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Abstract—An offline sampling design problem for distributed
detection is considered in this paper. To reduce the sensing,
storage, transmission, and processing costs, the natural choice
for the sampler is the sparsest one that results in a desired global
error probability. Since the numerical optimization of the error
probabilities is difficult, we adopt simpler costs related to distance
measures between the conditional distributions of the sensor
observations. We design sparse samplers for the Bayesian as well
as the Neyman-Pearson setting. The developed theory can be
applied to sensor placement/selection, sample selection, and fully
decentralized data compression. For conditionally independent
observations, we give an explicit solution, which is optimal in
terms of the error exponents. More specifically, the best subset of
sensors is the one with the smallest local average root-likelihood
ratio and largest local average log-likelihood ratio in the Bayesian
and Neyman-Pearson setting, respectively. We supplement the
proposed framework with a thorough analysis for Gaussian ob-
servations, including the case when the sensors are conditionally
dependent, and also provide examples for other observation distri-
butions. One of the results shows that, for nonidentical Gaussian
sensor observations with uncommon means and common covari-
ances under both hypotheses, the number of sensors required to
achieve a desired detection performance reduces significantly as
the sensors become more coherent.
Index Terms—Bhattacharyya distance, convex optimization,

distributed detection, energy-efficiency, J-divergence, Kull-
back-Leibler distance, sensor placement, sensor selection, sparse
sensing.

I. INTRODUCTION

S ENSORS are widely used in a variety of applications
such as environmental monitoring, surveillance, social

networks, and power networks, to list a few. The datasets
generated by the sensors have to be optimally processed to
extract relevant information, which typically involves solving
a statistical inference problem like detection, estimation, and
filtering, for instance. Often, the data generated by the ubiq-
uitous sensors are excessively large. Thus, it is of paramount
importance to parsimoniously acquire the data keeping in mind
the inference problem to be solved.
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The number of sensors available is often limited either by
economical constraints including hardware costs, the avail-
ability of physical or data storage space, or restrictions on the
available energy and other resources. In order to reduce these
costs, the sensors have to be frugally deployed and processed.
Naturally, this limits the performance and results in a trade-off
between the performance, number of sensors, and sensing pat-
tern. In this paper, we are interested in studying this trade-off,
and choose only informative sensors (or sampling locations)
that offer a tolerable detection fidelity, that is, we study sensor
(or sample) selection or placement in the context of distributed
detection. More generally, we design a sparse compression
matrix to perform sensor selection, sensor placement, or data
compression, hence the name sparse sensing. We now describe
a scenario to illustrate the considered sensing problem.
Example (Field Detection): Consider a multi-core processor

with a hot spot. A historical question of interest is to estimate the
thermal distribution, for instance, by interpolating noisy mea-
surements. In some applications though, a precise estimation of
the temperature field might not be required, instead, detecting
the hot spots (i.e., the areas where the temperature exceeds a
certain threshold) would be sufficient for subsequent control ac-
tions. An important question of interest for such detection prob-
lems then is, how to design spatial samplers (i.e., sensor place-
ment) by exploiting the knowledge of the underlying model,
physical space and processing limitations.
In this paper, the focus is on distributed detection pertinent

to applications in sensor networks, radar and sonar systems,
wireless cognitive radio networks, biometrics, social networks,
imaging platforms, to name a few. We assume that the field
is sampled by distributed sensors, and these samples are de-
livered to a central unit. The central unit then makes a single
global decision as to the true hypothesis using binary hypoth-
esis testing. More specifically, the observations at each sensor
are related to the state of nature , where the random variable
is drawn from a binary alphabet set . In the Bayesian
setting, we assume that the prior probabilities and

are known, whereas in the Neyman-Pearson set-
ting, the prior probabilities are not known.

A. Related Earlier Works

The problem of choosing the best subset of sensors that guar-
antees a desired inference performance is referred to as sensor
selection. Sensor selection for estimation and filtering is a well-
studied problem [2]–[6] (and references therein), where the best
subset of sensors that results in a prescribed estimation accuracy
is chosen. For selecting the sensors, a scalar function of the error
covariance matrix (more generally, the inverse Fisher informa-
tionmatrix) is optimized to obtain the required information gain.
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The minimum error probability criterion is a standard per-
formance measure for design problems related to statistical de-
tection such as signal design [7]–[9], censoring [10], sampling
design [11], and so on. However, in most cases, optimizing the
error probabilities is very difficult. This may be because these
error probabilities do not admit a known closed form or their ex-
pression is too complicated for numerical optimization. There-
fore, weaker performance criteria that are easier to evaluate and
optimize are often used. A number of measures related to the
distance between the conditional probabilities are widely used
in the design of experiments as proxies for the error proba-
bility [9]–[13]. Some of the prominent distance measures that
are often used are the Kullback-Leibler distance, J-divergence,
Chernoff information, and Bhattacharyya distance.
A related topic in the context of energy-efficient distributed

detection is data censoring, wherein the uninformative sensor
observations are not transmitted to the central unit [10], [14],
[15]. However, in censoring, data still has to be acquired in order
to choose informative sensors, thus, it incurs a sensing cost. That
is, censoring schemes are data dependent as opposed to the pro-
posed data-independent sparse sensing schemes that can be de-
signed offline. In other words, the actual measurements are not
needed and only model information is used.

