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Abstract—Distributed spectrum sensing improves the detection
reliability of a cognitive radio network but generally comes at the
price of a large power consumption. Since cognitive radios are
generally low-power sensors with limited batteries, a combined
censoring and sleeping scheme is considered as an energy-efficient
algorithm for distributed spectrum sensing. Each sensor switches
off its sensing module with a specific sleeping rate. When the
sensor is on, a censoring policy is employed to send the sensing
result to the fusion center. The result is only transmitted, if it is
deemed to be informative. Hence, the energy consumption of each
sensor, including the sensing and transmission energies, is reduced.
The underlying sensing parameters are derived by minimizing
the maximum average energy consumption per sensor subject
to a lower-bound on the global probability of detection and an
upper-bound on the global probability of false alarm. We analyze
the problem for the OR and the AND rule and provide a perfor-
mance analysis for a case study based on the IEEE 802.15.4/ZigBee
standard. It is shown that the combined censoring and sleeping
scheme achieves a significant energy saving compared to the case
where no censoring or sleeping is taken into account.

Index Terms—Energy-efficiency, combined censoring and sleep-
ing, distributed spectrum sensing, cognitive radio networks.

I. INTRODUCTION

DYNAMIC spectrum access employing cognitive radios
has been proposed, to opportunistically operate in un-

derutilized portions of the heavily licensed electromagnetic
spectrum [1], [2]. Cognitive radios opportunistically share the
spectrum, while avoiding any harmful interference to the pri-
mary licensed users. One major category of cognitive radios
yields the interweave cognitive radios [3]. In this category,
cognitive radios employ spectrum sensing to detect the empty
bands of the radio spectrum, also known as spectrum holes.
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Upon detection of such a spectrum hole, cognitive radios dy-
namically use this empty band. However, as soon as the primary
user appears in the corresponding band, cognitive radios have
to vacate the band and search for a new spectrum hole. This
way, reliable spectrum sensing becomes a key functionality of
a cognitive radio network.

Several algorithms have been investigated to perform spec-
trum sensing. Three of the most common techniques which
are considered in the literature are energy detection, cyclosta-
tionary feature detection and matched filtering [4]. Matched
filter detection is optimal in terms of the detection reliability.
However, perfect knowledge of the primary user signal as well
as the channel side information is required, which is often not
available at cognitive radios. Among the other two techniques,
energy detection has the lowest computational and implemen-
tation complexity, but is vulnerable to the noise uncertainty. On
the other hand, cyclostationary detection is more robust to the
noise uncertainty, but is computationally complex, and needs a
higher sensing time to deliver the same detection performance
as energy detection, when the noise uncertainty is not taken
into account. Note that in the presence of a noise uncertainty,
energy detection fails to detect the primary user below a specific
SNR independent of the number of observation samples [5].
An overview of the state-of-the-art in spectrum sensing for
cognitive radio is discussed in [6]. Due to its simplicity and
better mathematical tractability, here we employ energy detec-
tion for spectrum sensing. However, the algorithm discussed in
this paper, can also be employed for cyclostationary detection.

The hidden terminal problem and fading effects have been
shown to limit the reliability of single-user spectrum sensing.
Distributed cooperative detection has therefore been proposed
to improve the detection performance of a cognitive radio
network [7], [8]. Cognitive sensors sense the spectrum in
periodic sensing slots by collecting a number of observation
samples. The observation samples are then processed to provide
useful data for a fusion center (FC), which is responsible for
making the final decision about the presence or absence of
the primary user. The data which is received by the FC is
either soft processed data such as likelihood-ratio test (LRT)
results, or hard binary decisions, which are made by individual
cognitive users based on their observations. This way, two
distinctive categories of decision rules at the FC arise which
are known as soft and hard fusion rules. We refer the readers
to [9] for a comprehensive study of distributed detection with
soft and hard fusion rules. Due to its simplicity and higher
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energy-efficiency, a distributed detection scheme based on hard
fusion of local results is considered in this paper. Note that
each cognitive radio decides for the presence or absence of the
primary user exclusively based on the observations obtained in
the current sensing slot, and the FC also only takes the current
decisions of the cognitive radios into account ignoring all the
previous decisions. Further, [8] shows that for energy detection,
the detection performance of hard and soft fusion schemes is
comparable.

Cognitive radios often consist of low-power sensors and thus
energy consumption is another critical issue which should be
accounted for, in cognitive radio system design. Each cognitive
radio consumes energy on two fronts. First, a cognitive sensor
spends some energy on sensing by collecting the observation
samples and processing them. Second, some energy is con-
sumed to transmit data to the FC. In this paper, we intend to
design an energy-efficient spectrum sensing algorithm which
reduces both the sensing and the transmission energy, while
adhering to the desired detection performance of a cognitive
radio system. The desired detection performance is defined by a
lower-bound on the probability of detection and an upper-bound
on the probability of false alarm. This way, the primary users
are protected from the interference induced by the cognitive
radios and the spectrum opportunities are utilized efficiently.

As an energy-efficient algorithm for distributed spectrum
sensing, in [20], a combined sleeping and censoring scheme
is considered, which can be viewed as the predecessor of this
paper. A censoring policy ensures that only the informative
decisions are transmitted to the FC and non-informative ones
are censored. On top of censoring, a sleeping mechanism is
proposed where each cognitive radio turns off its sensing mod-
ule with a probability μ. The network energy consumption is
minimized subject to a constraint on the probability of detection
and false alarm. This approach is shown to reduce the network
energy consumption dramatically. Note that [20] is based on
minimizing the network energy consumption. However, in low-
power sensor networks, the individual energy consumption of
each sensor is a more critical factor. Hence, in this paper,
minimizing the maximum average energy consumption per
sensor shall be considered as the objective function. Further,
[20] only considers the OR rule as the fusion rule, while in this
paper, we shall include the AND rule as well.

As mentioned earlier, a combination of sleeping and censor-
ing is also considered in this paper. The goal is to minimize the
maximum average energy consumption per sensor subject to a
lower-bound on the probability of detection and an upper-bound
on the probability of false alarm. This way, a great amount
of energy is saved on sensing and transmission. The main
contributions and results of this paper are listed as follows

• A combined sleeping and censoring scheme is proposed
where each sensor turns off its sensing module with prob-
ability μ at each sensing period. In case the sensor is on,
then a censoring policy is employed to send the decisions
to the FC. As mentioned before, the cognitive radios make
a decision solely based on the current observations. If the
calculated energy is more than an upper threshold, λ2,
then the decision is that the primary user is present. If

the calculated energy turns out to be lower than a lower
threshold, λ1, then a decision is sent to the FC indicating
the absence of the primary user. Else, no decision is made
and nothing is sent to the FC. Afterward, the underly-
ing detection performance indicators including the global
probability of false alarm and detection are derived for
the OR and the AND rule. The problem is defined so as
to minimize the maximum average energy consumption
per sensor subject to a lower-bound on the probability of
detection and an upper-bound on the probability of false
alarm.

