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Abstract—In this paper, the focus is on subsampling as well as re-
constructing the second-order statistics of signals residing on nodes
of arbitrary undirected graphs. Second-order stationary graph sig-
nals may be obtained by graph filtering zero-mean white noise and
they admit a well-defined power spectrum whose shape is deter-
mined by the frequency response of the graph filter. Estimating
the graph power spectrum forms an important component of sta-
tionary graph signal processing and related inference tasks such
as Wiener prediction or inpainting on graphs. The central result
of this paper is that by sampling a significantly smaller subset of
vertices and using simple least squares, we can reconstruct the
second-order statistics of the graph signal from the subsampled
observations, and more importantly, without any spectral priors.
To this end, both a nonparametric approach as well as parametric
approaches including moving average and autoregressive models
for the graph power spectrum are considered. The results special-
ize for undirected circulant graphs in that the graph nodes leading
to the best compression rates are given by the so-called minimal
sparse rulers. A near-optimal greedy algorithm is developed to de-
sign the subsampling scheme for the nonparametric and the mov-
ing average models, whereas a particular subsampling scheme that
allows linear estimation for the autoregressive model is proposed.
Numerical experiments on synthetic as well as real datasets related
to climatology and processing handwritten digits are provided to
demonstrate the developed theory.

Index Terms—Compressive covariance sensing, graph power
spectrum estimation, graph signal processing, sparse sampling,
stationary graph signals.

I. INTRODUCTION

GRAPHS are mathematical objects that can be used for de-
scribing and explaining relationships in complex datasets,

which appear commonly in modern data analysis. The nodes of
the graph denote the entities themselves and the edges encode
the pairwise relationship between these entities. Some examples
of such complex-structured data beyond traditional time-series
include gene regulatory networks [2], brain networks [3], trans-
portation networks [4], social and economic networks [5], and
so on. Processing signals residing on the nodes of a graph taking
into account the relationships between them as explained by the
edges of the graph is recently receiving a significant amount of
interest. In particular, generalizing as well as drawing parallels
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of classical time-frequency analysis tools to graph data analysis
while incorporating the irregular structure on which the graph
signals are defined is an emerging area of research [6], [7].

Graph signals could be stochastic in nature and they can
be modeled as the output of a graph filter [8] whose input is
also a random signal (e.g., white noise). We are interested in
sampling and processing stationary graph signals, which are
stochastic signals defined on graphs with second-order statistics
that are invariant similar to time series, but in the graph setting.
Second-order stationary graph signals are characterized by a
well-defined graph power spectrum. They can be generated
by graph filtering white noise (or any other stationary graph
signal) and the graph power spectrum of the filtered signal will
be characterized by the squared magnitude of the frequency
response of the graph filter; see [9], [10].

The second-order statistics of graph signals, or equivalently
the graph power spectrum, are essential to solve inference prob-
lems on graphs in the Bayesian setting such as smoothing,
prediction, inpainting, and deconvolution; see [9] and [11] for
some Bayesian inference problems. These inference problems
are solved by designing optimum (in the minimum mean squared
error sense) Wiener-like filters and the graph power spectrum
forms a crucial component of such filter designs. In order to
compute the graph power spectrum, traditional methods require
the processing of signals on all graph nodes. The sheer quantity
of data and scale of the graph often inhibit this reconstruc-
tion method. Therefore, the main question that we address in
this paper is, can we reconstruct the graph power spectrum by
observing a small subset of graph nodes?

A. Related Works and Main Results

The notion of stationarity of signals on graphs and related
definitions can be found in [9], [10], [12], [13], and it will
be briefly explained in the next section as well. Several
techniques for graph power spectrum estimation have been
discussed in [9] and [10], and they are based on observations
from all the nodes. In this paper, we consider the problem
of reconstructing the second-order statistics of signals on
graphs, but from subsampled observations. The fact that we
are reconstructing the graph power spectrum, instead of the
graph signal, enables us to subsample the graph signal (or
sparsely sample the graph nodes), even without any spectral
priors (e.g., sparsity, bandlimited with known support). This is
a new and different perspective as compared to subsampling
for graph signal reconstruction [14]–[17], which imposes some
spectral prior that enables graph signal reconstruction. The
proposed concept basically generalizes the field of compressive
covariance sensing [18]–[20] to the graph setting.
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The aim of this paper is to reconstruct second-order statis-
tics of stationary graph signals from observations available at
a few nodes using simple reconstruction methods such as least
squares. The contributions are summarized as the following
main results:

1) Non-parametric approach: Without any spectral priors,
second-order statistics of length-N stationary graph sig-
nals can be recovered using least squares from a reduced
subset ofO(

√
N) observations, i.e., by observingO(

√
N)

graph nodes. In this case, the processing is done in the
graph spectral domain.

2) Circulant graphs: As a special case, when the graphs are
circulant, the identifiability results are elegant. That is,
the subset of nodes resulting in the best compression rates
are given by the so-called minimal sparse rulers. This is
reminiscent of compressive covariance sensing [20] for
data that reside on a regular support such as time series,
which is a specific instance of a circulant graph.

3) Parametric approach: It is also possible to model the
graph power spectrum using a small number of param-
eters, e.g., the graph signals may be modeled by moving
average or autoregressive graph filters. The reconstruc-
tion of the second-order statistics of the graph signal then
boils down to the estimation of moving average or autore-
gressive coefficients. Such a parameterization allows for
a higher compression. When the graph power spectrum is
modeled using a moving average graph filter, the second-
order statistics can be recovered using least squares from
O(
√

Q) observations, where Q = min{2L− 1, N} with
L being the number of moving average filter coefficients.
When the graph power spectrum is modeled using an
autoregressive graph filter, P autoregressive filter coef-
ficients can be recovered using linear least squares by
observing O(P ) nodes.

4) Subsampler design: The proposed samplers are deter-
ministic and they perform node subsampling. Subsam-
pler design, therefore, becomes a discrete combinatorial
optimization problem. For the spectral domain and mov-
ing average case, the subsampler can be designed using a
near-optimal greedy algorithm. However, for the autore-
gressive approach, the sampler design depends also on
(unobserved) data, and thus a mean squared error opti-
mal design is not possible. This is due to the fact that
we restrict ourselves to a low-complexity linear estimator
for the autoregressive filter coefficients. Nevertheless, we
present a suboptimal technique to design a subsampler for
the autoregressive case as well.

B. Outline and Notation

The remainder of the paper is organized as follows. The pre-
liminary concepts of graph signal processing are discussed in
Section II. The proposed least squares based reconstruction of
the second-order statistics based on the subsampled observa-
tions are discussed in Section III. Connections of compressive
covariance sensing for time series with sensing data residing on
circulant graphs are discussed in Section IV. In Section V, the

graph power spectrum is represented with a small number of pa-
rameters under moving average and autoregressive models, and
these parameters are then reconstructed using least squares from
subsampled observations. In Section VI, we discuss the validity
of the results provided in this paper for finite data records. Un-
der the assumption that the data follows a Gaussian distribution,
the maximum likelihood estimator and the related Cramér-Rao
bound are also derived. In Section VII, the design of sparse
sampling matrices based on low-complexity greedy algorithms
is discussed. A few examples to illustrate the proposed frame-
work are provided in Section VIII. Finally, the paper concludes
with Section IX.

The notation used in this paper is described as follows. Upper
(lower) boldface letters are used for matrices (column vectors).
(̄·) denotes complex conjugation, (·)T denotes the transpose,
and (·)H denotes the complex conjugate (Hermitian) trans-

pose. (·)−T is a shorthand notation for
(
(·)−1

)T
. diag[·] refers

to a diagonal matrix with its argument on the main diago-
nal. diagr[·] represents a diagonal matrix with the argument
on its diagonal, but with the all-zero rows removed. 1 (0) de-
notes the vector of all ones (zeros). I is an identity matrix.
E{·} denotes the expectation operation. The �0-(quasi) norm of
w = [w1 , w2 , . . . , wN ]T refers to the number of non-zero en-
tries in w, i.e., ‖w‖0 := |{n : wn �= 0}|. The �1-norm of w
is denoted by ‖w‖1 =

∑N
n=1 |wn |. The notation ∼ is read as

“is distributed according to”. Unless and otherwise noted, loga-
rithms are natural. tr{·} is the matrix trace operator, det{·} is the
matrix determinant, and rank(·) denotes the rank of a matrix.
λmin{A} (λmax{A}) denotes the minimum (maximum) eigen-
value of a symmetric matrix A. A � B means that A−B
is a positive semidefinite matrix. SN (SN

+ ) denotes the set of
symmetric (symmetric positive semi-definite) matrices of size
N ×N . |U| denotes the cardinality of the set U . ⊗ denotes the
Kronecker product, ◦ denotes the Khatri-Rao or columnwise
Kronecker product, and vec(·) refers to the matrix vectorization
operator. For a full column rank tall matrix A, the left inverse
is given by A† = (AHA)−1AH . The column span of A and
row null space ofA are denoted by ran(A) and null(A), respec-
tively. The following matrix properties (for matrices and vectors
of compatible dimensions) are frequently used in this paper:

1) vec(ABC) = (CT ⊗A)vec(B);
2) vec(Adiag[b]C) = (CT ◦A)b.