B. Overview and Main Results

We focus on both the Bayesian as well as the Neyman-
Pearson setting for distributed detection. The sparse sensing
operation is designed based on a number of distance measures
that belong to the general class of Ali-Silvey distances [16].
The main question addressed in the paper is similar to that of

[11], [12], [17]–[20], but with the following differences. Firstly,
the proposed framework is general, that is, it is not limited to
Gaussian observations, especially for conditionally independent
observations. Secondly, we propose a sparsity-promoting cost
function to design structured samplers to achieve the lowest
sensing cost as compared to the previously adopted periodic,
regular, or random samplers. The main contributions of this
paper that broaden the existing literature are listed below.
— For conditionally independent observations, the best

subset of sensors is the one with the smallest local average
root-likelihood ratio and largest local average log-likeli-
hood ratio in the Bayesian and Neyman-Pearson setting,
respectively. This leads to an explicit solution for the
sensing design problem that is optimal in terms of the error
exponents. As a special case, for Gaussian observations
with common covariances and uncommon means under
both hypotheses, the selected sensors are also optimal
in terms of the error probabilities (initial results for the
Gaussian case were reported in [1]). The computational
complexity of the proposed solvers is independent of the
number of candidate sensors, and is as low as ,
where is the number of selected sensors (or sampling
locations).

— For conditionally dependent observations, we focus on the
Gaussian setting. When the mean vectors are uncommon
and the covariance structure is common under both hy-
potheses, the sensing design problem can be relaxed to a

convex optimization problem. Although this leads to a sub-
optimal solution, we propose a randomized rounding tech-
nique that further improves the solution. Moreover, in this
case, for non-identical sensor observations, we show that
the number of sensors required to achieve a prescribed de-
tection performance decreases significantly as the correla-
tion among them increases (i.e., when the sensors become
more coherent), which is in complete contrast to the case
of identical sensor observations. When the covariances are
uncommon and the means are common under both hy-
potheses, the sensing design problem remains nonconvex,
except for the J-divergence optimization (this also holds
for a more general case with uncommon means).

C. Outline and Notation
The remainder of the paper is organized as follows. The

sampling design problem is stated in Section II. The per-
formance measures that determine the sparsity order of the
samplers are discussed in Section III. The solution to the sparse
sensing problem for conditionally independent observations
is discussed in Section IV. A few examples to illustrate the
proposed framework are provided in Section V. The solution
to the sparse sensing problem for conditionally dependent
Gaussian observations is discussed in Section VI. Finally, the
paper concludes with Section VII.
The notation used in this paper can be described as follows.

Upper (lower) bold face letters are used for matrices (column
vectors). denotes transposition. refers to a diag-
onal matrix with its argument on the main diagonal.
represents a diagonal matrix with the argument on its diagonal
but with the all-zero rows removed. denotes the vector of
all ones (zeros). is an identity matrix. denotes the ex-
pectation operation. is the matrix trace operator. is
the matrix determinant. denotes the max-
imum (minimum) eigenvalue of a symmetric matrix . The
-(quasi) norm refers to the number of non-zero entries in ,

i.e., . The -norm of an vector
is denoted by . The notation is read as

“is distributed according to”. Unless and otherwise noted, loga-
rithms are natural.

II. PROBLEM STATEMENT

Consider a network with candidate sensors. These candi-
date sensors might represent temporal, spatial, or even spatio-
temporal samples. The observations are related to the following
model

(1a)
(1b)

where the probability density function (pdf) of the observation
at the th sensor, , conditioned on the state of nature is
denoted by for . Further, the observations are
collected in . The pdf of under

and is denoted by and , respectively.
We acquire the data via a linear sensing operation, where the

sensing task is modeled through a vector whose entries belong
to a binary alphabet, i.e., through
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Fig. 1. Discrete sparse sensing scheme for distributed detection. Here, a white
(black) and colored square represents a one (zero) and an arbitrary value, re-
spectively.

where the variable indicates whether the th sensor
is (not) selected. More specifically, we define the sensing matrix

, to acquire the data as

where is not assumed to be known. Note that we are inter-
ested in cases where . The reduced dimension data
vector is used instead of to solve the detec-
tion problem. In this paper we seek a sparsest , i.e., a vector
with many zeros and just a few non-zero entries, such that a
prescribed global detection performance is achieved. Due to the
construction of , we label the resulting deterministic and
structured sensing scheme as sparse sensing; see the illustration
in Fig. 1. Such a sparse sensing matrix enables a completely
distributed compression and sampling, which are instrumental
to distributed detection. Furthermore, it leads to possible reduc-
tions in the hardware costs, as well as processing and commu-
nications overhead.
Sparse sensing differs from the broad research area of com-

pressive sensing—state of the art in the field of sensing cost re-
duction [21]. In compressive sensing, the underlying signal is
always considered sparse in some domain and the goal is sparse
signal reconstruction. On the other hand for sparse sensing, the
underlying signal does not necessarily have to be sparse and
other signal processing tasks (including sparse signal recon-
struction [22]) can be considered. Furthermore, in compressive
sensing, the compression is generally random, which introduces
robustness, but might limit the maximum amount of compres-
sion if a specific signal processing task needs to be carried out.
Sparse sensing, on the other hand, is a deterministic type of data
compression, where the sparse vector inside the sensing func-
tion gives a handle on the compression and it can be used for
optimally designing the sensing process.
Let denote an estimate of the state of nature , based on

a certain decision rule. In the Neyman-Pearson setting, the op-
timal detector minimizes the probability of miss detection (type
II error),

for a fixed probability of false alarm (type I error),

This is the well-known Neyman-Pearson detector. In the
Bayesian setting, given the prior probabilities for