Further, it is shown that the optimal average energy
consumption per sensor is obtained when the lower
threshold is zero (λ1 = 0) for the OR rule and approach-
ing infinity (λ1 → ∞) for the AND rule. This way, one
of the three underlying arguments of the optimization
problem including λ1, λ2 and μ, is relaxed and the prob-
lem reduces to a two-dimensional optimization problem.
Further, it is shown that on top of reducing the main prob-
lem to a two-dimensional problem, using the interactions
between λ2 and μ, the problem can be reduced to a line-
search problem over μ. The readers may also find a shorter
version of this contribution in [41].

• Asymptotic properties of the OR and the AND rule are
discussed as the probability of the primary user absence
(or presence) approaches zero or one. It is shown that
the optimal average energy consumption per sensor de-
creases with the probability of the primary user absence
for the OR rule, thus achieving the lower-bound when
the primary user is always absent. While the optimal
average energy consumption per sensor increases with the
probability of the primary user absence for the AND rule,
thus achieving the upper-bound when the primary user is
always absent.

• Asymptotic properties of the OR and the AND rule are in-
vestigated as the signal-to-noise-ratio (SNR) approaches
infinity. It is shown that as the SNR approaches infinity,
the optimal solution of the underlying problems, deter-
mined by the optimal sleeping rate, becomes independent
from the value of the probability of the primary user
absence (or presence), as well as the sensing and transmis-
sion energies, and only depends on the maximum sleeping
rate in the feasible set of the underlying optimization
problem.

• We show that the algorithms which shall be provided in
this paper, are independent from the type of signal, as
far as the observations remain conditionally independent
among the sensors.

The remainder of the paper is organized as follows. We
discuss some related works in Section II. The system model and
detection scheme is presented in Section III and the combined
sleeping and censoring policies are introduced. In Section IV,
we shall formulate and analyze the underlying optimization
problem for the OR and AND rules, followed by some notes
on the implications of deterministic instead of statistical signal
and channel assumptions on the proposed scheme in Section V.
The numerical results are depicted in Section VI. We conclude
the paper in Section VII and discuss some ideas for future work.
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II. RELATED WORKS

Distributed detection based on censoring in sensor networks
is discussed in [10]–[12]. Two problem formulations are pro-
posed to derive the underlying parameters including the lower
and upper thresholds for censoring. The probability of miss
detection is minimized subject to a constraint on the probability
of false alarm and a constraint on the total network energy
consumption, in a Neyman-Pearson (NP) problem formulation,
while the probability of error is minimized subject to a con-
straint on the total network energy consumption in a Bayesian
problem formulation.

Censoring for spectrum sensing in cognitive radios is in-
vestigated in [13]–[15]. The paper [13] considers a censoring
rule to reduce the communication overhead of a cognitive
radio network which employs the OR rule at the FC. In [14],
analytical expressions for the sensing parameters are given
according to a NP setup for both soft and hard fusion schemes,
but unlike [10]–[12], no constraint on the energy consumption
is taken into account. A fixed-sample size censoring scheme, as
well as a combined censoring and sequential sensing scheme
are discussed in [15]. In the fixed-sample size censoring, the
number of observation samples per sensing period is fixed,
while in the combined censoring and sequential scheme, a
truncated sequential sensing technique is employed, where
the sensors sequentially collect observation samples until they
reach a decision about the presence or absence of the primary
user. It is shown that censored truncated sequential sensing
outperforms fixed-sample size censoring in terms of energy-
efficiency for the desired detection performance of the cognitive
radio system.

In [16], censoring for a collaborative cyclostationary detec-
tion scheme in cognitive radio networks is considered. The
proposed cyclostationarity detection scheme is a generalization
of [17], where sensors send their test statistics to the FC for
a final decision about the presence or absence of the primary
user. A similar censoring rule as in [10] and [12] is employed,
to only transmit the test statistics which are deemed to be
informative. It is shown that this way, the communication
overhead reduces significantly, while the performance loss is
low. One of the key advantages of collaborative cyclostationary
detection is its robustness to the noise uncertainty. Employing
the cooperative cyclostationary detection approach proposed in
[16] as the sensing technique in the combined censoring and
sleeping scheme of this paper, gives an even more energy-
efficient reliable spectrum sensing technique at low SNR.

The mutual information between the state of signal occu-
pancy and the decision state of the FC for a combination of
censoring and sleeping is presented in [18]. However, the
energy-efficiency of the system is not directly addressed. A
sleeping technique is employed in [19] where the sleeping pol-
icy is controlled by learning from the past channel observations.

A joint sensing and decision node selection scheme is con-
sidered in [21]. The network energy consumption is minimized
subject to a detection performance constraint defined as in
[20], to determine the sensing nodes from a pool of cognitive
radios and subsequently the decision nodes from the selected
sensing nodes. The decision nodes are the nodes which send

Fig. 1. Distributed spectrum sensing configuration.

their result to the FC. Since the problem is to be solved by
integer programming and such problems are in general NP hard,
a convex relaxation is proposed to solve the problem as a real
problem and later on map the solution from [0, 1] to {0, 1}.

Finally, we discuss some recent works related to energy-
efficient spectrum sensing which are not directly related to the
setup presented in this paper, but are still valuable to discuss to
provide an overview about the current state-of-the-art. A joint
clustering and confidence voting technique is proposed in [22].
The sensors only participate in voting if they are confident about
their decision. Further, by clustering, the transmission distance
and hence the transmission energy is reduced even further.
Clustering can also be combined with the proposed technique
in this paper to achieve an even higher energy efficiency. The
sensing-throughput trade-off is analyzed in [23] considering
a detailed analysis of the circuit-level power consumption in-
cluding the energy consumed in the power amplifier, ADC and
low-noise amplifier. The total circuit energy consumption is
minimized subject to a data rate constraint, to determine the
sensing parameters. Optimization of the network throughput
for energy-constrained cognitive radios is considered in [24]
and [25]. Further, [26] maximizes the energy efficiency of a
cognitive radio network by determining the sensing order, the
sensing stopping time and the access transmission power of the
cognitive users with dynamic programming. Similar energy-
efficient sensing-access strategies are also considered in [27]
and [28].

