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ABSTRACT

In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they
consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting
sensors, relays and links in a wireless sensor network where the active sensors need to communicate
their measurements to one or multiple access points. Information messages are routed stochastically in
order to capture the inherent reliability of the broadcast links via multiple hops, where the nodes may
be acting as sensors or as relays. We aim at finding optimal sparse solutions where both, the consis-
tency between the selected subset of sensors, relays and links, and the graph connectivity in the selected
subnetwork are guaranteed. Furthermore, active nodes should ensure a network performance in a pa-
rameter estimation scenario. Two problems are studied: sensor and link selection; and sensor, relay and
link selection. To solve such problems, we present tractable optimization formulations and propose two
algorithms that satisfy the previous network requirements. We also explore an extension scenario: only
link selection. Simulation results show the performance of the algorithms and illustrate how they provide

a sparse solution, which not only saves energy but also guarantees the network requirements.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, wireless sensor networks are developed to pro-
vide fast, cheap, reliable, and scalable hardware solutions for a
large number of industrial applications, ranging from surveillance
[1,2] and tracking [3,4] to exploration [5,6], monitoring [7,8], and
other sensing tasks [9]. From the software perspective, an increas-
ing effort is spent on designing algorithms that can provide high
reliability with limited computation, communication, and energy
requirements for the sensor nodes.

In this paper, we consider a network of battery-powered sen-
sors that take measurements related to some important environ-
mental parameter and that need to communicate their measure-
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ments to one or multiple access points (APs), or sinks, which are
responsible for processing the gathered information. Communica-
tion with the APs is achieved through multihop routes defined via
a connectivity graph which considers the sensors’ communication
range.

Resources (mainly energy) in this network are scarce so it is
inefficient to have all sensors active. Some sensors may not be in-
formative enough and hardly contribute to achieve a minimum de-
sired network performance; nonetheless, if active, they would con-
sume a non-negligible amount of resources. Moreover, communica-
tion efforts are among the most energy demanding tasks in wire-
less sensor networks [10] and they should be minimized by prop-
erly selecting not only the suitable sensors but also the proper ac-
tive links. Knowledge of the network topology should be exploited
in order to make a better selection of the links that are in charge of
conveying the information because information may be degraded
over long distances and transmissions should be avoided to reduce
energy expenditure.

With the reduction of energy expenditure in mind, in this paper
we consider a distributed estimation scenario in wireless sensor
networks, where each sensor takes local measurements of a phe-
nomenon of interest at a particular rate and communicates them
in a multihop way to one or multiple APs. In this scenario, we
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study the problem of judiciously and consistently selecting the op-
timal minimum set of sensors and links that ought to be active in
the network, so that a prescribed network performance (e.g., the
mean squared error of the estimation of the parameter of inter-
est) as well as graph connectivity among the selected active sen-
sors are guaranteed. Only the measurements taken by the active
sensors must be reported back to the APs via the active sensors
and active links. This is the reason for requiring graph connectivity
among the selected active sensors. Moreover, the optimal sensing
rates supported by the active sensors are calculated. We analyze
the problem from a stochastic point of view, where information
messages are routed stochastically thereby capturing the inherent
reliability of the broadcast wireless links.

1.1. State of the art

The concept of sensor selection has been extensively studied in
the context of parameter and state estimation. The resulting min-
imum cardinality combinatorial problem has been tackled by us-
ing different tools, from convex relaxations, e.g., [11-13], to sub-
modularity [14-16] and frame theory [17,18]. These tools have their
pros and cons. More along the lines of this paper, in [19] not only
is the best subset of sensors selected that communicate with the
fusion center but also the collaboration scheme that allows each
sensor to combine its raw measurements with those coming from
other sensors according to certain weights.

Stochastic routing in multihop networks has been introduced
in the literature in order to cope with the random nature of wire-
less links [20,21]. Transmissions are based on a reliability matrix,
where each element of the matrix reflects the probability of satis-
factorily transmitting and receiving a message between two given
sensors. In [22], the authors define the concept of connectivity
within a context of mobile robotic networks in terms of commu-
nication rates, and based on this definition, the authors propose a
distributed algorithm to find the optimal operating points of wire-
less networks when the link metric is the link reliability. The work
of [23] considers the problem of optimizing the routing and sen-
sor selection given a total budget constraint. Yet, the approach pre-
sented in [23] is heuristic and divides the estimation and routing
problems, by tackling them in two separated phases, which could
cause additional suboptimality of the solution.

Often times, a distinction is made between sensor and relay
nodes. Relay nodes help the source nodes (sensing nodes) in for-
warding the messages to the APs: they receive a message from the
source nodes, process it and forward it towards the intended APs.
Relaying is especially beneficial when there is no line-of-sight path
between the source and the destination. This distinction between
sensor types may be motivated, for instance, by economical rea-
sons (relay devices may be cheaper than sensors given that their
functionality is more limited), or by design prerequisites (sensors
need to achieve a certain performance while relays do not be-
cause they are only limited to forwarding the information). Previ-
ous state-of-the-art works are only based on proposing relay selec-
tion schemes (e.g., [24,25], and references therein): given a source
sensor and a sink, they try to choose the best relays among a col-
lection of available ones based on different criteria. Other works
are aimed at optimally placing wireless relay nodes and sinks [26].

1.2. Our contributions

All the aforementioned state-of-the-art works either face the
sensor selection problem or the stochastic routing, but what has
never been addressed in the literature before is the challenge of
jointly selecting the optimal minimum set of active sensors (and
their corresponding sensing rates) which satisfies a prescribed es-
timation performance metric and consistently finding the optimal

multihop routes so that the selected subgraph is connected. Hence,
in this paper we do not focus on devising new methods to solve
selection problems or on comparing them, instead we are mainly
interested in formulating a stochastic framework for consistent
sensor and link selection. Even the closest prior work [19], which
is a “dual” problem w.r.t. ours, differs from this paper in several
ways: in [19] all sensors can directly communicate with the fusion
center (i.e., it is not a multihop scenario so the graph connectivity
is not a problem), communication links are established based on
inter-sensor collaboration before transmitting a processed message
to the fusion center, and the optimal transmission rates of trans-
mitting sensors are not determined.