, the optimal detector minimizes the Bayesian error
probability,

or more generally, the detector minimizes the Bayes’ risk.
Having introduced the data model, we now formally state the
design problem of interest.
Problem 1 (Sparse Sampler Design): Given the data model

(1), design a sparsest Boolean vector that results in a pre-
scribed

i) Bayesian probability of error, , in the Bayesian setting,
or

ii) probability of miss detection, , for a fixed probability
of false alarm, , in the Neyman-Pearson setting.

Mathematically, the sparse sensing problem for distributed
detection can be formulated as

(2a)

and (2b)

where and are, respectively, the desired Bayesian proba-
bility of error, maximum false-alarm rate and maximum miss-
detection rate. Here, , and denote the error
probabilities due to the selected sensor subset indicated by the
non-zero entries of .When prior probabilities are available, we
solve P-B (P denotes problem and B denotes Bayesian), other-
wise in the Neyman-Pearson setting we solve P-N (N denotes
Neyman-Pearson).
In order to ease the design, we next discuss some performance

measures that can substitute the error probabilities in the above
optimization problems.

III. OPTIMALITY CRITERIA

The error probabilities or might not admit a known
closed-form expression or their expressions might not be favor-
able for numerical optimization. In this section, we will discuss
several weaker and simpler substitutes, which can be optimized
instead of the error probabilities. These substitutes are based on
the notion of distance (closeness or divergence) between the
two distributions of the observations under test. They lead to
tractable, if not always optimal (in terms of the error probabil-
ities) design procedures for sampler design. Nevertheless, opti-
mizing the distance measures improves the performance of any
practical system.
Let the likelihood ratio of the two hypotheses under test be

defined as

In what follows, we consider a number of distance measures that
belong to the general class of Ali-Silvey distances [16], which
are of the form
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where is an increasing real-valued function, is
a continuous convex function on , and the notation

indicates that is averaged under the pdf
for either or .

A. The Bayesian Setting
The Bayes detector minimizes , and makes a decision

based on comparing the optimal statistic to a threshold:

In the Bayesian setting, our goal is to choose the best subset of
sensors that results in a prescribed Bayesian probability of error
. The best achievable exponent in the Bayesian probability of

error is parameterized by the Chernoff information (sometimes
also referred to as the Chernoff distance) [23, Chernoff’s the-
orem], and it is given by

(3)

Due to the involved minimization over , the Chernoff in-
formation in (3) is difficult to optimize over . Therefore,
we use a special case of the Chernoff information called the
Bhattacharyya distance as the optimization criterion, where the
Bhattacharyya distance is obtained by fixing in (3).
The Bhattacharyya distance is given by

(4)

where the Bhattacharyya coefficient [9] or the Hellinger inte-
gral [8], , is given by

(5)

It is easy to verify from (5) that the Bhattacharya distance is
symmetric, which means . More im-
portantly, the upper and lower bounds for the Bayesian proba-
bility of error can be obtained using the Bhattacharyya coeffi-
cient. The bounds are given as follows [8, Appendix A], [9]:

(6)

Therefore, in place of the Bayesian error probability, we
minimize the Hellinger integral, or equivalently, max-
imize the Bhattacharyya distance. Furthermore, when

is symmetric in and the ob-
servations are independent and identically distributed, the
Bhattacharyya distance is exponentially the best [9], i.e.,

We now introduce the following assumption:
Assumption 1 (Conditional Independence): The sensor ob-

servations are statistically independent, conditioned on the hy-
pothesis .

Under Assumption 1, the likelihood ratio simplifies to

where is the local likelihood
ratio related to the th sensor, and for are the
conditional pdfs of for the th sensor. Here, the conditional
pdf of the selected sensors is of reduced dimension, i.e., it does
not include the measurements that are set to zero.
Besides being a reasonable measure, the Bhattacharya dis-

tance is much simpler to optimize under Assumption 1 because
of the following result:
Proposition 1 (Linearity of the Bhattacharyya Distance):

The considered sparse sensing mechanism preserves the addi-
tivity of the Bhattarcharyya distance under Assumption 1, i.e.,
we can express

(7)

where

(8)

Proof: See Appendix A.
Thus, Proposition 1 enables us to optimize over

(subscript B denotes Bayesian). We underline here that
assumes only the knowledge of the data model and does not
need actual measurements, hence the sensing operation can be
designed offline. We also remark that the Chernoff information
(3) is not additive for conditionally independent observations,
unlike the Bhattacharyya distance.
Before discussing the optimization criterion for the Neyman-

Pearson setting, we end this subsection with the following re-
mark that generalizes the sampling design in the Bayesian set-
ting.
Remark 1 (Bayes Risk): Let be the cost if we decide

when is true. A generalization of the minimum detector,
is to minimize the Bayes risk

where we arrive at a special case of for
. This results in the sensing design problem

where denotes the Bayes risk due to the selected sensor
subset indicated by the non-zero entries of , and is the de-
sired Bayes risk.
The bounds in (6) can be generalized to [24]

where
, and . There-

fore, maximizing the Bhattacharyya distance (or minimizing the
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Hellinger integral) is a reasonable optimality criterion also for
a more general minimum Bayes risk detector.