III. SYSTEM MODEL

We consider a network of M cognitive radios. Each cognitive
radio senses the spectrum in periodic time slots by collecting
N samples in each sensing slot, and it possibly sends a local
decision to the FC exclusively based on the current observa-
tions. The final decision is then made at the FC only based
on the current decisions, and fed back to the cognitive radios
for further action. Due to its low latency and robustness to link
failure, a parallel configuration as shown in Fig. 1 is employed
for distributed spectrum sensing. Denoting H0 and H1 as the
absence and the presence of the primary user, each cognitive
radio solves a binary hypothesis testing problem as follows

H0 : rij =wij , i = 1, . . . , N, j = 1, . . . ,M
H1 : rij =hijsi + wij , i = 1, . . . , N, j = 1, . . . ,M (1)

where rij denotes the i-th sample received at the j-th cognitive
user, si is the primary user signal, hij is the channel gain
between the primary user and the j-th cognitive radio, and wij
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is additive white Gaussian noise with zero-mean and variance
σ2
w. Two models for si and hij are assumed. First, the signal

is assumed to be an i.i.d. Gaussian random variable with
zero-mean and variance σ2

s and hij is constant during each
sensing slot, i.e., ∀ i ∈ 1, . . . , N : hij = hj which represents
a slow-fading channel with Gaussian symbols. An example
of such a model can be an OFDM signal which experiences
flat-fading (note that OFDM signal can be modeled by zero-
mean Gaussian distribution [29]). In the second model, the
signal amplitude and phase is assumed to be constant, i.e.,
|si| = s and the channel gain hij is assumed to be an i.i.d.
Gaussian random variable with zero-mean and variance σ2

h,j

which represents a fast-fading channel, e.g. a BPSK signal
experiencing a fast-fading channel. This way, denoting γj to
be the received average SNR at the j-th cognitive radio, γj =
|hj |2σ2

s/σ
2
w under the first model and γj = σ2

h,js
2/σ2

w under
the second model. Cognitive radios are not able to estimate the
instantaneous channel gain, because the primary user training
sequence is generally not available at the secondary users, and
further, synchronization with the primary user signal is very
difficult as the cognitive radios are not aware of the presence
or absence of the primary user at a specific time. However, the
received average SNR can be estimated and thus, throughout
this paper, we focus on the average received SNR instead
of the instantaneous one. We assume that the expected SNR
in case of primary user presence is time-invariant during the
cognitive radio activity, and can be obtained either through
radio environment mapping (REM) [30], or estimated in the
beginning of the process [31]. Note that under both models, the
received signal remains an i.i.d. zero-mean Gaussian random
process with some variance, namely σ2

j = |hj |2σ2
s + σ2

w for
the former model and σ2

j = s2σ2
h,j + σ2

w for the latter model.
Therefore, the analyses which are given in the following sec-
tions are valid for both models. Furthermore, hijsi and wij are
assumed statistically independent. Similar signal modeling is
frequently used in cognitive radio literature, e.g. [32]–[34]. We
shall discuss the implications of a deterministic scenario on our
scheme in Section V.

Each cognitive radio accumulates the energy of N samples
by employing an energy detector. Considering the adopted
system model in this paper, the energy detector is equivalent
to the optimal log-likelihood-ratio (LLR) detector [35]. The
received energy collected over the N observation samples at
the j-th radio is given by

Ej =
N∑
i=1

|rij |2
σ2
w

. (2)

A censoring policy is then employed at each radio where the
local decisions are sent to the FC, only if they are in a specific
information region. The censoring policy is defined by the
censoring thresholds λ1 and λ2, and the range λ1 < Ej < λ2

is called the censoring region. This way, the local censoring
decision rule at the j-th cognitive radio is given by⎧⎪⎨

⎪⎩
send 1, declaring H1 if Ej ≥ λ2,

no decision if λ1 < Ej < λ2,

send 0, declaring H0 if Ej ≤ λ1.

(3)

Since the received samples are i.i.d. Gaussian with zero-
mean, Ej follows a central chi-square distribution with 2N
degrees of freedom under H0 and H1. Therefore, the local
probabilities of false alarm and detection, respectively become

Pf,j = Pr(Ej ≥ λ2|H0) =
Γ
(
N, λ2

2

)
Γ(N)

, (4)

and

Pd,j = Pr(Ej ≥ λ2|H1) =
Γ
(
N, λ2

2(1+γj)

)
Γ(N)

, (5)

where Pr denotes probability and Γ(a, x) is the incom-
plete gamma function given by Γ(a, x) =

∫∞
x ta−1e−tdt, with

Γ(a, 0) = Γ(a). To achieve a higher energy saving, on top of
censoring, a sleeping policy is applied. Each sensor turns off
its sensing module randomly with a sleeping rate denoted by μ.
This process can be implemented in each sensor by ordering the
sleep/awake slots such that the number of sleep slots is μ times
the total number of sensing slots. The ordering should be totally
random and independent from other sensors. Denoting by Cs

and Ct the energy consumed by the j-th radio in sensing per
sample and transmission per bit, respectively, our cost function
is given by the average energy consumption per sensor as
follows

Cj = (1− μ) (NCs + Ct(1− ρj)) , (6)

where ρj = Pr(λ1 < Ei < λ2) represents the censoring rate. It
is assumed that μ �= 0 and ρj �= 0. Note that in this paper, the
transmission and sensing energy of the sensors is assumed to be
the same. In practice, this assumption holds when the sensors
employ similar radio transceivers. Further, the sensors consume
energy during wake-up and idle periods as well. However,
these energy sinks are much smaller than the amount of energy
spent on the transmission and sensing procedures. Therefore,
in this paper, the energy consumption model includes only the
transmission and sensing energies, which can be considered
as a good approximation of the complete energy consumption
model and provides a good platform for further analytical work.
Defining π0 = Pr(H0), π1 = Pr(H1), δ0,j = Pr(λ1 < Ej <
λ2|H0) and δ1,j = Pr(λ1 < Ej < λ2|H1), the censoring rate
is given by

ρj =π0Pr(λ1 < Ej < λ2|H0) (7)
+ π1Pr(λ1 < Ej < λ2|H1) (8)

=π0δ0,j + π1δ1,j , (9)

where δ0,j and δ1,j are obtained as follows

δ0,j = Pr(λ1 < Ej < λ2|H0) (10)

=
Γ
(
N, λ1

2

)
Γ(N)

−
Γ
(
N, λ2

2

)
Γ(N)

, (11)

δ1,j = Pr(λ1 < Ej < λ2|H1) (12)

=
Γ
(
N, λ1

2(1+γj)

)
Γ(N)

−
Γ
(
N, λ2

2(1+γj)

)
Γ(N)

. (13)
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Note that Pf,1=Pf,2= · · ·=Pf,M =Pf and δ0,1 = δ0,2 =
· · · = δ0,M = δ0 due to the fixed noise variance over the dif-
ferent cognitive radios. However, this is not true for Pd,j and
δ1,j . So from now on, we will simply use Pf and δ0. The FC
employes either the OR or the AND rule to make the final
decision about the presence or absence of the primary user. This
means that the FC shall decide for the presence of the primary
user, if at least one cognitive radio votes in favor of H1 for
the OR rule, and for the absence of the primary user if at least
one cognitive radio votes in favor of H0 for the AND rule. In
the following section, we shall derive the global probabilities of
false alarm and detection for both rules. Further, we provide the
corresponding analyses and problem formulations in detail for
each rule.

