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Abstract—Solving linear regression problems based on the
total least-squares (TLS) criterion has well-documented merits
in various applications, where perturbations appear both in the
data vector as well as in the regression matrix. However, existing
TLS approaches do not account for sparsity possibly present in
the unknown vector of regression coefficients. On the other hand,
sparsity is the key attribute exploited by modern compressive
sampling and variable selection approaches to linear regression,
which include noise in the data, but do not account for perturba-
tions in the regression matrix. The present paper fills this gap by
formulating and solving (regularized) TLS optimization problems
under sparsity constraints. Near-optimum and reduced-com-
plexity suboptimum sparse (S-) TLS algorithms are developed
to address the perturbed compressive sampling (and the related
dictionary learning) challenge, when there is a mismatch between
the true and adopted bases over which the unknown vector is
sparse. The novel S-TLS schemes also allow for perturbations in
the regression matrix of the least-absolute selection and shrinkage
selection operator (Lasso), and endow TLS approaches with
ability to cope with sparse, under-determined “errors-in-vari-
ables” models. Interesting generalizations can further exploit
prior knowledge on the perturbations to obtain novel weighted
and structured S-TLS solvers. Analysis and simulations demon-
strate the practical impact of S-TLS in calibrating the mismatch
effects of contemporary grid-based approaches to cognitive radio
sensing, and robust direction-of-arrival estimation using antenna
arrays.

Index Terms—Direction-of-arrival estimation, errors-in-vari-
ables models, sparsity, spectrum sensing, total least-squares.

I. INTRODUCTION

S PARSITY is an attribute possessed by many signal vec-
tors either naturally, or, after projecting them over appro-

priate bases. It has been exploited for a while in numerical linear
algebra, statistics, and signal processing, but renewed interest
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emerged in recent years because sparsity plays an instrumental
role in modern compressive sampling (CS) theory and applica-
tions; see e.g., [3].
In the noise-free setup, CS holds promise to address problems

as fundamental as solving exactly under-determined systems of
linear equations when the unknown vector is sparse [8]. Variants
of CS for the “noisy setup” are rooted in the basis pursuit (BP)
approach [11], which deals with fitting sparse linear representa-
tions to perturbed measurements—a task of major importance
for signal compression and feature extraction. The Lagrangian
form of BP is also popular in statistics for fitting sparse linear
regression models, using the so-termed least-absolute shrinkage
and selection operator (Lasso); see e.g., [19], [29], and refer-
ences thereof. However, existing CS, BP, and Lasso-based ap-
proaches do not account for perturbations present in the matrix
of equations, which in the BP (respectively Lasso) parlance is
referred to as the representation basis or dictionary (correspond-
ingly regression) matrix.
Such perturbations appear when there is a mismatch between

the adopted basis matrix and the actual but unknown one—a per-
formance-critical issue in e.g., sparsity-exploiting approaches to
localization, time delay, and Doppler estimation in communica-
tions, radar, and sonar applications [2], [6], [16], [22], [25]. Per-
formance analysis of CS andBP approaches for the partially per-
turbed linear model with perturbations only in the basis matrix,
as well as for the fully perturbed one with perturbations present
also in the measurements, was pursued recently in [12], [20],
and [10]. But devising a systematic approach to reconstructing
sparse vectors under either type of perturbed models was left
open.
Interestingly, for non-sparse overdetermined linear sys-

tems, such an approach is available within the framework
of total least-squares (TLS), the basic generalization of LS
tailored for fitting fully perturbed linear models [31]. TLS
and its variants involving regularization with the -norm of
the unknown vector [27], have found widespread applica-
tions in diverse areas, including system identification with
errors-in-variables (EIV), retrieval of spatial and temporal har-
monics, reconstruction of medical images, and forecasting of
financial data [23]. TLS was also utilized by [13] for dictionary
learning, but the problem reduces to an over-determined linear
system with a non-sparse unknown vector. Unfortunately,
TLS approaches, with or without existing regularization terms,
cannot yield consistent estimators when the linear model is
under-determined, nor they account for sparsity present in the
unknown vector of regression coefficients.
From a high-level vantage point, the present paper is about

fitting sparse, perturbed, linear models, through what is termed
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here the sparse (S-) TLS framework. On the one hand, S-TLS
provides CS, BP, and Lasso-type algorithms suitable for fitting
partially and fully perturbed linear models. On the other hand,
it furnishes TLS with sparsity-cognizant regularized alterna-
tives, which yield consistent estimators even for under-deter-
mined models. The novel framework does not require a priori
information on the underlying perturbations, and in this sense
S-TLS based algorithms have universal applicability. However,
the framework is flexible enough to accommodate both deter-
ministic as well as probabilistic prior information that maybe
available on the perturbed data. The practical impact is apparent
to any CS, BP/Lasso, and TLS-related application involving re-
construction of a sparse vector based on data adhering to an
over- or under-determined, partially or fully perturbed, linear
model.
The specific contributions and organization of the paper

are as follows. With unifying notation, Section II outlines the
pertinent CS-BP-Lasso-TLS context, and introduces the S-TLS
formulation and problem statement. Section III presents two
equivalent formulations, which are first used to establish opti-
mality of S-TLS estimators in the maximum a posteriori (MAP)
sense, under a fully perturbed EIV model. Subsequently, the
same formulations are utilized in Section IV to develop
near-optimum and reduced-complexity suboptimum S-TLS
solvers with convergence guarantees. The scope of S-TLS is
considerably broadened in Section V, where a priori informa-
tion on the deterministic structure of the data vector, the basis
matrix, and/or the statistics of the perturbations is incorporated
to develop weighted and structured (WS) S-TLS criteria along
with associated algorithms to optimize them. The impact of
WSS-TLS is demonstrated in Section VI using two paradigms:
cognitive radio sensing, and direction of arrival estimation
with (possibly uncalibrated) antenna arrays. Simulated tests
in Section VII illustrate the merits of the novel (WS)S-TLS
framework relative to BP, Lasso, and TLS alternatives. The
paper is wrapped up with brief concluding comments and future
research directions in Section VIII.
Notation: Upper (lower) bold face letters are used throughout

to denote matrices (column vectors); denotes transposition;
the matrix pseudo-inverse; the column-wise matrix

vectorization; the Kronecker product; the ceiling function;
the matrix of all ones; the matrix

of all zeros; the identity matrix; the Frobenius norm;
and the th vector norm for ; the vector
Gaussian distribution with mean and covariance ; and

the conditional probability density function (pdf)
of the continuous random variable (r.v.) taking the value ,
given that the r.v. took the value .