II. PRELIMINARIES

In this section, we introduce some preliminary concepts re-
lated to deterministic and stochastic signals defined on graphs.

A. Graph Signals and Filtering

Consider a dataset with N elements denoted as x ∈ CN ,
which live on an irregular structure represented by an undirected
graph G = (V, E), where the vertex set V = {v1 , · · · , vN } de-
notes the set of nodes, and the edge set E reveals any connection
between the nodes, i.e., (i, j) ∈ E means that node i is connected
to node j. The nth entry of x, i.e., xn , is indexed by node vn of
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the graph G. Therefore, we refer to the dataset x as a length-N
graph signal.

Let us introduce an operator S ∈ CN×N , where the (i, j)th
entry of S denoted by si,j can only be nonzero if (i, j) ∈ E or
i = j, and is zero otherwise. The pattern of S captures the local
structure of the graph. More specifically, for a graph signal x,
the signal Sx denotes the unit-shifted version of x. Hence S
is referred to as the graph-shift operator [8]. Different choices
for S include the graph Laplacian L [6], the adjacency matrix
A [8], or their respective variants. For undirected graphs, S is
symmetric (more generally, Hermitian), and thus it admits the
following eigenvalue decomposition

S = UΛUH

= [u1 , · · · ,uN ] diag[λ1 , · · · , λN ] [u1 , · · · ,uN ]H , (1)

where the eigenvectors {un}Nn=1 and the eigenvalues {λn}Nn=1
of S provide the notion of frequency in the graph setting
[6], [7]. Specifically, {un}Nn=1 forms an orthonormal Fourier-
like basis for graph signals with the real-valued graph frequen-
cies denoted by {λn}Nn=1 . Hence, the graph Fourier transform
of a graph signal, xf = [xf,1 , xf,2 , . . . , xf,N ]T ∈ CN , is given
by

xf := UHx ⇔ x =: Uxf . (2)

The frequency content of graph signals can be modified using
linear shift-invariant graph filters [6], [8]. A graph filter H ∈
CN×N can be expressed as a polynomial in S [8]:

H = h0I + h1S + · · ·+ hL−1S
L−1

= U
[
h0I + h1Λ + · · ·+ hL−1ΛL−1]UH , (3)

where the filter H is of degree L− 1 with filter coefficients
h = [h0 , h1 , . . . , hL−1 ]T ∈ CL , and L ≤ N as N − 1 is the
maximum degree of any polynomial of S. The diagonal matrix

Hf =
L−1∑

l=0

hlΛl = diag[V Lh] = diag[hf,1 , · · · , hf,N ] (4)

can be viewed as the frequency response of the graph filter.
Here, V L is an N × L Vandermonde matrix with the (i, j)th
entry λ

j−1
i .

B. Stationary Graph Signals

Let x = [x1 , x2 , · · · , xN ]T ∈ CN be a stochastic signal de-
fined on the vertices of the graph G with expected value
mx = E{x} and covariance matrix Rx = E{(x−mx)(x−
mx)H }. Efforts to generalize some of the concepts of statisti-
cal time invariance or stationarity of signals defined over regular
structures to random graph signals have been made in [9], [10],
[12]. For the sake of completeness, we will summarize the def-
initions from [9], [10], [12] as follows.

Definition 1 (Second-order stationarity): A random graph
signal x is second-order stationary, if and only if, the following
properties hold:

1) The mean of the graph signal is collinear to an eigenvector
ofS corresponding to the smallest eigenvalue, i.e.,mx =
mxu1 .

2) Matrices S andRx can be simultaneously diagonalized.
If the orthonormal basisU diagonalizesRx, then property 2

in the above definition essentially means that the spectral com-
ponents are statistically orthogonal, i.e,. E{xf,i x̄f ,j} = 0 for
i �= j.

For simplicity, from now on we will focus on graph signals
with zero mean, where we assume that mx is either known
or mx can be set to zero by preprocessing the data as dis-
cussed in Section VIII. We can generate zero-mean second-
order stationary graph signals by graph filtering zero-mean
white noise. Let n = [n1 , n2 , . . . , nN ]T ∈ CN be zero-mean
unit-variance noise with covariance matrix Rn = I . Then, a
zero-mean second-order stationary graph signal x can be mod-
eled as x = Hn, where H can be any valid graph filter.
The filtered signal will have zero mean and covariance matrix
Rx = E{(Hn)(Hn)H } given by

Rx = HRnH
H

= Udiag[|hf,1 |2 , · · · , |hf,N |2 ]UH (5)

= Udiag[p]UH ,

where hf,n = h0 + h1λn + · · ·+ hL−1λ
L−1
n is defined in (4).

This conforms to the second property listed in Definition 1. More
generally, graph filtering any second-order stationary graph sig-
nal also results in a second-order stationary graph signal (it is
easy to verify this using property 2 in Definition 1). The non-
negative vector diag[p] in (5) is referred to as the graph power
spectral density or graph power spectrum. We now formally
introduce the graph power spectrum through the following def-
inition.

Definition 2 (Graph power spectrum): The graph power
spectral density of a second-order stationary graph sig-
nal is a real-valued nonnegative length-N vector p =
[p1 , p2 , . . . , pN ]T ∈ RN

+ with entries given by

pn = uH
n Rxun , n = 1, 2, . . . , N. (6)

Alternatively, pn = |hf,n |2 ≥ 0, for n = 1, 2, . . . , N , where
hf,n = h0 + h1λn + · · ·+ hL−1λ

L−1
n is defined in (4).

Second-order stationary graph signals with a prescribed graph
power spectrum can be generated by filtering white noise,
where the graph power spectrum of the filtered signal is re-
shaped according to the frequency response of the graph fil-
ter [9], [10], [12]. Since second-order stationary graph sig-
nals are completely characterized by their graph power spec-
trum, estimating the graph power spectrum is useful in many
applications.

III. NON-PARAMETRIC SPECTRAL DOMAIN APPROACH

The size of the datasets often inhibits a direct computation of
the second-order statistics, e.g., by observing all the N nodes
and using (6) to compute the graph power spectrum. As such,
compression or data reduction is preferred especially for large-
scale data in the graph setting [7]. In the context of graph signal
processing, most works consider subsampling the graph signal
x assuming some spectral prior to reconstruct it [14]–[17]. This
approach is, in principle, also possible for recovering the second-



454 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 3, SEPTEMBER 2017

order statistics of x. However, when the goal is to reconstruct
the second-order statistics of x (and not x itself), it is compu-
tationally advantageous, and allows for a stronger compression,
when we avoid the intermediate step of reconstructing and stor-
ing x. In this paper, we will therefore focus on recovering graph
second-order statistics directly from subsampled graph signals.
We refer to this problem as graph covariance subsampling.

The extension of compressive covariance sensing [20] to
graph covariance subsampling is non-trivial. This is because
for second-order (or wide-sense) stationary signals with a reg-
ular support, the covariance matrix has a clear structure (e.g.,
Toeplitz, circulant) that enables an elegant subsampler design,
but for second-order stationary graph signals residing on arbi-
trary graphs, the covariance matrix does not admit any clear
structure that can be easily exploited, in general.

Consider the problem of estimating the graph power spectrum
of the second-order stationary graph signal x ∈ CN from a set
of K 
 N linear observations stacked in the vector y ∈ CK ,
given by

y = Φx, (7)

where Φ is a known K ×N selection matrix with Boolean
entries, i.e., Φ ∈ {0, 1}K×N (we will discuss the subsampler
design in Section VII) and where several realizations of y may
be available. The matrix Φ is referred to as the subsampling
or sparse sampling matrix, where the compression is achieved
by setting K 
 N . For applications where graph nodes corre-
spond to sensing devices (e.g., weather stations in climatology,
electroencephalography (EEG) probes in brain networks), such
a sparse sampling scheme results in a significant reduction in
the hardware, storage and communications costs next to the
reduction in the processing costs.

The covariance matrices Rx = E{xxH } ∈ CN×N and
Ry = E{yyH } ∈ CK×K contain the second-order statistics
of x and y, respectively. In practice, typically, multiple snap-
shots, say Ns snapshots, are observed to form a sample co-
variance matrix. Suppose Ns snapshots of the uncompressed
and compressed graph signals, respectively, denoted by vec-
tors {x[k]}N s

k=1 and {y[k]}N s
k=1 , are available. Then forming the

sample covariance matrix, R̂x = 1
Ns

∑Ns

k=1 x[k]xH [k], from
Ns snapshots of x costs O(N 2Ns), while forming the sample
covariance matrix, R̂y = 1

Ns

∑Ns

k=1 y[k]yH [k], from Ns snap-
shots ofy only costsO(K2Ns). Therefore, when K 
 N , there
will also be a significant reduction in the storing and processing
costs due to compression.

We now state the problem of interest as follows.
Problem (Recovering second-order statistics): For a known

undirected graph G, given a number of realizations, say Ns ,
of the subsampled length-K graph signal y or the subsampled
covariance matrixRy , recover the graph power spectrum p and
thus the covariance matrixRx.

We solve this problem under either one of the following two
assumptions.

1) The shift operator S is known.
2) The orthonormal basis U and the eigenvalues {λn}Nn=1

of S are known a priori.

