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C
ompressed sensing deals with the reconstruction of 
signals from sub-Nyquist samples by exploiting the 
sparsity of their projections onto known subspaces. 
In contrast, this article is concerned with the recon-
struction of second-order statistics, such as covari-

ance and power spectrum, even in the absence of sparsity priors. 
The framework described here leverages the statistical structure 
of random processes to enable signal compression and offers an 
alternative perspective at sparsity-agnostic inference. Capitalizing 
on parsimonious representations, we illustrate how compression 
and reconstruction tasks can be addressed in popular applications 
such as power-spectrum estimation, incoherent imaging, direc-
tion-of-arrival estimation, frequency estimation, and wideband 
spectrum sensing.

IntroduCtIon
The incessantly growing size of sensing problems has spurred an 
increasing interest in simultaneous data acquisition and compres-
sion techniques that limit sensing, storage, and communication 
costs. Notable examples include compressed sensing [1], support 
recovery [2], sub-Nyquist sampling of multiband or multitone sig-
nals [3]–[5], and array design for aperture synthesis imaging [6]–
[8]. The overarching paradigm of sub-Nyquist sampling can 
impact a broad swath of resource-constrained applications arising 
in data sciences, broadband communications, large-scale sensor 
networks, bioinformatics, and medical imaging, to name a few.

The aforementioned techniques rely on parsimonious models 
that capture relevant information and enable compression. In 
compressed sensing, for example, signals can be reconstructed 
from sub-Nyquist samples provided that they admit a sparse 
representation in a known transformed domain. Whereas this 
form of structure arises naturally in many applications, it is often 
the case that either the underlying signal is not sparse or the spar-
sifying transformation is difficult to model or manipulate. Those 
scenarios call for alternative approaches to allow compression by 
capturing other forms of structure.

A prominent example is the family of methods exploiting struc-
tural information in the statistical domain, which includes those 
intended to reconstruct the second-order statistics of wide-sense 
stationary (WSS) signals, such as power, autocorrelation, or power-
spectral density. It is widely accepted that statistics of this class play 
a central role in a multitude of applications comprising audio and 
voice processing, communications, passive sonar, passive radar, 
radioastronomy, and seismology, for example [9]. Although recon-
struction of second-order statistics from compressed observations 
dates back several decades (see, e.g., [6] and the references therein), 
the recent interest in compressive sensing and reconstruction has 
propelled numerous advances in this context.

The purpose of this article is to provide a fresh look at the 
recent contributions in this exciting area, which is referred to as 
compressive covariance sensing (CCS). Admittedly, a straightfor-
ward approach to reconstruct second-order statistics is to apply an 
estimation method over a waveform uncompressed via a non-CCS 
procedure. However, it is not difficult to see that such a two-step 
approach incurs large computational complexity and heavily 

limits the compression ratio. CCS methods, on the other hand, 
proceed in a single step by directly recovering relevant second-
order statistics from the compressed samples, thus allowing a 
more efficient exploitation of the statistical structure.

SAMPLInG SECond-ordEr StAtIStICS
To introduce the basic notions of CCS, consider the problem of 
measuring the fine variations of a spatial field to achieve a high 
angular resolution in source localization. Since the large sensor 
arrays required in the absence of compression incur prohibitive 
hardware costs, multiple acquisition schemes have been devised 
to reduce the number of sensors without sacrificing resolution.

A WARM-UP EXAMPLE
Suppose that a uniform linear array (ULA) with L  antennas, such 
as the one in Figure 1(a), observes T  snapshots of a zero-mean 
spatial signal whose complex baseband representation is given by 

,x CL!x  , , .T0 1 1fx = -  Many array processing algorithms 
rely on estimates of the so-called spatial covariance matrix 

: x xEx
HR = x x" , to form images or to obtain information such as 

the bearing of certain sources [6], [9]. A straightforward estimate 
of xR  is the sample covariance matrix, given by

 .x xT
1

x
H

T

0

1

R = x x

x=

-
t /  (1)

If the impinging signals are generated by uncorrelated point 
sources in the far field [see Figure 1(a)], the matrix xR  exhibits a 
Toeplitz structure (see the section “Modal Analysis”), meaning that 
the coefficients are constant along the diagonals. Thus, one may 
represent the ( , )m n th entry of xR  by

 [ ] [ ] [ ] ,x xEm n m n*v - = x x" ,  (2)

where [ ]x mx  represents the mth entry of .xx  Noting that xR  is 
also Hermitian reveals that all the information is contained in the 
coefficients [ ],lv  , , .l L0 1f= -  These observations suggest the 
possibility of constructing estimators with improved performance 
[10], [11]; simply consider replacing the elements on each diago-
nal of xRt  with their arithmetic mean. This operation renders a 
more satisfactory estimate than the sample covariance matrix in 
(1) because it utilizes the underlying Toeplitz structure.

Let us now adopt a different standpoint. Instead of attempting 
to improve the estimation performance, the described structure 
can also be exploited to reduce the number of antennas required 
to estimate xR  (see, e.g., [6]–[8]). Suppose, in particular, that only 
a subset of the antennas in the ULA is used to sample the spatial 
field of interest, the others being disconnected [see Figure 1(b)].

Let the set : { , , }k kK K0 1f= -  collect the indices of the K  
active antennas. The vector signal received by this subarray, which 
can be thought of as a compressed observation, is given by 

[ [ ], , [ ]] .y x k x kK
T

0 1f= x xx -  The ( , )i j th entry (we adopt the 
convention that the first row/column of any vector/matrix is asso-
ciated with the index 0, the second with the index 1, and so on) of 
the covariance matrix : y yEy

HR = x x" , is, therefore,
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 [ ] [ ] [ ] [ ] [ ] .Ey i y j x k x k k kE * *
i j i jv= = -x x x x" ", ,  (3)

Thus, yR  is made up of a subset of the entries of .xR  It is clear 
that xR  can be reconstructed from a sample estimate of yR  if all 
the entries of the former show up at least once in the latter. 

From (3), this means that, for every , , ,l L0 1f= -  there must 
exist at least one pair of elements ,k kl  in K  satisfying 

.k k l- =l  Sets K  of this nature are called sparse rulers, and, if 
they contain a minimum number of elements, they are termed 
minimal sparse rulers, as explained in “Linear Sparse Rulers.” In 
Figure 1(b), for example, only the antennas at positions 

,{ , , , }0 1 4 7 9K =  are operative, but the array can reconstruct the 
same spatial covariance matrix as the array in Figure 1(a).

Mathematically, the problem of constructing sparse rulers is 
interesting on its own and has been extensively analyzed (see [12] 
and the references therein). Since finding minimal sparse rulers is a 
combinatorial problem with no closed-form solution, devising 
structured yet suboptimal designs has received much attention 
(see, e.g., [12] and [13]).

