sections III and IV-A): We pro-
pose two types of autoregressive moving average (ARMA)
recursions, namely the parallel and periodic implementation,
which attain a rational graph frequency response. Both meth-
ods are implemented distributedly, attain fast convergence, and
have message and memory requirements that are linear in the
number of graph edges and the approximation order. Using a
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variant of Shanks’ method, we are able to design graph filters
that approximate any desired graph frequency response. In ad-
dition, we give exact closed-form solutions for tasks such as
Tikhonov and Wiener-based graph signal denoising and graph
signal interpolation under smoothness assumptions.

(ii) Time-varying graphs and signals (Section V): We begin by
providing a complete temporal characterization of ARMA graph
filters w.r.t. time-varying graph signals. Our results show that the
proposed recursions naturally extend to two-dimensional filters
operating simultaneously in the graph-frequency domain and in
the time-frequency domain. We also discuss the ARMA recur-
sion behavior when both the graph topology and graph signal
are time-varying. Specifically, we provide sufficient conditions
for filter stability, and show that a decomposition basis exists
(uniquely determined by the sequence of graph realizations),
over which the filters achieve the same frequency response as in
the static case.

Our results are validated by simulations in Section VI, and
conclusions are drawn in Section VII.

Notation and terminology: We indicate a scalar valued vari-
able by normal letters (i.e., a or A); a bold lowercase letter a
will indicate a vector variable and a bold upper case letter A
a matrix variable. With ai and Aij we will indicate the eneries
of a and A, respectively. For clarity, if needed we will refer to
these entries also as [a]i and [A]i,j and to the i-th column of
A as [A]i . We indicate by |a| the absolute value of a and by
‖a‖ and ‖A‖ the 2-norm and the spectral norm of the vector
a and matrix A, respectively. To characterize convergence, we
adopt the term linear convergence, which asserts that a recur-
sion converges to its stationary value exponentially with time
(i.e., linearly in a logarithmic scale) [20].

II. PRELIMINARIES

Consider an undirected graph G = (V, E) of N nodes and M
edges, where V indicates the set of nodes and E the set of edges.
Let x be the graph signal defined on the graph nodes, whose
i-th component xi ∈ R represents the value of the signal at the
i-th node, denoted as ui ∈ V .

Graph Fourier transform (GFT): The GFT transforms a graph
signal x into the graph frequency domain x̂ by projecting it into
the basis spanned by the eigenvectors of the graph Laplacian
L, typically defined as the discrete Laplacian Ld or the nor-
malized Laplacian Ln. Since the Laplacian matrix of an undi-
rected graph is symmetric, its eigenvectors {φn}N

n=1 form an
orthonormal basis, and the forward and inverse GFTs of x and x̂
are x̂ = ΦTx and x = Φx̂, respectively, where the n-th column
of Φ is indicated as φn .The corresponding eigenvalues are de-
noted as {λn}N

n=1 and will indicate the graph frequencies. For
an extensive review of the properties of the GFT, we refer to [2],
[3]. To avoid any restrictions on the generality of our approach,
in the following, we present our results for a general represen-
tation matrix L. We only require that L is symmetric and local:
for all i �= j, Lij = 0 whenever ui and uj are not neighbors and
Lij = Lji otherwise. We derive our results for a class of graphs
with general Laplacian matrices in some restricted set L. We as-
sume that for every L ∈ L the minimum eigenvalue is bounded
below by λmin and the maximum eigenvalue is bounded above
by λmax . Hence, all considered graphs have a bounded spec-

tral norm, i.e., ‖L‖ ≤ � = max{|λmax |, |λmin |}. For instance,
when L = Ld, we can take λmin = 0 and λmax = l, with l
related to the maximum degree of any of the graphs. When
L = Ln, we can consider λmin = 0 and λmax = 2.

Graph filters: A graph filter H is an operator that acts upon
a graph signal x by amplifying or attenuating its graph Fourier
coefficients as

Hx =
N∑

n=1

H(λn ) 〈x,φn 〉φn , (1)

where 〈·〉 denotes the usual inner product. Let λmin and λmax be
the minimum and maximum eigenvalues of L over all possible
graphs. The graph frequency response H : [λmin , λmax ] → R
controls how much H amplifies the signal component of each
graph frequency

H(λn ) = 〈Hx,φn 〉/〈x,φn 〉. (2)

We are interested in how we can filter a signal with a graph
filter H having a user-provided frequency response H∗(λ).
Note that this prescribed H∗(λ) is a continuous function in
the graph frequency λ and describes the desired response for
any graph. This approach brings benefits in those cases when
the underlying graph structure is not known to the designer, or
in cases the graph changes in time. The corresponding filter
coefficients are thus independent of the graph and universally
applicable. Using universal filters, we can design a single set
of coefficients that instantiate the same graph frequency re-
sponse H∗(λ) over different bases. To illustrate the universality
property, consider the application of a universal graph filter
to two different graphs G1 and G2 of N1 and N2 nodes with
graph frequency sets {λ1,n}N1

n=1 {λ2,n}N2
n=1 , and eigenvectors

{φ1,n}N1
n=1 , {φ1,n}N2

n=1 . The filter will attain the same response
H∗(λ) over both graphs, but, in each case, supported over a
different set of graph frequencies: For G1 , filtering results in∑N1

n=1 H∗(λ1,n ) 〈x,φ1,n 〉φ1,n , whereas for G2 the filtering op-

erator will be
∑N2

n=1 H∗(λ2,n ) 〈x,φ2,n 〉φ2,n . Thus, the univer-
sality lies in the correctness to implement H∗(λ) on all graphs,
which renders it applicable for time-varying graph topologies.

Distributed implementation: It is well known that we can
approximate a universal graph filter H in a distributed way using
a K-th order polynomial of L, for instance using Chebychev
polynomials [6]. Define FIRK as the K-th order approximation
given by

H = h0I +
K∑

k=1

hkLk , (3)

where the coefficients hi can be both found by Chebyshev poly-
nomial fitting [6] or in a least-squares sense, after a (fine) grid-
ding of the frequency range, by minimizing

∫

λ

∣∣∣∣∣

K∑

k=0

hkλk − H∗(λ)

∣∣∣∣∣

2

dλ. (4)

Observe that, in contrast to traditional graph filters, the order of
the considered universal graph filters is not necessarily limited
to N . By increasing K, we can approximate any filter with
square integrable frequency response arbitrarily well. On the
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other hand, a larger FIR order implies a longer convergence time
in a distributed setting, since each node requires information
from all its K-hop neighbors to attain the desired filter response.

To perform the filter distributedly in the networkG, we assume
that each node ui ∈ V is imbued with memory, computation, and
communication capabilities and is in charge of calculating the
local filter output [Hx]i . To do so, the node has to its disposal
direct access to xi , as well as indirect access to the memory
of its neighbors. For simplicity of presentation, we pose an ad-
ditional restriction to the computation model: we will assume
that nodes operate in synchronous rounds, each one consisting
of a message exchange phase and a local computation phase. In
other words, in each round ui may compute any (polynomial-
time computable) function which has as input, variables from its
local memory as well as those from the memory of its neighbors
in G. Since the algorithms examined in this paper are, in ef-
fect, dynamical systems, in the following we will adopt the term
iteration as being synonymous to rounds. Furthermore, we as-
sume that each iteration lasts exactly one time instant. In this
context, the convergence time of an algorithm is measured in
terms of the number of iterations the network needs to per-
form until the output closely reaches the steady-state, i.e., the
asymptotic output of the dynamical system.

The computation of FIRK is easily performed distributedly.
Since LK x = L

(
LK−1x

)
, each node ui can compute the

K-th term from the values of the (K − 1)-th term in its neigh-
borhood, in an iterative manner. The algorithm performing the
FIRK graph filter terminates after K iterations, and if a more ef-
ficient recursive implementation is used [6], in total, each node
ui exchanges K deg ui values with its neighbors, meaning that,
overall, the network exchanges NK deg ui variables, amount-
ing to a communication cost of O(MK). Further, since for this
computation each node keeps track of the values of its neigh-
bors at every iteration, the network has a memory complexity
of O(M).