B. The Neyman-Pearson Setting
When the prior probabilities are not known, we solve the

Neyman-Pearson problem, where one of the error probabilities
( , for example) is fixed while the second error probability,

is minimized. More specifically, the decision is based upon
the log-likelihood ratio test

(9)

where is the threshold obtained by setting . In what
follows, we discuss two distance measures that we can optimize
in the Neyman-Pearson setting.
1) Kullback-Leibler Distance: For a Neyman-Pearson

problem, the best achievable error exponent in the probability
of error ( , for example) is given by the relative entropy or
Kullback-Leibler distance [23, Stein’s lemma].
That is, for a fixed value of ,

The Kullback-Leibler distance is the average log-likelihood
ratio, and is given by [25]

(10)

A lower bound on for a fixed , say can
be obtained using [25, pp. 74-75 and tables in pp. 378-379]

(11)

Since is a strictly monotonic function (for values of
that are of practical interest), we can write

(12)

For example, a very small (close to zero) simplifies (12) to
. The following theorem gives an

upper bound on .
Theorem 1 (Upper Bound on ): If the variance of the log-

likehood ratio is , then

(13)

where the threshold corresponds to a desired .
Proof: See Appendix B.

Therefore, the bounds in (12) and (13) make the maximiza-
tion of a reasonable optimality criterion. We stress
here that the above bounds (12) and (13) are valid even when
Assumption 1 is not true.
The following property of the Kullback-Leibler distance fur-

ther allows its easy numerical optimization.

Proposition 2 (Linearity of the Kullback-Leibler Distance):
The considered sparse sensing mechanism preserves the addi-
tivity of the Kullback-Leibler distance under Assumption 1, i.e.,
we can express

(14)

where

(15)

with being the local likelihood
ratio that was defined earlier.

Proof: See Appendix C.
Therefore, Proposition 2 allows us to maximize over
(subscript N denotes Neyman-Pearson).
Remark 2: For the problem that minimizes the probability of

false alarm for a fixed probability of miss detection , the
Kullback-Leibler distance

(16)

has to be optimized. Note that the Kullback-Leibler distance is
not symmetric, i.e., . Furthermore,
Proposition 2 holds with the 0 and 1 subscripts interchanged in
(14) and (15), which leads to the objective function

(17)

2) J-Divergence: The symmetric form of the Kull-
back-Leibler distance, J-divergence, is another frequently used
criterion in the design of experiments. The J-divergence is
defined as

(18)

A lower bound on can be obtained using [25]

and the results from Theorem 1 can be generalized to arrive at
an upper bound.
Remark 3: The J-divergence is also a reasonable measure

in the Bayesian setting with as the Bayesian error
probability can be both upper and lower
bounded by . However, for other prior probabilities
an upper bound on can be obtained in terms of
only for Gaussian observations [8].
The J-divergence is also additive for conditionally indepen-

dent observations, i.e.,
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where

(19)

The additive property of the J-divergence is straightforward to
verify, and it follows directly from Proposition 2.
Note that all the distance measures introduced in this section

admit a closed-form expression irrespective of the observation
distributions. The solvers for designing the sensing operation
based on the developed performance measures are presented
next.

IV. SPARSE SAMPLER DESIGN

The performance measures derived in Section III greatly sim-
plify the sensing design problems P-B and P-N, which are oth-
erwise difficult to solve. The simplified problem is stated as fol-
lows.
Problem 2 (Simplified Sparse Sensing Design): Under As-

sumption 1, given candidate sensors characterized by the
conditional pdfs for , design a sparsest
vector such that a desired

i) Bhattacharyya distance in the Bayesian setting, or
ii) Kullback-Leibler distance (or J-divergence) in the

Neyman-Pearson setting,
is achieved.
These sampling design problems are, respectively, expressed

as the following cardinality minimization problems

- (20a)

- (20b)

where and specify the required Bhattacharyya distance
and Kullback-Leibler distance (or J-divergence), respectively.
The optimization problems S-B and S-N (S denotes simplified
problem) are Boolean linear programming problems. In place of

in (20b), either one of the three performance measures
, or can be used; however, there is no

general answer to the question of how does one performance
metric compare with the other.
For the sake of brevity, we collect

, or in a
common distance vector denoted by . The optimization
problems in (20) can then be expressed in a general form as

(21)

where the threshold corresponds to or for
the Bayesian or Neyman-Pearson setting, respectively, with

. Boolean linear programming problems are in general
hard to solve. However, S-B and S-N are some of the few special
cases of a Boolean linear program that have an explicit solution.
We give the solution to the considered offline sampling design
problem in the following theorem.

1If more than one distance is made available at the same time, we randomly
pick as many as we need.