An intimately related concept is the minimum-redundancy array 
[7], [9], well known within the array processing community. A mini-
mum-redundancy array is a minimal linear sparse ruler whose 
length is maximum given its number of marks. For example, 

{ , , , , },0 1 2 3 7K1 =  { , , , , }0 1 2 5 8K2 = , and { , , , , }0 1 2 6 9K3 =  
are minimal sparse rulers of length 7, 8, and 9, respectively. How-
ever, K1  and K2  are not minimum-redundancy arrays, since a 
minimal sparse ruler of greater length can be found with the same 
number of marks, an example being .K3

Deploying a smaller number of antennas allows cost savings 
beyond the costs associated with the antennas themselves: radio-
frequency (RF) equipment, such as filters, mixers, and analog-to-
digital converters (ADCs), needs to be deployed only for the active 
antennas. Moreover, the fact that the endpoints 0 and L 1-  are 
always in K  for any length-( )L 1-  linear sparse ruler K  means 
that the aperture of the subarray equals the aperture of the 
uncompressed array. Therefore, this antenna reduction comes at 
no cost in angular resolution. The price to be paid is, however, 
slower convergence of the estimates; generally, the smaller the 
| | ,K  the larger the number of snapshots T  required to attain a 
target performance. Hence, for signals defined in the spatial 
domain, this kind of compression is convenient when hardware 
savings make up for an increase in the acquisition time, as is usu-
ally the case in array processing.
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α3

α2

α1

(b)

[FIG1] (a) An uncompressed uLA with ten antennas receiving the 
signals from five sources in the far field. (b) A compressed array 
with five antennas. the five antennas marked in light gray were 
removed, but the achievable spatial resolution remains the same.

LInEAr SPArSE ruLErS
A set { , , }L0 1K f1 -  is a length- ( )L 1-  (linear) sparse 
ruler if for every , , ,l L0 1f= -  there exists at least one pair 
of elements ,k kl in K  satisfying .k k l- =l  Two examples 
of length 10 are { , , , , , }0 1 2 5 7 10K =  and { , , , , , } .0 1 3 7 8 10K =

The name sparse ruler stems from the geometric interpret-
ation of K  as a physical ruler where all but the marks with indi-
ces in K  have been erased. Despite lacking part of its marks, a 
sparse ruler is still able to measure any integer distance between 
zero and .L 1-  In Figure S1, we observe that the ruler 

{ , , , , , }0 1 3 7 8 10K =  is capable of measuring any object of 
length five by using the marks three and eight. 

A length- ( )L 1-  minimal sparse ruler is a length- ( )L 1-  sparse 
ruler K  with minimum number of elements | | .K  The set 

{ , , , , , }0 1 3 7 8 10K =  is a length-10 minimal linear sparse ruler 
since it has six elements and there exists no length-10 sparse 
ruler with five or fewer elements.

0 1 3 7 8 10

Distance = 5

[FIGS1] A sparse ruler can be thought of as a ruler with a part of 
its marks erased, but the remaining marks allow all integer 
distances between zero and its length to be measured.
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IMPORTANCE OF COVARIANCE 
STRUCTURES
In the previous example, the Hermit-
ian Toeplitz structure of xR  allowed 
us to recover the second-order statis-
tics of xx  from those of its com-
pressed version .yx  More generally, it 
is expected that our ability to com-
press a signal while preserving the 
second-order statistical information 
depends on the structure of .xR  In 
other words, we expect that the more 
structured xR  is, the stronger the 
compression on xx  it may induce.

In certain applications, such as power-spectrum estimation for 
communication signals, the covariance matrix is known to be circu-
lant [14]–[17]. Recall that a circulant matrix is a special type of Toe-
plitz matrix where each row is the result of applying a circular shift 
to the previous one. For this reason, it can be seen that [ ]lv =  

[ ] .l Lv -  This increased structure relaxes the requirements on ,K  
which is no longer required to be a linear sparse ruler but a circular 
one; see “Circular Sparse Rulers” for a definition.

Because of their ability to measure two different distances 
using each pair of marks, circular sparse rulers lead to a greater 
compression than their linear counterparts. In other words, K  
needs fewer elements to be a length-( )L 1-  circular sparse ruler 
than to be a length-( )L 1-  linear sparse ruler.

Circular sparse rulers can be designed in several ways. For cer-
tain values of ,L  minimal rulers can be obtained in closed form 
[18]. Other cases may require exhaustive search, which motivates 
suboptimal designs. Immediate choices are length-( )L 1-  or 
length- /L 26 @ minimal linear sparse rulers [19]. In fact, the latter 
provide optimal solutions for most values of L  below 60 [20]. 

Aside from Toeplitz and circulant, another common structure 
is the one present in those applications where the covariance mat-
rix is known to be banded [19]. A type of Toeplitz matrix, d-banded 
matrices satisfy [ ]l 0v =  for all l d2  and arise in those cases 
where we sample a WSS time signal whose autocorrelation 
sequence [ ]lv  vanishes after d  lags. Sampling patterns for 

banded matrices are discussed in 
[20], which suggests that the achiev-
able compression is dependent on 
the parameter .d  These designs also 
hold for certain situations where we 
are only interested in the first d  cor-
relation lags [21].

These typical covariance struc-
tures, including Toeplitz, circulant, 
and banded, are illustrated in 
Figure 2, along with their most pop-
ular applications. Generally speak-
ing, in many cases including the 

previous ones, prior knowledge constrains covariance matrices to 
be linear combinations of certain known matrices, say { } .i iR  In 
other words, there must exist coefficients ia  such that

 .x i
i

S

i
0

1

aR R=
=

-

/  (4)

Without any loss of generality, we may assume that the scalars ia  are 
real [20] and the matrices iR  are linearly independent. Thus, 

{ , , }S S0 1fR R= -  is a basis, and S  represents the dimension of 
the model. This expansion encompasses all the previous examples as 
particular cases as long as the right set of matrices iR  is chosen. It 
can be seen that S L2 1= -  for Toeplitz matrices, S L=  for circu-
lant matrices, and S d2 1= -  for d -banded matrices (see Figure 2). 
As we will see in the section “Optimal Designs,” S  is related to how 
compressible xR  is.

The problem of estimating the coefficients ia  is known as struc-
tured covariance estimation or covariance matching [10], [22] and 
has a strong connection with CCS. Nonetheless, this line of work flour-
ished before the surge of compressed sensing in signal processing, 
when the main goal was to design robust and performance-enhanced 
estimators with a small sample size. CCS offers a new way to exploit 
covariance structures for joint signal acquisition and compression. 

CoMPrESSIon
The previous array processing example describes how compres-
sion can be exerted for signals acquired in the spatial 

CIrCuLAr SPArSE ruLErS
A set { , , }L0 1K f1 -  is a length- ( )L 1-  circular sparse 
ruler if for every , , ,l L0 1f= -  there exists at least one pair 
of elements ,k k K!l  satisfying ( ) .modk k L l- =l  An exam-
ple of a length-15 circular sparse ruler is { , , , , } .0 1 4 6 8K =  It 
can be seen that any length-l  linear sparse ruler, with 

/ ,L l L2 1# # -  is also an example of a length- L  circular 
sparse ruler.

A circular sparse ruler can be thought of as the result of wrap-
ping around a linear ruler. This operation allows us to measure 
two different distances using each pair of marks (see Figure S2).

A length-( )L 1-  circular sparse ruler is minimal if there exists 
no length-( )L 1-  circular sparse ruler with fewer elements.

0 1

4

6

8

Distance = 14

Distance = 2

[FIGS2] Generally, in a circular sparse ruler, each pair of marks 
allows two distances to be measured.
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EFFICIEnt ExPLoItAtIon  

oF thE StAtIStICAL  
StruCturE.
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domain—only a subset K  of antennas was used to estimate ;xR  
the remaining antennas can be disconnected, or, more simply, 
they need not be deployed. Broadly, acquisition hardware repre-
sents the bottleneck of many current signal processing systems, 
whose designs aim at meeting an ever-
increasing demand for processing rap-
idly changing signals. In practice, 
Nyquist acquisition of wideband signals 
becomes prohibitive in many applica-
tions since the sampling rate drastically 
affects power consumption and hard-
ware complexity. The ambition to break 
this bandwidth barrier has prompted a 
growing interest in innovative acquisi-
tion hardware architectures that 
replace traditional equipment, such as 
the slow and power-hungry ADCs. In this section, we delve into 
compression methods that can be applied not only for compres-
sive acquisition of spatial signals but also for time signals and 
more general classes of signals.