Let us decompose the graph signal x in terms of its graph
Fourier transform coefficients as [cf. (2)]

x =
N∑

i=1

xf,iui .

This allows us to represent the covariance matrix Rx =
E{xxH } in the graph Fourier domain using the graph power
spectrum p as

Rx =
N∑

i=1

E{|xf,i |2}uiu
H
i =

N∑

i=1

piuiu
H
i =

N∑

i=1

piQi , (8)

where we use the fact that for i �= j we have E{xf,i x̄f ,j} = 0
andQi = uiu

H
i is a size-N rank-one matrix. Here, we expand

Rx using a set of N Hermitian matrices {Q1 ,Q2 , . . . ,QN } as
a basis. VectorizingRx in (8) results in

rx = vec(Rx) =
N∑

i=1

pivec(Qi) = Ψsp,

where vec(Qi) = ūi ⊗ ui and we form the N 2 ×N matrix
Ψs as

Ψs = [ū1 ⊗ u1 , · · · , ūN ⊗ uN ] = Ū ◦U .

The subscript “s” in the matrix Ψs, which is constructed using
the graph Fourier basis vectors, stands for spectral domain.

Using the compression scheme described in (7), the covari-
ance matrixRy ∈ CK×K of the subsampled graph signal y can
be related toRx as

Ry = ΦRxΦT =
N∑

i=1

piΦQiΦ
T . (9)

This means that the expansion coefficients of Ry with respect
to the set {ΦQ1Φ

T ,ΦQ2Φ
T , · · · ,ΦQN ΦT } are the same as

those ofRx with respect to the set {Q1 ,Q2 , · · · ,QN }, and they
are preserved under linear compression. It is not yet clear though
whether these expansion coefficients, which basically represent
the power spectrum, can be uniquely recovered fromRy .

VectorizingRy as

ry = vec(Ry) = (Φ⊗Φ)vec(Rx) ∈ CK 2

we obtain

ry =
N∑

i=1

pi(Φ⊗Φ)(ūi ⊗ ui) =
N∑

i=1

pi(Φūi ⊗Φui)

= (Φ⊗Φ)Ψsp. (10)

This linear system with N unknowns has a unique solution
if (Φ⊗Φ)Ψs has full column rank, which requires K2 ≥ N .
Assuming that this is the case, the graph power spectrum (thus
the second-order statistics of x) can be estimated in closed form
via least squares:

p̂ = [(Φ⊗Φ)Ψs]†ry. (11)

Computing this least squares solution costsO(K2N 2) [21]. Al-
though for the non-parametric approach, the cost of computing
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(11) might be on the same order as that of the uncompressed
case, the cost reduction will be prominent for problems dis-
cussed later on in Section V. Further, to compute (11), we have
assumed that the true covariance matrix Ry is available, but a
practical scenario with finite data records is discussed in Sec-
tion VI.

Definition 3: A wide matrix Φ is a valid graph covariance
subsampler if it yields a full column rank matrix (Φ⊗Φ)Ψs.

We now derive the conditions under which Φ is a valid graph
covariance subsampler. To do this, we first introduce two im-
portant lemmas.

Lemma 1: Since the matrixU ∈ CN×N is full rank, the ma-
trix Ψs = Ū ◦U of size N 2 ×N has full column rank.

Proof: See Appendix A. �
Lemma 2: If the matrix Φ ∈ RK×N has full row rank, then

the matrix Φ⊗Φ of size K2 ×N 2 also has full row rank.
Proof: This follows from the singular value decomposition

of Φ and the property (A⊗B)(C ⊗D) = (AC ⊗BD). �
Using the above two lemmas, we can provide the necessary

and sufficient conditions under which the solution in (11) is
unique.

Theorem 1: A full row rank matrix Φ ∈ RK×N is a valid
graph covariance subsampler if and only if the matrix (Φ⊗
Φ)Ψs is tall, i.e., K2 ≥ N , and null(Φ⊗Φ) ∩ ran(Ψs) = {0}.

Proof: See Appendix B. �
Although the linear system of equations (10) can be solved

using (unconstrained) least squares, nonnegativity constraints
or any spectral prior can be easily accounted for while solving
(10) as summarized in the following remark.

Remark 1 (Spectral priors): Any available prior information
about the graph spectrum might allow for a higher compression
with K2 < N , or an improvement of the solution (11). Sup-
pose we have some prior knowledge about the graph spectrum,
i.e., p ∈ P with P being the constraint set. For instance, sup-
pose we know a priori that (a) the spectrum is bandlimited
(e.g., lowpass) with known support such that P = {p | pn =
0, n /∈ [Nl,Nu ]}, where [Nl,Nu ] denotes the support set, (b)
the spectrum is sparse, but with unknown support such that
P := {p | ∑N

n=1 pn = S}, where S denotes the sparsity order
(here, we use the convex relaxation of the cardinality constraint),
or (c) the power spectrum is nonnegative (by definition), for
whichP := {p | pn ≥ 0,∀n}. With such spectral priors, the fol-
lowing constrained least squares problem may be solved

minimize
p∈P

‖ry − (Φ⊗Φ)Ψsp‖22 .

In what follows, we will discuss and illustrate the connec-
tions with compressive covariance sensing [20] for datasets that
reside on regular structures (e.g., time series) using a circulant
graph (e.g., a cycle graph). We will also see that designing a
compression matrix is much more elegant for such circulant
graphs.

IV. CIRCULANT GRAPHS

Discrete-time finite or periodic data can be represented using
directed cycle graphs, where the direction of the edge represents
the evolution of time from past to future. The edge directions

Fig. 1. Undirected cycle graph. The graph covariance matrix of stationary
signals {xn }Nn =1 supported on this undirected cycle graph will be a circulant
matrix.

may be ignored in some cases, e.g., when we are only interested
in exploiting the regular Fourier transform, when we are dealing
with the spatial domain, or when the underlying data is a time-
reversible stochastic process that is invariant under the reversal
of the time scale [22]. In such cases, the data can be represented
using an undirected cycle graph; see Fig. 1.

Consider the adjacency matrix of this undirected cycle graph
as its graph-shift operator, which will be an N ×N symmet-
ric circulant matrix. Graphs with circulant adjacency matrices
are commonly referred to as circulant graphs. We know that
a circulant matrix can be diagonalized with a discrete Fourier
transform matrix. In other words, the graph Fourier transform
matrix U related to this graph will consist of the orthonormal
vectors

un = [ω0
n , ωn , ω2

n , · · · , ωN−1
n ]T

with ωn = exp(−ı2πn/N)/
√

N and it will be a Vandermonde
matrix (here, ı2 = −1). In general, for circulant graphs with
circulant graph-shift operators, an eigenvalue decomposition is
not required to compute the graph Fourier transform matrix U
or the model matrix Ψs, which was introduced in Section III.

Let the set K ⊂ N denote the indices of the selected graph
nodes with N denoting the index set {0, 1, . . . , N − 1}. Now,
if we can smartly select the entries of un such that the related
entries of ūn ⊗ un contain all the distinct values {ωm

n } for m =
0, · · · , N − 1, the matrix (Φ⊗Φ)Ψs will be a full-column rank
matrix. In particular, this means that, for every m = 0, . . . , N −
1, there must exist at least one pair of elements ni, nj ∈ K that
satisfies ni − nj = m, where the difference ni − nj is due to
the Kronecker product ūn ⊗ un . Sets K having this property
are called sparse rulers [20]. Furthermore, if the set contains a
minimum number of elements, they are called minimal sparse
rulers, which results in the best possible compression.

Let us illustrate this with an example for N = 10. In this
case, the set K = {0, 1, 4, 7, 9} with K = |K| = 5 elements is
a minimal sparse ruler. In other words, by choosing the subsam-
pling matrix Φ = diagr[w] withw = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1]T

we can ensure that the matrix (Φ⊗Φ)Ψs is full column rank,
and hence the second-order statistics of x can be estimated us-
ing (11) by subsampling only K = 5 nodes. Here, we achieve
a compression rate of K/N = 0.5. Similarly, for N = 80, the
minimal sparse ruler has K = 15 elements, and this results in
a compression rate of K/N = 0.1875 (we will see an example
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related to N = 80 and K = 15 in Section VIII). Sparse rulers
for other values of N are tabulated in [23].

Computing minimal sparse rulers is a combinatorial problem
with no known expressions. Nevertheless, subsamplers such as
coprime samplers [24] and nested samplers [25], which can be
computed using a closed-form expression for any N , are also
valid covariance subsamplers. However, they are not minimal
sparse rulers and thus they do not provide the best compression
rate, in general.

Subsampler design for reconstructing the second-order statis-
tics of signals residing on a circulant graph is as elegant as that
for reconstructing the second-order statistics of stationary time-
series. The design of subsamplers for general graphs, however,
is more challenging. This is the subject of Section VII.

V. PARAMETRIC MODELS

In this section, we will focus on a parametric representation
of the graph power spectrum. In particular, the focus will be
on moving average and autoregressive parametric models. Typ-
ically, the model order (i.e., the number of parameters) is much
smaller than the length of the graph signal, and since we now
have to recover only these parameters, a much stronger com-
pression can be achieved. Also, this means that, we need to store
or transmit only fewer parameters, which could be used to gen-
erate realizations of second-order stationary graph signals (we
will illustrate this with an example in Section VIII).