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the under-determined linear system of equations,
, where the unknown vector is to be recovered

from the given data vector and the matrix .
With and no further assumption, only approximations
of are possible using the minimum-norm solution; or, the
least-squares (LS) regularized by the -norm, which solves in
closed form the quadratic problem:
for some chosen . Suppose instead that over a known basis

matrix , the unknown vector satisfies with being
sparse, meaning that

as0) The vector contains more than zero
elements at unknown entries.

Under as0) and certain conditions on the matrix ,
compressive sampling (CS) theory asserts that exact recovery
of can be guaranteed by solving the nonconvex, combinato-
rially complex problem: subject to (s.t.) .
More interestingly, the same assertion holds with quantifiable
chances if one relaxes the - via the -norm, and solves effi-
ciently the convex problem: s.t. [3], [8],
[11].
Suppose now that due to data perturbations the available

vector adheres only approximately to the linear model
. The -norm based formulation accounting for the said

perturbations is known as basis pursuit (BP) [11], and the
corresponding convex problem written in its Lagrangian form
is: , where is a spar-
sity-tuning parameter. (For large , the solution is driven
toward the all-zero vector; whereas for small it tends to
the LS solution.) This form of BP coincides with the Lasso
approach developed for variable selection in linear regression
problems [19], [29]. For uniformity with related problems, the
BP/Lasso solvers can be equivalently written as

(1a)

(1b)

Two interesting questions arise at this point: i) How is the per-
formance of CS and BP/Lasso based reconstruction affected if
perturbations appear also in ? and ii) How can sparse vectors
be efficiently reconstructed from over- and especially under-de-
termined linear regression models while accounting for pertur-
bations present in and/or ?
In the context of CS, perturbations in can be due to distur-

bances in the compressing matrix , in the basis matrix , or in
both. Those in can be due to non-idealities in the analog im-
plementation of CS; while those in can also emerge because
of mismatch between the adopted basis and the actual one,
which being unknown, is modeled as . This mismatch
emerges with grid-based approaches to localization, time delay,
and spatio-temporal frequency or Doppler estimation [2], [4],
[6], [9], [16], [17]. In these applications, the entries of have
e.g., a sparse discrete-time Fourier transform with peaks off the
frequency grid , but the postulated is the fast
Fourier transform (FFT) matrix built from this canonical grid. In
this case, the actual linear relationship is with
sparse. Bounds on the CS reconstruction error under basis

mismatch are provided in [12]; see also [10], where the mis-
match-induced error was reduced by increasing the grid density.
Performance of BP/Lasso approaches for the under-determined,
fully perturbed (in both and ) linear model was analyzed
in [20] by bounding the reconstruction error, and comparing it
against its counterpart derived for the partially perturbed (only
in ) model derived in [8]. Collectively, [12] and [20] address
the performance question i), but provide no algorithms to ad-
dress the open research issue ii).
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The overarching theme of the present paper is to address this
issue by developing a sparse total least-squares (S-TLS) frame-
work. Without exploiting sparsity, TLS has well-documented
impact in applications as broad as linear prediction, system
identification with errors-in-variables (EIV), spectral analysis,
image reconstruction, speech, and audio processing, to name
a few; see [31] and references therein. For over-determined
models with unknown vectors not abiding with as0), TLS
estimates are given by

(2a)

(2b)

To cope with ill-conditioned matrices , an extra constraint
bounding is typically added in (2) to obtain different reg-
ularized TLS estimates depending on the choice of matrix [5],
[27].
The distinct objective of S-TLS relative to (regularized) TLS

is twofold: account for sparsity as per as0), and develop S-TLS
solvers especially for under-determined, fully perturbed linear
models. To accomplish these goals, one must solve the S-TLS
problem formulated (for ) as [cf. (1) and (2)]

- (3a)
(3b)

The main goal is to develop efficient algorithms attaining at
least the local and hopefully the global optimum of (3)—a chal-
lenging task since presence of the product reveals that the
problem is generally nonconvex. Similar to LS, BP, Lasso, and
TLS, it is also worth stressing that the S-TLS estimates sought
in (3) are universal in the sense that perturbations in and
can be random or deterministic with or without a priori known
structure.
But if prior knowledge is available on the perturbations, can

weighted and structured S-TLS problems be formulated and
solved? Can the scope of S-TLS be generalized (e.g., to re-
cover a sparse matrix using and a data matrix ), and
thus have impact in classical applications such as calibration of
antenna arrays, or contemporary ones, such as cognitive radio
sensing? Can S-TLS estimates be (e.g., Bayes) optimal if addi-
tional modeling assumptions are invoked? These questions will
be addressed in the ensuing sections, starting from the last one.

III. MAP OPTIMALITY OF S-TLS FOR EIV MODELS

Consider the EIV model with perturbed input and per-
turbed output obeying the relationship

(4)

where the notation of the model perturbations and
stresses their difference with and , which are variables
selected to yield the optimal S-TLS fit in (3). In a system
identification setting, and are random perturbations
giving rise to noisy output/input data , based on which
the task is to estimate the system vector (comprising e.g.,
impulse response or pole-zero parameters), and possibly the

inaccessible input matrix . To assess statistical optimality
of the resultant estimators, collect the model perturbations in a
column-vector form as , and further assume that

as1) Perturbations of the EIV model in (4) are indepen-
dent identically distributed (i.i.d.), Gaussian r.v.s, i.e.,

, independent from and .
Entries of are zero-mean, i.i.d., according to a common
Laplace distribution. In addition, either a) the entries
of have common Laplacian parameter , and are
independent from , which has i.i.d. entries drawn from
a zero-mean uniform (i.e., non-informative) prior pdf;
or, b) the common Laplacian parameter of entries is

, and conditioned on has i.i.d.

rows with pdf .