In particular, suppose that we are interested in estimating the 
second-order statistics of ( ),x t  indexed by the continuous-time 
index .t  A traditional ADC ideally produces the sequence

 [ ] ( ),   , , ,x l x lT l L0 1s f= = -  (5)

where /T1 s  is the sampling rate, a number that must exceed the 
Nyquist rate of ( )x t  to avoid aliasing. Unfortunately, power con-
sumption, amplitude resolution, and other parameters dictated by 
the application establish stringent upper bounds on the values 
that the sampling rate can take on. These limitations conflict with 
the constantly increasing need for larger bandwidths and, hence, 
higher Nyquist rates.

A compression approach similar to the one described for the 
spatial domain may potentially alleviate these limitations by redu-
cing the average sampling rate. Generally known as nonuniform 

sampling, this approach advocates the acquisition of a small 
number of samples indexed by a subset of the Nyquist grid:

 [ ] ( ),   { , , } .y i x k T k kKi s K0 1f= = -  (6)

As we will soon see, this average 
rate reduction has led to the tech-
nology of compressive ADCs 
(C-ADCs), conceived to circumvent 
the aforementioned hardware 
tradeoffs. Before exploring this 
topic, let us expand the families of 
samplers we are about to consider.

By forming [ [ ], ,x x 0 f=  
[ ]]x L 1 T-  and [ [ ], ,y y 0 f=  
[ ]] ,y K 1 T-  the operation in (6) 

can be equivalently represented as a row-selection operation

 .y xU= r  (7)

The matrix ,CK L!U #r  which contains ones at the positions 
( , )i ki  and zeros elsewhere, is, therefore, a sparse matrix with at 
most one nonzero entry at each row or column. Rather than 
restricting ourselves to matrices of this form, there are certain 
applications where the usage of dense compression matrices has 
proven to be successful, both in the time domain (see, e.g., [4] 
and [5]) and in the spatial domain (see, e.g., [23]). In correspond-
ence with this terminology, we talk about dense samplers when 
Ur  is dense and about sparse samplers when Ur  is sparse.

As opposed to most applications in array processing, it is com-
mon in time-domain applications to observe just a single realiza-
tion of the signal of interest, i.e., .T 1=  This is why we dropped 
the subscript x  from x  and y  in (7) when compared to xx  and 
yx  in the previous section. For simplicity, we omit this subscript 
throughout when possible, keeping in mind that several snapshots 
may be available.

S = 2L − 1 Real Unknowns
WSS Processes

Direction-of-Arrival Estimation
Incoherent Imaging

S = 2d − 1 Real Unknowns
WSS with d Limited Lags

MA(d ) Time Series

S = L Real Unknowns
Orthogonal Frequency-Division

Multiplexing Signals
Multiband Signals

Incoherent Imaging
(a) (b) (c)

[FIG2] Some common covariance structures, along with their main applications: (a) toeplitz, (b) d-banded, and (c) circulant.
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whoSE dESIGnS AIM At  
MEEtInG An EvEr-InCrEASInG 

dEMAnd For ProCESSInG  
rAPIdLy ChAnGInG SIGnALS.
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When observation windows for time signals are long, hardware 
design considerations make it convenient to split a sampling pat-
tern into shorter pieces that are repeated periodically. This 
amounts to grouping data samples in blocks that are acquired 
using the same pattern. Likewise, the usage of periodic arrays in 
the spatial domain may also present advantages [16].

In these cases, the uncompressed observations x  are divided 
into B  blocks of size /N L B=  as [ [ ], , [ ]] ,x x x B0 1T T Tf= -  
and each block is compressed individually to produce an output 
block of size M :

 [ ] [ ] .y xb bU=  (8)

It is clear that one can assemble the vector of compressed obser-
vations as [ [ ], , [ ]]y y y B0 1T T Tf= -  and the matrix Ur  from 
(7) as ,IB7U U=r  where 7  represents the Kronecker product.

In the case of sparse samplers, the block-by-block operation 
means that the pattern K  can be written as

 { : , , , },m bN m b B0 1 K M f!= + = -  (9)

where { , , }N0 1M f1 -  is the sampling pattern used at each 
block. For example, M  can be a length-( )N 1-  linear sparse 
ruler. Thus, M  can be thought of as the period of ,K  or we may 
alternatively say that K  is the result of a B-fold concatenation of 

.M  In sparse sampling schemes of this form, known in the litera-
ture as multicoset samplers [3], the matrix U  is the result of 
selecting the rows of IN  indexed by .M

OPTIMAL DESIGNS
One critical problem in CCS is to design a sampler Ur  that pre-
serves the second-order statistical information, in the sense that it 
allows reconstruction of the uncompressed covariance matrix 
from the compressed observations.

Design techniques for sparse and dense samplers hinge on dif-
ferent basic principles. Whereas sparse samplers are designed 

based on discrete mathematics (as explained previously), existing 
designs for dense samplers rely on probabilistic arguments. 
Inspired by compressed sensing techniques, these designs gener-
ate sampling matrices at random and provide probabilistic guar-
antees on their admissibility. 

Optimal rates for dense samplers are known in closed form 
for linear covariance parameterizations such as Toeplitz, circu-
lant, and banded [20]. On the other hand, their evaluation for 
sparse samplers requires solving combinatorial problems such 
as the minimal sparse ruler problem. Table 1 summarizes the 
optimum designs, along with the maximum compression ratios, 
for the aforementioned parameterizations [20]. The compres-
sion ratio is defined as

 :
| | ||

L N
MK

h = =  (10)

and satisfies .0 1# #h  Note that the stronger the compression, 
the smaller .h  It can also be interpreted as the reduction in the 
average sampling rate: if [ ]x l  represents the sample sequence 
acquired at the Nyquist rate / ,T1 s  for instance, then the com-
pressed sequence [ ]y k  corresponds to an average sampling rate  
of / .Tsh

The designs from Table 1 are compared in Figure 3. The verti-
cal axis depicts the reduction in the sampling rate that can be 
achieved in applications such as compressive wideband spectrum 
sensing [24]–[26], where the spectrum occupancy over a very wide 
band is decided via power-spectrum estimation. Note that the 
sampling rate can be reduced considerably, even in the absence of 
sparsity. For instance, even for a moderate block length of 

,N 50=  the minimum sampling rate is less than one-fourth of 
the Nyquist rate in all cases. Asymptotically for increasing ,N  
sampling rate savings are proportional to / N1  (cf. Table 1).

The superior efficiency of dense samplers over their sparse 
counterpart also manifests itself in Figure 3. In fact, it can be 

[tAbLE 1] oPtIMAL dESIGnS And CoMPrESSIon rAtIoS.
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shown that certain random designs for dense samplers achieve 
optimal compression ratios with probability one, in the sense that 
no other sampler (either dense or sparse) can achieve a lower ratio.

TECHNOLOGIES
The acquisition systems that can be used to implement the previ-
ously described sampling schemes, which are essentially the same 
as those used by many other sub-Nyquist acquisition techniques, 
have recently experienced an intense development.