Theorem 2 (Sparse Sampler for Distributed Detection): As-
suming the entries of are (pre-)sorted in descending order and
the entries of are sorted accordingly. The optimal solution
to (21) has entries equal to 1 at the first entries corresponding
to the largest entries in , where

(22)

Proof: The proof is straightforward, thus, not detailed.
In essence, the integer program (21) has an explicit solution

and it is optimal for (21). The solution can be interpreted as
follows: recalling from (22), the best subset of sensors out of
the candidate sensors are those sensors having the smallest
local average root-likelihood ratio and largest local average log-
likelihood ratio in the Bayesian and Neyman-Pearson setting,
respectively.
The appeal of the proposed solution lies in its simplicity.

Computationally, the proposed solver is very attractive, for ex-
ample, with a complexity of , which is essentially
the complexity of the involved sorting algorithm [26]. A par-
allel implementation on different processors (i.e., still in an of-
fline centralized setting) of the ordering algorithm further re-
duces the complexity to using a back-off mechanism as
detailed next: The distance measure is made available to
the central unit after a time , where is a known positive
constant, and the central unit computes the sum of the received
values. If the accumulated sum exceeds the desired threshold ,
the central unit declares a transmission stop1. Thus, only the
largest distance values are gathered at the central unit.
In many applications, we might know the number of sensors

to select (e.g., we might have already purchased the hardware
and we want to use all of them). That is, for a fixed sampler size
, the sensing design problem can be expressed as

(23a)

(23b)

where E-B (E-N) represents the equivalent Bayesian (equivalent
Neyman-Pearson) problem, and and are, respectively, the
maximum false-alarm rate and maximum miss-detection rate to
be satisfied. By appropriately choosing the thresholds and
in (2), we can obtain the optimal objective value of (2) equal

to , for which P-B (P-N) and E-B (E-N) are equivalent.
We can also simplify E-B and E-N using the Bhattacharyya

and Kullback-Leibler distance (or J-divergence) as proxies for
the error probabilities, respectively, to arrive at a general form
given by

(24)

where it is straightforward to verify that the optimal objective
value is given by the sum of the largest entries of .
We underline that the proposed solver is valid as long as As-

sumption 1 holds, and the observations need not necessarily be
Gaussian distributed.
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V. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the developed theory of offline
sampling design for binary hypothesis testing with a few ex-
amples. The sensing operation is designed such that a desired
detection performance determined by the Bhattacharyya dis-
tance, Kullback-Leibler distance, or J-divergence is achieved.
We begin with some examples of Gaussian observations and
later on extend it to exponential observation distributions.

A. Gaussian Observations

1) Uncommon Means and Common Covariances: Detecting
signals in Gaussian noise is a well-studied problem in de-
tection theory. In particular, it finds applications in spectrum
sensing, target detection, and communications, to list a few.
For binary signals in Gaussian noise, that is, observations with
uncommon means and common covariance structure under
both hypotheses, the conditional distributions are given by

(25)

where denotes a Gaussian distribution with mean
vector and covariance matrix , the mean vectors

for as well as the
covariance matrix are
assumed to be perfectly known. The error probabilities admit
the following expressions [27, p. 475]

(26)

where is the threshold defined in (9),

(27)

is the signal-to-noise ratio (sometimes referred to as the deflec-
tion coefficient), and is the complementary Gaussian cumu-
lative distribution function

Note that the signal-to-noise ratio (27) is also linear in . The
Bayesian error probability is given by [27, p. 494]

(28)

where is the threshold in the Bayesian setting.
For the detection problem (25), the local Bhattacharrya dis-

tance, Kullback-Leibler distance, and J-Divergence can be com-
puted respectively as

We next remark the following interesting observation. All the
three distance measures are equal to the signal-to-noise ratio up
to a constant. That is,

, and . However, these relations are
not universal (e.g., they do not hold for non-Gaussian observa-
tions). This fact allows us to state the following fundamental re-
sult in sampling design for Gaussian observations with common
covariance.
Theorem 3: For Gaussian observations with uncommon

means and common covariance structure under both hy-
potheses, maximizing the signal-to-noise ratio over all the
possible sampler choices is optimal for P-B and P-N.

Proof: The proof is straightforward. It can be derived based
on results from [17] and the monotonicity of the function.
Thus, it is omitted.
As an example, consider the sinusoidal detection problem

with candidate sensors. The means are
and with for .
Furthermore, we use , and

. In this example, we use a smaller dimension for
to compare the results with the optimal solution of (2). Nev-
ertheless, the proposed solvers based on ordering easily scale
to higher dimensional problems. We solve (23) using exhaus-
tive search over all the combinations for different values
of such that the error probabilities (26) and (28) are opti-
mized. This is labelled as “Neyman-Pearson/Bayesian optimal”
in Fig. 2. For this particular example, due to Theorem 3, the sim-
plified sensing design problem can be solved optimally also in
terms of error probabilities. This is evident from Fig. 2, where
the solution based on ordering the distance measures (labelled
as “Neyman-Pearson/Bayesian simplified, sorting”) is on top
of the optimal solution obtained from exhaustive search. The
shaded regions in Fig. 2 indicate the error probabilities with
the worst to best subset of sensors (including any possible
subset of sensors) for different numbers of selected sensors.
In particular, the error probabilities with random sampling (or
any other sub-optimal sampling), for example, [17], [20], would
span the shaded region.
Remark 4 (Choosing ): For a desired , say , and fixed
, say , the threshold (for a desired signal-to-noise

ratio) can be computed using (26). Specifically,

When does not admit a closed form (e.g., with other distribu-
tions), the solution path can be used as a guideline to choose
that results in a desired error probability (often needs to be com-
puted numerically); for example, see Fig. 3 to compute ,
where we solve (21) with the same simulation parameters as be-
fore.
2) Uncommon Covariances and Common Means: Detecting

a change in variance is also frequently encountered in practice,
for example, while measuring a physical phenomenon with dif-
ferent sensors each characterizedwith different noise levels both
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Fig. 2. The (Bayesian/Neyman-Pearson) probability of error for (25) with dif-
ferent numbers of selected sensors out of sensors for independent
observations. The shaded regions indicate the performance with the worst to
best subset of sensors.