However, FIRK filters exhibit poor performance when the
graph signal or/and graph topology are time-varying, since the
intermediate steps of the recursion cannot be computed exactly.
This is for two reasons: i) First, the distributed averaging is
paused after K iterations, and thus the filter output is not a steady
state of the iteration yt = Lyt−1 , which for t = K gives yK =
LK x as above. Accumulated errors in the computation alter
the trajectory of the dynamical system, rendering intermediate
states and the filter output erroneous. ii) Second, the input signal
is only considered during the first iteration. To track a time-
varying signal x1 ,x2 , . . . ,xt , a new FIR filter should be started
at each time step t having xt as input, significantly increasing the
computation, message and memory complexities. To overcome
these issues and provide a more solid foundation for graph signal
processing, we study ARMA graph filters.

III. ARMA GRAPH FILTERS

This section contains our main algorithmic contributions.
First, Sections III-A and III-B present distributed algorithms for
implementing filters with a complex rational graph frequency
response

H(λ) =
pn (λ)
pd(λ)

=
∑K

k=0 bkλk

1 +
∑K

k=1 akλk
, (5)

where pn (λ) and pd(λ) are the complex numerator and denomi-
nator polynomials of order K. Note that this structure resembles
the frequency response of temporal ARMA filters [21], in which
case λ = ejω , with ω being the temporal frequency. Though
both polynomials are presented here to be of the same order,
this is not a limitation: different orders for pn (λ) and pd(λ) are
achieved trivially by setting specific constants ak or bk to zero.

A. ARMA1 Graph Filters

Before describing the full fledged ARMAK filters, it helps
first to consider a 1-st order graph filter. Besides being simpler
in its construction, an ARMA1 lends itself as the basic building
block for creating filters with a rational frequency response of
any order (cf. Section III-B). We obtain ARMA1 filters as an
extension of the potential kernel [19]. Consider the following
1-st order recursion

yt+1 = ψLyt + ϕx (6a)

zt+1 = yt+1 + cx, (6b)

for arbitrary y0 and where the coefficients ψ, ϕ and c are com-
plex numbers (to be specified later on). For this recursion, we
can prove our first result.

Theorem 1: The frequency response of the ARMA1 is

H(λ) = c +
r

λ − p
, subject to |p| > � (7)

with residue r and pole p given by r = −ϕ/ψ and p = 1/ψ,
respectively, and with � being the spectral radius bound of L.
Recursion (6) converges to it linearly, irrespective of the initial
condition y0 and graph Laplacian L.

Proof: We can write the recursion (6a) at time t in the ex-
panded form as

yt = (ψL)ty0 + ϕ
t−1∑

τ =0

(ψL)τ x. (8)

When ||ψ� < 1 and as t → ∞ this recursion approaches the
steady state

y = lim
t→∞

yt = ϕ

∞∑

τ =0

(ψL)τ x = ϕ (I − ψL)−1 x, (9)

irrespective of y0 . Based on Sylvester’s matrix theorem, the ma-
trix I − ψL has the same eigenvectors as L and its eigenvalues
are equal to 1 − ψλn . It is also well known that invertible matri-
ces have the same eigenvectors as their inverse and eigenvalues
that are the inverse of the eigenvalues of their inverse. Thus,

z = lim
t→∞

zt = y + cx =
N∑

n=1

(
c +

ϕ

1 − ψλn

)
x̂nφn , (10)

and the desired frequency response (7) follows by simple alge-
bra. We arrive at (10) by considering a specific realization of
L, thus the set of eigenvalues λn ∈ [λmin , λmax ] is discrete.
However, the same result is achieved for every other graph
realization matrix L with a potentially different set of eigen-
values, still in [λmin , λmax ]. Thus, we can write (7) for all
λ ∈ [λmin , λmax ]. �
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The stability constraint in (7) can be also understood from
a dynamical system perspective. Comparing recursion (6) to
a discrete-time state-space equation, it becomes apparent that,
when the condition |ψ�| < 1 holds, recursion (6) achieves fre-
quency response (7). It is useful to observe that, since |p| > �,
an increment of the stability region can be attained, if we
work with a shifted version of the Laplacian L and thereby
decrease the spectral radius bound �. For instance, the follow-
ing shifted Laplacians can be considered: L = Ld − l/2I with
λmin = −l/2 and λmax = l/2 or L = Ln − I with λmin = −1
and λmax = 1. Due to its benefits, we will use the shifted ver-
sions of the Laplacians in the filter design phase and numerical
results.1

Recursion (6) leads to a simple distributed implementation
of a graph filter with 1-st order rational frequency response: at
each iteration t, each node ui updates its value yt,i based on its
local signal xi and a weighted combination of the values yt−1,j

of its neighbors uj . Since each node must exchange its value
with each of its neighbors, the message/memory complexity at
each iteration is of order O (M), which leads to an efficient
implementation.

Remark 1: Note that there is an equivalence between the
ARMA1 filter and FIR filters in approximating rational fre-
quency responses. Indeed, the result obtained in (9) from the
ARMA in t → ∞ can also be achieved with an FIR filter of
order K = ∞. Further, from (8) we can see that in finite time,
i.e., t = T and y0 = 0 the ARMA1 output is equivalent to an
FIRT −1 filter with coefficients [ϕ,ϕψ, . . . , ϕψT −1 ].

This suggests that: (i) the same output of an FIR filter can
be obtained form (6) and (ii) the ARMA1 graph filter can be
used to design the FIR coefficients to approximate frequency
responses of the form (7). As we will see later on, due to their
implementation form (6), the ARMA filters are more robust
than FIRs in a time-varying scenario (time-varying graph and/or
time-varying graph signal).

B. ARMAK Graph Filters

Next, we use ARMA1 as a building block to derive dis-
tributed graph filters with a more complex frequency response.
We present two constructions: The first uses a parallel bank of
K ARMA1 filters, attaining linear convergence with a commu-
nication and memory cost per iteration of O(KM). The second
uses periodic coefficients in order to reduce the communication
costs to O(M), while preserving the linear convergence as the
parallel ARMAK filters.

Parallel ARMAK filters: A larger variety of filter responses
can be obtained by adding the outputs of a parallel ARMA1 filter
bank. Let’s denote with superscript (k) the terms that correspond
to the k-th ARMA1 filter for k = 1, 2, . . . ,K. With this notation
in place, the output zt of the ARMAK filter at time instant t is

y
(k)
t+1 = ψ(k)Ly

(k)
t + ϕ(k)x (11a)

zt+1 =
K∑

k=1

y
(k)
t+1 + cx, (11b)

where y
(k)
0 is arbitrary.

1Note that from Sylvester’s matrix theorem, the shifted version of the
Laplacians share the same eigenvectors as the original ones.

Theorem 2: The frequency response of a parallel ARMAK

is

H (λ) = c +
K∑

k=1

rk

λ − pk
subject to |pk | > �, (12)

with the residues rk = −ϕ(k)/ψ(k) and poles pk = 1/ψ(k) , and
� the spectral radius of L. Recursion (11) converges to it linearly,
irrespective of the initial conditions y

(k)
0 and graph Laplacian L.

Proof: Follows straightforwardly from Theorem 1. �
The frequency response of a parallel ARMAK is therefore a

rational function with numerator and denominator polynomials
of order K (presented here in a partial fraction form). In addition,
since we are simply running K ARMA1 filters in parallel, the
communication and memory complexities are K times that of
the ARMA1 graph filter. Note also that the same considerations
of Remark 1 can be extended to the parallel ARMAK filter.

Periodic ARMAK filters: We can decrease the memory re-
quirements of the parallel implementation by letting the filter
coefficients periodically vary in time. Our periodic filters take
the following form

yt+1 = (θtI + ψtL)yt + ϕtx (13a)

zt+1 = yt+1 + cx, (13b)

where y0 is the arbitrary, the output zt+1 is valid every K
iterations, and coefficients θt , ψt , ϕt are periodic with period
K: θt = θt−iK , ψt = ψt−iK , ϕt = ϕt−iK , with i an integer in
[0, t/K].

Theorem 3: The frequency response of a periodic ARMAK

filter is

H(λ) = c +

∑K−1
k=0

(∏K−1
τ =k+1(θτ + ψτ λ)

)
ϕk

1 −
∏K−1

k=0 (θk + ψkλ)
, (14)

subject to the stability constraint
∣∣∣∣∣

K−1∏

k=0

(θk + ψk�)

∣∣∣∣∣ < 1 (15)

with � being the spectral radius bound of L. Recursion (13)
converges to it linearly, irrespective of the initial condition y0
and graph Laplacian L.