IV. ANALYSIS AND PROBLEM FORMULATION

As mentioned earlier, the cognitive radio should avoid harm-
ful interference to the primary user. A constraint on the global
probability of detection denoted by QD is thus dictated to
satisfy this requirement. Further, to increase the cognitive net-
work throughput, correct detection of a spectrum hole is very
important and thus the probability of false alarm denoted by
QF shall be designed to be as low as possible. Ideally, we
would like QD = 1 and QF = 0. However, in real systems,
such an ideal case is impossible. Therefore, we define an upper-
bound denoted by α for QF and a lower-bound denoted by
β for QD. Our goal is then to design the system parameters
including λ1, λ2 and μ by minimizing the maximum average
energy consumption per sensor subject to a constraint on the
probabilities of false alarm and detection, as follows

min
μ,λ1,λ2

max
j

Cj

s.t. QF ≤ α, QD ≥ β. (14)

Depending on the prior knowledge about the a priori proba-
bilities, π0 and π1, we consider two different cases: a) a blind
setup, where π0 and π1 are unknown, but π1 is known to
be much smaller than π0, reflecting channel under-utilization.
And b) a knowledge-aided setup where π0 and π1 are known.
As shall be shown later, the blind setup is a special case
of the knowledge-aided setup, where π1 → 0. Note that the
blind setup could also be defined as the case where π1 	 π0,
however this scenario is not of practical interest in cognitive
radio applications. Therefore, without loss of generality, here,
we focus on the analysis and problem formulation for the
knowledge-aided setup.

In this section, first, we derive QF and QD, followed by an
analysis of (14) for the OR rule in Section IV-A, and then we
follow the same rationale for the AND rule in Section IV-B.
Finally, we discuss the asymptotic properties of combined
censoring and sleeping for the OR and the AND rules as the
SNR approaches infinity in Section IV-C.

A. OR Rule

In this subsection, the FC employs the OR rule to make the
final decision. Denoting DFC to be the decision made at the FC,
the OR rule means that DFC = 1 if at least one cognitive radio

sends a 1, else DFC = 0. This way, the global probability of
false alarm QF,OR for the OR rule is obtained by

QF,OR = Pr(DFC = 1|H0) (15)
= 1− Pr(DFC = 0|H0) (16)
= 1− [1− (1− μ)Pf ]

M , (17)

where Pf is given by (4). This can be easily explained by
the OR rule based global probability of false alarm when
considering (1− μ)Pf to be the local probability of false alarm
including the sleeping policy. Note that the false alarm and
detection rates are independent from censoring, because if a
sensor does not transmit a result to the FC, the FC assumes
that the decision of this sensor is zero.

The global probability of detection QD,OR for the OR rule
can be derived in a similar way, and results in

QD,OR = Pr(DFC = 1|H1) (18)
= 1− Pr(DFC = 0|H1) (19)

= 1−
∏M

j=1
[1− (1− μ)Pd,j ] , (20)

where Pd,j is given by (5). This also can be explained by the
OR rule based global probability of detection when considering
(1− μ)Pd,j to be the local probability of detection including
the sleeping policy.

To analyze (14) for the OR rule, it is more convenient to
rewrite it in the following format

min
μ,λ1,λ2

max
j

(1− μ) [NCs + Ct(1− ρj)]

s.t. 1− [1− (1− μ)Pf ]
M ≤ α, (21)

1−
M∏
j=1

[1− (1− μ)Pd,j ] ≥ β. (22)

Since for the OR rule, the FC only decides on the presence of
the primary user by receiving 1s, sending 0s is not optimal in
terms of energy efficiency. Therefore, λ1 = 0 is the optimal
solution to (21). Using this result, we can relax one of the
arguments of the problem. When λ1 = 0, we obtain

1− δ0 = Pf , 1− δ1,j = Pd,j . (23)

Hence, (21) is given by

min
μ,λ2

max
j

(1− μ) [NCs + Ct(π0Pf + π1Pd,j)]

s.t. 1− [1− (1− μ)Pf ]
M ≤ α, (24)

1−
M∏
j=1

[1− (1− μ)Pd,j ] ≥ β. (25)

Since μ, λ2 (and thus Pf ), Cs, and Ct are the same among
the sensors, the maximum average energy consumption belongs
to the sensor with maximum probability of detection. This in
turn is acheived by the user with the maximum SNR. There-
fore, denoting j∗ as the user with maximum average energy
consumption, we obtain j∗ = max

j
(γj). Note that since the

expected SNR is assumed to be time-invariant, j∗ is also time-
invariant. From (21), we can see that if the values Cs and Ct are
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different among the sensors, determining the user with the max-
imum average energy consumption becomes dependent on the
specific values of μ and ρ. In this situation, solving the min-max
problem becomes mathematically intractable. Therefore, we
need to apply a seemingly sub-optimal approach called person-
by-person optimization in each individual sensor by minimizing
the average energy consumption, and then determine μ and ρ
from the sensor which delivers the maximum minimum average
energy consumption among the sensors. Considering j = j∗,
for a fixed value of μ = μ∗, (24) reduces to the following
problem

min
Pf

(1− μ∗) [NCs + Ct(π0Pf + π1Pd,j∗)]

s.t. Pf ≤ 1− (1− α)1/M

(1− μ∗)
, (26)

1−
M∏
j=1

[1− (1− μ∗)Pd,j ] ≥ β, (27)

where we exchanged λ2 in (24) with Pf , because λ2 is a one-

to-one function of Pf [36]. Defining F (λ2) =
Γ
(
N,

λ2
2

)
Γ(N) , we

can write Pd,j∗ as Pd,j∗ = F (λ2/(1 + γj∗)). Calculating the

derivative of Cj∗ with respect to Pf , we find that ∂Cj∗
∂Pf

= (1−
μ∗)

∂[Ct(π0Pf+π1Pd,j∗ )]
∂Pf

= (1− μ∗)[Ctπ0 +
∂Pd,j∗
∂Pf

] ≥ 0 where

we used the fact that ∂Pd,j∗
∂Pf

≥ 0. This way, minimizing Pf

leads to minimizing Pd,j∗ and thus minimizing the objective
function in (26). Therefore we can write (26) as follows

min
Pf

Pf

s.t. Pf ≤ 1− (1− α)1/M

(1− μ∗)
, (28)

1−
M∏
j=1

[1− (1− μ∗)Pd,j ] ≥ β. (29)

Looking at (28) we can find that

F
(
G−1(μ∗, β)

)
≤ Pf ≤ α′/(1− μ∗), (30)

where G(μ, λ2)=QD,OR=1−
∏M

j=1[1− (1− μ)Pd,j ], α′=

1− (1− α)1/M , and G−1(μ, β) is defined over the second
argument of G(μ, β). Thus, we find that for every μ∗ for which
F (G−1(μ∗, β)) ≤ α′/(1− μ∗), the solution to (28) is given
by P ∗

f = F (G−1(μ∗, β)). Therefore, our optimization problem
reduces to the following line search problem which we solve by
exhaustive search over μ,

min
μ

(1− μ)
[
NCs + Ct

(
π0F

(
G−1(μ, β)

)
(31)

+π1F
(
G−1(μ, β)/(1 + γj∗)

))]
.

(32)

Looking carefully at (31), we find that we can use the same
optimization problem for the blind setup by considering π0 = 1
(π1 = 0). In other words, the blind setup is just a special case

of the knowledge-aided setup. This is the approach that we will
adopt in the simulations for both setups. Further, the following
theorem leads to some results regarding the asymptotic proper-
ties of (31) when π0 approaches zero or one.

Theorem 1: If π0 increases, then the optimal Cj decreases
for the OR rule.