The problem at hand becomes even more challenging when
there is a distinction between sensor and relay nodes. In a sce-
nario where there are the two types of nodes, we want to con-
sistently determine which of the nodes, placed at well-determined
positions, should play the role of sensors (and hence their sensing
rate should be determined) and which ones the role of relays while
guaranteeing both a prescribed network performance and connec-
tivity in the selected subgraph. To find an optimal solution, a joint
source and relay selection should be performed, which implicitly
implies to activate suitable links. (Fig. 1)

The main contributions of this paper can be summarized as fol-
lows:

1. From a stochastic point of view and in a multihop scenario,
we formulate a tractable optimization problem to select consis-
tently the optimal subsets of sensors (with their sensing rates)
and links that guarantee both, a required network performance
and graph connectivity in the selected subnetwork. To solve
this problem, we propose a sparsity-aware algorithm based on
a convex relaxation (Sections 2-4).

2. The previous framework is also well-suited for the joint selec-
tion of sensors, relays and links (which is not the case for other
approaches in the literature, e.g., [23]). Under a slight modifica-
tion of the previous optimization problem and applying a con-
vex relaxation technique, we propose another sparsity-aware
consistent sensor-relay-and-link selection algorithm. This algo-
rithm assigns the optimal sensing rates to the active sensors
and ensures network connectivity as well as a prescribed net-
work performance (Sections 5 and 6).

3. Finally, we also extend the work to a special case where only
link selection is considered (Section 7).

Contributions (1)-(3) rely on a reformulation of the problems
as ¢ convex optimization problems. This allows for efficient and
well performing algorithms. Different approaches, e.g. [27], would
yield more complex problem formulations, which rely on dedicated
non-convex solvers. This is avoided here. In addition, based on the
fact that a ¢; relaxation is leveraged, distributed algorithms can be
envisioned (see Remark 1).

Numerical simulation results support our claims and illustrate
a satisfactory performance of the proposed algorithms. As a last
note, we highlight that the presented algorithms are exposed in a
static framework, i.e., given a certain network, we provide a selec-
tion strategy. Yet, they could be implemented in a dynamical way,
by repeating their execution, so to balance the energy level of the
active and non-active sensors and relays (see Remark 3).

Notation: Notation is where possible standard: we indicate with
boldfaced small letters, such as X, real vectors, whereas capital
boldfaced letters, e.g. A, represent real matrices. Vector p-norms
are indicated with || - ||p, while p-norms for matrices are intended
element-wise, e.g., ||A||; is the sum of the absolute values of the el-
ements of the matrix A. Pseudo-norms, such as the 0-norm, follow
the same notation.
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generalizes to

Consistent sensor, relay, and link selection

Problem (18), Algorithm 2, Sections V, VI

Consistent sensor and link selection
Problem (8), Algorithm 1, Sections II, IIT, IV

Parameters aq, as

Parameters oy, as, ag

Link selection

can be specified into

Problem (20), Section VII

Parameters o + utility function

Fig. 1. General structure of the paper with the three problem formulations and relations among them.

2. Problem formulation

High-level problem description: In this paper, we are facing the
problem of consistently selecting the smallest subset of sensors
and links out of all available ones such that a certain performance
measure and network connectivity (which ensures a path from the
active sensors to the APs) is guaranteed. The motivation behind se-
lecting a low number of sensors (and subsequently, an appropriate
reduced amount of links) comes from the need of minimizing the
economical and communication costs in wireless sensor networks.
Clearly, this saving should not jeopardize the performance or the
network connectivity. Communication between the active sensors
and the APs as well as a network performance must be guaran-
teed.

We consider a static wireless sensor network composed of |
sensor nodes and K access points (APs) or sinks. At this point, we
do not consider any relays yet. We denote with V ={1,2,...,]J+
1,...,J+K} the set of sensors and access points, where ie Vs =
{1,...,]J} are the indexes corresponding to the sensor nodes and
ieVap={+1,...,J+K} are the indexes corresponding to the
APs. The network topology is determined by the physical loca-
tions of the sensors and APs, collected in the stacked vector x =
xT,..., xJT, x]TH, .. ,xJT+K]T, where the vector X; indicates the posi-
tion of sensor or AP i.

2.1. Communication network

Sensors need to communicate their measurement to the APs
in a multi-hop fashion (due to energy/power constraints). An im-
portant feature of this paper is that we can only use active sen-
sors to transmit messages. We model the communication qual-
ity among sensors and APs using a link reliability metric, denoted
as Rip := R(||x; — Xp||), which represents the probability that sen-
sor p (if p < J) or an AP (otherwise) receives successfully a mes-
sage sent from sensor i. We model this probability as a smooth
non-increasing function with compact support, and in particular,
R(0) =1 and R(d) =0 for all d > d, for a predefined cut-off dis-
tance d.

The link reliability metric induces a specific undirected com-
munication graph on the wireless sensor network: whenever Ry,
is nonzero, there is a possible link between sensor i and sensor or
AP p. We describe this communication graph in terms of the edge
set £, given by € = {(i, p).i€ Vs, p e V]i # p, Ry, > 0}, and we de-
note the graph as G = (V, €).

2.2. Sensing

Sensors take measurements of a parameter § € R™, m « J, ac-
cording to the linear measurement model,

yi=a,-T9+ni, iGVS, (1)

where the vectors a; € R™ represent the regressors, while n; is a
Gaussian noise term with mean 0 and covariance oiz. Sensor i ac-
quires measurements y; with a rate r;7; (we assume that the max-
imum relative rate 7; is known and fixed, while the relative rate r;
€ [0, 1] is a design parameter). If r; = 0, the node will not take any
measurements and will not be active.