(The proof is deferred to the appendix.)
By some algebraic manipulation, we can see that the fre-

quency response of periodic ARMAK filters is also a rational
function of order K. We can also observe that the stability crite-
rion of parallel ARMAK is more involved than that of the par-
allel implementation. As now we are dealing with K ARMA1
graph filters interleaved in time, to guarantee their joint stability
one does not necessarily have to examine them independently
(requiring for instance that, for each k, |θk + ψk�| < 1). In-
stead, it is sufficient that the product |

∏K−1
k=0 (θk + ψk�)| is

smaller than one. To illustrate this, notice that if θk = 0, the
periodic ARMAK can be stable even if some of the ARMA1
graph filters it is composed of are unstable.

When computing a periodic ARMAK distributedly, in each
iteration each node ui stores and exchanges deg(ui) values with
its neighbors, yielding a memory complexity of O(M), rather
than the O(KM) of the parallel one (after each iteration, the
values are overwritten). On the other hand, since the output
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of the periodic ARMAK is only valid after K iterations, the
communication complexity is again O(KM). The low memory
requirements of the periodic ARMAK render it suitable for
resource constrained devices.

IV. ARMA FILTER DESIGN

In this section we focus on selecting the coefficients of our
filters. We begin by showing how to approximate any given fre-
quency response with an ARMA filter, using a variant of Shanks’
method [22]. This approach gives us stable filters, ensuring the
same selectivity as the universal FIR graph filters. Section IV-B
then provides explicit (and exact) filter constructions for two
graph signal processing problems which were up-to-now only
approximated: Tiknohov and Wiener-based signal denoising and
interpolation under smoothness assumptions [6], [23] and [10].

A. The Filter Design Problem

Given a graph frequency response H∗ : [λmin , λmax ] → R
and filter order K, our objective is to find the complex polyno-
mials pn (λ) and pd(λ) of order K that minimize

∫

λ

∣∣∣∣
pn (λ)
pd(λ)

− H∗(λ)
∣∣∣∣
2

dλ =
∫

λ

∣∣∣∣∣

∑K
k=0 bkλk

1 +
∑K

k=1 akλk
− H∗(λ)

∣∣∣∣∣

2

dλ

(16)
while ensuring that the chosen coefficients result in a stable sys-
tem (see constraints in Theorems 2 and 3). From pn (λ)/pd(λ)
one computes the filter coefficients (ψ(k) , ϕ(k) , c or θt , ψt , c) by
algebraic manipulation.

Remark 2: Even if we constrain ourselves to pass-band fil-
ters and we consider only the set of L for which � = 1, it is
impossible to design our coefficients based on classical design
methods developed for IIR filters (e.g., Butterworth, Cheby-
shev). The same issue is present also using a rational fitting
approach, e.g., Padé and Prony’s method. This is due to the
fact that, now, the filters are rational in the variable λ and the
notion of frequency does not stem from jω nor from ejω . This
differentiates the problem from the design of continuous and
discrete time filters. Further, the stability constraint of ARMAK

is different from classical filter design, where the poles of the
transfer function must lie within (not outside) the unit circle.

To illustrate this remark, consider the Butterworth-like graph
frequency response h(λ) =

(
1 + (λ/λc)K

)−1
, where λc is the

desired cut-off frequency. For K = 2, one finds that it has two
complex conjugate poles at ±jλc . Thus, the behavior of these
filters depends on the cut-off frequency and stability is not al-
ways guaranteed. For this particular case, and for a parallel
implementation, whenever λc > � the filters are not stable.

Design method: Similar to Shanks’ method, we approximate
the filter coefficients as follows:

Denominator: Determine ak for k = 1, . . . ,K by finding a

K̂ > K order polynomial approximation Ĥ(λ) =
∑K̂

k=0 gkλk

of H∗(λ) using polynomial regression, and solving the
coefficient-wise system of equations pd(λ)Ĥ(λ) = pn (λ).

Numerator: Determine bk for k = 1, . . . ,K by solving
the least-squares problem of minimizing

∫
λ |pn (λ)/pd(λ) −

H∗(λ)|2dμ, w.r.t. pn (λ).

Fig. 1. The frequency response of ARMAK filters designed by Shanks’
method and the FIR responses of corresponding order. Here, H ∗(λ) is a step
function (top) and a window function (bottom).

Once the numerator (bk ) and denominator (ak ) coefficients
of the target rational response are found:

(i) Parallel design: Perform the partial fraction expansion to find
the residuals (rk ) and poles (pk ). Then, the filter coefficients
ψ(k) and ϕ(k) can be found by exploiting their relation with
rk and pk in Theorem 2.

(ii) Periodic design: Identify ψk by computing the roots of the
(source) denominator polynomial 1 −

∏K−1
k=0 (θk + ψkλ)

in (14) and equating them to the roots of the (target) de-
nominator 1 +

∑K
k=1 akλk . It is suggested to set θ1 =

0 and θk = 1 for k > 0, which has the effect of
putting the two polynomials in similar form. Once
coefficients ψk (and θk ) have been set, we obtain ϕk by
equating the numerator target and source polynomials.

The method is also suitable for numerator and denominator
polynomials of different orders. We advocate however the use
of equal orders, because it yields the highest approximation
accuracy for a given communication/memory complexity.

The most crucial step is the approximation of the denomina-
tor coefficients. By fitting pd(λ) to ĝ(λ) instead of g(λ), we are
able to compute coefficients ak independently of bk . Increasing
K̂ � K often leads to a (slight) increase in accuracy, but at the
price of slower convergence and higher sensitivity to numerical
errors (such as those caused by packet loss). Especially for sharp
functions, such as the ones shown in Fig. 1, a high order poly-
nomial approximation results in very large coefficients, which
affect the numerically stability of the filters and push the poles
closer to the unit circle. For this reason, in the remainder of this
paper we set K̂ = K + 1.

Though the proposed design method does not come with
theoretical stability guarantees, it has been found to consis-
tently produce stable filters.2 Fig. 1 illustrates in solid lines the
frequency responses of three ARMAK filters (K = 5, 10, 20),
designed to approximate a step function (top) and a window
function (bottom). For reproducibility, Table I, which is fea-
tured in the Appendix, summarizes the filter coefficients of the
parallel implementation for different K.

2This has been observed while working with shifted Laplacians, and espe-
cially with the shifted normalized Laplacian L = Ln − I.
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B. Exact and Universal Graph Filter Constructions

We proceed to present exact (and in certain cases explicit)
graph filter constructions for particular graph signal denoising
and interpolation problems. In contrast to previous work, the
proposed filters are universal, that is they are designed with-
out knowledge of the graph structure. Indeed, the filter coef-
ficients are found independently from the eigenvalues of the
graph Laplacian. This makes the ARMA filters suitable for any
graph, and ideal for cases when the graph structure is unknown
or when the O(N 3) complexity of the eigenvalue decomposition
becomes prohibitive.

Tikhonov-based denoising: Given a noisy signal t = x + n,
where x is the true signal and n is noise, the objective is to
recover x [2], [6], [23]. When x is smooth w.r.t. the graph,
denoising can be formulated as the regularized problem

x̃ = arg min
x∈CN

‖x − t‖2
2 + w x�LK x, (17)

where the first term asks for a denoised signal that is close to t,
and the second uses the quadratic form of LK to penalize signals
that are not smooth. In (17), admitted choices of L are limited
to the discrete Laplacian Ld or the normalized Laplacian Ln

(without shifting). The positive regularization weight w allows
us to trade-off between the two terms of the objective function.
Being a convex problem, the global minimum x̃ is found by
setting the gradient to zero, resulting in

x̃ =
(
I + wLK

)−1
t =

N∑

n=1

1
1 + wλK

n

〈t,φn 〉φn . (18)

It follows that (18) can be approximated with an ARMAK with
frequency response

H(λ) =
1

1 + wλK
=

1
∏K

k=1(λ − pk )
(19)

with pk = −ejγk / K
√

w and γk = (2k + 1)π/K. From the sta-
bility condition of the parallel ARMAK , we have stable filters
as long as that |pk | > �, which for the particular expression of
pk becomes K

√
w� < 1.