Parametric methods can be viewed as an alternative approach,
where going to the graph spectral domain may be avoided, and
instead, all the processing can be done directly in the graph
vertex domain.

A. Graph Moving Average Models

As before, we assume that the stationary graph signalx is gen-
erated by graph filtering zero-mean unit-variance white noise.
We will also assume that the graph filter has a finite impulse
response with an all-zero form as in (3); see [9], [10].

Let us begin by writing the graph signal x as

x = H(h)n =
L−1∑

l=0

hlS
ln = U

(
L−1∑

l=0

hlΛl

)

UHn

with covariance matrix

Rx = H(h)HH (h)

= U

(
L−1∑

l=0

hlΛl

)(
L−1∑

l=0

h̄lΛl

)

UH , (12)

where x is a moving average graph signal (G-MA) of order
L− 1 with G-MA coefficients {hl}L−1

l=0 , and the length-L vector
h collects the G-MA coefficients as h = [h0 , h1 , . . . , hL−1 ]T .
Moving average models are particularly useful to represent a
smooth graph power spectrum [9], [10].

The expression (12) basically means that we can express
the covariance matrix Rx as a polynomial of the graph shift

operator:

Rx =
Q−1∑

k=0

bkS
k , (13)

where Q = min{2L− 1, N} unknown expansion coefficients
{bk}Q−1

k=0 collected in the vector b = [b0 , b1 , · · · , bQ−1 ]T ∈
RQ completely characterize the covariance matrix Rx. In
other words, we assume a linear parametrization of the co-
variance matrix Rx using the set of Q Hermitian matrices
{S0 ,S, · · · ,SQ−1} as a basis.

The expansion coefficients b depend on the G-MA coeffi-
cients h. To see this, let us consider an example G-MA model
with L = 3 having coefficients h = [h0 , h1 , h2 ]T , for which
(13) simplifies to

Rx = h2
0I + 2h0h1S + (h2

1 + 2h0h2)S2

+ 2h1h2S
3 + h2

2S
4 . (14)

This means that, b(h) will be of length 2L− 1 with entries
b(h) = [h2

0 , 2h0h1 , h
2
1 + 2h2h0 , 2h2h1 , h

2
2 ]

T that are related to
the G-MA parameters h. To arrive at a simple (unconstrained)
least squares estimator, we will ignore this structure in b (we
will discuss how to account for this structure at the end of
this section). Therefore, with a slight abuse of notation we will
henceforth refer to b(h) as the G-MA coefficients.

Depending on the shape of the power spectrum, Q can be
much smaller than the number of graph nodes (i.e., the length of
the vector p) thus allowing a higher compression. In any case,
the value of Q will be at most N , because for Q > N , the set of
matrices {S0 ,S, · · · ,SQ−1} are linearly dependent.

VectorizingRx in (13) yields

rx = vec(Rx) =
Q−1∑

k=0

bk vec(Sq ) = ΨMAb, (15)

where we form the matrix ΨMA of size N 2 ×Q as

ΨMA =
[
vec(S0), vec(S1), · · · , vec(SQ−1)

]
,

and the subscript “MA” in ΨMA stands for moving average.
The covariance matrix of the subsampled graph signal y in

(7) will then be

Ry = ΦRxΦT =
Q−1∑

k=0

bkΦSkΦT . (16)

As in the graph spectral domain approach discussed in
Section III, the G-MA coefficients {bk}Q−1

k=0 ofRy with respect
to the set {ΦS0ΦT ,ΦSΦT , · · · ,ΦSQ−1ΦT } are the same as
those ofRx with respect to the set {S0 ,S, · · · ,SQ−1}.

VectorizingRy , we get a set of K2 equations in Q unknowns,
given by

ry = vec(Ry) = (Φ⊗Φ)vec(Rx)

= (Φ⊗Φ)ΨMAb. (17)

If the matrix (Φ⊗Φ)ΨMA has full column rank, which requires
K2 ≥ Q, then the overdetermined system (17) can be uniquely
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solved using least squares as

b̂ = [(Φ⊗Φ)ΨMA]†ry. (18)

Corollary 1: A full row rank matrix Φ ∈ RK×N is a valid
graph covariance subsampler if and only if the matrix (Φ⊗
Φ)ΨMA is tall, i.e., K2 ≥ Q, and null(Φ⊗Φ) ∩ ran(ΨMA)
= {0}.

Proof: Follows from Theorem 1. �
Although knowing the moving average filter coefficients b is

equivalent to knowing Rx, it might be interesting to study the
relation between b and the power spectrum p. We can relate the
vector p and the vector b, by using (6) and (13). That is, we can
write pn =

∑Q−1
k=0 bkλk

n , or in matrix-vector form we have

p = V Qb,

whereV Q is an N ×Q Vandermonde matrix with (i, j)th entry
equal to λ

j−1
i .

This relation between p and b can be used to show the equiv-
alence between the linear models (10) and (17) as follows. The
fact that Sq = UΛqUH from (1) allows us to express ΨMA

in (17) as ΨMA = (Ū ◦U)V Q . Using this in (17), we obtain
ry = (Φ⊗Φ)(Ū ◦U)V Qb = (ΦŪ ◦ΦU)p.

In the following, we exploit the structure in b, which we ig-
nored while solving (17), to develop a constrained least squares
estimator.

Remark 2 (Constrained least squares): To reveal the struc-
ture in b(h), let us recall the example in (14) with L = 3.
The coefficients in b(h) are related to the squared polynomial
p(t) = (h0 + h1t + h2t

2)2 , which can also be written as

p(t) = hT

⎡

⎣
1 t t2

t t2 t3

t2 t3 t4

⎤

⎦h.

The polynomial p(t) can more generally be written as

p(t) = hT Θh = hT

[
2L−2∑

l=0

tlΘl

]

h = (h̄⊗ h)TMT t

where the L× L Hankel matrix Θ is related to the model order
L− 1,

Θl =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
· ·· ·· ·

1 0
·· 0·

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is an L× L matrix with ones on its lth anti-diagonal and zeros
elsewhere (e.g., Θ0 will have a one on its entry (1,1) and zeros
elsewhere),

MT = [vec(Θ0) · · · vec(Θ2L−2)] ∈ RL2×2L−1 ,

and t = [1, t, · · · , t2L−2 ] contains monomials up to order 2(L−
1). This means that, we can write

b(h) = M(h̄⊗ h) = Mvec(hhH ),

which together with (17) leads to the constrained least squares
problem:

minimize
hkr

‖ry −Chkr‖22 s.to hkr = h̄⊗ h

with C := (Φ⊗Φ)ΨMAM . The above least squares problem
that accounts for the Kronecker structure in the unknowns can
be solved using algebraic methods developed in [26], or by
introducing a rank-1 matrix Hkr = hhH and then solve for
Hkr and h using standard rank relaxation techniques [27].

In sum, if the subsampling matrix Φ is carefully designed
(subject of Section VII), we can recover the moving average
graph power spectrum of a length-N graph signal by observing
only O(

√
Q) nodes.

B. Graph Autoregressive Models

A graph autoregressive signal (G-AR) of order P may be
generated by filtering zero-mean unit-variance white noise, n,
with an all-pole filter of the form [10]

H−1(α) =
P∏

k=1

(I − αkS), (19)

where the G-AR coefficients {αk}Pk=1 are collected in the length-
P vector α. Such all-pole filters are useful to model, e.g., dif-
fusion processes [10] and graph power spectra with sharp tran-
sitions.

The covariance matrixRx of the G-AR signal, x = H(α)n,
given by

Rx = H(α)HH (α) ∈ CN×N ,

does not admit a linear parameterization inα (unlike the moving
average approach that we have seen earlier). The subsampled
covariance matrixRy ∈ CK×K of the subsampled observations
y = Φx = ΦH(α)n ∈ CK , given by

Ry = ΦRxΦT = ΦH(α)HH (α)ΦT .

is also non-linear in α. Consequently, vectorizing Ry leads to
a set of K2 non-linear equations in P unknowns

ry = (Φ⊗Φ)rx = (Φ⊗Φ)vec(H(α)HH (α)). (20)

Solving this system of non-linear equations is not trivial (e.g., it
has to be solved using iterative Newton methods). Therefore, in
what follows, we will develop a technique for G-AR modeling
as well as for graph sampling so that the G-AR parameters can
be recovered using non-iterative linear estimators.

The all-pole filter (19) can be alternatively expressed as

H−1(a) = I −
P∑

k=1

akS
k , (21)

where {ak}Pk=1 are the G-AR parameters. Thus, the G-AR signal
satisfies the equations

x =
P∑

k=1

akS
kx+ n. (22)
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In other words, the graph signal x depends linearly on the
P -shifted graph signals {Skx}Pk=1 according to the above
autoregressive model. So the covariance matrix of x can be
expressed as

Rx =
P∑

k=1

akS
kRx+Rnx, (23)

which is also linear in the G-AR parameters, and where
Rnx = E{nxH } may be seen as an error term. Given the (un-
compressed) observations, x, the above linear model can be
used to compute the G-AR coefficients using least squares.