Note that the heavy-tailed Laplacian prior on under as1) is
in par with the “non-probabilistic” sparsity attribute in as0). It
has been used to establish that the Lasso estimator in (1) is op-
timal, in the maximum a posteriori (MAP) sense, when
[29]. If on the other hand, is viewed as non-sparse, determin-
istic and as deterministic or as adhering to as1b), it is known
that the TLS estimator in (2) is optimum in the maximum like-
lihood (ML) sense for the EIV model in (4); see [23] and [24].
Aiming to establish optimality of S-TLS under as1), it

is useful to recast (3) as described in the following lemma.
(This lemma will be used also in developing S-TLS solvers in
Section IV.)
Lemma 1: The constrained S-TLS formulation in (3) is

equivalent to two unconstrained (also nonconvex) optimization
problems: a) one involving and variables, namely

- - (5)

and b) one of fractional form involving only the variable , ex-
pressed as

- (6)

Proof: To establish the equivalence of (5) with (3), simply
eliminate by substituting the constraint (3b) into the cost func-
tion of (3a). For (6), let , and rewrite the cost in
(3a) as ; and the constraint (3b) as

, where .With fixed, the -norm
can be dropped from (3a), and the reformulated optimization be-
comes: s. to . But the latter is a
minimum-normLS problem, admitting the closed-form solution

(7)

where the second equality holds because
. Substituting (7) back into the

cost , yields readily the fractional form in (6), which
depends solely on .
Using Lemma 1, it is possible to establish MAP optimality of

the S-TLS estimator as follows.
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Proposition 1 (MAP Optimality): Under as1), the S-TLS
estimator in (3) is MAP optimal for the EIV model in (4). Specif-
ically, (5) is MAP optimal for estimating both and under
as1a), while (6) is MAP optimal for estimating only under
as1b).

Proof: Given and , the MAP approach to estimating
both and in (4) amounts to maximizing with respect to
(wrt) and the logarithm of the posterior pdf denoted as

. Recalling that and are
independent under as1a), Bayes’ rule implies that this is equiva-
lent to:

, where the summands correspond to
the (conditional) log-likelihood and the log-prior pdfs, respec-
tively. The log-prior associated with the Laplacian pdf of is
given by

(8)

while the log-prior associated with the uniform pdf of is
constant under as1a), and thus does not affect the MAP crite-
rion. Conditioning the log-likelihood on and , implies
that the only sources of randomness in the data are the
EIV model perturbations, which under as1) are independent,
standardized Gaussian; thus, the conditional log-likelihood is

. After omitting terms not dependent on
the variables and , the latter shows that the log-likelihood
contributes to the MAP criterion two quadratic terms (sum of
two Gaussian exponents): .
Upon combining these quadratic terms with the -norm coming
from the sum in (8), the log-posterior pdf boils down to the form
minimized in (5), which per Lemma 1 is equivalent to (3), and
thus establishes MAP optimality of S-TLS under as1a).
Proceeding to prove optimality under as1b), given again the

data and , consider the MAP approach now to estimate only
in (4), treating as a nuisance parameter matrix that satis-

fies as1b). MAP here amounts to maximizing (wrt only) the
criterion ; and Bayes’ rule leads to the equiv-
alent problem .
But conditioned on , as1b) dictates that and are
zero-mean Gaussian and independent. Thus, linearity of the EIV
model (4) implies that and are zero-mean jointly Gaussian
in the conditional log-likelihood. Since rows of and
are (conditionally) i.i.d. under as1b), the rows of matrix

are independent. In addition, the th-row of denoted as
, has inverse (conditional) covariance matrix (see (9),

shown at the bottom of the page), with determinant
not a function of . After omitting such terms not dependent on
, and using the independence among rows and their inverse
covariance in (9), the conditional log-likelihood boils down to
the fractional form . Since the
Laplacian parameter under as1b) equals , the
log-prior in (8) changes accordingly; and together with the frac-
tional form of the log-likelihood reduces the negative log-pos-
terior to the cost in (6). This establishes MAP optimality of the
equivalent S-TLS in (3) for estimating only in (4), under
as1b).
Proposition 1 will be generalized in Section V to account

for structured and correlated perturbations with known covari-
ance matrix. But before pursuing these generalizations, S-TLS
solvers of the problem in (3) are in order.

IV. S-TLS SOLVERS

Two iterative algorithms are developed in this section to solve
the S-TLS problem in (3), which was equivalently reformulated
as in (5) and (6). The first algorithm can approach the global
optimum but is computationally demanding; while the second
one guarantees convergence to a local optimum but is compu-
tationally efficient. Thus, in addition to being attractive on its
own, the second algorithm can serve as initialization to speed
up convergence (and thus reduce computational burden) of the
first one. To appreciate the challenge and the associated perfor-
mance-complexity tradeoffs in developing algorithms for opti-
mizing S-TLS criteria, it is useful to recall that all S-TLS prob-
lems are nonconvex; hence, unlike ordinary TLS that can be
globally optimized (e.g., via SVD [23]), no efficient convex op-
timization solver is available with guaranteed convergence to
the global optimum of (3), (5), or (6).

A. Bisection-Based -Optimal Algorithm

Viewing the cost in (6) as a Lagrangian function, allows
casting this unconstrained minimization problem as a con-
strained one. Indeed, sufficiency of the Lagrange multiplier
theory implies that [7, Sec. 3.3.4]: using the solution - of
(6) for a given multiplier and letting - ,
the pertinent constraint is ; and
the equivalent constrained minimization problem is [cf. (6)]

- (10)

There is no need to solve (6) in order to specify , because a
cross-validation scheme can be implemented to specify in the

(9)
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stand-alone problem (10), along the lines used by e.g., [26] to
determine in (6). The remainder of this subsection will thus
develop an iterative scheme converging to the global optimum
of (10), bearing in mind that this equivalently solves (6), (5) and
(3) as well.
From a high-level view, the novel scheme comprises an

outer iteration loop based on the bisection method [14],
and an inner iteration loop that relies on a variant of the
branch-and-bound (BB) method [1]. A related approach was
pursued in [5] to solve the clairvoyant TLS problem (2) under
-norm regularization constraints. The challenging difference

with the S-TLS here is precisely the non-differentiable -norm
constraint in . The outer iteration “squeezes” the min-
imum cost in (10) between successively shrinking lower
and upper bounds expressible through a parameter . Per outer
iteration, these bounds are obtained via inner iterations equiva-
lently minimizing a surrogate quadratic function , which
does not have fractional form, and is thus more convenient to
optimize than .
Given an upper bound on , the link between and

follows if ones notes that

(11)

is equivalent to

(12)

Suppose that after outer iteration the optimum in (11) be-
longs to a known interval . Suppose further that the
inner loop yields the global optimum in (12) for ,
and consider evaluating the sign of at this middle point

of the interval . If ,
the equivalence between (12) and (11) implies that

; and hence, , which
yields a reduced-size interval by shrinking from the left.
On the other hand, if , the said equivalence
will imply that , which shrinks the
interval from the right. This successive shrinkage through bi-

section explains how the outer iteration converges to the global
optimum of (10).
What is left before asserting rigorously this convergence, is

to develop the inner iteration which ensures that the global op-
timum in (12) can be approached for any given specified by the
outer bisection-based iteration. To appreciate the difficulty here
note that the Hessian of is given by .
Clearly, is not guaranteed to be positive or negative defi-
nite since is positive. As a result, the cost in (12)
bypasses the fractional form of but it is still an indefi-
nite quadratic, and hence nonconvex. Nonetheless, the quadratic
form of allows adapting the BB iteration of [1], which
can yield a feasible and -optimum solution satisfying: a)

; and b) , where
denotes a prespecified margin.