As we mentioned, the collected measurements need to be com-
municated back to the APs in a multi-hop fashion. The APs are in
charge of combining the measurements y;, coming from different
sensors at different rates, to estimate the value of the parameter
0. The quality of the estimate can be evaluated a priori based on
which sensors are measuring (more specifically their regressors a;
and noise variances ol.z) and their rates. Examples of such qual-
ity metrics are rate versions of the mean square error (MSE), the
worst case error variance, or the volume of the confidence ellip-
soid [11]. For instance, if we select the MSE-rate as quality metric
and assume that the noise experienced at different sensors is un-
correlated, then we would have

f(l') = tl‘( Z rif,»a,-aiT/af) _,l (2)

ieVs

where we have collected the relative rates in r={[ry,...,7]". Re-
mark that if a sensor is not active, its relative rate is zero. The
higher the value of f(r), the higher the MSE-rate of the estimate,
and vice versa. Other types of function f{(r) can be found in [11,13],
both for uncorrelated and correlated noise. In order to keep the
presentation as general as possible, we will not specify which qual-
ity metric we select: we will simply write the metric as the func-
tion f(r).

2.3. Connectivity modeling

Before formalizing the problem mathematically, we need to in-
troduce how we will model the communication links and the in-
duced connectivity. In this paper, we use a stochastic point of view
and we use the stochastic routing framework of [22].

In our multihop wireless network, messages will be routed
stochastically, i.e., sensor nodes select a neighbor, either a sensor
or an AP, to forward the message according to a certain probability.
A set of variables T;, € [0, 1] will denote the probability that node
i selects node p, either a sensor or an AP, as a destination of the
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transmitted messages. In this sense, the variables T;, can be seen
as the probability that node i selects the link that joins sensors i
and p. The matrix T, of size J x (J + K), gathers all these probabil-
ity values. Further, the matrix T needs to satisfy a certain number
of constraints. First, if either one of the sensors i or p is not ac-
tive, then T, must be zero: this models the fact that if a sensor
is not active then it cannot send or receive messages. This can be
formulated as

Tp,=0 iff rirp=0, ieVs,peV, 3)

since T, will be nonzero if and only if both r; and rp are nonzero,
meaning that the sensors are active (we can fix r, =1 for APs,
without loss of generality). Second, since we are dealing with link
probability values, the sum of all link probabilities of an active sen-
sor should be at most 1:

YTpy<1, ieVs (4)

pev

We notice that we can use i € Vs in condition (4), since non-active
sensors have T, = 0 due to condition (3), and therefore (4) is au-
tomatically satisfied.

To complete the formulation, we want to ensure the delivery of
messages to the APs, which is achieved by guaranteeing network
connectivity among the active sensors and APs. To that aim, let Ry
be the transmission rate of the sensors. Then the effective trans-
mission rate in the active link between nodes i and p is RoR;, (re-
call that R;, := R(x;, Xp) is the link reliability between sensors or
APs). We consider normalized rates by making Ry = 1, and we fur-
ther assume that all sensors have the same transmission rate Ry,
which is an easy-to-lift constraint.

Each sensor stores messages in a queue between the genera-
tion or arrival from other sensors and their transmission. An active
sensor i, apart from generating messages locally at rate r;i;, also
receives messages from other sensors p with an active link Tj;Ry;.
Thus, the aggregate rate at which messages arrive at sensor node i
is

r;“ = rl‘f,‘ + Z Tp,‘Rp,‘. (5)
PeVs

In a similar way, the rate at which sensor i sends messages to other

nodes p, which may be sensors or APs, is given by

T?Ut = ZTipRi;r (6)
pev

If we consider that the average rate at which messages leave the
sensor’s queue is higher than the rate at which messages arrive at
a sensor, ie, It > it ie,

rifi + Z T,iRpi < ZTipRips ieVs, (7)
peVs peV
then the queue empties often with probability one and there is an
almost sure guarantee that the messages are delivered to the AP
[22] (a formal statement of this fact will be given in the following).
Problem statement: Given the measurement model for the dif-
ferent sensors and a prescribed performance measure value y >
0, we want to find the relative rates r € [0, 1}, which select the
minimum subset of sensors, and the probabilistic routing matrix
T € [0, 1P*U+K) which selects the minimum subset of links, so that
the performance measure f{r) < y is satisfied and the messages are
delivered to the APs. This can be stated as

minilpize aillrllo + a2 I Tllo (8a)
r,

subject to r;el0,1], T, €[0,1], ieVs,peV (8b)

(3).4). () (80)

fry <y, (8d)

where the non-negative scalars o; and o, determine the impor-
tance of the sensors and the links. If oy =0, then the problem
becomes link selection with stochastic routing, while for o, =0,
the problem is sensor selection. We denote as (r*, T*) any optimal
couple determined by the solution of problem (8).

We can readily notice that (8) is a nonconvex program, which
makes finding any optimal couple (r*, T*) computationally expen-
sive in practice. In this paper, we are interested in finding an ap-
proximate solution of (8) by a suitable convex relaxation.

3. Convex relaxation

We relax the nonconvex program (8) by substituting the ¢g-
pseudo norm, with the ¢; norm, and by substituting the nonconvex

constraint (3) with the convex surrogate
Tp <minfr;, r,}, ieVs,peV. (9)

These operations transform the original problem (8) into

minripize a|Irllh + o2 || T (10a)
subject to r;€[0,1], T, €[0,1], ieVs,peV (10b)
9), 4, (1) (10c)

fr) <y. (10d)

With the assumption that the now continuous function f: R/ —
R is convex in r (as it happens with all the aforementioned qual-
ity measurement examples [11]), then the program (10) is convex.
In addition, for the mentioned examples of f(r), (10) is a semidef-
inite program, which makes its solution efficient to compute poly-
nomially with off-the-shelf software. We indicate with (£, T) any
possible solution of (10).

It is important to note that the couple (¥, T) is only an approx-
imation of the sought solution (r*, T*). However, we will see in
the simulation section that (&, T) is usually a sparsely enough ap-
proximate solution. An additional feature of the approximate cou-
ple (#,T) is that it is feasible w.r.t. the constraint set of the origi-
nal problem (8), and therefore it does not have to be mapped into
a different set (as it usually happens in relaxed sensor selection
problems). The reason for this is that we are working with rates
and not Boolean variables.