Let Vk (p) denote the set of nodes in the p-hop neighborhood
of the kth node, i.e., Vk (p) := {l | l ∈ V, [Sp ]k,l �= 0}. Using
this notation, we will now describe a subsampling scheme that
we adopt for G-AR models, and we will explain later the ad-
vantage of this particular subsampling scheme. Suppose we
observe K0 graph nodes through a sparse subsampling ma-
trix Φ0 ∈ {0, 1}K 0×N . Let us denote the set containing the
indices of the subsampled nodes by K0 such that |K0 | = K0 .
Furthermore, we will also observe nodes in the P -hop neigh-
borhood of those K0 nodes through {Φp}Pp=1 . More specifi-
cally, with Φp we observe nodes in the set Vk (p) for k ∈ K0
such that the matrix Φp will have Kp :=

∑
k∈K0

|Vk (p)| rows
with Φp ∈ {0, 1}Kp ×N . Mathematically, the above subsam-
pling scheme y = Φx can be expressed as follows:

y = [ΦT
0 ,ΦT

1 , · · · ,ΦT
P ]T x = [yT

0 ,yT
1 , . . . ,yT

P ]T ∈ CK ,

wherey is a vector of length K =
∑P

l=0 Kl , which is also the to-
tal number of observations we gather. This sampling scheme is
inspired by [28], and we extend it for reconstructing second-
order statistics by recognizing the fact that the compressed
observations (and their covariance matrices) satisfy the G-AR
model. For the sake of presentation, we make abstraction of
the redundancies in the observations y that may arise due to
the nonzero diagonal entries of the powers of the shift-operator
or due to overlapping nodes within different neighborhoods.
Note that the subsampling scheme for the G-AR model is differ-
ent from the subsampling schemes discussed in Sections III
and V-A as we observe a subset of nodes and its related
neighborhood as well. For example, suppose each node has
degree n, then we acquire O(K0 [1 + n + n2 + · · ·+ nP ]) =
O(K0(1− nP +1)/(1− n)) observations in total.

Using (22), we can express the observations y0 = Φ0x as

y0 =
P∑

k=1

akΦ0S
kx+ Φ0n,

=
P∑

k=1

akΦ0S
kΦT

k yk + Φ0n, (24)

where the second equality is due to the structure of the shift
operator that operates (locally) on the neighboring nodes, and
thus can be expressed via a column selection operation ΦT

k ∈
{0, 1}N×Kk . Due to the choice of this particular subsampling
scheme, the compressed observation y0 can be expressed as

a linear combination of the compressed observations {yk}Pk=1
with the G-AR parameters being the combining weights.

By definingRp,q = E{ypy
H
q } = ΦpRxΦT

q ∈ CKp ×Kq , we
can express the covariance matrixR0,0 in terms of the available
observations as

R0,0 = Φ0RxΦT
0

=
P∑

k=1

akΦ0S
kΦT

k Rk,0+Φ0RnxΦT
0 , (25)

which on vectorizing leads to K2
0 equations in P unknowns

given by

r0,0 = (Φ0 ⊗Φ0)vec(Rx)

≈
P∑

k=1

ak vec(Φ0S
kΦT

k Rk,0) = G0a (26)

where ≈ is due to the error term. Here, we form the matrix G0
of size K2

0 × P as

G0 = [vec(Φ0SΦT
1 R1,0), · · · , vec(Φ0S

P ΦT
PRP,0)].

If the K2
0 × P matrix G0 has full column rank, which requires

K2
0 ≥ P , then the overdetermined system (26) can be solved

using least squares as

â := G†0r0,0 .

Therefore, with a carefully chosen subsampling matrix Φ, we
can recover a G-AR spectrum of a length-N graph signal, re-
siding on a graph with per node degree n with O(

√
P (1−

nP +1)/(1− n)) samples.
Previously in (25), we used only the equations related to

the covariance matrix of y0 , i.e., Φ0RxΦH
0 , which resulted in

K2
0 equations in P unknowns. In addition to this, since we have

access to {yk}Pk=1 , we can also use the equations corresponding
to the covariances between y0 and observations {yk}Pk=1 . This
results in the following system of equations for q = 0, 1, . . . , P :

R0,q = Φ0RxΦT
q

=
P∑

k=1

akΦ0S
kΦT

k Rk,q+Φ0RnxΦT
q , (27)

where R0,q ∈ CK 0×Kq . Vectorizing R0,q in (27) for q =
0, 1, . . . , P , we get

r0,q = (Φq ⊗Φ0)vec(Rx)

≈
P∑

k=1

ak vec
(
Φ0S

kΦT
k Rk,q

)
= Gqa, (28)

where we form the matrixGq of size K0Kq × P as

Gq =
[
vec(Φ0SΦT

1 R1,q ), · · · , vec(Φ0S
P ΦT

PRP,q )
]
.

Now, collecting {r0,q}Pq=0 in ry as

ry = [rT
0,0 , r

T
0,1 , . . . , r

T
0,P ]T ,
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and {Gq}Pq=0 inG as

G = [GT
0 ,GT

1 , · · · ,GT
P ]T ,

we have K0
∑P

q=0 Kq equations in P unknowns, i.e.,

ry = (Φ⊗Φ0)vec(Rx) = Ga. (29)

It can be shown that the observation matrixG can be expressed
as (Φ⊗Φ0)ΨAR for some matrix ΨAR (“AR” stands for au-
toregressive), which depends on the compressed observations,
sampling matrices, and the graph shift operator.

The above linear system (29) can be solved using least
squares as

â = G†ry

if the observation matrixG has full column rank. This requires
K0
∑P

q=0 Kq ≥ P . Suppose the graph is connected such that
every node has at least one neighbor, then by picking one node
would already lead to an overdetermined system. In other words,
we can recover a G-AR spectrum with K0 = 1, which, however,
amounts to observing more than P nodes. For example, recall
the cycle graph in Fig. 1 with N nodes, where every node has
a degree of two. In order to recover two G-AR parameters on
this cycle graph we need to observe at least K0 + K1 + K2 = 5
nodes using this technique. Depending on the graph, this scheme
as such might not lead to any compression at all (e.g., graph with
a very small diameter) because all N nodes might be in these
K0P -hop neighborhoods. In other words, the proposed scheme
is more useful in terms of compression for graphs that include
very few nodes in the K0P -hop neighborhood.

VI. FINITE DATA RECORDS

So far to recover the graph second-order statistics we have
assumed that the true compressed covariance matrix Ry =
E{yyH } ∈ CK×K is available. However, in practice we only
have a finite number of snapshots, call it Ns , available. Sup-
pose we observe Ns subsampled graph signals denoted by the
vectors {y[k]}N s

k=1 , and they are collected in a K ×Ns matrix
Y := [y[1],y[2], . . . ,y[Ns ]]. It is common to use the sample
data covariance matrix R̂y = 1

Ns
Y Y H ∈ CK×K as an esti-

mate of Ry . We have seen in Sections III and V that the com-
pressed covariance matrix Ry has a special (linear) structure
and it is parameterized by a small number of parameters θ. In
this section, we will provide the least squares estimator, maxi-
mum likelihood estimator, and the Cramér-Rao lower bound for
this finite data records scenario.

Let us denote the structured matrixRy asRy(θ). Generally,
ry = vec(Ry(θ)) can be expressed as

ry := Gθ, (30)

where from (10) we haveG := (Φ⊗Φ)Ψs and θ := p for the
nonparametric spectral domain approach, from (17) we have
G := (Φ⊗Φ)ΨMA and θ := b for the parametric moving av-
erage model, and from (29) we have G := (Φ⊗Φ0)ΨAR and
θ := a for the parametric autoregressive model. Although ΨAR
depends on the compressed observations, in the above modelG
is not viewed as a function of θ. Before we present the least

squares solution in the next section, we recall that, although we
perform a linear compression onRx asRy = ΦRxΦT , the lin-
ear structure in Rx(θ) is maintained in Ry(θ) as well, as long
as the compression matrix is a valid covariance subsampler.

A. Least Squares Estimator

Under the abstraction in (30), the question now is, how can
the estimated covariance matrix r̂y = vec(R̂y) be matched to
the true covariance matrixRy , which has a linear structure. This
can for instance be solved in the least squares sense as

θ̂ = arg min
θ

‖r̂y −Gθ‖22 = G†r̂y. (31)

Therefore, to summarize, the results derived so far in this paper
(including estimators and subsampler designs) for infinite data
records are also valid for scenarios with finite data records. Fur-
thermore, the above least squares problem may be also solved
with a constraint on θ, which leads to a constrained least squares
problem [cf. Remarks 1 and 2].

The least squares estimators derived thus far do not assume
any data distribution and they are reasonable for any data proba-
bility density function. In what follows, we will discuss a special
case, where the observations are Gaussian distributed.

B. Maximum Likelihood Estimator and Cramér-Rao Bound

Suppose the compressed data consists of realizations from
a sequence of independent and identically distributed (i.i.d.)
Gaussian random vectors {y[k]}Ns

k=1 , where for each k, the
length-K vector y[k] ∼ CN (0,Ry(θ)) with the (positive defi-
nite) covariance matrix Ry(θ) being a function of the parame-
ters θ.