The solution of (18) can also computed by an ARMAK imple-
mented on the shifted Laplacians, with a notable improvement
on the stability of the filters. For L = Ld − l/2I we can refor-
mulate (19) as

H(λ) =
1

1 + w(λ + l
2 )K

=
1

∏K
k=1(λ − pk )

(20)

where now pk = −l/2 + ejγk / K
√

w for γk = (2k + 1)π/K.
Again, from the stability of ARMAK |pk | > �, or equivalently
|pk |2 > �2 , we now obtain stable filters as long as

(
− l

2
+

cos(γk )
K
√

w

)2

+
sin2(γk )

K
√

w
2 > �2 , (21)

or equivalently
(

l2

4
− �2

)
K
√

w
2 − l cos(γk ) K

√
w + 1 > 0, (22)

Fig. 2. Convergence of a denoising parallel ARMAK filter for K = 1, 2 and
w = 0.5, 1, 2. The filtering error is ‖zt − x̃‖ / ‖x̃‖, where for each parameter
pair (K, w), x̃ is the solution of the denoising problem, and zt is the filter
output after t rounds. The residual error is a consequence of the computer’s
bounded numerical precision.

are satisfied. For the shifted normalized Laplacian, � = 1 and
l = 2, the stability condition simplifies to

2cos(γk ) K
√

w < 1, (23)

which is always met for the standard choices of K = 1
(quadratic regularization) and K = 2 (total variation).3 For
these values of K, and for different values of the regularized
weight w, we show in Fig. 2 the normalized error between the
output of the ARMAK recursion and the solution of the opti-
mization problem (17), as a function of time.

For both (19) and (20), the denominator coefficients ψ(k)

of the corresponding parallel ARMAK filter can be found as
ψ(k) = 1/pk . Meanwhile, the numerator coefficients ϕ(k) are
found in two steps: (i) express (19), (20) in the partial form as
in (12) to find the residuals rk and (ii) take ϕ(k) = −rkψ(k) .

Wiener-based denoising: When the statistical properties of
the graph signal and noise are available, it is common to opt for
a Wiener filter, i.e., the linear filter that minimizes the mean-
squared error (MSE)

H̃ = arg min
H∈RN ×N

E
[
‖Ht − x‖2

2

]
and x̃ = H̃t, (24)

where as before t = x + n is the graph signal which has been
corrupted with additive noise. It is well known that, when x and
n are zero-mean with covariance Σx and Σn, respectively, the
solution of (24) is

x̃ = Σx(Σx + Σn)−1t. (25)

given that matrix Σx + Σn is non-singular. The above linear
system can be solved by a graph filter when matrices Σx and
Σn share the eigenvectors of the Laplacian matrix L. Denote
by σx(λn ) = φ�

n Σxφn the eigenvalue of matrix the Σx which
corresponds to the n-th eigenvector of L, and correspondingly
σn(λn ) = φ�

n Σnφn . We then have that

x̃ =
N∑

n=1

σx(λn )
σx(λn ) + σn(λn )

〈t,φn 〉φn . (26)

It follows that, when σx(λ) and σn(λ) are rational functions
(of λ) of order K, the Wiener filter corresponds to an ARMAK

3Even though w is a free parameter, for K = 1, 2 the value cos(γk ) in (23)
will be either 0 or −1, due to the expression of γk .
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graph filter. Notice that the corresponding filters are still uni-
versal, as the ARMAK coefficients depend on the rational func-
tions σx(λ) and σn(λ), but not on the specific eigenvalues of
the graph Laplacian. In a different context, similar results have
been also observed in semi-supervised learning [24].

Let us illustrate the above with an example. Suppose that x is
normally distributed with covariance equal to the pseudoinverse
of the Laplacian L†. This is a popular and well understood
model for smooth signals on graphs with strong connections to
Gaussian Markov random fields [25]. In addition, let the noise
be white with variance w. Substituting this into (26), we find

x̃ =
N∑

n=1

1
1 + wλn

〈t,φn 〉φn , (27)

which is identical to the Tikhonov-based denoising for K = 1
and corresponds to an ARMA1 with ϕ = 2/(2 + wl) and ψ =
−2w/(2 + wl), which as previously shown has always stable
implementation. Note that even though the stability is ensured
for the considered case, it does not necessarily hold for every
covariance matrix. Indeed, the stability of the filter must be
examined in a problem-specific manner.

Graph signal interpolation: Suppose that only r out of the N
values of a signal x are known, and let t be the N × 1 vector
which contains the known values and zeros otherwise. Under
the assumption of x being smooth w.r.t. L = Ld or L = Ln, we
can estimate the unknowns by the regularized problem

x̃ = arg min
x∈RN

‖S (x − t)‖2
2 + w x�LK x, (28)

where S is the diagonal matrix with Sii = 1 if xi is known and
Sii = 0 otherwise. Such formulations have been used widely,
both in the context of graph signal processing [10], [26] and
earlier by the semi-supervised learning community [9], [27].
Similar to (17), this optimization problem is convex and its
global minimum is found as

x̃ =
(
S + wLK

)−1
t. (29)

Most commonly, K = 1, and x̃ can be re-written as

x̃=
(
I − L̂

)−1
t=

N∑

n=1

1

1 + λ̂n

〈t, φ̂n 〉φ̂n . (30)

which is an ARMA1 filter designed for the Laplacian matrix
L̂ = S − I + wL with (λ̂n , φ̂n ) the n-th eigenpair of L̂. For
larger values of K, the interpolation cannot be computed dis-
tributedly using ARMA filters. That is because the correspond-
ing basis matrix L̂ = S + wLK cannot be appropriately factor-
ized into a series of local matrices.

V. TIME-VARIATIONS

At this point we have characterized the filtering and conver-
gence properties of ARMA graph filters for static inputs. But
do these properties hold when the graph and signal are a func-
tion of time? In the following, we characterize ARMA graph
filters with respect to time-variations in the graph signal (cf.
Section V-A), as well as in the graph topology (cf. Section V-B).

A. Joint Graph and Temporal Filters

To understand the impact of graph signal dynamics we
broaden the analysis to a two-dimensional domain: the first
dimension, as before, captures the graph (based on the graph
Fourier transform), whereas the second dimension captures time
(based on the Z-transform [21]). This technique allows us to
provide a complete characterization of the ARMA filter subject
to time-variations. First, we show that the ARMA filter output
remains close to the correct time-varying solution (under suffi-
cient conditions on the input), which implies that our algorithms
exhibit a certain robustness to dynamics. Further, we realize that
ARMA graph filters operate along both the graph and temporal
dimensions. We find that a graph naturally dampens temporal
frequencies in a manner that depends on its spectrum. Exploiting
this finding, we extend the ARMA designs presented in Section
III so as to also allow a measure of control over the temporal
frequency response of the filters.

As previously, we start our exposition with the ARMA1 re-
cursion (6), but now the input graph signal xt is time dependent
(thus, indexed with the subscript t)

yt+1 = ψLyt + ϕxt (31a)

zt+1 = yt+1 + cxt . (31b)

The dimension of the above recursion can be reduced by
restricting the input graph signal to lie in the subspace of an
eigenvector φ with associated eigenvalue μ, i.e., xt = xtφ,
where now xt is a scalar and similarly, we take y0 = y0φ.4

By orthogonality of the basis, the filter only alters the magni-
tude xt relative to the eigenvector φ and not the direction of xt .
Therefore, (31) is equivalent to

yt+1 = ψλyt + ϕxt (32a)

zt+1 = yt+1 + cxt , (32b)

where xt, yt , zt ∈ R are simply the magnitudes of the vectors
xt ,yt ,zt ∈ Cn lying in the eigenspace of φ, and we can write
yt = ytφ and zt = ztφ. Taking the Z-transform on both sides,
we obtain the joint graph and temporal frequency transfer func-
tion

H(z, λ) =
ϕz−1

1 − ψλz−1 + cz−1 . (33)

It can be shown that the temporal-impulse response for each
graph frequency λ is

ht+1(λ) =
(
ϕ(ψλ)t + cδ[t]

)
φ, (34)

with δ[t] the impulse function. From (34) we deduce that the
region of convergence (ROC) of the filter is {|z| > |ψλ|, for all
λ} and that the filter is causal.

The joint transfer function characterizes completely the be-
havior of ARMA1 graph filters for an arbitrary yet time-invariant
graph: when z → 1, we return to the constant x result and sta-
bility condition of Theorem 1, while for all other z we obtain
the standard frequency response as well as the graph frequency
one. As one can see, recursion (31) is an ARMA1 filter in the
graph domain as well as in the time domain. Observe also that

4This is a standard way to derive the frequency response of the system.
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Fig. 3. The joint graph and temporal frequency response of a parallel and
a periodic graph filter, both designed to approximate an ideal low pass (step)
response with cut-off frequency λc = 0.5 and K = 3 w.r.t. the normalized
graph Laplacian. The temporal frequencies f are normalized (×π rad/sample).

the poles of H(z, λ) obey the fixed relationship z = λψ. This
yields an interesting insight: the temporal frequency response of
the filter differs along each graph frequency λ, meaning that tem-
poral dynamics affecting signals lying in low graph frequency
eigenspaces are dampened to a smaller extent.