A strategy to increase the sparsity of the approximate couple
(#,T), which has been proposed in [28], is to use a reweighted ¢;
minimization mechanism. In this paper, we also use this strategy,
which goes as follows. Consider the relaxed problem (10), with the
different cost function o ||wWor|; + o ||W O T||;, where w € R/
and W e RI*U+K) are a weighting vector and matrix, respectively.
The weights can be determined so to push small components of r
and T to zero, and boost big ones to one. In particular, initialize
w? =1 and Wig =1, then for each T > 0 solve the problem

minimize ai||lw* or|; + a2 ||W* o Tl (11a)
T,
subject to rie[0,1], T, €[0,1], ieVs,peV (11b)
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9). @D, (7) (11c)

fr)<vy,

whose solution is (#%,T7), and whose weights for t > 1 are wi =
wi /(e +7771) and Wr = \/VI.;_]/(E + Tl_;”), with € a small posi-
tive constant.

This iterative (reweighted) procedure delivers sparser solutions,
as we will show in the simulation results. We have summarized
the resulting sparse sensor and link selection (SSLS) iterative algo-
rithm in Algorithm 1.

(11d)

Algorithm 1 Sparse sensor and link selection.
Require: Number of iterations N, reweighting tolerance € > 0, sen-
sor importance oy > 0, link importance o5 > 0.
1: Set the weighting vector and matrix as w9 = 1 and Wi?; =1 for
allieVvsand peV
2. fort=0to N-1do
3: Solve the convex program™(11) with off-the-shelf interior
point methods (e.g., SDPT37[29] or SeDuMi“[30]). Let the so-
lution be (#7,T7).
4:  Compute the new weights w™*! and W™*1 as

T T
o1 Wi T+l _ _ip
O A

5: end for A
6: Output the solution couple (&N, TN)

Connectivity guarantees of Algorithm 1: We notice that due
to (7), the solution coming from Algorithm 1 guarantees that the
measurements acquired at the sensors are delivered at the APs, i.e.,
each of the active sensors has a path back to at least one AP. To
formally prove this statement, consider (7):

it + Z TpiRpi = ZTipRipa ieVs,
peVs peV

this constraint has to be true for each active sensor (the one for
which r; > 0), and it reads 0 < O for the not active ones (due to
constraint (9), i.e, in this case also Ty; and T;, are 0). Since it has
to be true for all active sensors, each of them has to send out more
rate than what it receives (and the difference is given by its mea-
surement rate), that is

> TyiRpi < Y TypRip, i€ {jeVsrj>0}.

peVs peV

Therefore, first: no active sensor can be a sink (it has to send out
more than it receives). Second: there cannot be loops of active sen-
sors not connected to a sink. In fact, if there were, since the rate
augments along the loop, constraint (7) would not be satisfied for
at least a pair of active sensors connected together. Thus, the only
possibility is that eventually each sensor has a path to a sink. This
is also what we observe in simulations. O

Remark 1. (Distributed algorithms) Although the algorithms in this
paper are centralized, one could devise distributed algorithms in
a standard fashion. For instance, Problems (10) and (19) with the
choice for f{(r) of (2) fit the general structure presented in [29]. In
particular one needs to consider the local decision variables x; as
the vector (r;, {Tip}peys). In this case, with the use of consensus-
based dual decomposition each sensor could decide their on/off
strategy and to whom to communicate. Nonetheless, first, the re-
weighting procedure is not trivial to implement in this case, and
second, the sensors could spend a considerable amount of battery
power to decide their on/off strategy. We believe that developing

distributed and yet efficient (i.e., power-aware) algorithms for sen-
sor selection is still an open research area, which is left for future
investigations.

Remark 2. (Stochasticity of the reliability matrix Ry,) Although here
we assume to know each element Ry, in a deterministic sense, one
could also think of estimating R, online. If then one possesses a
pdf for R;,, one could replace the deterministic constraint (7) with
a stochastic variant of it. Another approach in the estimation
would be the one of [30]. Finally, a third approach would consider
a time-varying online algorithm to track Rj; as it (possibly) varies

in time, which is in line with the research proposed in [31].

Remark 3. (Energy efficiency) Energy efficiency can also be consid-
ered in the proposed approach. For instance, one could re-run the
selection algorithm to take into account that the battery charge of
the devices has changed, so to keep a balance in the usage of the
whole sensor network. A way to include battery charge into the
optimization problem is, e.g., to initialize the weights w?‘s not to 1
but to the inverse of the battery level: 1 if fully charged, oo if out
of charge.

4. Numerical results for sensors and links

In this section, we assess the performance of the proposed SSLS
algorithm in terms of the amount of resources that are used, i.e.,
the number of both, active sensors and links. We also verify the
consistency and the subgraph connectivity.

We consider an estimation scenario where sensors are ran-
domly deployed according to a uniform distribution in a square
area of side 5 units. The regression matrix, A = [a1,...,a]]T Ac
R/X™ is drawn from a zero-mean Gaussian distribution with vari-
ance 1. The variance of the noise is the same at all sensors, o; =
1/+/SNR, where SNR is set to 0 dB. We use the cost f{r) of (2) and
set the parameter y in (11d) to 0.5. The link reliability metric that
we use in the simulations is given by:

1- b(xxlyp ifo <) x —x, |<d

Jo-bply2sifd <) x - xp < 2d (12)
0 otherwise

Rip =

with B the power attenuation factor (2 < f < 6) and d the com-
munication radius. We have considered 8 =2 and d = 1.74 [32].

The number of iterations in the reweighted ¢; minimization is
empirically set to 30 to trade-off sparsity of the solution and com-
putational time. Due to the application of the reweighted ¢; min-
imization mechanism, only the sensors and links with relatively
high acquisition rate and link probability are active. We round off
to 0 the link probabilities and sensor rates lower than a sufficiently
small constant §, which is set to § = 2 - 10~%. Further, we consider
o1 = o = 1. Notice that rounding off the probabilities to 0 could
incur in a loss of connectivity. This is however not likely in prac-
tice, due to the reweighting procedure that makes sure that the
non-zero probabilities have values well above the selected thresh-
old 8. The experimental results support this claim, since we have
not witnessed any loss in connectivity.