The maximum likelihood estimate of θ given Y is obtained
by solving the optimization problem

θ̂ = arg max
θ

l(Y ;θ)

with log-likelihood function (with terms that depend only on
the unknowns) [29], [30]

l(Y ;θ) = νNs

[
log det{R−1

y (θ)} − tr{R−1
y (θ)R̂y}

]
,

where ν = 1 if Ry has complex entries and ν = 0.5 if Ry has
real entries.

The maximum likelihood estimate of θ can then be computed
by setting the derivative of l(Y ;θ) with respect to θ to zero,
and it is the solution to the regression equation [30]:

gH
i [R−T

y (θ)⊗R−1
y (θ)](ry − r̂y) = 0, ∀i, (32)

where gi is the ith column of G. The above equations must
be solved iteratively using algorithms provided in [29], [31],
[32]. The above equations would hold, if ry = r̂y . The solution
(31) approximates ry ≈ r̂y , in the least squares sense. Also,
from (32), we can recognize that a better estimator would be a
weighted least squares estimator

arg min
θ

(r̂y−Gθ)HCw (r̂y−Gθ)=(GHCwG)−1GHCw r̂y
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with weighting matrix Cw = νNs(R−T
y (θ)⊗R−1

y (θ)). For

the weighting matrix, we may use the estimate Ĉw obtained
by using R̂y instead ofRy .

Next, we will provide the Cramér-Rao bound, which is a lower
bound on the variance of the developed least squares estimators
when the available data records are finite. (Note that this is a
bound on the variance of p̂ obtained from the nonparametric
approach, and the Cramér-Rao bound for the power spectrum
estimates from the parametric methods may be derived using
transformation of parameters.) The Cramér-Rao bound matrix
is the inverse of the Fisher information matrix. The (i, j)th entry
of the Fisher information matrix, F , is given by [30]

[F ]i,j = −E

{
∂2

∂[θ]i∂[θ]j
l(Y ;θ)

}

= νNsg
H
j [R−T

y (θ)⊗R−1
y (θ)]gi . (33)

It can be seen from the expression of the Cramér-Rao bound
that the developed least squares estimators ignore the color of
the residual, r̂y − ry , which has a covariance matrix C−1

w (not
scaled identity). This means that the developed estimators are
not efficient (i.e., they will not achieve the Cramér-Rao bound),
but are computationally cheap as compared to the asymptotically
efficient maximum likelihood estimators.

VII. SPARSE SAMPLER DESIGN

We have seen so far that the design of the subsampling ma-
trix Φ is crucial for the reconstruction of the graph second-order
statistics. From Theorem 1, we know the conditions under which
a subsampling matrix will be a valid covariance subsampler, but
still it has to be designed. Alternatively, random compression
matrices drawn from a certain probability space (e.g., entries
of the subsampling matrix drawn from a Gaussian or Bernoulli
distribution) may be used as they almost surely satisfy the con-
ditions in Theorem 1 (see e.g., [33]). However, they might not
be practical in the graph setting, because random compression
matrices are usually dense in nature, and to compute linear
combinations of the uncompressed graph signals, they have to
be made available at a central location. On the other hand, if we
choose a sparse sampling matrix, which essentially does node
selection, only the subsampled graph signals (very few samples
as compared to the number of nodes) have to be processed.
Therefore, in what follows, we will develop an algorithm to
design a sparse subsampling matrix.

Consider a structured sparse sampling matrix Φ ∈
{0, 1}K×N , such that the entries of this matrix are determined
by a binary sampling vector w. More specifically, let us denote
the structured subsampling matrix Φ as Φ(w) = diagr[w] ∈
{0, 1}K×N , which is guided by a component selection vector
w = [w1 , · · · , wN ]T ∈ {0, 1}N , where wi = 1 indicates that
the ith graph node is selected, otherwise it is not selected. That
is, Φ(w) essentially performs graph sampling.

A. Spectral Domain and Moving Average Case

In this section, we will design the subsampling matrix for
the estimators based on the spectral domain approach [cf.

Section III] and the vertex domain parametric moving av-
erage model [cf. Section V-A] as the observation matrices
in these cases share a common structure. In particular, the
aim is to design a full-column rank observation matrix G =
[Φ(w)⊗Φ(w)]Ψ with Ψ := Ψs or Ψ := ΨMA, so that we
can recover the second-order statistics by observing a reduced
set of only K graph nodes. To do so, we assume Ψ is perfectly
known.

Uniqueness and sensitivity of the least squares solution de-
veloped in Sections III and V-A depends on the spectrum (i.e.,
the set of eigenvalues) of the matrix

T (w) = [(Φ(w)⊗Φ(w))Ψ]T [(Φ(w)⊗Φ(w))Ψ]

= ΨT (diag[w]⊗ diag[w])Ψ.

In other words, the performance of least squares is better if the
spectrum of the matrix (Φ⊗Φ)Ψ is more uniform [21]. Thus,
a sparse sampler w can be obtained by solving:

arg max
w∈{0,1}N

f(w) s.t. ‖w‖0 = K (34)

with either f(w) = −tr{T−1(w)}, f(w) = λmin{T (w)}, or
f(w) = log det{T (w)}. These functions balance the spectrum
of T (w). Alternatively, the Fisher information matrix (33) can
be used instead of T (w) to design samplers using techniques
discussed in [34].

1) Convex Relaxation: The Boolean nonconvex problem
(34) with either of the above mentioned cost functions can be
relaxed and solved using convex optimization (e.g., see [34],
[35]). To express (34) as a convex optimization problem, we will
introduce an auxiliary variableZ = wwT and its related length-
N 2 vector z := vec(Z). Since diag[w]⊗ diag[w] = diag[z],
we can write f(w) as f(z), and relaxing (a) the Boolean con-
straints onw to box constraints, (b) the cardinality constraint to
an �1-norm constraint, and (c) the rank-1 constraint on Z, we
obtain the following optimization problem

arg max
w,Z

f(z)

s.t. 1Tw = K, 0 ≤ wn ≤ 1, n = 1, . . . , N,

Z � wwT , z = vec(Z), (35)

whereZ � wwT can be expressed as a linear matrix inequality
that is linear in w.

2) Submodular Greedy Optimization: Due to the involved
complexity of solving the convex relaxed problem (35) and
keeping in mind the large scale problems that might arise in the
graph setting, we will now focus on the optimization problem
(34) with f(w) = log det{T (w)} as it can be solved near-
optimally using a low-complexity greedy algorithm.

Let us define an index set X that is related to the compo-
nent selection vectorw as X = {m |wm = 1,m = 1, . . . , N},
where X ⊆ N with N = {1, . . . , N}. We can now express the
cost function f(w) = log det{T (w)} equivalently as the set
function given by

f(X ) = log det

⎧
⎨

⎩

∑

(i,j )∈X×X
ψi,jψ

T
i,j

⎫
⎬

⎭
, (36)
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where the length-N 2 column vectors {ψ1,1 ,ψ1,2 , · · · ,ψN,N }
are used to form the rows of Ψ as Ψ = [ψ1,1 ,ψ1,2 ,

· · · ,ψN,N ]T . We use such an indexing because the sampling
matrix Φ⊗Φ results in a Kronecker structured (row) subset
selection. The notation

∑
(i,j ) denotes the double summation;

As an example, for X = {1, 2}, we have
∑

(i,j )∈X×X ψi,j =
ψ1,1 +ψ1,2 +ψ2,1 +ψ2,2 .

Submodularity —a notion based on the property of dimin-
ishing returns, is useful for solving discrete combinatorial
optimization problems of the form (34) (see e.g., [36]). Sub-
modularity can be formally defined as follows.

Definition 4 (Submodular function): Given two sets X and
Y such that for every X ⊆ Y ⊆ N and s ∈ N\Y , the set func-
tion f : 2N → R defined on the subsets of N is said to be
submodular, if it satisfies

f(X ∪ {s})− f(X ) ≥ f(Y ∪ {s})− f(Y).

Suppose the submodular function is monotone nondecreas-
ing, i.e., f(X ) ≤ f(Y) for all X ⊆ Y ⊆ N and normalized,
i.e., f(∅) = 0, then a greedy maximization of such a function
as summarized in Algorithm 1 is near optimal with an approxi-
mation factor of (1− 1/e), where e is Euler’s number [37]. In
other words, we can achieve

f(X ) ≥ (1− 1/e)f(opt),

where f(opt) is the optimal value of the problem

maximize
X⊆N ,|X |=K

f(X ).

In order to have a non-empty input set f(∅) = 0, the cost
function (36) is slightly modified with a diagonal loading, and it
satisfies the above properties as stated in the following theorem.

Theorem 2: The set function f : 2N → R given by

f(X ) = log det

⎧
⎨

⎩

∑

(i,j )∈X×X
ψi,jψ

T
i,j + εI

⎫
⎬

⎭
−N log ε (37)

is a normalized, monotone nondecreasing, submodular function
on the set X ⊆ N . Here, ε > 0 is a small constant.