As Theorems 4 and 5 below show, the results are readily
generalized to higher order filters.

Theorem 4: The joint graph and temporal frequency transfer
function of a parallel ARMAK is

H(z, λ) =
K∑

k=1

ϕ(k)z−1

1 − ψ(k)λz−1 + cz−1 , (35)

subject to the stability conditions of Theorem 2.
Theorem 5: The joint graph and temporal frequency transfer

function of a periodic ARMAK is

H(z, λ) =

∑K−1
k=0

(∏K−1
τ =k+1 θτ + ψτ λ

)
ϕkzk−K

1 −
(∏K−1

τ =0 θτ + ψτ λ
)

z−K
+ cz−1 ,

(36)
subject to the stability conditions of Theorem 3.

(The proofs are deferred to the appendix.)
As in the first order case, Theorems 4 and 5 describe com-

pletely the behavior of the parallel and periodic implementa-
tions. We can see that both filters are ARMAK filters in the
graph and temporal domain. In particular, the parallel and pe-
riodic filters have up to K distinct poles abiding respectively
to

z = ψ(k)λ and z = K

√√√√
K−1∏

τ =0

θτ + ψτ λ. (37)

To provide further insight, Fig. 3 plots the joint graph and
temporal frequency response of a parallel and a periodic graph
filter of third order, both designed (only in the graph domain)
to approximate an ideal low pass response with cut-off fre-
quency λc = 0.5. In the figure, the horizontal axis measures the
graph frequency with smaller λ corresponding to lower variation
terms. The temporal axis on the other hand measures the nor-
malized temporal frequency f such that, for f = 0, one obtains
the standard graph frequency response.

We make two observations: First, both graph filters ensure al-
most the same frequency response as for the static case (f = 0)

for low temporal variations f ≤ 1/8. This suggests that these fil-
ters are more appropriate for slow temporal variations. Whereas
for graph signals lying in eigenspaces with λ close to λ = 1 all
temporal frequencies are damped. This is a phenomenon that
transcends the filter implementation (parallel or periodic) and
the particular filter coefficients. It is attributed to the shifting of
the Laplacian in the design phase and to the multiplicative re-
lation of the response poles. Second, the parallel concatenation
of ARMA1 filters results in a more stable implementation that is
more fit to tolerate temporal dynamics than the periodic imple-
mentation. As shown in Figure 3, for λ = 0 and λ = 2, temporal
fluctuations with frequencies exceeding 1/8 cause the periodic
filter output to blow up by an order of magnitude, effectively ren-
dering the periodic implementation unusable. The poor stability
of the periodic implementation is also seen from (36), where the
θτ terms tend to push the poles closer to the unit circle, and it is
the price to pay for its small memory requirements. Due to its su-
perior stability properties and convenient form (less coefficients
and simpler design), we suggest the parallel implementation for
dealing with time-varying graph signals.

B. Time-Varying Graphs and Signals

Time variations on the graph topology bring new challenges
to the graph filtering problem. First, they render approaches that
rely on knowledge of the graph spectrum ineffective. Approaches
which ensure stability by designing the poles to lie outside the
set of the Laplacian eigenvalues of a given graph, may lead
to unstable filters in a different graph where some eigenvalues
may over-shoot one of the poles. Due to their different design
philosophy, the presented ARMA graph filters handle naturally
the aforementioned issues. We can, for instance, think that the
different graph realizations among time enjoy an upper bound on
their maximum eigenvalue λmax . In case this is not possible, or
difficult to determine, we can always work with the normalized
Laplacian and thus take λmax = 2. In this way, by designing
the filter coefficients in order to ensure stability w.r.t. λmax ,
we automatically impose stability for all different graph real-
izations. Furthermore, by designing once the filter coefficients
for a continuous range of frequencies, the ARMA recursions
also preserve the desired frequency response for different graph
realizations.

The second major challenge is characterizing the graph filter
behavior. Time-varying affine systems are notoriously difficult
to analyze when they possess no special structure [28]. To this
end, we devise a new methodology for time-varying graph filter
analysis. We show that a decomposition basis always exists,
over which ARMA1 graph filters (and as a consequence parallel
ARMAK filters) have the same frequency response as in the
static case. Furthermore, this decomposition basis depends only
on the sequence of graph realizations.

In case of a time-varying graph topology, yet with a fixed
number of nodes N , as well as a time-varying graph signal, the
ARMA1 recursion (6) can be written as

yt+1 = ψLtyt + ϕxt (38a)

zt+1 = yt+1 + cxt , (38b)

where the time-varying graph is shown by indexing Lt with
the subscript t. Expanding the recursion we find that, for any
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sequence of graph realizations {G0 , G1 , . . . , Gt} with corre-
sponding Laplacians {L0 ,L1 , . . . ,Lt}, the output signal is
given by

zt+1 =ψt+1ΦL(t, 0)y0 +ϕ

t∑

τ =0

ψτ ΦL(t, t − τ + 1)xt−τ +cxt,

(39)
where ΦL(t, t′) = LtLt−1 . . . Lt ′ for t ≥ t′, and ΦL(t, t′) = I
otherwise.

Since the output zt depends on the entire sequence of graph
realizations, the spectrum of any individual Laplacian is insuf-
ficient to derive the graph frequency of the filter. To extend the
spectral analysis to the time-varying setting, we define a joint
Laplacian matrix Ltv that encompasses all the individual shifted
graph Laplacians. The intuition behind our approach is to think
of a time-varying graph as one large graph Gtv that contains all
nodes of the graphs G0 ,G1 , . . . ,Gt , as well as directional edges
connecting the nodes at different timesteps. We then interpret
the spectrum of the associated Laplacian matrix Ltv as the ba-
sis for our time-varying graph Fourier transform. This idea is
a generalization of the joint graph construction [29], used to
define a Fourier transform for graph signals which change with
time (though in the previous work the graph was considered
time-invariant). Similar to [29], we will construct Gtv by repli-
cating each node ui ∈ V once for each timestep t. Denote the
t-th replication of the i-th node as ut,i . For each t and i, Gtv

will then contain directed edges between ut−1,j and ut,i with uj

being a neighbor of ui in Gt−1 . Therefore, in contrast to previous
work, here the edges between nodes ui and uj are a function
of time. By its construction, Gtv captures not only the topology
of the different graphs, but also the temporal relation between
them: since the exchange of information between two neighbors
incurs a delay of one unit of time, at each timestep t, a node has
access to the values of its neighbors at t − 1.

To proceed, define P to be the (t + 1) × (t + 1) cyclic shift
matrix with ones below the diagonal and construct Ltv as the
N(t + 1) × N(t + 1) permuted block-diagonal matrix

Ltv = blkdiag[L0 ,L1 , . . . ,Lt ](P ⊗ I), (40)

For consistency with the established theory on GFT, when t = 0
and the graph is time-invariant, we define P = 1. Let eτ be the
(t + 1)-dimensional canonical unit vector with (eτ )i = 1 if i =
τ and (eτ )i = 0, otherwise. Defining s = [x�

0 ,x�
1 , . . . ,x�

t ]� as
the vector of dimension N(t + 1) which encompasses all input
graph signals, we can then write

ΦL(t, t − τ + 1)xt−τ = (e�
t+1 ⊗ I)Lτ

tv s. (41)

In those cases when the non-symmetric matrix Ltv enjoys an
eigendecomposition, we have Ltv = UλU−1 with (λk , [U ]k )
the k-th eigenpair. Specifically, λk is the k-th diagonal element
of λ and [U ]k is the k-th column of U . The total number of
eigenpairs of Ltv is K = N × (t + 1). To ease the notation, we
will denote as [U ]−1

k the respective k-th column of U−1 .