Proof: The proof is provided in Appendix A.
Two immediate corollaries of Theorem 1 which describe the

asymptotic properties of (31) are as follows:
Corollary 1: The lower-bound on the optimal average energy

consumption per sensor in (31) is obtained for π0 = 1 or when
the primary user is always absent.

Corollary 2: The upper-bound on the optimal average energy
consumption per sensor in (31) is obtained for π0 = 0 or when
the primary user is always present.

B. AND Rule

Here, we analyze the performance of the combined sleeping
and censoring for the AND rule. As in Section IV-A, we provide
the analysis for the knowledge-aided case. The analysis for the
blind problem formulation is then straightforward. According
to the AND rule, DFC = 0, if at least one cognitive radio
reports a zero, else DFC = 1. Note that for the AND rule, if
the FC receives no decision from the j-th cognitive user, it
automatically considers this decision to be 1. This way, the
global probabilities of false alarm and detection are obtained
as follows

QF,AND = Pr(DFC = 1|H0) (33)

= [μ+ (1− μ)(δ0 + Pf )]
M (34)

= [1− (1− μ)(1− δ0 − Pf )]
M , (35)

QD,AND = Pr(DFC = 1|H1) (36)

=
∏M

j=1
[μ+ (1− μ)(δ1,j + Pd,j)] (37)

=
∏M

j=1
[1− (1− μ)(1− δ1,j − Pd,j)] . (38)

These derivations can be easily explained by the AND rule
based global probabilities of false alarm and detection when
considering 1− [(1− μ)(1− δ0 − Pf )] and 1− [(1− μ)(1−
δ1,j − Pd,j)] to be the local probabilities of false alarm and
detection including the sleeping and censoring policies, respec-
tively. Note that for the AND rule, the FC considers any result
except 0 as 1. Therefore, from the FC viewpoint, a false alarm
(or detection) at the j-th cognitive radio occurs if the received
result is not 0 when the primary user is absent (or present). This
happens if the sensor goes to sleep mode at a specific sensing
time, or if awake, the sensor either censors the result or sends
a 1 to the FC. That is why for the AND rule, the censoring
rate plays a role in the global probabilities of false alarm and
detection which is not the case for the OR rule.

We define our problem to find the underlying arguments
(λ1, λ2, μ), so as to minimize the maximum average energy
consumption per sensor subject to a constraint on the probabili-
ties of false alarm and detection. As in the previous scenario, the
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constraints on the probabilities of false alarm and detection are
defined by an upper-bound α and a lower-bound β, respectively.
This way, the problem is written as follows

min
μ,λ1,λ2

max
j

Cj

s.t. QF,AND ≤ α,QD,AND ≥ β. (39)

Since the FC decides for H0 only by receiving zeros, the
optimal solution of (39) is attained by λ2 → ∞. This way, the
global probabilities of false alarm and detection reduce to

QF,AND = [1− (1− μ)(1− δ0)]
M , (40)

QD,AND =

M∏
j=1

[1− (1− μ)(1− δ1,j)] . (41)

Inserting (40) and (41) in (39) and relaxing λ2 using the fact
that λ2 → ∞ is optimal, we obtain

min
μ,λ1

max
j

(1− μ) (NCs + Ct(1− ρj))

s.t. [1− (1− μ)(1− δ0)]
M ≤ α, (42)

M∏
j=1

[1− (1− μ)(1− δ1,j)] ≥ β, (43)

where ρj = π0δ0 + π1δ1,j . Since there is a one-to-one relation
between λ1 and δ0, we can rewrite (42) as follows

min
μ,δ0

max
j

(1− μ) (NCs + Ct(1− π0δ0 − π1δ1,j))

s.t. [1− (1− μ)(1− δ0)]
M ≤ α, (44)

M∏
j=1

[1− (1− μ)(1− δ1,j)] ≥ β, (45)

Since all the parameters in Cj are the same among the sensors
except δ1,j , unlike the OR rule, the user with the minimum
SNR consumes the maximum amount of energy in average.
Therefore, j∗ = min

j
γj . As in the OR rule, if Cs and Ct be-

come different among the sensors, a similar person-by-person
optimization can be applied. Considering j = j∗, for a given
μ = μ∗, (44) becomes

min
δ0

(1− μ∗) (NCs + Ct(1− π0δ0 − π1δ1,j∗))

s.t. [1− (1− μ∗)(1− δ0)]
M ≤ α, (46)

M∏
j=1

[1− (1− μ∗)(1− δ1,j)] ≥ β. (47)

Since δ1,j∗ is a monotone increasing function of δ0, the
optimal solution of (46) is obtained by solving the following

problem

max
δ0

δ0

s.t. [1− (1− μ∗)(1− δ0)]
M ≤ α, (48)

M∏
j=1

[1− (1− μ∗)(1− δ1,j)] ≥ β. (49)

Therefore, if the feasible set of (48) is not empty, then
the maximum δ0 in this feasible set determines the opti-
mal δ0. From the first constraint in (48), we find δ0 ≤ 1−
1−α1/M

1−μ∗ . Assuming QD,AND = G(μ, δ0), we have ∂G(μ,δ0)
∂δ0

=
∂G(μ,δ0)

∂δ1,j

∂δ1,j
∂δ0

≥ 0, where we used the fact that ∂G(μ,δ0)
∂δ1,j

≥ 0.
This way, from the second constraint in (48), we obtain δ0 ≥
G−1(μ∗, β), where the inverse function is defined over the
second argument in G(μ, δ0). Based on this discussion, (48)
reduces to max

δ0
δ0 subject to G−1(μ∗, β) ≤ δ0 ≤ 1− 1−α1/M

1−μ∗ .

Therefore, the optimal δ0 is obtained by δ0 = 1− 1−α1/M

1−μ∗ .
Inserting the optimal δ0 for a given μ in (44), we obtain the
following line search problem to determine the optimal μ and
consequently δ0 and λ1 which is solved by exhaustive search.

μ
min(1−μ)

[
NCs+Ct

(
1−π0

(
1− 1− α1/M

1− μ

)
(50)

−π1Fj∗,AND

(
1− 1−α1/M

1−μ

))]
(51)

where Fj∗,AND(δ0) = δ1,j∗(δ0) = F (F−1(δ0)/(1 + γj∗)). In
search for the optimal μ, we should note that μ ≤ α1/M

which comes from the fact that 1− 1−α1/M

1−μ ≥ 0 and also

G
(
μ, 1− 1−α1/M

1−μ

)
≥ β. Further, the following theorem leads

to some results regarding the asymptotic properties of (50)
when π0 approaches zero or one.

Theorem 2: If π0 decreases, the optimal Cj decreases for the
AND rule.

Proof: The proof is provided in Appendix B.
Two immediate corollaries of Theorem 2 which describe the

asymptotic properties of (50) are as follows:
Corollary 3: The lower-bound on the optimal average energy

consumption per sensor in (50) is obtained for π0 = 0 or when
the primary user is always present.

Corollary 4: The upper-bound on the optimal average energy
consumption per sensor in (50) is obtained for π0 = 1 or when
the primary user is always absent.