In (37), εI is needed to carry out the first few iterations of
Algorithm 1 and −N log ε ensures that f(∅) is zero. Using the
result from [38] that the set function g : 2N → R, given by

g(X ) = log det

{
∑

i∈X
aia

T
i + εI

}

−N log ε (38)

with column vectors {ai}Ni=1 is a normalized, monotone nonde-
creasing, submodular function on the set X ⊆ N , we can prove
Theorem 2. Therefore, the solution based on the greedy algo-
rithm summarized in Algorithm 1 results in a (1− 1/e) optimal
solution for (34). Note that the number of summands in (38)
and (37), is respectively, |X | and |X |2 . It is worth mentioning
that the greedy algorithm is linear in K, while computing (37)
remains the dominating cost.

Other submodular functions that promote full-column rank
model matrices, e.g., the frame potential [39] defined as f(w) =
tr{TH (w)T (w)}, are also reasonable costs to optimize. Finally,
random subsampling (i.e., w having random 0 or 1 entries) is

Algorithm 1: Greedy algorithm.

1: Require X = ∅,K.
2: for k = 1 to K
3: s∗ = arg max

s/∈X
f(X ∪ {s})

4: X ← X ∪ {s∗}
5: end
6: Return X

not suitable as it might not always result in a full-column rank
model matrix.

B. Autoregressive Case

The subsampling matrix for the spectral domain and moving
average approaches can be designed offline as the observation
matrix Ψ does not depend on the data, but it depends only on
the graphical model (i.e, eitherU or S). In contrast, an optimal
offline subsampler design for the autoregressive case is not pos-
sible due to the fact that the observation matrix depends on the
data, and to choose the best subset of nodes requires observa-
tions from all the nodes. This is the side effect of modeling the
graph autoregressive signal as (21) to arrive at an elegant linear
estimator.

Nevertheless, suppose the second-order statistics are avail-
able, e.g., from training data, estimated from subsampled ob-
servations using the nonparametric or moving average approach
(where the sampler is designed using Algorithm 1 as discussed
in Section VII-A), or by approximating the second-order statis-
tics with white noise, then a suboptimal sampler can be designed
with techniques similar to those in Section VII-A.

Alternatively, if a high-complexity non-linear estimator can
be afforded, then by modeling the graph autoregressive process
using (19), the dependence of the observation matrix on the data
can be avoided [cf. (20)]. In that case, the subsampler can be
designed offline using techniques in [34], [40].

We underline that the algorithms provided here to design
sparse samplers for different cases can also be used to design
mean squared error optimal sparse samplers for the compressive
covariance sensing framework [20]. In other words, although
minimal sparse rulers satisfy the identifiability conditions to
reconstruct the second-order statistics of stationary time-series,
the algorithms provided in this paper are needed to guarantee a
desired reconstruction performance.

VIII. NUMERICAL EXPERIMENTS

The developed framework of sampling on graphs for power
spectrum estimation is illustrated with numerical experiments1

on synthetic as well as real datasets as discussed next.
Synthetic Data (Random Graph): For experiments using syn-

thetic data, a random sensor graph with N = 100 nodes is gener-
ated using the GSPBOX [41]. The generated graph topology can
be seen in Fig. 2, where the colored nodes represent the value of
the graph signal for one realization. Graph stationary signals are
generated by graph filtering zero-mean unit-variance white noise

1Software and datasets to reproduce results of this paper can be downloaded
from http://cas.et.tudelft.nl/∼sundeep/sw/jstsp16gpsd.zip
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Fig. 2. Sampling random graphs with N = 100 nodes (synthetic data). The sampled graph nodes are highlighted by the circles around the nodes and the node
coloring simply denotes a realization of the graph signal. (a) Non-parametric model with K = 50. (b) Moving average model with K = 26. (c) Autoregressive
model with K0 = 1, where the P -hop neighborhood around the node indicated with the red circle is observed.

Fig. 3. Performance analysis on the synthetic dataset. In (a), markers indicate the non-uniformly distributed eigenvalues of the graph Laplacian matrix along the
x-axis. (a) Graph power spectrum based on Ns = 1000 snapshots. (b) Non-parametric method. (c) Moving average model. (d) Autoregressive model.

with a filter, which has a squared magnitude frequency response
as shown in Fig. 3(a) (labeled as “True graph power spectrum”);
such a frequency response can be, for instance, approximated
using a graph filter with L = 7 coefficients. For the shift op-
erator, we use the graph Laplacian matrix. We use Ns = 1000
snapshots to form a sample covariance matrix, which we use in
the experiments.

For the non-parametric model, using Algorithm 1, we first
design the subsampler by selecting rows of the matrix Ψs in a
structured manner determined by w. We show in Fig. 3(a), that

the least squares estimate of the graph power spectrum obtained
by observing K = 50 out of N = 100 nodes (50% compression)
fits reasonably well to the true power spectrum. In Fig. 2(a), the
selected graph nodes are indicated with a black circle. However,
no particular sampling pattern can be seen here.

For the parametric moving average model, recall that the
graph power spectrum is parameterized with Q parameters;
we use Q = 13 in this example. As before, we perform a row
subset selection of the matrix ΨMA in a structured manner using
Algorithm 1. We show in Fig. 3(a), the (unconstrained) least
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squares estimate of the graph power spectrum computed us-
ing observations from K = 26 nodes out of N = 100 nodes
(74% compression). The sampling pattern in this case is shown
in Fig. 2(b). It can be seen that the greedy algorithm selects
graph nodes in a clustered manner as the moving average model
assumes that the power spectrum is smooth.

For the parametric autoregressive approach, the graph power
spectrum is parameterized with P = 3 parameters. In this case,
we choose K0 = 1 graph node (indicated with a red circle) hav-
ing the largest degree and we also observe nodes in the 3-hop
neighborhood of the selected node; the observed nodes (indi-
cated with black circles) are shown in Fig. 2(c). In this example,
we again observe K = 26 nodes out of N = 100 nodes to re-
construct the graph power spectrum. The least squares estimate
of the G-AR power spectrum can be seen in Fig. 3(a). Although
we had to recover only P = 3 parameters, we observe all the
nodes in the P -hop neighborhood of every selected node (i.e.,
we observe much more than K0P nodes).

In Fig. 3, we also provide some performance results based on
the synthetic dataset. In particular, we show for different num-
ber of snapshots the performance of the estimators in terms of
the normalized mean squared error (NMSE) defined in dB as
NMSE = 10 log10

∑Nexp

m=1 ‖p− p̂m‖22/(Nexp‖p‖2), where p̂m

denotes the graph power spectrum estimate during the mth
Monte-Carlo experiment and Nexp is the number of Monte-Carlo
experiments. Here, we use Nexp = 1000.

To begin with, Fig. 3(b) shows the performance of the de-
veloped least squares estimator for the nonparametric approach
with K = 50 (50% compression), and with K = 100, i.e., no
compression. For this example, we can see about a 4 dB per-
formance loss due to compression, and this gap reduces as K
increases. Furthermore, we can also see that, although the least
squares estimator has the same slope as that of the Cramér-
Rao lower bound (labeled as “CRLB (50% compression)”), it
does not achieve the Cramér-Rao lower bound. This gap can
be reduced by solving a weighted least squares estimator, but
incurs an additional computational cost due to inverting and
updating the weighting matrix. For this particular scenario, al-
though a full-column rank matrix (Φ⊗Φ)Ψs can be obtained
for K ≥ 20, selecting K = 20 results in a very poor perfor-
mance as Ψs is highly sensitive to perturbations due to the finite
sample effects. Nevertheless, the performance improves with
the number of snapshots.

In Fig. 3(c), we can see the performance of the moving av-
erage approach for Q = 13, for K = 10 (90% compression),
K = 26 (74% compression) and K = 100 (i.e., no compres-
sion). As before, we see a performance loss due to compression,
but also, as the number of snapshots increases, the performance
saturates. This is due to the limited filter order, and the per-
formance gets better with increasing filter order. However, in-
creasing the filter order worsens the condition number of ΨMA,
and we might have to resort to singular value decomposition
based techniques to solve the least squares problem (now we
simply solve (31) using QR factorization through MATLAB’s
backslash “\” operator). For this example, a full-column rank
matrix (Φ⊗Φ)ΨMA is obtained for K ≥ 10. Such a high com-
pression is possible because of the low value of Q that is as-
sumed to be known. Also, as compared to the non-parametric

model, due to a smaller filter order, ΨMA is less sensitive to
perturbations.

Finally, in Fig. 3(d), we show the performance of the au-
toregressive model for P = 3 with K0 = 1, and for P = 3 and
P = 6 with K = 100 we solve (23) using least squares. Al-
though we can see a similar behavior with respect to the per-
formance loss due to compression and with respect to the error
saturation due to a limited filter order, a more important thing
to notice is that the autoregressive model has a similar perfor-
mance as that of the moving average model, but with about 50%
fewer parameters.

Synthetic Dataset (Circulant Graph): We illustrate the graph
sampling theory developed for circulant graphs using a Möbius
ladder, which due to its structure finds applications within
molecular chemistry (e.g., see [42]). A Möbius ladder with
N = 80 nodes is shown in Fig. 4(a). This graph has a circu-
lant adjacency matrix, which we use as the shift operator.