In the present context, the BB algorithm finds successive
upper and lower bounds of the function

(13)

where the constraint represents a box that shrinks
as iterations progress. Upon converting the constraints of (13) to
linear ones, upper bounds on the function in (13) can
be readily obtained via suboptimum solvers of the constrained
optimization of the indefinite quadratic cost ; see e.g., [7,
Ch. 2]. Lower bounds on can be obtained byminimizing
a convex function , which under-approximates
over the interval . This convex approximant is
given by

(14)

where is a diagonal positive semi-definite matrix chosen to
ensure that is convex, and stays as close as possible
below . Such a matrix can be found by minimizing the
maximum distance between and , and comes
out as the solution of the following minimization problem:

(15)

where the constraint on the Hessian ensures that re-
mains convex. Since (15) is a semi-definite program, it can be
solved efficiently using available convex optimization software;
e.g., the interior point optimization routine in SeDuMi [28].
Having selected as in (15), is
a convex problem (quadratic cost under linear constraints); thus,
similar to the upper bound , the lower bound on can
be obtained efficiently.
The detailed inner loop (BB scheme) is tabulated as Algo-

rithm 1-a. It amounts to successively splitting the initial box
, which is the smallest one containing .

Per inner iteration , variable keeps track of the upper bound
on , which at the end outputs to the outer loop the nearest
estimate of . Concurrently, the lower bound on
determines whether the current box needs to be further split, or
discarded, if the difference is smaller than the preselected
margin . This iterative splitting leads to a decreasing and a
tighter , both of which prevent further splitting.
Recapitulating, the outer bisection-based iteration tabulated

as Algorithm 1-b calls Algorithm 1-a to find a feasible -optimal
solution to evaluate the sign of in (12). Since is not
the exact global minimum of (12), positivity of does
not necessarily imply . But is -optimal, meaning
that ; thus, , in which case
the lower bound is updated to ; otherwise, if

, then should be set to .
As far as convergence is concerned, the following result can

be established.

Proposition 2 ( -Optimal Convergence): After at most
iterations, Algorithm 1-b outputs an -op-

timal solution to (10); that is,

(16)
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Algorithm 1-a (BB): Input , , , and . Output a -Optimal
Solution of (12)

Set , , , and initialize
with .

repeat

Let be one triplet of with the smallest ; and
set .

Solve (13) locally to obtain .

if then

Set and . {update the
minimum}

end if

Minimize globally the convex in (14) with the
optimum in (15), to obtain and .

if {need to split} then

Find .

Set and equal to
except for the th entry. {split the maximum
separation}

Set , ,
, and .

Augment the set of unsolved boxes
.

end if

until

Algorithm 1-b (Bisection): Input , , and tolerances and .
Output an -optimal solution to (10)

Set , , iteration index , and initialize
the achievable cost with .

repeat

Let and call Algorithm 1-a to find a
feasible -optimal solution to (12).

Calculate , and update the iteration .

if then

Set and . {update the minimum}

end if

if then

Update and .

else if then

Update and .

else

Update and .

end if

Set .

until

Proof: Upon updating the lower and upper bounds, it holds
per outer iteration that ; and

by induction, , when . The latter
implies that if the number of iterations ,
the distance is satisfied.
Since per outer iteration Algorithm 1-a outputs ,

it holds that the updated is also feasible. Further, the bisection
process guarantees that per iteration .
Since Algorithm 1-b ends with , the inequality in
(16) follows readily.
Proposition 2 quantifies the number of outer iterations needed

by the bisection-based Algorithm 1-b to approach within the
global optimum of (10). In addition, the inner (BB) iterations
bounding are expected to be fast converging because
the box function in (13) is tailored for the box constraints in-
duced by the -norm regularization. Nonetheless, similar to all
BB algorithms, the complexity of Algorithm 1-a does not have
guaranteed polynomial complexity on average. The latter ne-
cessitates as few calls of Algorithm 1-a, which means as few
outer iterations. Proposition 2 reveals that critical to this end is
the initial upper bound (Algorithm 1-b simply initializes with

).
This motivates the efficient suboptimal S-TLS solver of the

next subsection, which is of paramount importance not only on
its own, but also for initializing the -optimal algorithm.

B. Alternating Descent Sub-Optimal Algorithm

The starting point for a computationally efficient S-TLS
solver is the formulation in (5). Given , the cost in (5) has
the form of the Lasso problem in (1); while given , it reduces
to a quadratic form, which admits closed-form solution wrt
. These observations suggest an iterative block coordinate
descent algorithm yielding successive estimates of with
fixed, and alternately of with fixed. Specifically, with
the iterate given per iteration , the iterate is
obtained by solving the Lasso-like convex problem as [cf. (1)]

(17)

With available, for the ensuing iteration is found
as

(18)

By setting the first-order derivative of the cost wrt equal to
zero, the optimal solution to the quadratic problem (18) is ob-
tained in closed form as

(19)

The iterations are initialized at by setting
. Substituting the latter into (17), yields

in (1). That this is a good initial estimate is corroborated by the
result in [20], which shows that even with perturbations present
in both and , the CS (and thus Lasso) estimators yield accu-
rate reconstruction. In view of the fact that the block coordinate
descent iterations ensure that the cost in (5) is non-increasing,
the final estimates upon convergence will be at least as accurate.
The block coordinate descent algorithm is provably conver-

gent to a stationary point of the S-TLS cost in (5), and thus to
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its equivalent forms in (3), (6), and (10), as asserted in the fol-
lowing proposition.

Proposition 3 (Convergence of Alternating Descent):
Given arbitrary initialization, the iterates given
by (17) and (19) converge monotonically at least to a stationary
point of the S-TLS problem (3).