Fig. 2 is an example of a 100-node sensor network with a single
AP. The parameter to estimate has dimension m = 2 and the max-
imum rate is 7 = 0.7. Active sensors are colored in green while the
AP is in black. The results show the sparsity of the solution since
only a few sensors (4%) and links (0.072%) are active. It can be also
seen that the selected subgraph is connected and there is always
a path between the active sensors and the AP. The solution also
satisfies the other constraints of the optimization problem. Fig. 3
shows the relative rates of the active sensors.

Next, our purpose is to show average performance results.
Hence, we run 250 Monte Carlo simulations for each network con-
figuration. The number of deployed sensors, J, varies from 30 to
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Fig. 2. Active links and sensors in a one-AP network for J = 100 nodes.
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Fig. 3. Relative rates of the active sensors.

100 and there is one AP. Two values of 7 are considered, 0.4 and
0.7. Simulations are run considering that 7 is identical for all nodes
in the sensor network. Also, we consider two values for the dimen-
sion of the parameter to estimate, m =2 and m = 4. Two metrics
are considered to assess the performance of the networks. They try
to measure the amount of resources that are used in the network.

Since we are dealing with acquisition rates, let us first define
the total relative acquisition rate of the whole network as the sum
of the acquisition rates of the sensors in the network, i.e., Y ;. V.
In order to make the performance measurement independent of
the number of sensors in the network, we define the percentage
of the total relative acquisition rate of the whole network, Py, as

N
Zievs ri

J

Recall that the relative acquisition rate f{\’ € [0, 1]. Note that only
the active sensors contribute to the sum since their acquisition rate
is different from O, so this measure gives us information about the
percentage of active sensors.

Py = -100. (13)

Pthalp
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Number of Sensor Nodes

Fig. 4. Average performance and its standard deviation for m = 2 and for different
amount of sensors and 7. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

I scnsors 7= 0
1 links ¥ =04
C—— sensors 7' =0
B links 7 = 0.7

Rrra Palp

4 90

0 50 60 70 80
Number of Sensor Nodes
Fig. 5. Average performance and its standard deviation for m =4 and for different

amount of sensors and 7. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

Considering that 3., Tl’;’ <1 for i € Vs, we next define the per-
centage of the aggregate network link probability, P, as

, TN
ZIEVS Zpev ip 100. (14)

Palp =

Note that only active sensors and APs contribute to the sum,
since the remaining link probabilities are 0. In this case, the metric
is related to the percentage of active links in the network. In both
cases, the lower the metrics are, the fewer resources (in terms of
active sensors and links) are used.

Figs. 4 and 5 show the average performance and the standard
deviation for m = 2 and m = 4, respectively, for different amounts
of deployed sensors and the two values of 7. Even for the worst
case scenario, i.e, for r=0.4 and a 30-node network, the Py
and Py, values are 8% and 5.5% for m =2 and 22% and 17% for
m = 4, respectively (which represents a small percentage of used
resources).

In order to verify if those metric values correspond to the ac-
tivation of a low number of sensors with high relative rate values
or correspond to a high number of active sensors with low rela-
tive rate values, Figs. 6 and 7 illustrate the average percentage of
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Fig. 7. Average percentage of active sensors and links and its standard deviation for
m =4 and for different amount of sensors and f.

active sensors and links. For networks of 30 nodes and 7 = 0.4, the
average percentage of active sensors and links is 12% (i.e., 3.6 sen-
sors) and 0.55% for m =2 and 30% (i.e., 9 sensors) and 1.7% for
m = 4, respectively. Thus, this result corroborates that the amount
of used resources is conservative, i.e., there is a low percentage of
active sensors with high relative rates because the Py, values are
the highest in Figs. 4 and 5.

4.1. Case 7 = 0.7 (yellow and red bars)

From Figs. 4 and 5 it can be seen that the values of the two
metrics decrease with the increase of the number of sensors (re-
gardless of m), reaching lower values than those of the network of
30 nodes.

Let us examine the scenario with m = 2 (analogous conclusions
hold for networks with m =4). If we also analyze the trend in
the percentage of active sensors (Fig. 6), it first decreases and

later increases slightly starting from networks of 80 nodes. Even
though networks with 80-100 nodes have between 6% to 8% of ac-
tive nodes (i.e., 7 sensors), those networks have a slightly higher
amount of active resources than in networks of 30 nodes (10%, ap-
proximately 3 nodes). However, in general, the total number of ac-
tive sensors stay low in comparison to the total number of sensors,
which corroborates the sparsity of the solution.

4.2. Case r = 0.4 (dark and light blue bars)

Let us analyze the behavior of the metrics for 7 = 0.4 and m =2
(analogous conclusions are raised for networks with m =4). In
Fig. 4, Pyr values decrease from 7.5% at networks of 30 nodes
to 2.7% at networks of 70 nodes, and from that point increases
slightly up to a value of 3.2% at networks of 100 nodes. If we now
have a look at Fig. 6, the percentage of active sensors goes from
11.8% at 30-node networks (i.e., 3.5 sensors) to 8% at 50-node net-
works (i.e., 4 sensors) and later increases until reaching a value of
22% at 90-node networks (i.e., 20 nodes). While the number of ac-
tive nodes is similar in networks with a low amount of sensors
(30-50 nodes), it increases slightly for denser networks (60-100
nodes). In this latter case, sensors are closer to each other so that
the reliability values among sensors are similar and more sensors
may be activated. First, although not reported here, we have ob-
served that increasing the number of reweighting iterations does
help in the latter case in reducing the amount of active sensors, at
the cost of increasing the computational time requirements. Sec-
ond, we will see how this is not an issue when relays are consid-
ered.

In case of the percentage of active links, the values are below
0.7% for m =2 and 2% for m = 4 for all the network sizes. Hence,
the networks are sparse in the amount of active links.

From the figures, it can be appreciated that, for a given num-
ber of nodes, the percentage of used resources is lower in case of
estimating a parameter of 2 dimensions than one of 4 dimensions
(compare the metric values as well as the percentage of active sen-
sors and links). Furthermore, the percentage of used resources (ac-
tive sensors and links) is lower in case of considering 7 = 0.7.