Fig. 3. The solution path illustrates the Bayesian error probability for different
values of the threshold . We use . The number of selected sensors

for a specific value of the threshold is also shown.

across the sensors and under both hypotheses. The conditional
distributions in this case are given by

(29)

where is the knownmean vector and the diagonal matrix
for is known. The local log-

likelihood ratio is

Quantifying the performance of the detector, i.e., expressing
, and in a known closed form is more difficult

than before, as the pdf of can be obtained only by nu-
merical integration [27]. However, the proposed performance
measures admit known expressions as given next. The local

Bhattacharyya distance between the conditional distributions
in (29) is given by

(30)

the local Kullback-Leibler distance is given by

(31)

and is obtained by interchanging the subscripts 0
and 1 in the above equation. Finally, the J-divergence is given
by

(32)

Assume that

and

and that we want to find the best sensor out of candidate
sensors . A quick calculation shows that
for all distances (i.e., the local distance measure of the second
sensor is larger than that of the first sensor). Thus, the solution
to the S-B (and S-N) will be . This is intuitive as
the conditional variance of the second sensor has a larger gap as
compared to that of the first sensor, hence the second sensor is
more informative.

B. Exponential Observations
Exponentially distributed observations occur while detecting

a complex Gaussian signal at the output of a non-coherent
receiver. The conditional distributions for exponentially dis-
tributed observations for are given by

(33)

where . The local log-likelihood ratio is

Using (8), the local Bhattacharyya distance can be computed as

Similarly, the local Kullback-Leibler distance can be computed
as

the local Kullback-Leibler distance is obtained by
interchanging the subscripts 0 and 1 in the above equation, and
the local J-divergence is given as

These measures can be directly used in the proposed solvers
to design sparse samplers.
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VI. DEPENDENT OBSERVATIONS

Throughout most of the paper so far, we have assumed that
the observations are conditionally independent. This assump-
tion is generally valid if the sensors are responsible for the noise
in the observations (i.e., receiver noise). However, if the sensors
are subject to external noise or if the signal itself is stochastic
in nature, then Assumption 1 might not be reasonable anymore.
Consequently, the additive property of the considered distance
measures is also no more valid.
The simplified design problem for this general case (i.e.,

without any independence assumption), again consists of
finding a sparsest that results in a prescribed distance
measure, where we express the Bhattacharyya distance, Kull-
back-Leibler distance, or J-divergence in terms of . The
solution to the above generic problem is hard, nevertheless,
we can solve it using standard nonlinear and often nonconvex
optimization techniques for a given problem instance (see the
example in Section VI.B). However, in some cases, a solution
can be computed efficiently. As an example, the Gaussian
observation case with uncommon means is detailed next.

A. Gaussian Observations With Uncommon Means
Let us consider the case of binary signal detection in Gaussian

noise, and assume the related conditional distributions are given
by

(34)

where the mean vectors and as well as the covariance
matrix are assumed to be perfectly known. Note
that this model is a generalization of (25) with a nondiagonal
covariance matrix. The results from Theorem 3 generalize to
dependent observations. Thus, the error probabilities in (2) can
without loss of optimality be replaced with the signal-to-noise
ratio (which is also related to the considered distance measures
up to a constant)

(35)

where we use and

is a submatrix of that includes only the entries corresponding
to the selected measurements. More specifically, we want to
solve the problem

(36)

where is the desired signal-to-noise ratio (or distance mea-
sure, or error probability). However, in this case, the simplified
problem does not admit an explicit solution. The optimal sam-
pling scheme maximizes in (35) over all possible

such that is as sparse as possible. This incurs a com-
binatorial search over all the possible combinations. For ex-
ample, with candidate sensors, a performance eval-
uation of about possible choices is needed whose direct
enumeration is clearly impossible.
The sampling design for (34) depends on the first and

second order moments of the observations. In particular, it de-
pends on , and .

We next propose some simplifications to solve this problem
sub-optimally in polynomial time, yet with a performance that is
comparable to the optimal one. Firstly, we write the covariance
matrix as

(37)

where a non-zero is chosen such that is
invertible and well-conditioned. Using (37) in (35), we obtain

(38)

We now state the following property.
Property 1: Using the fact that , we have

(39)

Proof: Applying the matrix inversion lemma [28]:

with , and , it is easy to verify
(39).
From Property 1, we can express as

(40)

Note that in contrast to (35), the design parameter only shows
up at one place in (40), which makes the problem much easier.
Using the Schur complement, the performance constraint in
(36), i.e.,

with can be equivalently expressed as a
linear matrix inequality in , i.e.,

(41)

and therefore, it is convex in . The parameter should
be chosen such that is invertible and well-conditioned.
Furthermore, because of (41) the matrix
should be positive definite. This can be achieved, for ex-
ample, by choosing such that it satisfies the condition