We note that asymptotic properties of the AND rule are
opposite to those of the OR rule in Corollaries 1 and 2. These
corollaries as well as the ones in Section IV-A provide the
achievable performance boundaries for the combined censoring
and sleeping scheme for the OR and the AND rule. They are
particularly important in situations where the exact probability
of the primary user absence or presence is not known, such as in
the blind setup defined in this paper, where we know that π0 	
π1. In such situations, depending on the value of π0, we can use
either the lower or the upper bound. For example, as shall be
shown in Section VI-A, in case of the blind setup, we use the
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lower-bound on the optimal average energy consumption per
sensor in (31) for the OR rule, and the upper-bound in (50) for
the AND rule, which are corresponding to Corollaries 1 and 4,
respectively.

C. Asymptotic Properties of the OR and AND Rules
When γj → ∞

The following theorem which is proved in Appendix C de-
scribes the asymptotic properties of combined censoring and
sleeping when the SNR approaches infinity. Note that this
analysis is preformed merely to gain analytical insight in to the
proposed scheme at extreme values of the SNR. In practice such
a situation is possible when the cognitive radios are either in the
close range of the primary user, or there is a line of sight (LOS)
channel to the primary user.

Theorem 3: If ∀ j : γj → ∞, the optimal solution to (31) and
(50) is obtained by the maximum sleeping rate μ, in the feasible
set of (31) and (50), respectively.

Therefore, when the SNR is high, using Theorem 3, a sub-
optimal solution can be obtained which is close to the optimal
solution.

V. SOME NOTES ON THE DETERMINISTIC SCENARIO

So far, we have focused on the two models which are
described under (1) in Section III, where the received samples
at each sensor are generated by an i.i.d. Gaussian random
process with zero-mean under H0 and H1. In this section,
we assume a model where the channel is time-invariant, i.e.,
∀i : hi,j = hj and the signal is deterministic, i.e., |si| = s. In
this case, the received samples at the sensors are not zero-mean
anymore under H1. This case can be considered as an unknown
deterministic signal detection scenario such as the one in [37],
employing an energy detector. This scenario represents a case
where symbol duration is comparable to channel coherence
time [31]. The received SNR at the j-th cognitive radio in this
case is γj = |hj |2|s|2/σ2

w.
Employing the energy detector in (2), Ej follows a chi-

square distribution with 2N degrees of freedom under H0

and a non-central chi-square distribution with 2N degrees of
freedom and non-centrality parameter γj under H1. This way,
the local probabilities of false alarm and detection at the j-th
cognitive sensor, denoted by Pf,det,j and Pd,det,j , respectively,
are obtained as follows

Pf,det,j =Pr(Ej ≥ λ2|H0) =
Γ
(
N, λ2

2

)
Γ(N)

, (52)

Pd,det,j =Pr(Ej ≥ λ2|H1) = Q2N

(√
2γj ,

√
λ2

)
, (53)

where Qu(c, x) is the generalized Marcum Q-function,

Qu(c, x) =
1

cu−1

∫∞
x tue−

t2+c2

2 Iu−1(ct)dt, with Iu−1(.) being
the modified Bessel function of the first kind and order u− 1.
The rest of the analysis, which is discussed in Section IV,
is independent from the type of samples which are received
at the sensors, as long as they are conditionally independent.
Therefore, to solve (14) and (39) for the deterministic scenario,

Fig. 2. Optimal sleeping and censoring rate for α = 0.1 and 0.9 ≤
β ≤ 0.99.

we only need to substitute (52) and (53) instead of (4) and (5)
in the related equations. Note that here, the exact solution to the
underlying problems is not necessarily the sames as for random
signals, but the algorithms to solve the problems are similar.

VI. NUMERICAL RESULTS

In this section, we first analyze the performance of the system
numerically by assuming some arbitrary values for the sensing
and transmission energy in Section VI-A. A case study is then
discussed to evaluate the energy-efficiency of the proposed
scheme in Section VI-B.

A. Numerical Analysis

A network of five cognitive radios is considered. Each cogni-
tive radio receives the primary user signal with an average SNR
of γ = 10 dB and the number of observation samples is equal
to N = 5. Here, the goal is to analyze the behavior of the op-
timal censoring and sleeping rate as the detection performance
constraint of the system changes. Further in Figs. 2 and 3, in
one scenario, the sensing and transmission energy is assumed
to be the same and in the other one, the transmission energy is
assumed to be 100 times larger than the sensing energy.

The optimal censoring and sleeping rates are depicted in
Fig. 2 for different values of β and α = 0.1. We can see that
as the transmission energy increases with respect to the sensing
energy, the censoring rate increases while the sleeping rate
decreases for the OR rule. The reason is that as the transmission
energy becomes larger than the sensing energy, the combined
censoring and sleeping scheme tends to save more energy on
transmission compared to the one on sensing. Although the
same trend can be observed for the AND rule, the optimal
censoring and sleeping rates for the AND rule are approx-
imately the same for the different sensing and transmission
energies. As discussed in Section IV-C, this behavior comes
from the fact that at high SNRs, the optimal parameters of
the underlying problem become independent from the values
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Fig. 3. Optimal sleeping and censoring rate for 0.03 ≤ α ≤ 0.1 and
β = 0.9.

Fig. 4. Optimal average energy consumption per sensor versus the sensing
energy with α = 0.1, β = 0.99, Ct = 1. The AND rule outperforms the OR
rule after a specific Cs.

of the sensing and transmission energies. Further, it seems this
behavior appears at lower SNRs for the AND rule with respect
to the OR rule.

The same behavior as in Fig. 2 is shown in Fig. 3, where
the optimal censoring and sleeping rates for 0.03 ≤ α ≤ 0.1
and β = 0.9 are depicted. Similar to Fig 2, we can see that as
the transmission energy increases with respect to the sensing
energy, the optimal censoring rate increases while the sleeping
rate decreases. Again we can see that due to the high SNR,
for the AND rule, the optimal censoring and sleeping rates are
approximately the same for different values of the sensing and
transmission energies.

In Fig. 4, the optimal average energy consumption per sensor
is depicted versus the sensing energy Cs for π0 = 0.2 and π0 =
0.8, to compare the performance of the OR and the AND rule.
In this figure, M = 5, N = 5, γ = 10 dB, α = 0.1 and β =
0.99, Ct = 1 and Cs changes from 0 to 10. We can see that the

Fig. 5. Comparison of energy consumption versus the probability of detection
constraint. Significant energy savings can be achieved.

AND rule outperforms the OR rule as Cs increases. Therefore,
for the desired constraints on the probability of detection and
false alarm in this figure, the AND rule seems a better choice
compared to the OR rule, particularly when the sensing energy
is much higher with respect to the transmission energy.