For example, time signals can be compressively acquired using 
C-ADCs such as interleaved ADCs [27], random demodulators [5], 
modulated wideband converters [4], and random modulators pre-
integrators [28]. If x  contains the Nyquist samples of ( ),x t  their 
operation can be described by (7) (see Figure 4). Note, however, 
that no C-ADC internally acquires Nyquist samples since this 
would entail precisely the disadvantages of conventional ADCs that 
they attempt to avoid. Nonetheless, they represent a convenient 
mathematical abstraction.

As for spatial signals, sparse samplers can be easily imple-
mented by removing unused antennas. On the other hand, dense 
samplers require analog combining (see, e.g., [23]).

MAIn APPLICAtIonS
The problems that can be formulated in CCS terms are those rely-
ing exclusively on the second-order moments of a certain signal 

.x  In this section, we elaborate on the mathematical formulation 
of the signal processing problems involved in some of the main 
applications. In each case, we indicate the set of basis matrices 

{ , , }S S0 1fR R= -  to be used [see (4)].

APPLICATIONS IN THE TIME DOMAIN
CCS is especially convenient to acquire wideband signals, whose 
rapid variations cannot be easily captured by conventional ADCs. As 
described in the section “Technologies,” this difficulty motivates 
the usage of C-ADCs, whose operation can be described by (7). 
Their usage in CCS has been considered in a number of applica-
tions where acquisition designs and reconstruction algorithms 
have been proposed. Some of them are detailed next.

 ■ Compressive power-spectrum estimation: The goal is to 
estimate xR  from y  subject to the constraint that xR  is 
 Hermitian Toeplitz and positive semidefinite. This means that 
the matrices in S  span the subspace of Hermitian  Toeplitz 
matrices. If the length L  (in samples) of the acquisition win-
dow is greater than the length of the autocorrelation 
sequence [ ],mv  then S  can be set to a basis of the subspace 
of d-banded matrices [19]. Other approaches in the literature 
follow from the consideration of bases for the subspace of cir-
culant matrices, which arise by stating the problem in the 
frequency domain [14], [15]. The positive (semi)definiteness 
of xR  can be ignored to obtain simple estimators, or it can be 
enforced using methods like those in [10].

 ■ Wideband spectrum sensing: Applications such as 
dynamic spectrum sharing in cognitive radio networks [29] 
require monitoring the power of different transmitters oper-
ating on wide frequency bands. Suppose that a spectrum 
sensor is receiving the signal ,x x( )

ii
ia=/  where the 

component x( )
i

ia  contains the Nyquist samples of the sig-
nal received from the i th transmitter. If x( )i  is power nor-
malized, then ia  is the power received from the i th 
transmitter. Since the second-order statistics of ,x( )i  col-
lected in ( ) ,x xE ( ) ( )

i
i i HR = " ,  are typically known [25], [30], 

[31], estimating the power of each transmitter amounts to 
estimating the ia ’s in the expansion (4).

CCS is of special relevance in this application since the typi-
cally large number of transmitters means that ( )x t  is wide-
band, which motivates the usage of C-ADCs. Various estimation 
algorithms have been proposed on these grounds in [30].

 ■ Frequency estimation: C-ADCs can be used to identify 
sinusoids in wideband signals [32]. If R  denotes the number 
of sinusoids, the uncompressed signal samples can be mod-
eled as [ ] [ ] [ ],x l s a l w l( )

ii

R i
0

1
= +

=

-/  where s Ci !  is ran-
dom, [ ]w l  is noise, and [ ]a el( )i li= .~  is a complex 
exponential whose frequency i~  is to be estimated, possibly 
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along with the variance of .si  This is the problem of estimat-
ing a sparse power spectrum [5].

Many algorithms for estimating these frequencies rely on 
estimates of the covariance matrix x ,xEx

HR = " ,  which is 
known to be Hermitian Toeplitz and positive semidefinite 
[11]. From the observations provided by a C-ADC, one can 
first reconstruct xR  and subsequently apply one of the exist-
ing techniques that take xR  as the input. To accomplish such 
reconstruction, one can use (4), with S  being a set spanning 
the subspace of Hermitian Toeplitz matrices.

APPLICATIONS IN THE SPATIAL DOMAIN
In applications requiring estimating the so-called angular spec-
trum (e.g., sonar, radar, astronomy, localization), introducing com-
pression may considerably decrease hardware costs. In schemes 
using sparse sampling (see, e.g., [6]–[8], [13], and [33]), only the 
antennas corresponding to the nonnull columns of Ur  need to be 
physically deployed, whereas in schemes employing dense sam-
pling [23], the number of antennas is preserved after introducing 
compression, but the number of RF chains is reduced. 

In applications employing CCS, the received signal is typically 
modeled as a sum of incoherent planar waves emitted by a collection 
of sources in the far field. The spatial field produced by each source 
results in a Toeplitz spatial covariance matrix which depends on the 
angle of arrival of that source. The sum of all contributions and noise, 
assumed white for simplicity, therefore produces a Toeplitz .xR

Two problems are usually considered:
 ■ Incoherent imaging: If a continuous source distribution is 

assumed, then the angular spectrum is dense. The problem 
can be formulated as described previously for compressive 
power-spectrum estimation, since the only structure present 
is that xR  is Hermitian Toeplitz and positive semidefinite [8]. 
However, recent works show that the problem can also be 
stated using circulant covariance matrices [16], [17].

 ■ Direction-of-arrival estimation: The goal is to estimate the 
angles of arrival of a finite number of sources. A broad family of 
methods exists to this end (see, e.g., [8], [13], [33], and [34]), 
most of them following the same principles as described previ-
ously for frequency estimation, since both problems admit the 
formulation of sparse power-spectrum estimation. 
Most applications listed in this section have been covered 

with the two compression methods introduced in previous sec-
tions, i.e., sparse and dense sampling, either periodic or nonpe-
riodic. For time signals, periodicity typically arises because of 
the block-by-block operation of C-ADCs (see, e.g., [19], [30], 
and [35]); for spatial signals, by consideration of periodic arrays 
[16], [17].

EStIMAtIon And dEtECtIon
Having described the model and compression schemes for CCS, 
we turn our attention to the reconstruction problem. For estima-
tion, it boils down to recovering xR  in (4) from the compressive 
measurements .y

Since ,y xU= r  it follows that .xy
HU UR R= r r  If xR  is given by 

(4), yR  can be similarly represented as

 ,   ,Ry i
i

S

i i
0

1

!a aR R=
=

-
r/  (11)

where .i i
HU UR R=r r r  This means that yR  and xR  share the 

coordinates .ia  If the compression is accomplished properly, for 
example using the designs discussed in previous sections, these 
coordinates are identifiable and can be estimated from the 
observations of y.

MAXIMUM LIKELIHOOD
If the probability distribution of the observations is known, one 
may resort to a maximum-likelihood estimate of .yR  For exam-
ple, if y  is zero-mean Gaussian and

 ,y yT
1

y
H

T

0

1

R = x x

x=

-
t /  (12)

is the sample covariance matrix of the compressed observations, the 
maximization of the log-likelihood leads to the following problem:

 | |logminimize  Tr
{ }

y y y
i

1

i
R R R+

a

- t^ h (13)

subject to (11). Numerous algorithms have been proposed to solve 
this nonconvex problem (see, e.g., [10], [30], and [36]).