We have seen in Section IV that for such circulant graphs
it is possible to elegantly compute the optimal sparse sam-
plers. For N = 80, the minimal sparse rulers are length K = 15
and one such (non-unique) sampling set is given by K =
{1, 2, 3, 6, 11, 16, 27, 38, 49, 60, 66, 72, 78, 79, 80}; see the cor-
responding selected nodes in Fig. 4(a). Alternatively, we can
also determine the sampling set using Algorithm 1; we show
the selected nodes in Fig. 4(b). Now, the question is, how does
this greedily designed sparse sampler compare with the minimal
sparse ruler. To answer this, we plot, in Fig. 4(c) the singular val-
ues (i.e., the spectrum) of T (w) = ΨT

s (diag[w]⊗ diag[w])Ψs

withw being the minimal sparse ruler and forw computed using
the greedy submodular design. For this example, we can see that
the resulting spectra from both sparse samplers are very simi-
lar, and that the greedy submodular design has a slightly worse
condition number (i.e., the ratio of maximal singular value to
minimal singular value). This is because, we do not optimize
the condition number, but we optimize a surrogate cost function
that also leads to a full column rank matrix.

Real Dataset (Climatology): For the real dataset, we use tem-
perature measurements collected across 32 different weather
stations in the French region of Brittany.2 A nearest neighbor
graph is constructed as in [9] using the available coordinates
of the weather station such that each node has at least five
neighbors. The reconstructed graph can be seen in Fig. 5. Alter-
natively, the method suggested in [43] can be used to construct a
sparse graph based on training data. There are Ns = 744 obser-
vations (for 31 days and 24 observations per day) per weather
station available. We use the adjacency matrix as the shift oper-
ator in this example.

We have removed the (sample) mean from each station inde-
pendently, thus forcing the first moment to zero [9]. This way
we artificially obtain mx = mxu1 with mx = 0. The sample
covariance matrix (denoted by R̂x) in the graph spectral domain
(i.e., the spectral covariance matrix UH R̂xU ) has most of its
energy, i.e., about 89% of the energy of UH R̂xU , along the
main diagonal; see the spectral covariance in Fig. 5(d). Although

2This dataset was used in the context of stationary graph signal processing
in [9], [12]. Also, we would like to thank the authors of [9] for making the
temperature as well as the USPS (preprocessed) datasets public.
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Fig. 4. Sampling Möbius ladder —a circulant graph with N = 80 nodes. The sampled graph nodes are highlighted by the circles around the nodes and the node
coloring simply denotes a realization of the graph signal. (a) Minimal sparse ruler based sampling with K = 15. (b) Sampling based on submodular design with
K = 15. (c) Spectrum of T (w) = ΨT

s (diag[w] ⊗ diag[w])Ψs for w being the minimal sparse ruler and for w computed using the greedy submodular design.

Fig. 5. Sampling on graphs with N = 32 weather stations. The sampled graph nodes are highlighted by the circles around the nodes and the node coloring
simply denotes a realization of the graph signal. (a) Non-parametric model with K = 20. (b) Moving average model with Q = 11 and K = 20. (c) Autoregressive
model with K0 = 1, where the P -hop neighborhood around the node indicated with the red circle is observed. (d) Spectral covariance matrix. (e) Graph power
spectrum based on Ns = 744 snapshots. Markers along the x-axis indicate the eigenvalues of the adjacency matrix.

this dataset is not exactly stationary in the adjacency matrix as
can be seen in Fig. 5(d) (or with respect to the Laplacian matrix
as discussed in [9]), it is shown in [9] that Bayesian inference
using the graph power spectrum estimates outperforms non-
Bayesian inference methods.

We carry out the same experiments as for the synthetic data.
For the non-parametric and moving average approaches, the
samplers are designed using a greedy algorithm as discussed in
Section VII-A. In particular, for the non-parametric approach,
we observe K = 20 nodes out of N = 32 nodes as shown with
black circles in Fig. 5(a). For the moving average approach,
we use Q = 11, and observe K = 20 out of N = 32 nodes to
recover the G-MA parameters. Finally, for the autoregressive
approach, we model the graph power spectrum with P = 1
scalar parameter. We select one node (i.e., K0 = 1) that has the
largest degree as indicated with a red circle in Fig. 5(c), and we
also observe nodes in the one-hop neighborhood of the selected

node. So, we observe 10 nodes in total in this case. The uncom-
pressed graph power spectrum computed from all the available
temperature measurements as well as the least squares estimate
of the graph power spectrum computed from the subsampled ob-
servations using the non-parametric and parametric approaches
can be seen in Fig. 5(e), where we can see that the shape of the
estimated power spectrum from different approaches is similar
to that of the empirical graph power spectrum.

Real Dataset (USPS Handwritten Digits): Before concluding,
we demonstrate the potential of parametric modeling as well
as sampling in the graph setting with an example using the
USPS dataset, where we will focus only on digit 3 for the
sake of illustration. We construct a 20 nearest neighbor graph
based on pixel values with 50 images each containing 16× 16
pixels as in [9]. This means that the graph signal x is of length
256, where each pixel corresponds to a graph node, and the
covariance matrix Rx is of size 256× 256. The stationarity
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Fig. 6. Sampling nearest neighbor graph built using digit 3 (16× 16 pixels) from the USPS dataset. (a) Spectral covariance matrix (only the upper left part is
shown for better visibility, rest of the entries are zeroes). (b) Graph power spectrum based on Ns = 50 image snapshots. Markers along the x-axis indicate the
eigenvalues of the Laplacian matrix. (c) 25 realizations of the generated images, which are obtained by graph filtering white noise. Here, the Q = 7 G-MA filter
coefficients are obtained by observing K = 15 pixels.

of this dataset on such a graph has been assessed in [9]; see
the diagonal dominance (with about 82% of the energy in the
diagonal entries) of the spectral covariance matrix in Fig. 6(a).

We have seen in Section V that it is possible to model the
graph power spectrum with fewer parameters, which means
that (a) we need to store or transmit only a few parameters,
and (b) we can achieve stronger compression rates. To illus-
trate this, we perform an experiment, where we view digit 3
of the USPS dataset as a realization of a graph second-order
stationary signal obtained by graph filtering white noise using a
graph moving average filter with Q = 7. In Fig. 6(b), we show
the empirical graph power spectrum computed from 50 im-
ages and the graph power spectrum computed using the moving
average method by sampling only K = 15 pixels (96% com-
pression) as well as K = 256 (i.e., no compression). That is to
say, we can quickly learn the parameters of interest without pro-
cessing the entire training set. Next, based on the reconstructed
graph power spectrum obtained by sampling K = 15 pixels, we
generate 25 graph signal realizations by graph filtering white
noise, where the frequency response of the graph filter is simply
computed as hf,n = |pn |1/2 for n = 1, . . . , N (here, we use the
absolute value because we do not solve (31) with a nonnega-
tivity constraint). These 25 realizations are shown in Fig. 6(c),
where we can see that the resulting signals have the shape of
digit 3 corroborating that the signal is (nearly) stationary on the
nearest neighbor graph, and more importantly these signals can
be generated from fewer parameters, which are estimated by
observing only a small subset of pixels.

IX. CONCLUDING REMARKS

In this paper we have focused on sampling and reconstruct-
ing the second-order statistics of stationary graph signals. The
main contribution of the paper is that by observing a significantly
smaller subset of vertices and using simple least squares estima-
tors, we can reconstruct the second-order statistics of the graph
signal from the subsampled observations, and more importantly,
without any spectral priors. The results provided here general-
ize the compressive covariance sensing framework to the graph
setting. Both a nonparametric approach as well as parametric
approaches including moving average and autoregressive mod-
els for the graph power spectrum are discussed. A near-optimal
low-complexity greedy algorithm is developed to design a sparse
sampling matrix that selects the subset of graph nodes.

APPENDIX A
LEMMA 1: RANK OF SELF KHATRI-RAO PRODUCTS

By the definition in (1), U forms an orthogonal basis and
hence has full rank. As a result, the sum a1u1 + a2u2 + · · ·+
aNuN equals zero only when a1 = a2 = · · · = aN = 0.

The remainder of the proof is based on contradiction. Assume
that the matrix Ū ◦U = [ū1 ⊗ u1 , · · · , ūN ⊗ uN ] does not
have full column rank. This means that the sum

b1(ū1 ⊗ u1) + · · ·+ bN (ūN ⊗ uN )

= b1

⎡

⎢
⎣

ū1,1u1
...

ū1,Nu1

⎤

⎥
⎦+ · · ·+ bN

⎡

⎢
⎣

ūN ,1uN

...
ūN ,NuN

⎤

⎥
⎦ = 0 (39)

when one or more biūi,j are nonzero. This is possible only ifU
is singular. Hence a contradiction, implying that rank(Ū ◦U)
= N .

APPENDIX B
THEOREM 1: CONDITIONS FOR A VALID SAMPLER

The rank of the product of two matrices A and B is given
by [44] rank(AB) ≤ min{rank(A), rank(B)}, and equality
holds if and only if null(A) ∩ ran(B) = {0}.

We know from Lemma 2 that rank(Φ⊗Φ) is K2 if
rank(Φ) = K and from Lemma 1 that Ψs has full column rank.
This implies that if K2 ≥ N , then (Φ⊗Φ)Ψs has full column
rank provided that the null space of Φ⊗Φ (which is generated
by the basis vectors in the null space of Φ) does not intersect
with the space spanned by the columns of Ψs.
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