B. Case Study for IEEE 802.15.4/ZigBee

We consider a case study based on IEEE 802.15.4/ZigBee to
evaluate the performance of combined sleeping and censoring.
A circular network of M cognitive radios is considered where
cognitive radios are uniformly distributed around the circle and
the FC is located at the center. The radius of the circle and
thus the distance between each cognitive radio and the FC is
assumed to be 70 m. Each cognitive radio is a Chipcon CC2420
transceiver which operates according to the IEEE 802.15.4/
ZigBee standard [38]. The sensing and transmission energy
is calculated based on the specification of this transceiver. A
free-space path loss model is employed to model the wireless
channel between the cognitive radio and the FC and this leads
to a signal attenuation which is inversely proportional to the
square of the distance d between the transmitter and receiver.
The number of samples is assumed to be N = 5, which cor-
responds to a sensing time of 1 μs. The total sensing energy
consisting of listening and processing energy for 5 samples is
derived in [20] and is roughly equal to 5Cs = 190 nJ. Following
the same model as in [20], the transmission energy for a range
of 70m and transmission of a one-bit decision, is approximately
Ct = 278 nJ. Note that the transmission energy is derived to
satisfy a receiver sensitivity of −90 dBm at a SNR of 10 dB.

Fig. 5 depicts the optimal average energy consumption per
sensor versus the probability of detection constraint, β. The
number of cognitive radios is M = 5, the probability of false
alarm constraint α = 0.1 and 0.9 ≤ β ≤ 0.99. We let π0 to
adopt three values including {0.2, 0.8, 1} reflecting the cases
where the probability of primary user absence is low, high,
and extremely high, respectively. We can see that the combined
censoring and sleeping scheme delivers a high energy saving
compared to the scenario where no energy-efficient scheme is
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Fig. 6. Optimal censoring and sleeping rate versus the probability of detection
constraint.

considered. We further notice that the AND rule outperforms
the OR rule for low values of π0 reflecting the lower chance of
reporting a 0 and thus a higher censoring rate compared to the
OR rule as shown in Fig. 6. The opposite trend is shown for the
case where π0 is high. For example, except for the high values
of β, the OR rule outperforms the AND rule when π0 = 0.8.
For the extremely high values of π0, it is shown that the OR rule
always outperforms the AND rule with much higher censoring
rate as shown in Fig. 6. It is also shown that in accordance
to Corollary 1 the lower-bound on the optimal average energy
consumption per sensor for the OR rule is achieved when π0 =
1. Further, Theorems 1 and 2 are also verified in Fig. 5. The
optimal average energy consumption per sensor increases with
π0 for the AND rule and decreases with π0 for the OR rule.

Fig. 6 shows the optimal censoring and sleeping rate ver-
sus the probability of detection constraint β for the same
parameters as in Fig. 5. This figure helps us in understanding
the observed behaviors in Fig. 5. It is shown that under the
considered parameters in this scenario, due to the high SNR,
the sleeping rate has the same value for different a priori
probabilities π0 and π1 as well as for the blind setup. This
behavior verifies the discussion in Section IV-C. Further, we
can see that the censoring rate increases with π0 and is the
largest for π0 = 1 for the OR rule and that is why the blind setup
(which assumes π0 	 π1) gives the lower-bound on the energy-
efficiency of the combined censoring and sleeping scheme. The
opposite behavior can be observed for the AND rule as π0

increases. Note that here and in the rest of this section, our
goal is not to compare the performance of the knowledge-aided
and blind setups, but to just show the expected performance of
the proposed algorithm under each setup. When we refer to the
blind setup, we intend to study the performance of combined
censoring and sleeping asymptotically as π0 → 1.

The optimal average energy consumption per sensor is drawn
in Fig. 7 versus the number of cognitive radios. In this figure,
the global probabilities of false alarm and detection are assumed
to be α = 0.1 and β = 0.9. Again it is shown that combined
censoring and sleeping is very promising in terms of energy-
efficiency with respect to the scenarios where no energy-
efficiency is taken into account. We can see that as the number

Fig. 7. Energy scaling with number of cognitive sensors for different setups.
Increasing the number of cognitive radios reduces the energy burden of individ-
ual cognitive radios.

Fig. 8. Expected life-time of the sensors, with CT = 1000 J, Ts = 1 μs, α =
0.1, β = 0.9.

of cognitive radios increases, the system gains a higher energy
saving, reflecting a lower burden on the individual cognitive
radios. As in Fig. 5, the AND rule outperforms the OR rule
in low values of π0, while the OR rule outperforms the AND
rule for high values of π0. We can see again that the lower-
bound on the optimal average energy consumption per sensor
for the OR rule is achieved when π0 = 1. Figs. 5 and 7 show
that the average energy consumption per sensor in each sensing
slot can be reduced significantly which in turn increases the
expected life-time of the sensors. Denoting the expected life-
time of a sensor by Lj , the total available energy for sensing
by CT , and the sensing duration by Ts, the expected life-time of
the sensor is obtained by Lj = Ts

CT
Cj

. The fact that the life-time
of the sensors increases by employing combined censoring and
sleeping is depicted in Fig. 8. In this figure, CT = 1000 J, and
the remaining parameters are the same as Fig. 7. Here, again
we can see that increasing the number of cognitive radios can
improve the life-time of individual sensors significantly.
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Fig. 9. Optimal censoring and sleeping rate with number of cognitive radios.

The optimal censoring and sleeping rates versus the number
of users is depicted in Fig. 9 to understand the observed behav-
iors in Fig. 7. The results are obtained for the same setup as the
one in Fig. 7. We can see that as the number of users increases,
the optimal sleeping rate increases to reduce the average energy
consumption per sensor. However, the optimal censoring rate
remains almost the same. Again considering the discussions in
Section IV-C, we can see that due to a high SNR, the optimal
sleeping rate becomes independent from π0 and that is why the
sleeping rate among all the scenarios remains the same. Further,
we can see that as π0 increases, the censoring rate increases for
the OR rule and decreases for the AND rule which results in a
lower average energy consumption per sensor for the OR rule
and a higher one for the AND rule. This verifies the validity of
Theorems 1 and 2. A specific duality is also observed between
the OR and the AND rule in this figure. While the optimal
sleeping rate is the same for both, the optimal censoring rate
for a specific π0 and the OR rule is approximately the same as
for the AND rule for a probability of the primary user absence
with a value of 1− π0. This property which can also be seen in
Fig. 7 is investigated more in the following scenarios.

In all of the following scenarios, the number of cognitive
radios is M = 5, the number of samples is N = 5 and the SNR
is γ = 10 dB.

In Figs. 10, 11 and 12, the optimal average energy consump-
tion per sensor is depicted versus the probability of primary user
absence, π0. The goal is to study performance of the proposed
algorithm for the OR and the AND rules when π0 as well as the
detection constraints change. In these figures, the probability of
false alarm constraint α = 0.1, and the probability of detection
constraint β = 0.8, 0.9, and 0.99 respectively, in Figs. 10,
11 and 12. We can see that as π0 increases, the average energy
consumption per sensor reduces for the OR rule, while for the
AND rule, it increases, which is in line with Theorems 1 and 2.
Intuitively speaking, in the lower values of π0 for the OR rule,
on average, a higher number of transmissions occurs compared
to the higher values of π0, because the FC in the case of the OR
rule only receives 1s from the users. In contrast to the OR rule,
for the AND rule, the probability that cognitive users transmit

Fig. 10. Optimal average energy consumption per sensor versus the probabil-
ity of primary user absence for α = 0.1 and β = 0.8.