Subgraph connectivity and consistency have been also checked
for every run. All the activated sensors have a path to the AP. Fur-
thermore, connectivity of the network in the sense of (7) is guar-
anteed.

5. Sensor and relay selection

When dealing with wireless sensor networks which are de-
ployed in large areas, it is often useful to employ relays to facil-
itate the transmission of measurements back to the APs. In this
spirit, we also consider the possible presence of relays. In partic-
ular, from here on, all the nodes deployed in the sensor network
may act as sensors or as relays. Note that sensors can also act as
a relay while sensing, as discussed in the previous section. Our
goal is to consistently determine which of the nodes, which are
placed at well-defined positions, should play the role of sensors
and which ones the role of relays while guaranteeing both a pre-
scribed network performance and connectivity in the selected sub-
graph. Notice that relays have less energy requirements that sen-
sors, and therefore the distinction between sensors and relays is
beneficial to further reduce the overall energy consumption. No-
tice also that, as expressed in the introduction, the proposed solu-
tion may be reiterated in time, to assign different roles at different
times.

In order to model the possibility for a node to be acting as
a sensor or as a relay, we introduce a new Boolean variable v ¢
{0, 1}Y*K, and we define that a node i € Vs, a sensor or relay, is on
if v;=1 and it is off, otherwise (v, =1 for APs). From the nodes
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that are on, we will know they are sensors when their r; is strictly
positive, while the others are acting as relays.

We also reformulate the constraints accordingly. Con-
straint (3) gets reformulated as
Tp <min{v, v}, ieVs,peV, (15)

as the relays can exchange information. Notice that the constraint
has a simplified form w.r.t. (3), since the variable v is Boolean. In
addition, we need a constraint that makes sure that a sensor has a
positive relative rate only when its node is activated, that is

i <V ie Vs. (16)

Finally, constraint (7) can be carried over as it is,
rifi + Z TpiRpi = ZTipRips ieVs, (17)
peVs peV

With this in place, the problem we want to solve is how to con-
sistently select minimum rates, relays, and links so to guarantee a
certain network performance and connectivity. We can formulate
this as

e alirlo+ 2 Tlo+aslvlo  (18a)
subject to ri€[0,1], T, € [0, 1],

vief{0,1}, ieVs,peV (18b)

(4), (15), (16), (17), (18¢)

fr)y<vy. (18d)

Any possible solution of this problem is indicated as the triplet
(r*, T*, v*). This problem is a nonconvex mixed-integer program-
ming problem and therefore finding any triplet (r*, T*, v*) would
be in general too computationally expensive. As done for the case
where the relays are not present, we relax the problem to a con-
vex one. In particular, we substitute the ¢, pseudo-norm with the
convex surrogate ¢; norm, and we let the Boolean vector v become
real and live in the set [0, 1)K, With this, we arrive to the convex
problem

minimize oq[Irfly + el Tl + s vl (19a)
subject to ri€[0,1], T, € [0, 1],

viel0,1], ieVs,peV (19b)

(4), (15), (16), (17), (19¢)

f®) =<y, (19d)

whose solution is indicated with (£, T, 7). Once again, the approx-
imate triplet (#,T, D) is going to be different in general from the
sought one (r*, T*, v*). An important difference with problem (8)
and its relaxed version is the presence of the Boolean vector v:
this makes the triplet (f, T, ¥) in general unfeasible w.r.t. the con-
straints of the nonconvex problem (18) (the reason is that ¥; does
not have to be either 0 or 1). In this paper, we consider to project
»; to 1 any time ¥; > 0. In this way, the new triplet becomes feasi-
ble w.r.t. constraints of the nonconvex problem (18).

Algorithm 2 Sparse sensor, relay, and link selection.

Require: Number of iterations N, reweighting tolerance € > 0, sen-
sor importance «; > 0, link importance o, > 0, relay impor-
tance a3 > 0.

1: Set the weighting vectors and matrix as w? =1, ) =1, and
Wigzl forallieVsand peV

2: fort=0to N-1do

3:  Solve the convex program

minimize o lW® ol + a2 ||W* o T||; +as||v: o v
LY
subject to r; € [0, 1], T, € [0, 1],

v;e[0,1], ieVs,peV

(4), (15), (16), (17),

f)y=y.

with off-the-shelf interior point methods (e.g., SDPT37[29] or
SeDuMi[30]). Let the solution be (#7,T%, ¥7).
4:  Compute the new weights w™*1 v7+1 and W™+1 as

T .T T
W;+l — Wi T+ _ VVIP U.”'] — vi
! €+17 p E+Ti; ! €+0f
5: end for
6: Project N to 1, if DN > 0.

7. Output the solution triplet (#V, TN, pN)

In Algorithm 2, we summarize the procedure for consistent
sparse sensor, relay, and link selection (SSRLS), where we have
used once again the sparse-enhancement procedure of reweight-
ing.

Connectivity guarantees of Algorithm 2: We formalize now the
claim that from each active sensor there exists a path (formed
by relays and other active sensors) that goes to an AP. The ar-
gument that we use to prove this claim is the same as the
one that we have used to prove the connectivity guarantees of
Algorithm 1 (where no relay were considered). Consider (17): this
constraint has to be true for each active sensor and active relay
(the one for which r; =0 and v; > 0), and it reads 0 < O for the
not active ones (due to constraints (15) and (16)). Since it has to
be true for all active sensors and relays, the sensors have to send
out more rate than what they receive (and the difference is given
by r;7;), while the relays can send out exactly what they receive.
Therefore, first: no active sensor or relay can be a sink. Second:
there cannot be loops containing active sensors not connected to
a sink, since the rate augments along the loop and (17) would not
be satisfied for at least one pair of connected active elements (ei-
ther sensor-sensor, sensor-relay, or relay-relay). Third: there can-
not be loops containing only active relays. The reason for the last
claim is that, although (17) would be satisfied along the loop for
any T, = Ty; for all pairs of active relays (i, p) on the loop, the so-
lution T, = 0 is the optimal one, given the selected cost function.
Which induces all the relays in the loop to become inactive. Thus,
the only possibility is that eventually each sensor has a path to a
sink, and no relays are used without purpose. O