, since for .
Although the constraint (41) is convex on , the optimization
problem (36) is still not a convex problem due to the -(quasi)
norm cost function and the Boolean constraint.
1) Convex Relaxation: The Boolean constraint set is relaxed

to its convex hull, i.e., and we
also relax the constraint in (36) to its best convex approxi-
mate . Thus, the relaxed convex problem,more specifically,
a semi-definite programming problem, is given as

(42)
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For a fixed , the equivalent problem of the form (24) can
be relaxed to

which simplifies to

(43)

Here, only the second term of (40), which depends on is op-
timized (minimization is due to its negative sign). Writing (43)
in the epigraph form [29], we obtain

(44)

with auxiliary variable .
Subsequently, the selected sensors (i.e., an approximate

Boolean solution) can be computed using randomization tech-
niques based on the solution from (42) or (44) as described in
[4]. For the sake of completeness, we summarize the random-
ized rounding as Algorithm 1. The relaxed convex problem
can be solved using off-the-shelf software, for example,
SeDuMi [30].

Algorithm 1: Randomized Rounding

1. Given the solution of (42) or (44) and a number of
randomizations .

2. for to
3. generate with a probability

(or with a probability )
for , where .

4. end
5. define and the index set of the

candidate estimates satisfying the constraints as

6. If the set is empty, go back to step 2.
7. output approximate solution , where

2) Numerical Example: To illustrate sparse sensing with de-
pendent observations, we recall the simulation parameters from
Section V.A1, but instead of independent noise, we use an au-

toregressive correlation matrix , which is a Toeplitz matrix of
the form

...
...

. . .

(45)

with a known correlation coefficient and variance
. Such a is useful for modeling correlations between

distributed sensors; for example, it can represent a spatially de-
caying correlation function. The convex relaxed problem (44)
is solved using SeDuMi [30].
The probability of error, i.e., in the Neyman-Pearson set-

ting and in the Bayesian setting for different numbers of se-
lected sensors is shown in Fig. 4.We underline the following ob-
servations. The solution with randomized rounding is
shown in Fig. 4 for with in (37). For
low values of the correlation coefficient, , the convex relax-
ation with deterministic rounding is very close to optimal. For
larger values of , the solution of the relaxed problem with ran-
domized rounding is still very close to optimal for large values
of , but less optimal for small values of . As observed in the
simulations, for , the sensing design with ran-
domization is near-optimal in terms of the error probability.
3) Correlation Versus Number of Selected Sensors: In

this subsection, we focus on the number of sensors required
to achieve a certain detection performance when the sensors
become more coherent, i.e., as the correlation coefficient
approaches 1. To illustrate this, let us consider the numerical
example introduced in Section V.A1 with , but
with an equi-correlated covariance matrix of the form

...
...

. . .
(46)

with a known correlation coefficient . Note that for
such a covariance matrix, any leads to an invertible
in (37) that can be used in the solver (42).
We first consider the case when , where all the sen-

sors have the same mean value, i.e., is the all-one vector up
to a constant scaling. We refer to them as identical sensors. In
this case, any subset of sensors is also the best subset of sensors,
hence, random sensing is optimal. As the correlation coefficient
approaches 1, the amount of information (Kullback-Liebler

distance/Bhattacharyya distance/J-divergence/signal-to-noise
ratio) contributed by any random subset of sensors is
the same as that of the contribution from sensor; see
Fig. 5(a). Thus, even with all the sensors selected the detection
performance is limited to that of the performance with one
sensor. This is a well-known result from distributed detection
that extends to sampling design problems [13].
Amore interesting case, in particular for sensing design prob-

lems, is when the sensors are not identical , i.e.,
has all different entries. When the sensors are not identical, as
the correlation coefficient approaches 1, the amount of infor-
mation contained in the best subset of sensors increases



1456 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 6, MARCH 15, 2016

Fig. 4. The (Bayesian/Neyman-Pearson) probability of error for (34) with different numbers of selected sensors out of sensors. The shaded regions
indicate the performance with the worst to best subset of sensors. (a) , (b) , (c) , and (d) .

significantly; see Fig. 5(b). More specifically, with equi-corre-
lated yet different observations, to achieve a certain detection
performance, the number of sensors required decreases signifi-
cantly as the correlation coefficient increases. The maximum
achievable signal-to-noise ratio is proportional to the inverse of
the minimum eigenvalue of , which is

, for any sampler size . The optimal sparse sam-
pler would choose the entries of that are most aligned to the
eigenvector corresponding to the minimum eigenvalue of
(hence, as the signal-to-noise ratio is large). Similarly,
if the entries of are parallel to the eigenvector corresponding
to the maximum eigenvalue of , that is, the all-one vector,
then the signal-to-noise ratio is minimized; this is the case in
Fig. 5(a).