Fig. 11. Optimal average energy consumption per sensor versus the probabil-
ity of primary user absence for α = 0.1 and β = 0.9.

their results to the FC increases by increasing π0, since the
probability of sending 0s to the FC increases. Therefore, the
average energy consumption per sensor decreases and increases
with π0, for the OR and AND rules, respectively.

Moreover, in Fig. 11, an interesting behavior in the optimal
average energy consumption per sensor is shown with π0. We
can see that for π0 < 0.5, the AND rule outperforms the OR
rule, while for π0 > 0.5, it is vice versa, and for π0 = 0.5,
both rules almost behave the same. The same behavior can be
shown to appear when α+ β = 1. This duality between the
OR and the AND rules is observed in Figs. 7 and 9. We can
see in Figs. 10 and 12, that with decreasing or increasing β,
the crossing point where the OR rule starts to outperform the
AND rule moves respectively to the left or the right of π0 = 0.5.
Similar to β, we can show that increasing or decreasing α with
a constant β moves the performance crossing point of the OR
and the AND rule to the right or left, respectively.
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Fig. 12. Optimal average energy consumption per sensor versus the probabil-
ity of primary user absence for α = 0.1 and β = 0.99.

VII. CONCLUSIONS AND FUTURE WORKS

A combined censoring and sleeping scheme was discussed
as an energy-efficient distributed spectrum sensing technique in
cognitive radio networks. The underlying parameters including
the lower threshold λ1, the upper threshold λ2, and the sleeping
rate μ were obtained by minimizing the maximum average
energy consumption per sensor subject to a specific detection
performance for the OR and the AND rule. It was shown that
the optimal λ1 is λ1 = 0 for the OR and λ1 → ∞ for the
AND rule. Employing the interaction between λ2 and μ, we
showed that the problem can be solved by a line search over
μ for both the OR and the AND rule. Further, we showed
that the same solutions can be employed to solve the problem
for a deterministic scenario, where the primary user signal
is deterministic and the channel is time-invariant. Asymptotic
properties of the OR and the AND rule were discussed as
π0 → 0 or 1, and also when the SNR approaches infinity. It was
shown that the optimal average energy consumption per sensor
is increasing with π0 for the AND rule and decreasing with π0

for the OR rule. This way the lower-bound and upper-bound
on the energy consumption per sensor is obtained respectively
for the OR and the AND rule when π0 = 1. It was depicted
that as the SNR approaches infinity, the optimal solution of the
underlying problems becomes independent from the value of π0

as well as the values of the sensing and transmission energies.
Several scenarios with different values of the sensing and

transmission energy as well as different probabilities of false
alarm and detection constraints were considered in the nu-
merical results. It was shown that as the transmission energy
increases with respect to the sensing energy, the optimal cen-
soring rate increases, while the optimal sleeping rate decreases.
A case study based on the IEEE 802.15.4/ZigBee standard was
considered where we showed that a significant energy saving
can be achieved by combined sleeping and censoring. It was
shown that for the desired detection performance of a cognitive
radio system defined by α = 0.1 and β = 0.9, the OR rule
outperforms the AND rule for π0 > 0.5, while the AND rule
outperforms the OR rule when π0 < 0.5.

It was shown that increasing the number of cognitive users,
not only improves the detection reliability of the cognitive radio
network but also, if the system is well-designed in terms of
energy-efficiency, reduces the burden on the individual cogni-
tive radios in terms of energy consumption.

Note that in this paper, we considered a distributed spectrum
sensing scheme with a fusion center. There are cases though
where a fusion center is not available, in which case decentral-
ized distributed spectrum sensing is required. To the best of our
knowledge, energy-efficient decentralized distributed spectrum
sensing is not considered in the literature. Employing selective
transmission schemes such as the ones in [39] and [40] to
design energy-efficient algorithms for decentralized distributed
sensing is a subject of further study.

Here, we only considered the combined censoring and sleep-
ing scheme for the OR and the AND rule. Extension of the
scheme to more general hard fusion rules is another subject
for future work. In this paper, we solved the final reduced one-
dimensional problems by exhaustive search over the sleeping
rate. Designing efficient algorithmic solutions to solve these
problems are also valuable ideas for future studies.

APPENDIX A
PROOF OF THEOREM 1

Imagine μ∗ is the solution to (31). Since ∀μ, β in the feasible
set of (31), F (G−1(μ, β)/(1 + γj)) ≥ F (G−1(μ, β)), we ob-
tain Cj(π

′
0, μ

∗) ≤ Cj(π0, μ
∗) if π′

0 > π0. Note that equality is
achieved when γj → 0. Further, assume that μ∗′ is the optimal
solution to (31) for π′

0. Then we know that Cj(π
′
0, μ

∗′) ≤
Cj(π

′
0, μ

∗) and thus Cj(π
′
0, μ

∗′) ≤ Cj(π0, μ
∗) which proves

Theorem 1. �

APPENDIX B
PROOF OF THEOREM 2

Imagine μ∗ is the optimal solution to (50). Since ∀μ, α in the
feasible set of (50), δ1,j ≥ δ0, therefore, we have Fj,AND(1−
1−α1/M

1−μ ) ≥ 1−α1/M

1−μ . This way, we obtain Cj(π
′
0, μ

∗) ≤
Cj(π0, μ

∗) if π′
0 < π0. Note that equality is achieved when

γj → 0. Further, assume that μ∗′ is the optimal solution to (50)
for π′

0. Then we know that Cj(π
′
0, μ

∗′) ≤ Cj(π
′
0, μ

∗), and thus
C∗′

j ≤ C∗
j which proves Theorem 2. �

APPENDIX C
PROOF OF THEOREM 3

First we note that when ∀j : γj → ∞, the local probabilities
of detection become very close to each other and thus we
let Pd,j = Pd in (18). The same happens for δ1,j in (41) and
hence we also let δ1,j = δ1. This way QD,OR = 1− [1− (1−
μ)Ps]

M and QD,AND = [1− (1− μ)(1− δ1)]
M .

From (28) and (30), we can see that for a given μ, the

optimal Pd is equal to 1−(1−β)1/M

1−μ . This way, (31), becomes

min
μ

(1− μ)
[
NCs + Ct

(
π0F

(
(1 + γ)F−1

(
1−(1−β)1/M

1−μ

))
+

π1
1−(1−β)1/M

1−μ

)]
. We note that when the SNR approaches

infinity, the optimal Pf = F
(
(1 + γ)F−1

(
1−(1−β)1/M

1−μ

))
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approaches 0 and thus (31) reduces to min
μ

[(1− μ)NCs +

π1Ct(1− (1− β)1/M )], and this problem is solved by finding
the maximum μ in the feasible set of (31).

Further, when the SNR approaches infinity, the optimal
δ1 approaches 1, since F (F−1(δ0)/(1 + γ)) → 1. This way,
(50) reduces to min

μ
[(1− μ)NCs − π0Ct(1− α1/M )], which

is solved again by finding the maximum μ in the feasible set of
(50) which is μ = α1/M . �
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