6. Numerical results with relays

Similarly to the sensor and link selection scenario, in this sec-
tion we assess the performance of the new SSRLS algorithm in
terms of the amount of resources that are used. We also verify the
consistency and the subgraph connectivity.
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Fig. 8. Selected sensors, relays and links in a two-AP 50-sensor network where m =
4. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

Once again, we consider an estimation scenario, where the pa-
rameters are the same® as those used in the sensor and link se-
lection case (Section 4). We consider oy = oy = a3 = 1. Fig. 8 is an
example of a 50-node sensor network with two APs with m =4
and 7 = 0.4. The active sensors are colored in green, the active re-
lays in blue and the APs are colored in black. Looking at the fig-
ure, it is evident that the obtained solution is sparse. From the 50
nodes (excluding the APs), 5 are selected as sensors and 3 as re-
lays. The amount of active links (i.e., those that have a probability
value higher than 0) is 8%. Observe the connectivity of the selected
subgraph, where there is a path from each active sensor to the APs
via the relays, where messages are routed stochastically according
to the link probability. The solution also satisfies the other con-
straints of the optimization problem.

Next, and following a parallel analysis to the one made in the
sensor and link selection scenario, we show average performance
results. The number of sensors varies from 30 to 100, 7 is 0.4 or
0.7 and m is either 2 or 4. 250 Monte Carlo simulations are run
for each network configuration. The metrics to assess the network
performance are the ones exposed in Section 4. To check the spar-
sity in the number of relays, we also evaluate the percentage of
active relays in the network.

Figs. 9 and 10 show the average performance and the standard
deviation, for m =2 and m =4, respectively, for different num-
bers of deployed sensor nodes and the two values of the maxi-
mum acquisition rate. From these figures it can be seen that the
Py and Py, values decrease when the number of sensor nodes in-
creases, going from a value of 6.3% (m =2, r = 0.4) or 19% (m =4,
7 = 0.4) for networks of 30 nodes to values lower than 2% (m = 2,
r=0.4) or 5% (m =4, r = 0.4) for networks of 100 nodes. To verify
if those metric values correspond to the activation of a few sen-
sors with high relative rate value, Figs. 11 and 12 illustrate the av-
erage percentage of active sensors and links. For 7= 0.4, the av-
erage percentage of sensors goes from approximately 8% (i.e., 2.4

3 In particular, the number of iterations in the reweighted ¢; minimization is set
to 30 while § =2 - 104
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Fig. 9. Average performance and its standard deviation for m = 2 and for different
amount of sensors and 7.
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Fig. 10. Average performance and its standard for m = 4 and for different amount
of sensors and 7.
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Fig. 11. Average percentage of active sensors and links and its standard deviation
for m = 2 and for different amount of sensors and f.
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Fig. 13. Average percentage of active relays and its standard deviation for different
amount of sensors, 7 and m.

sensors for m =2) or 22% (i.e., 6.5 sensors for m = 4) in 30-node
networks to around 2% (i.e., 2 sensors for m = 2) or 5% (i.e., 5 sen-
sors for m = 4) in 100-node networks, respectively. Fig. 13 also il-
lustrates the percentage of active relays for sensor networks of dif-
ferent sizes, r and m. For m =4 and 7 = 0.4, 2 relays (or 5.5% of
the nodes) are active in 30-sensor networks, while 1 relay (0.9%)
is active in 100-sensor networks.

The conclusions from these figures are two-fold: First, indepen-
dently of the total number of available nodes, the algorithm ro-
bustly selects a similar number of sensors, relays and links to sat-
isfy the constraint on the measurement errors. This strongly sug-
gests that the optimality of the sensing, given the constraints, is
achieved. Second, the active sensors are those with high relative
rates. And even more, we obtain sparse solutions not only in the
amount of active sensors but also in the amount of active links and
relays.

As observed for the sensor and link selection scenario, the de-
mand of resources (percentage of active sensors, links and relays)
is less when considering higher maximum rates (see Figs. 11-13).
Also, for a given number of nodes, the amount of used resources
grows whenever the dimension of the parameter to estimate in-
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Fig. 14. Selected sensors, relays and links in a one-AP 100-sensor network where
m=4and 7 =0.7.

creases. Besides, the variability in the results of the sensor, relay
and link selection problem is lower than in the sensor and link se-
lection problem. This can be observed by taking into account the
standard deviation in the figures. All in all, it appears that when
one considers also the presence of relays, one obtains better per-
formance in terms of reduced active resources than in the case of
no relays. A more in depth characterization is left as future re-
search.

Therefore, the SSRLS algorithm provides a consistent solution
to the sensor and relay selection problem by always finding a con-
nected path among the active sensors, relays and APs no matter
the size of the network and the dimension m of the parameter to
estimate, and which satisfies the network performance constraint
for the active sensors.

However, the following question may arise: are the active sen-
sors obtained after solving the SSRLS algorithm the same as those
that would be active in a problem which aims at selecting the min-
imum number of sensors and their corresponding acquisition rates
to satisfy a certain MSE-rate, i.e., solve the relaxed version of the
following problem: minimize; ||r||; subjectto f(r) < y, where
sensors that satisfy r; > & (have an acquisition rate different from
0) are selected?

Clearly, the answer is no. As an example, compare the active
sensors in Figs. 14 and 15, for a one-AP 100-sensor network where
m=4 and 7 = 0.7. The solution provided by the SSRLS algorithm
not only takes into account the sensors with the highest acquisi-
tion rates (to satisfy the MSE-rate constraint), but also selects in
a robust, coherent and consistent way relays and probability links
such that the active sensors are connected to the APs (it consid-
ers the sensor deployment, too). On the contrary, the solution pro-
vided by the sensor selection problem does not consider the spa-
tial distribution of sensors, and the only issue that matters is the
selection of the sensors with the best acquisition rates. Obviously,
this does not mean that both solutions do not activate some com-
mon sensors. In the previous example, sensors with indexes 26, 49,
74 and 93 are selected in both solutions.
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Fig. 15. Selected sensors in a one-AP 100-sensor network where m =4 and 7 = 0.7.