Proof: The argument relies on the basic convergence re-
sult in [30]. The alternating descent algorithm specified by (17)
and (19) is a special case of the block coordinate descent method
using the cyclic rule for minimizing the cost in (5). The first two
summands of this cost are differentiable wrt the optimization
variables, while the non-differential third term ( -norm regu-
larization) is separable in the entries of . Hence, the three sum-
mands satisfy the assumptions (B1)–(B3) and (C2) in [30]. Con-
vergence of the iterates to a coordinate minimum
point of the cost thus follows by appealing to [30, Thm. 5.1].
Moreover, the first summand is Gâteaux-differentiable over its
domain which is open. Hence, the cost in (5) is regular at each
coordinate’s minimum point, and every coordinate’s minimum
point becomes a stationary point; see [30, Lemma 3.1]. Mono-
tonicity of the convergence follows simply because the cost per
iteration may either reduce or maintain its value.
Proposition 3 solidifies the merits of the alternating descent

S-TLS solver. Simulated tests will further demonstrate that the
local optimum guaranteed by this computationally efficient
scheme is very close to the global optimum attained by the
more complex scheme of the previous subsection.
Since estimating is simple using the closed form in (18),

it is useful at this point to explore modifications, extensions
and tailored solvers for the problem in (17) by adapting to the
present setup existing results from the Lasso literature dealing
with problem (1). From the plethora of available options to
solve (17), it is worth mentioning two computationally efficient
ones: the least-angle regression (LARS), and the coordinate de-
scent (CD); see e.g., [19]. LARS provides the entire “solution
path” of (17) for all at complexity comparable to LS.
On the other hand, if a single “best” value of is fixed using
the cross-validation scheme [26], then CD is the state-of-the-art
choice for solving (17).
CD in the present context cycles between iterates , and

scalar iterates of the entries. Suppose that the th entry
is to be found. Precursor entries

have been already obtained in the th iteration, and postcursor
entries are also available from the
previous st iteration along with obtained in closed
form as in (19). If denotes the th column of ,
the effect of these known entries can be removed from by
forming

(20)

Using (20), the vector optimization problem in (17) re-
duces to the following scalar one with as unknown:

. This scalar
Lasso problem is known to admit a closed-form solution ex-

pressed in terms of a soft thresholding operator (see, e.g., [19])

(21)

where denotes the sign operator, and , if
, and zero otherwise.
Cycling through the closed forms (19)–(21) explains why CD

here is faster than, and thus preferable over general-purpose
convex optimization solvers of (17). Another factor contributing
to its speed is the sparsity of , which implies that starting up
with the all-zero vector, namely , offers initial-
ization close to a stationary point of the cost in (5). Convergence
to this stationary point is guaranteed by using the results in [30],
along the lines of Proposition 3. Note also that larger values of
in (21) force more entries of to be shrunk to zero, which

corroborates the role of as a sparsity-tuning parameter. The
CD based S-TLS solver is tabulated as Algorithm 2.

Algorithm 2 (CD): Input , , and coefficient . Output the
iterates and upon convergence.
Initialize with and
for do

for do
Compute the residual as in (20).
Update the scalar via (21).

end for
Update the iterate as in (19).

end for

Remark 1 (Regularization Options for S-TLS): Lasso esti-
mators are known to be biased, but modifications are available
to remedy bias effects. One such modification is the weighted
Lasso, which replaces the -norm in (3) by its weighted ver-
sion, namely , where the weights are chosen
using the LS solution [33]. An alternative popular choice is to re-
place the -norm with concave regularization terms [15], such
as , where is a small positive constant in-
troduced to avoid numerical instability. In addition to mitigating
bias effects, concave regularization terms provide tighter ap-
proximations to the -(pseudo)norm, and although they render
the cost in (3) nonconvex, they are known to converge very fast
to an improved estimate of , when initialized with the Lasso
solution [15].
Remark 2 (Group Lasso and Matrix S-TLS): When groups

of entries are a priori known to be zero or nonzero
(as a group), the -norm in (3) must be replaced by the sum
of -norms, namely . The resulting group S-TLS
estimate can be obtained using the group-Lasso solver [19]. In
the present context, this is further useful if one considers the
matrix counterpart of the S-TLS problem in (3), which in its
unconstrained form can be written as [cf. (5)]

-

(22)
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where denotes the th row of the unknown matrix ,
which is sparse in the sense that a number of its rows are zero,
and has to be estimated using an data matrix along
with the regression matrix , both with perturbations present.
Problem (22) can be solved using block coordinate descent cy-
cling between iterates and rows as opposed to scalar
entries as in (21).

V. WEIGHTED AND STRUCTURED S-TLS

Apart from the optimality links established in Proposition
1 under as1), the S-TLS criteria in (3), (5), and (6) make no
assumption on the perturbations . In this sense, the S-TLS
solvers of the previous section find universal applicability.
However, one expects that exploiting prior information on

, can only lead to improved performance. Thinking for
instance along the lines of weighted LS, one is motivated to
weight and in (5) by the inverse covariance matrix
of and , respectively, whenever those are known and are
not both equal to . As a second motivating example, normal
equations, involved in e.g., linear prediction, entail structure in
and that capture sample estimation errors present in the ma-

trix , which is Toeplitz. Prompted by these examples, this
section is about broadening the scope of S-TLS with weighted
and structured forms capitalizing on prior information available
about the matrix . To this end, it is prudent to quantify first
the notion of structure.

Definition 1: The data matrix has
structure characterized by an parameter vector , if and
only if there is a mapping such that

.

Definition 1 is general enough to encompass any
(even unstructured) matrix , by simply letting

comprise all entries of .
However, it becomes more relevant when , the
case in which characterizes parsimoniously. Applica-
tion examples are abundant: structure in Toeplitz and Hankel
matrices encountered with system identification, deconvolution,
and linear prediction; as well as in circulant and Vandermonde
matrices showing up in spatio-temporal harmonic retrieval
problems [23]. Structured matrices and sparse vectors
emerge also in contemporary CS gridding-based applications
e.g., for spectral analysis and estimation of time-varying
channels, where rows of the FFT matrix are selected at
random. (This last setting appears when training orthogonal
frequency-division multiplexing (OFDM) input symbols are
used to estimate communication links exhibiting variations due
to mobility-induced Doppler effects [6].)
Consider now recasting the S-TLS criteria in terms of , and

its associated perturbation vector denoted by . The
Frobenius norm in the cost of (3a) is mapped to the -norm of
; and to allow for weighting the structured perturbation vector
using a symmetric positive definite matrix , the
weighted counterpart of becomes . With re-
gards to the constraint, recall first from Definition 1 that

, which implies ; hence, rewriting
(3b) as , yields the structured con-
straint as . Putting things together, leads

to the combined weighted-structured S-TLS version of (3) as

(23a)

(23b)

which clearly subsumes the structure-only form as a special case
corresponding to .
To confine the structure quantified in Definition 1, two condi-

tions will be imposed, which are commonly adopted by TLS ap-
proaches [23], and are satisfied by most applications mentioned
so far.

as2) The structure mapping in Definition 1 is separable,

meaning that with , where
and , it holds that

. In addition, the separable structure map-
ping is linear (more precisely affine), if and only if the

matrix is composed of known structural elements,
namely “matrix atoms” , and “vector atoms”

, so that

(24)

where denotes the th entry of .
Similar to Definition 1, (24) is general enough to encompass

even unstructured matrices , by setting ,
,

, and selecting the vector atoms ( matrix atoms) as the
canonical vectors (matrices), each with one entry equal to 1 and
all others equal to 0. Again, interesting structures are those with

and/or . (Consider for instance a circulant
matrix , which can be represented as in (24) using
matrix atoms.)