LEAST SQUARES
The maximum-likelihood approach involves high computational 
costs and requires an accurate statistical characterization of the 
observations. For these reasons, it is customary to rely on geomet-
rical considerations and project the sample covariance matrix onto 
the span of .S

From ,y x
HU UR R= r r  it follows that ( ) ,*

y x7v vU U= r r  
where yv  and xv  are, respectively, the vectorizations of yR  and  

.xR  Vectorizing (4) yields x i ii

S

0

1
v va=

=

-/  or, in matrix form, 
,Sxv a=  where we have arranged the vectors iv  as columns of 

the matrix S  and the coordinates ia  as elements of the vector .a  
This results in the relation ( ) .S*

y 7v aU U= r r  If the M B S2 2#  
matrix ( )S C*7 !U Ur r  is full-column rank, substituting yv  by a 
sample estimate yvt  produces an overdetermined system 

( ) ,S*
y 7v vU U=t r r t  whose solution via least squares yields the 

desired estimate in closed form [14], [19], [30]:

 [( ) ] .S Svec *
x y

1LS 7 vU UR = @-t r r t" ,  (14)

Here, the operator {·}vec 1-  restacks a vector into a square matrix.
Figure 5 illustrates the performance of this technique when 

xR  is 168-banded (see [19] for more details) and several sam-
pling designs are used. Clearly, the mean squared error of the 
estimate is larger when compression is introduced since it 
reduces the total number of samples. This effect is not exclusive 
to least-squares estimation—it negatively affects any estimator. 
For this reason, including compression usually requires longer 
observation time if a certain target performance metric is to  
be achieved. This does not conflict with the ultimate purpose of 
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 compression, which is to reduce the average sampling rate—a 
parameter that critically affects the hardware cost.

However, note that this approach does not exploit the fact that 
xR  is positive semidefinite. This constraint can be enforced to 

improve the estimation performance at the expense of greater com-
plexity. For instance, one may attempt to minimize the least 
squares cost || ( ) | |S*

y
27v vU U-t r r t  subject to the constraint 

,0x $R  which is a convex problem. Other constraints can also be 
imposed if more prior information is available. For instance, the 
elements of at  might be nonnegative [30], in which case one would 
introduce the constraint .0$at  It can be known that at  is sparse 
either by itself or on a linearly transformed domain, in which case 
one may impose the constraint || | | ,F Ss 0 0#at  where S0  is the 
number of nonzero entries and Fs  takes at  to the domain where it 
is sparse. For instance, the elements of Fsat  may be samples of the 
power spectrum [37]. Since the zero-norm in this constraint is not 
convex, it is typically relaxed to an 1, -norm. For example, an 1,

-norm regularized least-squares formulation can be adopted as 
follows:

 ( ) .S Fminimize  *
y s

2
17v a amU U- +

a
t r r t t

t
 (15)

In (15), signal compression is induced by the statistical structure 
of xR  beyond sparsity, while the additional sparsity structure can 
lead to stronger compression at the expense of increased computa-
tional complexity compared to the closed-form solution in (14).

DETECTION
In detection theory, we are interested in deciding whether a signal 
of interest is present or not. This operation is typically hindered by 
the presence of noise and other waveforms, such as clutter in 
radar or interference in communications.

In many cases, this problem can be stated in terms of the sec-
ond-order statistics of the signals involved, so the goal is to decide 
one of the following hypotheses:

 
:

:

H

H

0

1

R R

R R R

=

= +

x

x w

w

r ,
 (16)

where rR  and ,wR  respectively, collect the second-order statistics 
of the signal of interest and noise/interference. Our decision must 
be based on the observation of the compressed samples y x,U= r  
whose covariance matrix yR  is given by HU URw

r r  under H0  and 
by )( HU UR R+r w
r r  under .H1  A most powerful detection rule 

exists for this simple setting and can be found using the Neyman–
Pearson lemma [11]. If ( )yp ;Hi  denotes the density under 
hypothesis ,Hi  this rule decides H1  when the ratio 

( ) / ( )y yp p; ;H H1 0  exceeds a certain threshold set to achieve a 
target probability of false alarm [11]. 

More general problems arise by considering basis expansions 
like the one in (4). In this case, the goal may be to decide whether 
one of the ia , say ,0a  is positive or zero, while the others are 
unknown and treated as nuisance parameters [30]. Since in these 
cases no uniformly most-powerful test exists, one must resort to 
other classes of detectors, such as the generalized likelihood ratio 
test, which makes a decision by comparing ( ; ) / ( ; )y yp p HH 01a at t  
against a threshold, where Hiat  is the maximum-likelihood esti-
mate of a  under hypothesis Hi  [30].

ModAL AnALySIS
As mentioned in the section “Main Applications,” the problem of 
estimating the frequency of a number of noise-corrupted sinu-
soids and the problem of estimating the direction of arrival of a 
number of sources in the far field are instances of the class of 
sparse spectrum estimation problems, which allow a common 
formulation as modal analysis [11].

Suppose that the observations are given by

 ,Asx a w ws ( )
i

i

R
i

0

1

= + = +
=

-

/  (17)

where , , , ]a e e1[ ( )i L T1( ) i i= f. .~ ~ -  are the so-called steering 
 vectors, [ , , ]A a a( ) ( )R0 1f= -  is the manifold matrix, w  is noise and 
the coefficients ,si  collected in the vector ,s  are uncorrelated ran-
dom variables. The structure of a( )i  stems from the fact that each 
antenna receives the signal si  with a different phase shift. Because 
the antennas are uniformly spaced in a ULA, the relative phase shift 
between each pair of antennas is an integer multiple of a normalized 
quantity ,i~  which is a function of the angle of arrival.

The covariance matrix of x  is given by

 ,A A Ix s w
H

L
2vR R= +  (18)

where w
2v  is the power of the noise process, assumed white for 

simplicity, and sR  is the covariance matrix of ,s  which is diagonal 
since the sources are uncorrelated. Note that these assumptions 
result in xR  having a Toeplitz structure.

The compressed observations can be written as ,Ay x sU= =r r  
where ,A AU=r r  and have covariance matrix
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[FIG5] the mean-squared error of the estimate of the least-
squares algorithm when xR  is 168-banded. (Figure adapted  
from [19].)
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 .A Ay s w
H H2v UUR R= +r r r r  (19)

The parameters i~  can be estimated 
from yR  using adaptations of tradi-
tional techniques such as multiple sig-
nal classification [35] and the 
minimum variance distortionless 
response algorithm [38].

Alternative approaches are based on the observation that the 
vectorization of (19) can be written in terms of the Khatri–Rao 
product, defined as the columnwise application of the Kronecker 
product, as

 ( ) ( ) ( ) .A Avec diag vec*
y s w

H29 v UUR R= +r r r r" ,  (20)

The matrix A A*9r r  can be thought of as a virtual manifold matrix, 
since this expression has the same structure as (17) [13], [39]. An 
especially convenient structure is when A A*9r r  contains all the 
rows in the manifold matrix of a ULA [40]. To obtain this struc-
ture, array geometries like two-level nested arrays [13], coprime 
arrays [32], and linear sparse rulers [34] can be used.

Other approaches stem from the idea of gridding. One can con-
struct the matrix Ar  using a fine grid of angles i~  and then esti-
mate s  from Ay s= r  exploiting the idea that most of its 
components will be zero since, for a grid fine enough, most of the 
columns of Ar  will correspond to angles where there are no sources. 
In other words, s  is sparse, which means that the techniques from 
[5] and [41] can be applied to recover this vector. This technique 
does not have to rely on second-order statistics, but similar grid-
based approaches can be devised that operate on (20) instead [42].