Substituting (41) into the second term of (39) and rearranging
the sums, we get

ϕ

t∑

τ =0

ψτ ΦL(t, t − τ + 1)xt−τ = ϕ(e�
t+1 ⊗ I)

t∑

τ =0

(ψLtv )τ s

= ϕ(e�
t+1 ⊗ I)

t∑

τ =0

K∑

k=1

(ψλk )τ 〈s, [U ]−1
k 〉[U ]k

= (e�
t+1 ⊗ I)

K∑

k=1

ϕ
1 − (ψλk )t+1

1 − ψλk
〈s, [U ]−1

k 〉[U ]k . (42)

Similarly,

ψt+1ΦL(t, 0)y0 = (e�
t+1 ⊗ I) (ψLtv )t+1 (et+1 ⊗ y0)

= (e�
t+1 ⊗ I)

K∑

k=1

(ψλk )t+1〈et+1 ⊗ y0 , [U ]−1
k 〉[U ]k (43)

as well as

cxt = (e�
t+1 ⊗ I)

K∑

k=1

c 〈s, [U ]−1
k 〉[U ]k . (44)

Without loss of generality, when t is sufficiently large we can
ignore terms of the form (ψλk )t+1 as long as |ψλk | < 1, which
also indicates that the impact of the filter initialization y0 on
the filter output vanishes with time.This condition is met when
‖ψLtv‖ < 1, which as a direct consequence of Gershgorin’s
circle theorem, this stability condition is met if, for every τ ,
the sum of the elements of each row of Lτ , in absolute value,
is smaller than |1/ψ| (which also implies that the eigenval-
ues of Lτ are bounded by |1/ψ|). For the (shifted) normalized
Laplacian this means that |ψ| < 2 (|ψ| < 1), matching exactly
the stability conditions of the static case. Under this sufficient
condition, the filter output approaches

zt+1 ≈(e�
t+1 ⊗ I)

K∑

k=1

(
ϕ

1 − ψλk
+ c

)
〈s, [U ]−1

k 〉[U ]k . (45)

Notice that the ARMA1 retains the same graph frequency re-
sponse as in the time-invariant case (7), now expressed in
the basis of Ltv . It is not difficult to show that the ARMA1
graph filter converges asymptotically. Let us denote the dis-
tance between the filter output at two different time instants
t1 > t2 as

εt1 ,t2 =
‖zt1 − zt2 ‖

xmax
. (46)

where xmax = maxt=1,...,t1 ‖xt‖ constitutes an upper bound
on the energy of the input. We can now claim

Theorem 6: Given the ARMA1 recursion (39) and given that
the graph Laplacians are uniformly bounded for every t ‖Lt‖ ≤
�, the distance εt1 ,t2 between the filter output at time instants t1
and t2 is upper-bounded as

εt1 ,t2 ≤ ‖y0‖
|ψ�|t1 + |ψ�|t2

xmax
+ |ϕ| |ψ�|t2 − |ψ�|t1

1 − |ψ�|

+ |c| ‖xt1 −1 − xt2 −1‖
xmax

. (47)

(The proof is deferred to the appendix.)
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For simplicity, set c = 0 and consider t1 big enough such that
the term |ψ�|t1 ≈ 0. Then, directly from (47) we can find the
value of t2 such that the error between the two is smaller than a
desired positive constant ε, i.e.,

t2 ≥ log (α/ε) ⇒ εt1 ,t2 ≤ ε, (48)

with α = ‖y0‖ /xmax + |ϕ| /(1 − |ψ�|).
The results of Theorem 6 can be extended to the general

ARMAK graph filter. For the parallel implementation, we can
proceed in the same way as for the ARMA1 by considering
that the output signal is the sum of K ARMA1 graph filters.
Meanwhile, for the periodic implementation we can see that its
form (53), after one cyclic period, is analogous to (38).

The main result of Theorem 6 stands in the fact that the
ARMA output will not diverge as long as the graph Laplacians
of each realization Gt has uniformly bounded spectral norm and
from (48) the distance decreases exponentially. Further, for t
big enough and if Ltv enjoys an eigendecompositon the result
in (45) gives us insights where the ARMA output converges.
Numerical results suggest that the obtained output is generally
close to the designed frequency response of the ARMA filter.

VI. NUMERICAL RESULTS

To illustrate our results we simulate two different case-
studies: one with a fixed graph and a time-varying graph signal,
and one where both the graph and graph signal are time-varying.
In the latter case, the ARMA performance is also compared to
the state-of-the-art FIR filters designed in a universal manner [6].
With the first case-study, we aim to show how the proposed fil-
ters operate on graph signals that have spectral content in both
graph and temporal frequency domains. Meanwhile, with the
second the goal is to illustrate the ARMA performance when
the underlying graph topology is not static anymore, but varies
with time. For all our simulations, the ARMA filters, if not
differently mentioned, are initialized to zero (i.e., y0 = 0 and
y

(k)
0 = 0 for all k) and the filter design is performed in a uni-

versal setting.

A. Variations on the Graph Signal

In this subsection, we present simulation results for time-
varying signals. We consider a 0.5-bandlimited graph signal ut

oscillating with a fixed temporal frequency π/10, meaning that

〈ut ,φn 〉 =
{

ejπt/10 if λn < 0.5
0 otherwise,

(49)

where λn is the n-th eigenvalue of the normalized graph Lapla-
cian and t it the time index. The signal is then corrupted with
a second interfering signal vt , oscillating with a temporal fre-
quency 9π/10 with graph spectrum defined in the following
in two different ways.. In addition, the signal at each node is
corrupted with i.i.d. Gaussian noise nt , with zero mean and
variance σ2 = 0.1. We then attempt to recover ut by filtering it
with a parallel ARMA5 graph filter, effectively canceling the in-
terference vt and attenuating the out of band noise. The ARMA
filter is designed only in the graph frequency domain based on
the GFT of ut , i.e., to approximate an ideal low-pass filter in the
graph domain with cut-off frequency λc = 0.5. Regarding the
temporal part, we exploit the property of the filter to preserve

Fig. 4. Graph spectral content of the input signal as well as of the overall
signal affected by interference and noise (a) (top), and of the filter output signal
(b) (bottom). The output signal graph spectrum is shown for t = 100.

Fig. 5. Average time spectral content over all nodes of the input and output
signal. The values are normalized with respect to the maximum.

the same graph frequency response as the static case for low
temporal oscillations, while attenuating the contribution of high
temporal frequencies. Our simulations were conducted using a
random geometric graph G composed of 100 nodes placed ran-
domly in a square area, with any two nodes being connected
if they are closer than 15% of the maximum distance in the
area, with an average degree of 11.8. Depending on whether the
interference is correlated with the signal or not, we distinguish
between two scenarios:

i) Correlated Signal Interference: In this scenario, the inter-
ference is self-induced, meaning that at a given instant t, vt and
ut share the same graph spectrum, but oscillating at a higher
temporal frequency (due for instance to electronics problems).
To provide intuition, in Fig. 4.(a), we show the graph spectral
content of u0 and u0 + v0 + n0 . We can see that once corrupted
by noise and interference, the graph signal presents significant
spectral content across the graph spectrum, thus loosing its ban-
dlimited nature. Meanwhile, Fig. 4.(b) depicts the real part of
the graph spectral content of the filter output after 100 iterations
(i.e., well after the initial state is forgotten). Even though the fig-
ure cannot capture the effect of dynamics (as it solely focuses on
t = 100), it does show that all frequencies above λc = 0.5 have
been attenuated and the interference contribution in the band is
reduced. To illustrate the filtering of the temporal frequencies of
the signal, in Fig. 5 we show the average spectrum over all nodes
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of the input and output signal. To increase visibility, the values in
the figure are normalized with respect to the maximum. We can
see that, the content relative to the interfering frequency 9π/10
of the output signal is attenuated around 13 dB with respect to
the main temporal frequency content of π/10.

ii) Uncorrelated signal interference: Let us now consider
a more involved scenario, in which the interfering graph
signal satisfies

〈vt ,φn 〉 = ej9πt/10e−λn , (50)

i.e., it is a signal having a heat kernel-like graph spectrum os-
cillating in time with a pulsation ω = 9π/10. We will examine
two types of errors: i) The first compares for each time t the
ARMA5 output GFT ẑt to that of the signal of interest

e
(total)
t =

‖ẑt − ût‖
‖ût‖

. (51)

Achieving a small error e
(total)
t is a very challenging problem

since an algorithm has to simultaneously overcome the addition
of noise and the interference, while at the same time operating in
a time-varying setting (see Fig. 6). ii) The second error focuses
on interference and compares zt to the output z∗

t of the same
ARMA5 operating on ut + nt (but not ut + vt + nt)

e(interf )
t =

‖ẑt − ẑ∗
t‖

‖ẑ∗
t‖

, (52)

where ẑ∗
t is the GFT of z∗

t .
We can see from Fig. 6 that after a few iterations this error

becomes relatively small, which means that the output spectrum
of the ARMA recursion when the signal is affected by inter-
ference is similar to when the interference-less signal is used.
This gives a first insight, that using the ARMA recursion we can
manage multiple signals on a graph by simply making them or-
thogonal in the temporal frequency domain. By a specific design
of the filter coefficients, one can distributively operate on the
graph signal of interest and ignore the others. Such a result can-
not be achieved with FIR filters for two reasons: (i) they suffer
from handling time-varying input signals, and (ii) the FIR filters
do not operate on the temporal frequency content of the graph
signals, thus such a distinction between overlapping signals is
difficult to achieve.