Separability and linearity will turn out to simplify the con-
straint in (23b) for some given matrix atoms and vector atoms
collected for notational brevity in the matrices

and
(25)

Indeed, linearity in as2) allows one to write
, and the constraint (23b) as

; while separability implies that

where the definitions and (25) were used
in the last equality along with the identity

. In a nutshell, (23b) under as2) becomes
, in which is decoupled from .
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Therefore, the weighted and structured (WS)S-TLS problem
in (23) reduces to [cf. (3)]

(26a)

(26b)

or in a more compact form as: s.t.
, after defining

and (27)

Comparing (3) with (26) allows one to draw apparent analogies:
both involve three sets of optimization variables, and both are
nonconvex because two of these sets enter the corresponding
constraints in a bilinear fashion [cf. product of with in (3b),
and with in (26b)].
Building on these analogies, the following lemma shows how

to formulate WSS-TLS criteria, paralleling those of Lemma 1,
where one or two sets of variables were eliminated to obtain
efficient, provably convergent solvers, and establish statistical
optimality links within the EIV model in (4).
Lemma 2: The constrained WSS-TLS form in (23) is equiva-

lent to two unconstrained nonconvex optimization problems: a)
one involving and variables, namely

(28)

where is assumed full rank and square,1 i.e., in (27);
and also b) one involving only the variable , expressed using
the definitions in (27),

(29)

Proof: Constraint (26b) can be solved uniquely for to
obtain . Plug the latter
with the definition of from (27) into the quadratic form in
(26a) to recognize that (26) is equivalent to the unconstrained
form in (28) with the variable eliminated.
To arrive at (29), suppose that is given and view

the compact form of (26) (after ignoring ) as
the following weighted minimum-norm LS problem:

s.t. . Solving
the latter in closed form expresses in terms of as:

. Substitute

1Tall matrices with full column rank can be handled too for block diagonal
weight matrices typically adopted with separable structures; see also [32].
This explains why the pseudo-inverse of is used in this section instead of its
inverse; but exposition of the proof simplifies considerably for the square case.
Note also that the full rank assumption is not practically restrictive because data
matrices perturbed by noise of absolutely continuous pdf have full rank almost
surely.

now back into the cost, and reinstate , to obtain
(29).
The formulation in (28) suggests directly an iterative

WSS-TLS solver based on the block coordinate descent
method. Specifically, suppose that the estimate of
is available at iteration . Substituting into (28), allows
estimating as

(30)

Since is linear in [cf. (27)], the cost in (30) is convex
(quadratic regularized by the -norm as in the Lasso cost in
(1)); thus, it can be minimized efficiently. Likewise, given
the perturbation vector for the ensuing iteration can be found in
closed form since the pertinent cost is quadratic; that is,

(31)

To express compactly, partition in accordance with

; i.e., let

(32)

Using (32), and equating to zero the gradient (wrt ) of the cost
in (31), yields the closed form

(33)

where .
Initialized with , the algorithm cycles be-

tween iterations (30) and (33). Mimicking the steps of Propo-
sition 3, it is easy to show that these iterations are convergent as
asserted in the following.
Proposition 4 (Convergence): The iterates in (30) and (33)

converge monotonically at least to a stationary point of the cost
in (23), provided that in (27) has full column rank.
As with the solver of Section IV-B, CD is also applicable to

the WSS-TLS solver, by cycling between and scalar it-
erates of the entries. To update the th entry , sup-
pose precursor entries have been already
obtained in the th iteration, and postcursor entries

are also available from the previous st
iteration along with , found in closed form as in (33). Let-
ting denote the th column of ,
the effect of these known entries can be removed from by
forming [cf. (20)]

(34)
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Using (34), the vector optimization problem in (30) now reduces
to the following scalar one with as unknown:

, where denotes the -norm weighted by .
The solution of this scalar Lasso problem can be expressed using
the same soft-thresholding form as in (21), and is given by

(35)

This block CD algorithm enjoys fast convergence (at least) to
a stationary point, thanks both to the simplicity of (35), and the
sparsity of , as explained in Section IV-B.
The WSS-TLS criterion in (28) is also useful to establish its

statistical optimality under a structured EIVmodel, with output-
input data obeying the relationships

(36)
where perturbation vectors and play the role of and
in (4), and differ from the optimization variables and

in (26). Unknown are the vector , and the inaccessible input
matrix , characterized by the vector . The model in
(36) obeys the following structured counterpart of as1a).

Perturbations in (36) are jointly Gaussian, i.e.,
, as well as independent from

and . Vector has i.i.d. entries with the same prior as
in as1a); and it is independent from , which has i.i.d.
entries drawn from a zero-mean uniform (i.e., non-infor-
mative) prior pdf.

The following optimality claim holds for the WSS-TLS esti-
mator in (28), assured to be equivalent to the solution of problem
(26) by Lemma 2.
Proposition 5 (MAP Optimality of WSS-TLS): Under

as1 ) and as2), the equivalent WSS-TLS problem in (28) yields
the MAP optimal estimator of and in the structured EIV
model (36).

Proof: The proof follows the lines used in proving the
MAP optimality of (5) under as1a) in Proposition 1. The log-
prior pdf of contains an -norm term as in (8), while the uni-
form prior on is constant under as1 ). Furthermore, given the
structure mapping , the conditional log-likelihood
here can be expressed in terms of and , as

. After omitting
terms not dependent on and , the conditional log-likelihood
under the joint Gaussian distribution in as1 ) boils down to half
of the quadratic cost in (28). Combining the latter with
from the log-prior pdf, it follows that maximizing the log-pos-
terior pdf amounts to minimizing the unconstrained sum of the
two, which establishes MAP optimality of the WSS-TLS esti-
mator in (28).

Fig. 1. Grid topology with candidate locations, transmitting
source, and receiving CRs.