PrEProCESSInG
Most of the methods described in this article make use of the 
sample covariance matrix of ,y  defined in (12). Under general 
conditions, the average y yT H1

x x
x

- /  converges to the true yR  
as T  becomes large. If compression does not destroy relevant 
second-order statistical information, the matrix yR  contains all 
the information required to identify all entries of ,xR  but a con-
siderably large number T  of snaspshots will be required for yRt  
to be close to ,yR  which is necessary to obtain a reasonable esti-
mate of .xR

Typically, in those applications involving spatial signals, the 
outputs of all antennas are synchronously sampled. If yx  collects 
the samples acquired at time instant ,x  it is clear that multiple 
observations of y  can be obtained by considering successive snap-
shots , , , .T0 1 1fx = -  This means that, whereas y  contains 
samples across space, the different snapshots are acquired along 
the time dimension. Conversely, in applications involving time-
domain signals, y  contains samples acquired over time. A possible 
means to observe multiple realizations is by considering the vec-
tors yx  observed at different locations , , , .T0 1 1fx = -  In this 
case, while y  contains time samples, x  ranges across space. This 
establishes a duality relation between the space and the time 
domains: when the observed signals are defined on one domain, 
multiple observations can be acquired over the other.

Unfortunately, many applications 
do not allow averaging over the dual 
domain, and one must cope with a 
single observation, say ,y0  produ-
cing the estimate .y yy

H
0 0R =t  This 

matrix is not a satisfactory estimate 
of yR  since it is always rank one and 
is not Toeplitz. For this reason, an 

estimation/detection method working on this kind of estimate may 
exhibit a poor performance. 

The key observation in this case is that, although multiple reali-
zations cannot be acquired, sometimes it is possible to gather a 
large number of samples in the domain where the signal is defined. 
One can therefore exploit the Toeplitz structure of xR  to obtain a 
more convenient estimate [30]. In particular, because of the block-
by-block operation described by (8), the fact that xR  is Toeplitz 
means that yR  is block Toeplitz; that is, it can be written as
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where the (nonnecessarily Toeplitz) M M#  blocks [ ]kyR  are 
given by

 [ ] [ ] [ ] ,    .y yEk b b k by
H 6R = -" ,  (22)

This suggests the estimate

 [ ] [ ] [ ] .y yk b b k1
number of termsy

b

HR = -t /  (23)

Moreover, since yR  is Hermitian, this computation needs only to 
be carried out for , , .k B0 1f= -  More sophisticated estimates 
exhibiting different properties were analyzed in [30].

Another observation is that the smaller ,k  the higher the qual-
ity of the estimates of .[ ]kyR  The reason is that the number of 
averaging terms in (23) is larger for blocks lying close to the main 
diagonal than for distant ones. Thus, it seems reasonable to oper-
ate on a cropped covariance matrix
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where .B B1u  Note that, in this case, the dimension of the 
cropped matrix is less than the length of the observation vector .y

In certain cases, this technique leads to important computa-
tional savings at a small performance loss since the terms being 
retained are those of the highest quality [30].

AdvAnCEd tEChnIquES
Having explained the basic principles of CCS, we now illustrate the 
broad applications of CCS by considering other forms of second-
order statistics as well as implementation issues in practical systems.

thE MEAn SquArEd Error oF 
thE EStIMAtE IS LArGEr whEn 
CoMPrESSIon IS IntroduCEd  
SInCE It rEduCES thE totAL  

nuMbEr oF SAMPLES.
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CYCLOSTATIONARITY
Cyclostationarity is exhibited in many man-made signals with 
inherent periodicity, which is a useful feature for estimation, detec-
tion, and classification of digital communication signals [26]. 
Although there are several methods to reconstruct the second-
order statistics of a cyclostationary signal from compressed obser-
vations (see, e.g., [26], [43], and [44]), in this section, we only 
illustrate the main principles underlying these techniques using a 
simple model.

We say that a signal is cyclostationary if its time-varying covari-
ance function is periodic. Formally, the time-varying covariance 
function of a zero-mean process [ ]x l  is defined as [ , ]l kv =  

[ ] [ ] ,E x l x l k* -" ,  and it is said to be periodic when there exists an 
integer ,Cx  called the cyclic period, such that [ , ]l n C kc xv + =  

[ , ]klv  for any integer nc  [26], [43]. Although other forms of 
cyclostationarity exist, we confine ourselves to this one for simpli-
city. Note that cyclostationary signals generalize WSS signals, since 
the latter may be viewed as a particular case of the former with 

.C 1x =

Suppose that the length of the sampling block is an integer 
multiple of the cyclic period, that is, N Cxt=  for some integer .t  

Then, the vector [ ]x b  can be divided into t  subblocks of length 
Cx  as

 [ ] [ [ ], [ ], , [ ]] .x x x xb b b b1 1T T T Tft t t t= + + -u u u  (25)

The fact that [ , ]klv  is periodic along l  means that xR  is 
block Toeplitz with C Cx x#  blocks. By defining an N N#  matrix 

[ ] [ ] [ ] ,x xEb b b bx
HR = -l l" ,  we can write 
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where the blocks [ ]bxR  also have a block Toeplitz structure with 
blocks [ ] [ ] [ ] :x xu u u uEx

HR = -l lu uu " ,  
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Cyclostationarity provides an alternative perspective to under-
stand compression of second-order statistics, even for WSS 
sequences. The main idea is that the resulting sequence [ ]y i  of 
compressed observations is cyclostationary with cyclic period ,M  
which is larger than that of the original signal .Cx

Figure 6(a) intuitively explains this effect for a WSS signal 
C 1x =^ h satisfying [ ]l 0v =  for | | .l 12  In that figure, the dots 

on the l-axis represent a block of N 3=  samples of the WSS 
sequence [ ],x l  and the dots on the k -axis represent their com-
plex conjugates. The three lines connecting the dots in both 
axes represent the (possibly) different values of correlation 
between samples. Note that no extra lines need to be drawn 
since only [ ],  [ ],1 0v v-  and [ ]1v  are allowed to be different 
from zero. Since the correlation of a WSS signal is determined 
by the time-lags independent of the time origin, only one repre-
sentative dot along [ ]x l  is chosen as the time origin. A similar 
representation is provided at the bottom of Figure 6(a) for the 
compressed sequence [ ],y i  which can be seen to be cyclosta-
tionary with cyclic period C My =  [just apply the above consid-
erations to (21)]. Note that the four line segments effectively 
capture all the different correlation values between samples of 

[ ] .y i  Here, [ ]y i  is no longer WSS due to the compression pro-
cess, and, hence, all time origins along [ ]y i  within a block are 
selected to depict the correlations. 

Observe that, although the number of samples in each block 
was reduced from three to two after compression, the number of 
different correlation values has increased from three to four. This 
means that, whereas one cannot reconstruct the samples of [ ]x l  
from [ ]y i  without further assumptions, there is a chance of 
reconstructing the second-order statistics of [ ]x l  from those of 

[ ] .y i  In fact, if U  satisfies certain conditions, one can, for 
instance, estimate yR  from [ ]y i  using sample statistics and 
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[FIG6] (a) A compression of a block of N 3=  samples of a wSS 
signal using a 2 3#  matrix ,U  which produces compressed 
blocks of M 2=  samples. (b) A compression of a block of N 9=  
samples of a cyclostationary signal, which produces compressed 
blocks of M 6=  samples.
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obtain an estimate of xR  via least squares, as described in the sec-
tion “Least Squares.”