7. Link selection

This last scenario is a particular case of the general one where
we assume that all sensors are active, acquire measurements with
relative rate at least r;p, and communicate with the APs in a multi-
hop fashion. The problem that remains is to determine the proba-
bilistic routing matrix T, that selects the minimum subset of links
so that a certain constraint is satisfied. In particular, we want to
ensure network integrity, defined according to [22] as the ability
of the network to support the desired communication rates in a
certain network topology.

As in the general scenario, the network needs to satisfy the flow
inequality constraint given by (7) in order to guarantee that mes-
sages are delivered to the APs. Furthermore, it is also required that
sensors communicate their measurements with the APs at a nom-
inal rate of rj; messages per time unit. This means that the rel-
ative acquisition rate should satisfy the following inequality: r; >
Tio- Thus, we aim at finding the appropriate relative rates r < [0,
1} and the sparse probabilistic routing matrix T.

The network’s objective function to be optimized is the so-
cial utility value of the optimization variables, Ui(r;) for the rel-
ative rate r;, and V;,(Tj,) for the links T, which is defined as
Z]HU(H‘)JFZL] Z];f] Vip(Tip). Following [22], we measure the
utility value associated to the rate as U(r;) = log(r;), which penal-
izes small rates r;, and the utility value of the links as V,(Tjp) =
Ty

Then, the optimization problem that we have to solve is given
by*

maximize SUC) + 33 Vip(Tip) [Tl (20a)
ieVs ieVs peV
subject to r;€[0,1], T, €[0,1], ieVs, peV (20Db)

4 Note that these utilities can be also incorporated in the objection functions of
the previous optimization problems. However, and for the sake of simplicity, we
only consider them in this scenario.
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Fig. 16. Selected links in a one-AP 50-node network or @ =1, and using partial
reweighted I;. Sensors are colored in red, the AP in black and different colors in
the links represent the different probability ranges. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

4), (7) (20c)

i >Tp, 1€V, (20d)

The problem in (20) is not convex due to the ¢y-norm in the
objective function. Thus, we relax the non-convex term of (20)
by substituting the ¢¢-pseudo norm, with the ¢; norm. Then, the
previous optimization problem is transformed into the following

one:

maximize ZU(Ti) +szip(Tip) —a|T| (21a)
1€Vs ieVs peV

subject to r;el0,1], T, €[0,1], ieVs,peV (21b)

4), (7) (21¢)

T >Trig, 1€V, (21d)

The objective function is strictly concave and the constraints
are linear inequalities, so the problem can be solved efficiently by
using convex optimization tools. Note that the optimal utility de-
pends on the spatial configuration of the sensors, and consequently
the optimal link probabilities and rate variables do too, which are
denoted as ry ;, and Tein

The amount of selected links depends on parameter ¢, which
controls the sparsity level (the higher it is, the fewer links are se-
lected). In order to increase sparsity and avoid the tuning of pa-
rameter «, we apply the iterative reweighted ¢; minimization al-
gorithm only to the third term of the objective function (we call
this partial reweighted ¢; minimization), which diminishes the in-
fluence of that parameter and helps in the link selection process.
We round off to 0 the link probabilities lower than a sufficiently
small constant §.

In the remaining of this section, we show the performance of
the link selection scheme. Fig. 16 is an example of a 50-node sen-
sor network with one AP. Sensors are colored in red and the AP
in black. The nominal rate is r;g = 0.2, which is identical for all
the sensor nodes; another weighting parameter is « = 1. § and the
rest of the parameters are identical to those defined in Section 4.
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Fig. 17. Average percentage of total active links and its standard deviation for dif-
ferent number of sensor nodes, and when link probabilities are graded in different
ranges.

The color and the thickness of the links are related to the rout-
ing probability values, which are graded into different ranges. Blue
links have a probability value between § and 0.25 and their line is
the finest. The red ones have a probability between 0.25 and 0.5,
the black links between 0.5 and 0.75 and the green ones between
0.75 and 1, having the thickest line.

Note that only 51 links are active (i.e., it is a sparse solution).
Every sensor is connected via multiple hops (links that connect the
sensors) to the AP, where the links with higher probabilities are
always established between the AP and some of its neighboring
nodes. This is logical given that a message that has been routed
through multiple sensors should have a higher probability of arriv-
ing successfully to the AP. In general, the sensors which are placed
far from the AP tend to establish links with low probability values.

Fig. 17 illustrates the average percentage of active links (the to-
tal percentage and the percentage by probability ranges) for sensor
networks composed of a number of sensors whose amount varies
between 30 and 100 and rjp = 0.2. 250 Monte Carlo simulations are
run for each network configuration. First, the figure shows the low
amount of active links, so that the matrix T is sparse. For 30-node
networks, the average percentage of active links is slightly higher
than 5 %. The percentage values decrease whenever the number of
nodes in the network increases. Regarding the different probability
ranges, the highest percentage of active links corresponds to values
of T;; between § and 0.25, and it is followed by links with prob-
abilities Tj; between 0.75 and 1. As in the earlier example, most
of those links are established between the AP and its neighbors,
which ensures that messages arrive to the AP.

8. Conclusions

In this paper we have proposed two optimization methods for
selecting optimally and consistently the minimum set of sensors
(and their corresponding sensing rates) and links (and their link
probability values); or sensors, relays and links, in wireless sen-
sor networks. The chosen scenario has been parameter estimation,
where the selected sensors have to guarantee a prescribed network
performance based on the MSE-rate. Numerical results showed the
sparsity of the solution, which translates into a smart use of the
network resources. The proposed algorithms have provided a con-
sistent solution to the selection problem by always finding a con-
nected path among the selected set of sensors, relays and APs no

matter the size of the network and the dimension of the param-
eter to estimate. This ensures the compliance of the network per-
formance constraint by the selected sensors.

Future work will consider the study of these algorithms from a
decentralized point of view, eliminating the need of having an AP
that collects all the measurements. The application of these algo-
rithms to other scenarios is also a matter of further studies.
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