VI. S-TLS APPLICATIONS

In this section, the practical impact of accounting for pertur-
bations present in the data matrix will be demonstrated via
two sensing applications involving reconstruction of sparse vec-
tors. In both, the perturbation comes from inaccurate mod-
eling of the underlying actual matrix , while is due to
measurement noise.

A. Cognitive Radio Sensing

Consider sources located at unknown positions, each
transmitting a radio frequency (RF) signal with power spectral
density (PSD) that is well approximated by a basis ex-
pansion model: , where
are known (e.g., rectangular) basis functions, and
are unknown power coefficients. As source positions are also
unknown, a Cartesian grid of known points is adopted
to describe candidate locations that transmitting radios could
be positioned [4], [9]; see also Fig. 1.
The task is to estimate the locations and powers of active

sources based on PSD samples measured at cognitive ra-
dios (CRs) at known locations . Per frequency , these
samples obey the model

(37)

where the PSD is nonzero only if a transmitting source
is present at ; represents the channel gain from the can-
didate source at to the CR at that is assumed to follow
a known pathloss function of the distance ; de-
notes the known noise variance at receiver ; the
vector collects products ; vector contains
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the unknown power coefficients ; and cap-
tures the error between the true, , and estimated, ,
PSDs.
Estimated PSD samples at frequencies from all re-

ceivers are first compensated by subtracting the corresponding
noise variances, and subsequently collected to form the data
vector of length . Noise terms are simi-
larly collected to build the perturbation vector . Likewise, row
vectors of length are concatenated to form
the matrix . The latter is perturbed (relative to the inac-
cessible ) by a matrix , which accounts for the mismatch
between grid location vectors, , and those of the actual

sources, . To specify , let for the
source at closest to , and substitute into
the double sum inside the square brackets of (37). This allows
writing , where is affine structured with co-
efficients and matrix atoms formed by . All in
all, the setup fits nicely the structured EIV model in (36).
Together with , the support of estimates the loca-

tions of sources, and the nonzero entries of their transmit
powers. Remarkably, this grid-based approach reduces localiza-
tion—traditionally a nonlinear estimation task—to a linear one,
by increasing the problem dimensionality . What
is more, is sparse for two reasons: a) relative to the swath
of available bandwidth, the transmitted PSDs are narrowband;
hence, the number of nonzero s is small relative to ; and
b) the number of actual sources is much smaller than
the number of grid points that is chosen large enough
to localize sources with sufficiently high resolution. Existing
sparsity-exploiting approaches to CR sensing rely on BP/Lasso,
and do not take into account the mismatch arising due to grid-
ding [4], [9]. Simulations in Section VII will demonstrate that
sensing accuracy improves considerably if one accounts for
grid-induced errors through the EIV model, and compensates
for them via the novel WSS-TLS estimators.

B. DoA Estimation via Sparse Linear Regression

The setup here is the classical one in sensor array processing:
plane waves from far-field, narrowband sources impinge on
a uniformly spaced linear array (ULA) of (possibly uncal-
ibrated) antenna elements. Based on as few vectors
of spatial samples collected across the ULA per time instant
(snapshot), the task is to localize sources by estimating their
directions-of-arrival (DoA) denoted as . High-resolu-
tion, (weighted) subspace-based DoA estimators are nonlinear,
and rely on the sample covariance matrix of these spatio-tem-
poral samples, which requires a relatively large number of snap-
shots for reliable estimation especially when the array is not cal-
ibrated; see e.g., [21]. This has prompted recent DoA estimators
based on sparse linear regression, which rely on a uniform polar
grid of points describing candidate DoAs [17],
[22], [25]. Similar to the CR sensing problem, the th entry
of the unknown vector of regression coefficients, ,
is nonzero and equal to the transmit-source signal power, if a
source is impinging at angle , and zero otherwise.

The array response vector to a candidate source at
DoA is , where

denotes the phase shift relative to the source signal
wavelength between neighboring ULA elements separated by
distance . The per-snapshot received data vector of length

obeys the EIV model: ,
where represents the additive noise across the array ele-
ments; the matrix denotes the
grid angle scanning matrix of columns; and rep-
resents perturbations arising because DoAs from actual sources
do not necessarily lie on the postulated grid points. Matrix
can also account for gain, phase, and position errors of antenna
elements when the array is uncalibrated.
To demonstrate how a structured S-TLS approach applies to

the DoA estimation problem at hand, consider for simplicity one
source from direction , whose nearest grid angle is ; and let

be the corresponding error that vanishes as the
grid density grows large. For small , the actual source-array
phase shift can be safely approximated
as

; or, more compactly as , where
. As a result, using the approximation

, the actual array
response vector can be approximated as a linear function of ;
thus, it be expressed as

(38)

With columns obeying (38), the actual array manifold is mod-
eled as , where the perturbation matrix is struc-
tured as , with the matrix having
all zero entries, except for the th column that equals .
With such an array manifold and , the grid-based DoA
setup matches precisely the structured EIV model in (36). The
simulated tests in the ensuing sectionwill illustrate, among other
things, the merits of employing WSS-TLS solvers to estimate

and based on data collected by possibly antenna arrays.
But before this, a final remark is in order.
Remark 3 (Relationships With [16] and [22]): Although
is not explicitly included in the model of existing grid-based

approaches, this mismatch has been mitigated either by iter-
atively refining the grid around the region where sources are
present [22], or, by invoking the minimum description length
(MDL) test to estimate the number of actual sources ,
followed by spatial interpolation to estimate their DoAs [16].
These remedies require postprocessing the initial estimates
obtained by sparse linear regression. In contrast, the proposed
structured S-TLS based approach jointly estimates the nonzero
support of along with grid-induced perturbations. This
allows for direct compensation of the angle errors to obtain
high-resolution DoA estimates in a single step, and in certain
cases without requiring multiple snapshots. Of course, multiple
snapshots are expected to improve estimation performance
using the matrix S-TLS solver mentioned in Remark 2.
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Fig. 2. Attained for variable tolerance values by the global Algorithm 1,
compared to the alternating descent local algorithm, and the genie-aided global
solver.