Now assume that [ ]x l  is a cyclostationary signal of cyclic 
period C 3x =  and that [ , ]klv  is such that each subblock of Cx  
samples is only correlated with the neighboring subblocks. 
Figure 6(b) illustrates a case where a block of N C 9xt= =  sam-
ples is compressed to produce a block of M 6=  samples. As 
before, all (possibly) distinct correlation values have been repre-
sented with the corresponding line segments. Observe that, 
although the number of output samples is lower than the number 
of input samples, it may be possible to use the M 362 =  correl-
ation values at the output to reconstruct the C 27x

2t =  correl-
ation values at the input. 

We next describe a reconstruction method based on least 
squares. Note from (8) and (22) that the M M#  blocks of yR  [c.f. 
(21)] can be written as 

 [ ] [ ] .b by x
HU UR R=  (28)

To exploit the block Toeplitz structure of [ ]bxR [see (27)], we first 
vectorize both sides of (28) and apply the properties of the 
 Kronecker product to obtain

 ( [ ]) ( ) ( [ ]) .b bvec vec*
y x7U UR R=  (29)

Now we rewrite the rightmost vector of this expression as

 ( [ ]) [ ],Tb bvec x xbR =  (30)

where
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is a ( )C2 1 1x
2 #t-  vector containing all the possibly distinct 

entries of [ ],bxR  and where T  is the ( )N C2 1 x
2 2# t-  repetition 

matrix, which maps (and repeats) the elements of [ ]bxb  into 
( [ ]) .bvec xR  Substituting (30) in (29) yields

 ( [ ]) ( ) [ ] .Tb bvec *
y x7 bU UR =  (32)

Note that, while U  generally has more columns than rows 
(as ),M N1  the ( )M C2 1 x

2 2# t-  matrix ( )T*7U U  can have 
more rows than columns. Hence, under certain conditions, 
(32) is an overdetermined system for each , ,b B 1 f=- +  

, , , .B0 1 1f -  Substituting [ ]byR  by a sample estimate, one can 
obtain an estimate of [ ]bxb  as the least-squares solution of 
that system and obtain an estimate of xR  by plugging the 
result in (30). 

This approach has been proposed in [43] using dense sam-
plers. A more specific case is discussed in [44], which specific-
ally proposes the usage of a sparse matrix U  with a block 
diagonal structure.

DYNAMIC SAMPLING
There are situations where the signal itself does not possess evi-
dent covariance structure, but we can effect compression by 
means of dynamic sampling.

Let us go back to the array processing example in the section 
“A Warm-Up Example,” where the Toeplitz structure of xR  
allowed us to estimate xR  using M N1  antennas. This structure 
relies on the assumption that the sources are uncorrelated. If this 
is not the case, then the only structure present in xR  is Hermitian 
and positive semidefinite, which means that xR  cannot be esti-
mated with fewer than N  antennas. 

A possible way to circumvent this problem is to adopt a 
dynamic scheme where a full array of N  antennas (the 
uncompressed array) is deployed but only a certain subset of 
antennas is activated at each time slot [40]. The activation pat-
tern may change periodically over time, which allows comput-
ing sample statistics for every activation pattern. With this 
technique, only a small number of RF chains need to be 
deployed. This is illustrated in Figure 7, where only K 4=  out 
of the L 7=  physical antennas are active at each time slot. 
The antenna selection may be implemented using analog cir-
cuitry. Note that a similar scheme could be used relying on 
dense samplers. Alternative settings include [45], where differ-
ent arrays are obtained by sampling different frequencies.

To estimate ,xR  the least-squares method from previous sec-
tions can be used. Let gUr  denote the K L#  compression matrix 
used during the gth time slot. The covariance matrix of the com-
pressed observations at time slot g  is given by

 .y xg g
H

g U UR R= r r  (33)

Vectorizing both sides and combining the result for the G  time 
slots in each period yields
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If the GK L2 2#  matrix W  has full column rank, then it is possible 
to estimate ,ygR  , ,g G0 1f= -  using sample statistics and then 
obtain an estimate of xR  as the least-squares solution of (34). It 
can be shown that this full rank condition is satisfied if every pair 
of antennas is simultaneously active in at least one time slot per 
scanning period [40]. To estimate ygR  via sample statistics, one 
may simply average over the observations in the gth time slot of 
each period.

COMPRESSIVE COVARIANCE ESTIMATION  
OF MULTIBAND SIGNALS
When uncorrelated signal sources are concerned, a multiband sig-
nal structure arises in many applications [14], [35], [46]. Suppose 
that our goal is to estimate the second-order statistics, e.g., the 
power spectrum, of a time-domain (spatial-domain) signal which 
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has a multiband structure in the frequency (angular) domain (see 
Figure 8) [14], [35], [46]. For simplicity, consider a time-domain 
signal ( ),x t  although the discussion immediately carries over to 
the spatial domain [46]. We show how this problem can be cast as 
the problem of compressing a circulant covariance matrix (see the 
section “Importance of Covariance Structures”).

The trick is to reformulate the problem in the frequency domain. 
Let ( )X ~  denote the discrete-time Fourier transform (DTFT) at 
digital frequency [ , )0 1!~  of the sequence [ ],x l  , , .l L0 1f= -  
Let us also split the frequency axis [ , )0 1!~  into N  bins of size 

/N1  (see Figure 8) and introduce, for [ , / ),N0 1!~  the N 1#  vec-
tor ( ) [ ( ), ( / ), , ( / )] .x N NX X X N1 1 Tf~ ~ ~ ~= + + -

Now, suppose that instead of concatenating the vectors [ ]x b  
vertically to form x  (see the section “Compression”), we arrange 
them as columns of the N B#  matrix X.  Repeating the same 
operation for the compressed samples in y  produces the M B#  
matrix .Y  Clearly, since ,IB7U U=r  it follows that the compres-
sion model of (7) can be rewritten as

 .Y XU=  (35)

Let us form the N 1#  vector ( ),x ~r  whose nth  entry contains 
the DTFT of the nth  row of X.  Note that the collection of samples 
in each row of X  is the result of downsampling [ ]x l  by a factor of 

.N  This operation produces N  aliases in the frequency domain, 
which means that the spectrum has period / .N1  Thus, it suffices 
to consider ( )x ~r  in the frequency interval [ , / ) .N0 1!~  Like-
wise, define the M 1#  vector ( ),y ~r  [ , ),/N0 1!~  as the vector 
containing the DTFTs of the rows of .Y  Clearly, (35) can then be 
expressed in the frequency domain using these vectors:

 ( ) ( ) .y x~ ~U=r r  (36)

The relationship between ( )x ~  and ( )x ~r  can be shown to be 
given by [14], [35], [46]

 ( ) ( ), [ , / ),F xx N N1 0 1N
H !~ ~ ~=r  (37)

where FN  is the N N#  discrete Fourier transform (DFT) matrix. 
From (36) and (37), it follows that

 ( ) [ ( ) ( )] ( ) ,y yEy x
H H~ ~ ~ ~U UR R= =r rr r  (38)

and

 ( ) [ ( ) ( )] ( ) ,F Fx xE
N
1

x x
H

N
H

N2~ ~ ~ ~R R= =r rr  (39)

where ( ) [ ( ) ( )] .x xEx
H~ ~ ~R =  If the frequency bands are 

uncorrelated, for instance, because they were produced by differ-
ent sources, and if the width of each band is less than / ,N1  which 
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[FIG8] An example of a signal with a multiband structure. here, 
the digital frequency axis ~  is split into N  uniform bins.
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is the width of the bin, then ( )x ~R  in (39) is a diagonal matrix 
for all [ , / )N0 1!~  [46]. Such a diagonal structure is characteris-
tic of multiband signals, which enables compression beyond 
sparsity. Likewise, since FN  is a DFT matrix, it implies a circulant 
structure in ( ) .x ~R r

Compare (38) with the expression y x
HU UR R= r r  from previ-

ous sections. We observe that ( )y ~R r  is the result of compressing 
the circulant matrix ( ) .x ~R r  A possible means of estimating the 
second-order statistics of [ ]x l  is, for example, by using sample 
statistics to estimate ( ),y ~R r  recon-
structing ( )x ~R r  using least squares, 
and finally recovering ( )x ~R  from 
(39) [46].