B. Gaussian Observation With Uncommon Covariances
We now provide some extensions and offer guidelines for de-

termining sparse sensing mechanisms for testing between two

covariance matrices. That is, when the covariance structures are
different under both hypotheses. Suppose the conditional distri-
butions are given by

(47)

where the mean vector as well as the covariance
matrices and are assumed to be perfectly known. This
model is a generalization of (29) with nondiagonal covariance
matrices.
As with (29), the distance measures are not equal to each

other. Using (5), the Bhattacharyya distance for the observations
of the form can be computed as

(48)
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Fig. 5. The signal-to-noise ratio for different values of the correlation coefficient . (a) Identical sensors . (b) Non-identical sensors .

where for with
. Similarly, using (10), we can show that the Kull-

back-Leibler distance is given by

(49)

Here, is the signal-to-noise ratio matrix.
We can express the Bhattacharyya and Kullback-Leibler dis-

tance as a difference of concave functions by relaxing
to . That is, we can express (48) and (49) as

where and are concave functions of its arguments;
see Appendix D for the explicit expressions of and .
As a consequence, the relaxed problem (for fixed )

is not a convex problem as the cost is not a convex function of
its argument and has to be solved using nonconvex optimization
techniques.
One such heuristic to solve the difference of convex problems

is the convex-concave procedure [31] where the concave term,
i.e., is replaced with its affine approximation (more gen-
erally, any reasonable convex approximation) while the convex
portion, i.e., is retained. The resulting convex problem
is iteratively solved to obtain a local optimum.
The J-divergence can be computed using (18) as

(50)

We next show that maximizing the J-divergence over can be
cast as a convex problem.

Let the covariance matrices and
, respectively, admit the decomposition

and

with scalars and chosen such that and are invertible.
Using Property 1, we can show that the J-divergence (50) is
equivalent to

Thus, maximizing the J-divergence over for a fixed is the
same as minimizing

over . To cast this as a convex problem, we introduce two
variables

and obtain

(51)
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TABLE I
SUMMARY OF RESULTS

The second and the third constraint can be, respectively, ex-
pressed as an LMI in , i.e.,

An approximate Boolean solution has to be subsequently com-
puted using randomized rounding.
The optimization problem of the form (20) with unknown

can be derived along similar lines by relaxing the in the
cost function. Before we end this section, wemake the following
remarks.
• For Gaussian observations, we recall that an upper bound
on and can be obtained in terms of J-divergence.
Hence, optimizing J-divergence is reasonable under the
Bayesian and Neyman-Pearson setting.

• For general Gaussian dependent observations (with un-
common means and uncommon covariances under both
hypotheses), the design problems are straightforward com-
binations of the problems derived in Sections VI.A and
VI.B.

We have summarized the results in Table I.

VII. CONCLUSION

In this paper, we have developed a framework for struc-
tured and sparse sampler design for distributed detection
problems. In particular, we have addressed binary hypothesis
testing in both the Bayesian and Neyman-Pearson setting. The
proposed framework can be directly applied to sensor place-
ment/selection, sample selection, and fully-decentralized data
compression, where we seek the best subset of sensor/sampling
locations or data samples that results in a desired detection
probability. To simplify the design problem, we have used
a number of distance measures that quantify the closeness
or divergence between the conditional distributions of the
observations. We give an explicit solution for the sampling
design problem with conditionally independent observations
and the results are summarized as follows. The best sensors are
the ones with the smallest local average root-likelihood ratio
and largest local average log-likelihood ratio in the Bayesian
and Neyman-Pearson setting, respectively. The framework has
also been generalized to conditionally dependent observations
with a thorough analysis for the Gaussian case. In that con-
text, we have shown that, for uncommon means and common

covariances under both hypotheses, the number of non-iden-
tical Gaussian sensors required to achieve a desired detection
performance reduces significantly as the sensors become more
coherent.

APPENDIX A
PROOF OF PROPOSITION 1

In this section, we prove that the additivity of the Bhat-
tacharyya distance is preserved with compression using .
Using the conditional independence across sensors, i.e., As-
sumption 1, the Bhattacharyya distance in (5) can be expressed
as

where is the local likelihood ratio at the th sensor. Since
, we can further simplify to

APPENDIX B
UPPER BOUND ON

To derive the upper bound on stated in Theorem 1, we
use Chebyshev’s inequality [32]

(52)

where is a random variable with variance and is a con-
stant. Then, simplifies to
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where the last equation has the same form as the inequality (52)
with .
If the variance of is , then, from (52), we have

This completes the proof.

APPENDIX C
PROOF OF PROPOSITION 2

In this section, we prove that the additivity of the Kullback-
Leibler distance for independent observations is preserved with
compression using . Assuming Assumption 1 holds, then
the Kullback-Leibler distance in (10) can be expressed as

where is the local likelihood ratio at the th sensor.

APPENDIX D
EXPRESSIONS FOR AND

Let the covariance matrices and , respectively,
admit a decomposition of the form

, and . Here, the scalars , and
are, respectively, chosen such that the matrices , and
are invertible.
Using the Sylvester’s determinant identity

(53)

we can express, for example,

Bhattacharyya Distance

Ignoring the terms that are independent of the optimization
variable , we can express the Bhattacharyya distance (48) as

where

and

are concave functions on .

Kullback-Leibler Distance
Recalling Property 1, where we had shown that the matrix of

the form is equivalent to

we can write the first term of (49), that is,

as

The above function can be expressed as a convex function in
(e.g., using the epigraph form). The second term of (49) can be
relaxed to a convex function . The last term of (49), that is,

is equivalent to

Thus, we can equivalently express (49) as
with

and

which are concave in .
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