The above results illustrate the conclusions of Section V, and
also quantify how much we can attenuate the signal at a specific
graph/temporal frequency.

B. Variations on the Graph Topology

We examine the influence of graph variations for two filter-
ing objectives. The first, which corresponds to denoising, can
be computed exactly using ARMA. In the second objective, the
graph filter is designed to approximate an ideal low-pass graph
filter, i.e., a filter that eliminates all graph frequency compo-
nents higher than some specific λc . In addition, we employ two
different types of graph dynamics: random edge failures, where
the edges of a graph disappear at each iteration with a fixed
probability, as well as the standard model of random waypoint
mobility [30]. The above setup allows us to test and compare
universal ARMA and FIR graph filters (designed using the least-

Fig. 6. Error of the ARMA recursion when the time-varying input signal is
affected by uncorrelated interference.

Fig. 7. Normalized error related to the solution of the denoising problem in
a distributed way with graph filters. Results relative to random time-varying
graph (top) and static graph (bottom). We compare the results of ARMA1
with different FIR graph filters. The FIRK output at time t is calculated as

yt =
∑K

k=0 hk ΦL(t, t − k + 1)x and is not arrested after K time instants.

squares method) over a range of scenarios, each having different
characteristics.

Exact design (denoising): We simulate the denoising problem
(as defined by (17), with w = 0.5 and K = 1) over the same
graph topology of Section VI-A, where the probability that an
edge goes down at each time instant is p = 0.05. The input
signal x = u + n is given by a linear combination of a smooth
signal u and noise n. To ensure that the graph signal is smooth,
we set its spectrum, w.r.t. the initial graph, as 〈u,φn 〉 = e−5λn .
The noise n on the other hand is i.i.d. Gaussian distributed with
zero mean and unit variance.

To compare the results, we calculate the normalized error
between the graph filter output and the analytical solution of
the optimization problem (17) solved w.r.t. the initial graph. In
Fig. 7, we plot the normalized error of solving the denoising
problem via distributed graph filtering. We consider an ARMA1
graph filter (designed according to Section IV-B with y0 = x)
and we compare its performance with FIR graph filters of dif-
ferent orders. As expected, we can see that in the static case the
ARMA graph after K iterations has the same performance as the
FIRK filter and thwy both match the solution of the optimiza-
tion problem. On the other hand, in the random time-varying
graph the ARMA filter outperforms all the FIRs. This is mainly
due to its implementation strategy, which allows the ARMAs to
handle the graph variations better. Also note that the result ob-
tained from the ARMA1 in the time-varying scenario quantifies
the theoretical derivations in (45) and Theorem 6. Indeed, we
can see that the obtained output is close (up to an order 10−3)
to the desired frequency response and the convergence is linear.
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We can see that, for both the random time-varying and static
graph the ARMA graph filter gives a lower error with respect
to the solution of the optimization problem. As we have seen
before, for static graphs the ARMA filter matches correctly the
analytical solution. Meanwhile, when the graph is generated
randomly it approximates quite well the latter. On the other
hand, the performance of the FIR filters is limited by the fact that
they only approximate the solution of the optimization problem.
Notice that the FIR output is given after K time instants and
then the filter is reset, hence the spikes in the figure.

Approximate design (ideal low pass): We use graph filters
of increasing orders, specifically K = 2, 4 and 6, to universally
approximate a low-pass graph filter with frequency response
g∗(λ) = 1 if λ < 0.5, and zero otherwise. We consider a graph
with 100 nodes living in a square of 1000 × 1000 meters,
with a communication range of 180 meters. We simulated node
mobility according to the random waypoint model [30] with a
constant speed selected in [0, 3] m/s.

We start with a scenario where only the graph topology
changes in time whereas the graph signal remains invariant.
Then, we simulate a more general case, where both the graph
topology and the graph signal are time-varying. For both
scenarios, we perform 20 distinct runs, each lasting 10 minutes
and consisting of 600 iterations (one iteration per second). We
then compare the response error ‖g − g∗‖/‖g∗‖ of the ARMA
filters with that of the analogous FIR filters while accounting for
the initialization phase (we ignore the first 100 iterations). More
specifically, at each time instant, we compute g(λn ) = ŷn/x̂n ,
where the points x̂n ≈ 0 are not considered. Then, it is com-
pared with the desired frequency response at the particular graph
frequency λn , i.e., g∗(λn ). The statistical significance of our
results stems not only by the 20 distinct repetitions, but also by
the large number of graph topologies experienced in each run.

Time-varying graph, constant graph signal: For this scenario,
x is a random vector with entries selected uniformly distributed
in [0, 1]. In Fig. 8 (top) we show the response error for in-
creasingly higher node speeds. As expected, the error increases
with speed. Nevertheless, the ARMA filters show a better per-
formance in comparison to their analogous FIR filters. This
indicates that the proposed approach handles better time-vaying
settings than the FIR filters. Further, we can see that higher
order ARMA filters approximate better the desired frequency
response (smaller error) when the graph is static. On the other
hand, when mobility is present, higher order ARMA recursions
lead to a rough approximation due to their slower convergence
and the fact that the poles go closer to the unit circle (larger
coefficients).

Time-varying graph and graph signal: To conclude, we sim-
ulate the more general case where both the graph structure and
the graph signal change in time. Simulating a target tracking
scenario, we let the signal at each node take a value of zero,
unless a node was within 100 meters from a target point, resid-
ing at the middle of the 1000 × 1000 meter simulation area, in
which case the node’s value was set to one. In Fig. 8 (bottom)
we show the response error as a function of the node’s speed. It
is not surprising that letting the graph signal change over time
makes the graph filtering problem harder and the corresponding
errors of all graph filters larger. As expected, the error increases
with speed. Nevertheless, the ARMA filters show a better per-

Fig. 8. The effects of the variations only on the graph topology (top) and
on both graph and graph signal (bottom). The response error is calculated as
‖g(λ) − g∗(λ)‖/‖g∗(λ)‖. Each error bar shows the standard deviation of
the approximation error over 20 runs. A small horizontal offset is included to
improve visibility.

formance in comparison to their analogous FIR filters for all
cases other than when K = 2 and speed is zero (the latter is an
artifact of the Shank’s method).

VII. CONCLUSION

In this work, we presented the ARMA recursion as way of
implementing IIR graph filters in a distributed way. We showed
two different options to approximate any desired graph fre-
quency response with an ARMA filter of order K, namely
the parallel and periodic implementations. Experiments show
that, our Shanks-based design method produces stable filter,
which can approximate arbitrary well any desired graph fre-
quency response. Furthermore, they attain linear convergence.
The proposed ARMA graph filters were shown to provide so-
lutions for two important graph filtering tasks: (i) Tikhonov
and Wiener graph denoising and (ii) graph signal interpolation
under smoothness assumptions.

Characterized by a rational frequency response, ARMA graph
filters can track time-varying input signals. In this case, we
showed that our filters naturally extend to a 2-dimensional fre-
quency space simultaneously operating in the graph- and time-
frequency domain. In this way, we can distributedly filter a
signal jointly in both domains, instead of operating on each of
them separately, which leads to higher costs. Though we did
not provide solutions for the joint design problem, we illus-
trated that, due to a connection between the poles in the graph
domain and those in the Z-domain, graph filters which are de-
signed only w.r.t. the graph frequency domain, are characterized
by a specific temporal behavior. Further, we characterized the
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TABLE I
RESIDUES rk AND POLES pk OF PARALLEL ARMAK FILTER, FOR K = 3, 5 AND 7

ARMA recursion when also the graph structure varies in time
and proved that the linear convergence can be guaranteed also
in this setting.

Our future research will be based on finding analytical stable
design methods for both 1 and 2-dimensional ARMA recursions.
Furthermore, we are also interested to extend the proposed 2-
dimensional graph filter to a separable case in order to obtain a
disjoint filter design in each domain.

APPENDIX

Table I

For completeness and reproducibility, we include in Table I
the filter coefficients of a parallel ARMAK filter approximating
the step function with cut-off λc = 0.5 (i.e., filter response equal
to 1 for λ < λc and zero otherwise) for K = 3, 5, 7. Higher order
filters are omitted due to space considerations.