COOPERATIVE CCS
As mentioned in the section “Pre-
processing,” in certain cases, mul-
tiple sensors are used to observe a time signal in multiple spatial 
locations, which can result in improved convergence of the sam-
ple statistics [47]. Here, we show that this setting can also be used 
to introduce strong compression.

Suppose that a collection of sensors are deployed across a 
certain area to estimate the second-order statistics of a certain 
WSS time signal ( ) .x t  Although different sensors observe dif-
ferent signal values, we can assume that the second-order statis-
tics of the received signals are approximately the same for all 
sensors. This is the case, for example, if the channels from each 
signal source to all sensors (possibly after passing through an 
automatic gain control) have approximately the same statistics 
[21]. As before, let us collect those statistics in the Toeplitz 
covariance matrix .xR

We now describe a particularly interesting case where the sen-
sors use multicoset sampling. To do so, recall from the section “A 
Warm-Up Example” that, in the single-sensor case, xR  can be 
reconstructed from the covariance matrix of the compressed 
observations yR  if all the entries of xR  show up at least once in 

.yR  In the cooperative scenario, a milder condition may be 
imposed by capitalizing on the availability of multiple sensors. 

Let us form Z  groups of sensors by arranging together all the 
sensors that share the same multicoset sampling pattern. The 
sought condition can be given in terms of the matrices ,,y zR  

, , ,z Z0 1f= -  where ,y zR  represents the covariance matrix of 
the compressed observations at the sensors within the zth group. 
The requirement now is that, to reconstruct ,xR  every entry of 

xR  is only required to show up in at least one of the matrices 
{ } .,y z z

Z
0
1R =
-  This observation yields great compression improve-

ments per sensor, as the sampling burden is now distributed 
across sensors. 

To illustrate this effect, suppose that xR  is such that, in the 
noncooperative scenario, the optimum compression pattern 
M  for each block is a circular sparse ruler (see Table 1). In 
the cooperative setting, let Mz  denote the multicoset sam-
pling pattern used by all sensors in group ,z  and let ( )MzX  
represent the set containing all modular differences between 
elements of :Mz  

 ( ) {( ) :  , } .modm m N m m M Mz z!X = - l l  (40)

It can be shown that a collection of sampling patterns { }Mz z
Z

0
1
=
-  

ensures the identifiability of xR  if and only if [21]

 ( ) { , , , } .N0 1 1M
z

Z

z
0

1

fX = -
=

-

'  (41)

Clearly, for ,Z 1=  this condition reduces to the noncooperative 
condition, which requires M0  to be a circular sparse ruler. Each 

,Mz  , , ,z Z0 1f= -  is called an 
incomplete circular sparse ruler 
since it does not contain all possible 
differences between 0  and N 1-  
(see “Circular Sparse Rulers”). How-
ever, (41) clearly implies that, for 
every given integer modular distance 

{ , , , },n N0 1 1f! -  at least one of 
those incomplete circular sparse rulers can measure .n  An exam-
ple of collection of incomplete circular sparse rulers is the one 
composed of the sets { , , },0 1 6M0 =  { , , },0 2 10M1 =  and 

{ , , },0 3 7M2 =  represented geometrically in Figure 9. Observe 
that, as in the case of circular sparse rulers, each mark provides 
two distances, one clockwise and the other counterclockwise.

The next question is how to minimize the overall compression 
ratio. The idea is to minimize the number of marks in each ruler 
while satisfying (41). This task is intimately connected to the so-
called nonoverlapping circular Golomb rulers [21].

Alternative schemes for cooperative CCS include [48], which 
exploits the cross-correlation between observations at different 
sensors, and [37], where the observations are not only linearly 
compressed but also quantized to a single bit.

oPEn quEStIonS 
Despite the long history of structured covariance estimation and 
recent excitement on compressed sensing of sparse signals, 
research on CCS is still at an early stage. Extensive work is 
required to improve its applicability and theoretical understand-
ing. Some possible future directions are listed in this section.

As for sampler design, its most existing schemes rely on identifi-
ability criteria [8], [20], but other criteria are yet to be explored. For 
instance, it is important to find sampler designs minimizing the 
Cramér–Rao bound for unbiased estimation of the parameters of 
interest. Of special relevance are deterministic schemes maximizing 
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[FIG9] Incomplete circular sparse rulers used in a setting with 
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compression for a target estimation performance. Other sampling 
schemes, like gridless or continuous irregular sampling, are yet to 
be investigated from a CCS perspective. The problem becomes 
reconstructing second-order statistics when the sample locations 
are not a subset of a regularly-spaced grid. This problem differs from 
the existing literature on gridless or continuous sparse reconstruc-
tion, which aims to accurately recover sparse input signals.

Cooperative schemes also deserve extensive research. For 
instance, distributed implementations and data fusion techniques 
for CCS with affordable communication overhead need to be revis-
ited [37]. This includes schemes where sensors quantize their 
observations before reporting them to the fusion center. In this 
context, either the correlations or the raw data can be quantized. 
The latter is possible since under some conditions the correlation 
function of the original raw data can be computed from the correl-
ation function of the quantized data.

CCS may also be of critical relevance in big data analytics 
because of its ability to meaningfully reduce the dimension of the 
data set. In this context, online, adaptive and distributed imple-
mentations are yet to be devised. Moreover, as more big-data appli-
cations employ a network of high-dimensional signals for data 
mining and exploration, it is an interesting new direction to see 
how the CCS framework benefits covariance estimation problems 
for data-starved inference networks. Such problems arise under the 
umbrella of probabilistic analysis for high-dimensional data sets 
with many variables and few samples. 
As a precursor, sparse (inverse) covari-
ance estimation has already become a 
popular topic in statistical inference 
for analysis on graphs, where the 
sparsity of the (inverse) covariance 
matrix is exploited, in the context of 
correlation mining. When high-
dimensional or wideband random processes are concerned, CCS 
has been applied for covariance estimation based on the exploita-
tion of various structures in the data: Gaussianity, stationarity, and 
compression [49]. Fruitful exploration along this direction may 
lead to CCS for inference networks, which will find broad applica-
tions in analyzing astronomical data, network data, biomedical 
diagnostics, and video imaging, to name a few.

Finally, we highlight the relevance of extending the reviewed 
techniques to nonstationary process analysis, for instance, exploit-
ing the framework of underspread processes [50]. Future research 
may also consider nonlinear parameterizations as well as non-
linear compression.

ConCLuSIonS
This article presented a renewed perspective on a traditional 
topic in signal processing, which we dubbed CCS. We intro-
duced a joint signal acquisition and compression framework for 
a number of applications and problems that deal with second-
order statistics. The basic principle underlying CCS is that the 
desired signal statistics can be reconstructed directly from 
properly compressed observations without having to recover 
the original signal itself, which can be costly in terms of both 

computational and sensing resources. This standpoint entails 
multiple benefits, such as the possibility of introducing strong 
compression without need for sparsity, as required by com-
pressed sensing.
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