Proof of Theorem 3

Define matrices Γ t = θtI + ψtL and ΦΓ (t, t′) =
Γ tΓ t−1 · · ·Γ t ′ if t ≥ t′, whereas ΦΓ (t, t′) = I otherwise.
The output at the end of each period can be re-written as a
time-invariant system

y(i+1)K =

�A︷ ︸︸ ︷
ΦΓ (K − 1, 0) yiK +

�B︷ ︸︸ ︷
K−1∑

k=0

ΦΓ (K − 1, k + 1)ϕk x

(53a)

z(i+1)K = y(i+1)K + cx. (53b)

Both A and B have the same eigenvectors φn as L. No-
tice that (53) resembles (6) and we can proceed in an identical
manner. As such, when the maximum eigenvalue of A is
bounded by |∗|λmax(A) < 1, the steady state of (53b) is

z = (I − A)−1Bx + cx =
N∑

n=1

(
c +

λn (B)
1 − λn (A)

)
x̂nφn .

(54)
To derive the exact response, we exploit the backward product
in the definition of ΦΓ (t1 , t2) and we obtain

λn (ΦΓ (t1 , t2)) =
t2∏

τ =t1

λn (Γ t) =
t2∏

τ =t1

(θτ + ψτ λn ) , (55)

which, by the definition of A and B, yields the desired fre-
quency response. The linear convergence rate and stability con-

dition follow from the linear convergence of (53b) to y with rate
|λmax(A)|.

Proof of Theorem 4

The recursion of a parallel ARMAK with time-varying
input is

y
(k)
t+1 = ψ(k)Ly

(k)
t + ϕ(k)xt (∀k) (56a)

zt+1 =
K∑

k=1

y
(k)
t+1 + cxt , (56b)

where y
(k)
t is the state of the kth ARMA1 , whereas xt and zt

are the input and output graph signals, respectively. Using the
Kronecker product the above takes the more compact form

yt+1 = (Ψ ⊗ L) yt + ϕ ⊗ xt (57a)

zt+1 = (1T ⊗ IN )yt+1 + cxt , (57b)

with yt =
[
y

(1)�
t ,y

(2)�
t , · · · ,y

(K )�
t

]�
the NK × 1 stacked

state vector, Ψ = diag(ψ(1) , ψ(2) , · · · , ψ(K )) a diagonal K ×
K coefficient matrix, ϕ = (ϕ(1) , ϕ(2) , · · · , ϕ(K ))� a K × 1 co-
efficient vector, and 1 the K × 1 one-vector. We therefore have

yt+1 = (Ψ ⊗ L)t y0 +
t∑

τ =0

(Ψ ⊗ L)τ (ϕ ⊗ xt−τ )

=
(
Ψ t ⊗ Lt

)
y0 +

t∑

τ =0

(Ψ τ ϕ) ⊗ (Lτ xt−τ ) .

Notice that, when the stability condition
∥∥ψ(k)L

∥∥ < 1 is met,
limt→∞

∥∥(
Ψ t ⊗ Lt

)∥∥y0 = 0. Hence, for sufficiently large t,
the ARMAk output is

lim
t→∞

zt+1 = lim
t→∞

t∑

τ =0

(1T ⊗ IN ) (Ψ τ ϕ) ⊗ (Lτ xt−τ ) + cxt

= lim
t→∞

t∑

τ =0

(
1TΨ τ ϕ

)
⊗ (Lτ xt−τ ) + cxt

= lim
t→∞

t∑

τ =0

K∑

k=1

ϕ(k)
(
ψ(k)L

)τ

xt−τ + cxt ,

where we have used the Kronecker product property (A ⊗
B)(C ⊗ D) = (AC) ⊗ (BD) and expressed the Kronecker



ISUFI et al.: AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERING 287

product as the sum of K terms. The transfer matrix H(z) is ob-
tained by taking the Z-transform in both sides and re-arranging
the terms

H(z) = z−1
K∑

k=1

ϕ(k)
∞∑

τ =0

(
ψ(k)L

)τ

z−τ + cz−1 .

Finally, applying the GFT and using the properties of geomet-
ric series we obtain the joint transfer function in closed-form
expression

H(z, μ) = z−1
K∑

k=1

ϕ(k)
∞∑

τ =0

(
ψ(k)λ

)τ

z−τ + cz−1

=
K∑

k=1

ϕ(k)z−1

1 − ψ(k)λz−1 + cz−1

and our claim follows.

Proof of Theorem 5

Recall for comodity Γ t = θtI + ψtL and ΦΓ (t, t′) =
Γ tΓ t−1 · · ·Γ t ′ if t ≥ t′, whereas ΦΓ (t, t′) = I otherwise.
Then, expanding recursion (13) for a time-varying input sig-
nal, we find that at the end of the i-th period, the filter output is
ziK = yiK + cxiK−1 , where

yi+1K = ΦΓ (iK − 1, 0)y0 +
iK−1∑

k=0

ΦΓ (iK − 1, k + 1)ϕkxk .

For sufficiently large i and assuming that the stability condition
of Theorem 3 holds, the first term approaches the zero vector
and can be ignored without any loss of generality.

We proceed by restricting the input graph signal to xiK =
xiK φ, where λ,φ is an eigenpair of L (similarly yiK = yiK φ
and ziK = ziK φ). For compactness we introduce the shorthand
notation λk = θk + λψk and L =

∏K−1
τ =0 λτ . We then have

yiK =
iK−1∑

k=0

(
iK−1∏

τ =k+1

λτ

)
ϕkxk ,

which, after taking the Z-transform, becomes

Y (z)
X(z)

=
iK−1∑

k=0

(
iK−1∏

τ =k+1

λτ

)
ϕkzk−iK

=
i−1∑

j=0

Li−j−1z(j−i)K

(
K−1∑

k=0

(
iK−1∏

τ =k+1

λτ

)
ϕkzk

)
.

The last step exploited the periodicity of coefficients in order
to group the common terms of periods j = 1, . . . , i − 1. In the
limit, the first term approaches

lim
i→∞

i−1∑

j=0

Li−j−1z(j−i)K = lim
i→∞

L−1
i−1∑

j=0

(
L

zK

)i−j

=
1

zK − L

Putting everything together, we find that the joint transfer func-
tion of the filter is

H(z, μ) =
Z(z)
X(z)

=

∑K−1
k=0

(∏K−1
τ =k+1 λτ

)
ϕkzk

zK − L
+ cz−1

and, after normalization, the claim (36) follows.

Proof of Theorem 6

We start the proof by substituting the expression (39) for t1
and t2 into the numerator of (46). Then, we can write

‖zt1 +1 − zt2 +1‖ = ‖ψt1 +1ΦL(t1 , 0)y0 − ψt2 +1ΦL(t2 , 0)y0

+ ϕ

t1∑

τ =0

ψτ ΦL(t1 , t1 − τ + 1)xt1 −τ + cxt1

− ϕ

t2∑

τ =0

ψτ ΦL(t2 , t2 − τ + 1)xt2 −τ − cxt2 ‖. (58)

Rearranging the terms, we have

‖zt1 +1 − zt2 +1‖ = ‖ψt1 +1ΦL(t1 , 0)y0 − ψt2 +1ΦL(t2 , 0)y0

+ ϕ

t1∑

τ =t2 +1

ψτ ΦL(t1 , t1 − τ + 1)xt1 −τ + c(xt1 − xt2 )‖

By using the Cauchy-Schwarz property, the triangle inequality
of the spectral norm, and a uniform bound � on the eigenvalues
of matrices M t , the above expression simplifies

‖zt1 +1 − zt2 +1‖ ≤
(
|ψ�|t1 +1 + |ψ�|t2 +1

)
‖y0‖

+ |ϕ|
t1∑

τ =t2 +1

|ψ�|τ ‖xt1 −τ ‖ + |c| ‖xt1 − xt2 ‖ .

(59)

Leveraging the fact that |ψ�| < 1, as well as that ‖xt‖ ≤ xmax

for every t, we can express the sum in a closed form

t1∑

τ =t2 +1

|ψ�|τ ‖xt1 −τ ‖ ≤ xmax

(
|ψ�|t2 +1 − |ψ�|t1 +1

1 − |ψ�|

)
.

(60)
We obtain the desired bound on εt1 ,t2 by dividing the above
expressions with xmax and adjusting the indices.
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