VII. SIMULATED TESTS

Four simulated tests are presented in this section to illustrate
the merits of the S-TLS approach,2 starting from the algorithms
of Section IV.
Test Case 1 (Optimum versus Suboptimum S-TLS): The

EIV model in (4) is simulated here with a 6 10 matrix ,
whose entries are i.i.d. Gaussian having variance 1/6, so that
the expected -norm of each column equals 1. The entries of

and are also i.i.d. Gaussian with variance 0.0025/6 cor-
responding to entry-wise signal-to-noise ratio (SNR) of 26 dB.
Vector has only nonzero elements in the two first entries:

and . Algorithm 1 is tested with
against Algorithm 2 implemented with different values of
to obtain a solution satisfying - . For vari-

able tolerance values in Algorithm 1-b, the attained minimum
cost in (11) is plotted in Fig. 2. To serve as a bench-
mark, a genie-aided globally optimum scheme is also tested
with the support of known and equal to that of . Specif-
ically, the genie-aided scheme minimizes over all points
with -norm equal to , and all entries being 0 except for
the first two. Using the equivalence between (11) and (12), the
genie-aided scheme per iteration amounts tominimizing a scalar
quadratic program under linear constrains, which is solved effi-
ciently using the interior-point optimization routine in [28].
Fig. 2 shows that as becomes smaller, the minimum

achieved value decreases monotonically, and drops
sharply to the global minimum attained by the genie-aided
bisection scheme. Interestingly, the alternating descent al-
gorithm that guarantees convergence to a stationary point,
exhibits performance comparable to the global algorithm. For
this reason, only the alternating descent algorithm is used in
all subsequent tests. Next, S-TLS estimates are compared with
those obtained via BP/Lasso and (regularized) TLS in the
context of the CR sensing and array processing applications
outlined in Section VI.
Test Case 2 (S-TLS versus Lasso versus TLS): The setup

here is also based on the EIV model (4), with of size 20

2Matlab code for the algorithms in this paper is available at http://www.tc.
umn.edu/zhuh/research.htm.

40 having i.i.d. Gaussian entries; and having 5 nonzero
i.i.d. standardized Gaussian entries. All other parameters are as
in Test Case 1 adapted to the different problem size here. By av-
eraging results over 200 Monte Carlo runs, the S-TLS solution
is compared against the Lasso one for 20 values of (uniformly
spaced in log-scale), based on the , , and errors of the esti-
mated vectors relative to . (The error equals the percentage
of entries for which the support of the two vectors is different.)
Fig. 3 corroborates the improvement of S-TLS over Lasso, es-
pecially in the norm. Fig. 3(c) further demonstrates that over
a range of moderate values, S-TLS consistently outperforms
Lasso in recovering the true support of . For high ’s, both
estimates come close to the all-zero vector, so that the errors
become approximately the same, even though the and er-
rors are smaller for Lasso. However, for both error norms S-TLS
has a slight edge over moderate values of .
Receiver operating characteristic (ROC) curves are plotted in

Fig. 3(d) to illustrate the merits of S-TLS and Lasso over (regu-
larized) TLS in recovering the correct support. The “best” for
the S-TLS and Lasso algorithms is chosen using cross-valida-
tion [26]. As TLS cannot be applied to under-determined sys-
tems, a 40 40 matrix is selected. Since TLS and LS under
an -norm constraint are known to be equivalent
when is small [27], the regularized TLS is tested using the
function “lsqi” for regularized LS from [18]. The probability
of correct detection, , is calculated as the probability of iden-
tifying correctly the support over nonzero entries of , and the
probability of false alarms, , as that of incorrectly deciding
zero entries to be nonzero. The ROC curves in Fig. 3(d) demon-
strate the advantage of Lasso, and more clearly that of S-TLS,
in recovering the correct support.
Test Case 3 (CR Spectrum Sensing): This simulation is

performed with reference to the CR network in the region [0 1]
[0 1] in Fig. 1. The setup includes CRs deployed to

estimate the power and location of a single source with position
vector [0.4 0.6], located at the center of four neighboring grid
points. The CRs scan frequencies from 15 MHz to
30 MHz, and adopt the basis expansion model in Section VI-A
with rectangular functions, each of bandwidth 1
MHz. The actual source only transmits over the th band.
The channel gains are exponentially decaying in distances
with exponent 1/2. The received data are generated using
the transmit PSD described earlier, a regular Rayleigh fading
channel with 6 taps, and additive white Gaussian receiver noise
at dB. Receive-PSDs are obtained using exponen-
tially weighted periodograms (with weight 0.99) averaged
over 1000 coherence blocks; see also [4] for more details of a
related simulation. The WSS-TLS approach is used to account
for perturbations in the channel gains. A diagonal matrix

is used with each diagonal entry equal to (inversely
proportional to the average of sample variances of ).
With chosen as in [11], both Lasso and WSS-TLS identify

the active frequency band correctly (only the entries
were estimated as nonzero). However, Lasso identifies four
transmitting sources at positions [0.3(0.5) 0.5(0.7)], the four
grid points closest to [0.4 0.6]. WSS-TLS returns only one
source at position [0.5 0.5], along with the estimated that
yields . Concatenate the latter to form
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Fig. 3. Comparison between S-TLS and Lasso in terms of: (a) -norm, (b)
-norm, and (c) -norm of the estimation errors; (d) probability of detection

versus probability of false alarms for the TLS, regularized (R-)TLS, S-TLS
and Lasso algorithms.

of length . Using a refined grid of 25 points
uniformly spaced over the “zoom-in” region [0.3 0.7] [0.3

Fig. 4. Comparison between PSD maps estimated by (a) Lasso, and (b)
WSS-TLS for the CR network in Fig. 1.

0.7] centered at [0.5 0.5], correlation coefficients between
and those of each candidate point are evaluated. The source
position is estimated as the point with maximum correlation
coefficient, which for WSS-TLS occurs at the true location [0.4
0.6]. To illustrate graphically the two alternatives, the estimated
maps of the spatial PSDs at the 6th frequency band are plotted
in Fig. 4(a) using the Lasso, and in Fig. 4(b) using WSS-TLS.
The marked point indicates the actual source location [0.4 0.6]
in both maps. Unlike Lasso, the WSS-TLS identifies correctly
the true position of the source.
Test Case 4 (DoA Estimation): The setup here entails a

ULA consisting of antenna elements with inter-element
spacing , and a grid of scanning angles from
90 to 90 wrt the array boresight. Two sources of

unit amplitude impinge from angles and , both
1 off their nearest grid DoAs. As in the single-snapshot test
in [22], the SNR is set to 20 dB. The variance of in (38) is
obtained from the uniform distribution in . Selecting
according to the noise level as in [22], Lasso returns four

nonzero entries, two around each source at ; while
WSS-TLS gives two nonzero estimates at
and , along with perturbation estimates and .
Using the latter, the DoAs are estimated as for

40, 45. The angle spectra using Lasso, and WSS-TLS with
estimated , are compared in Fig. 5(a). The two black arrows
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Fig. 5. (a) Angular spectra estimated using Lasso and WSS-TLS as compared
to the actual transmission pattern; (b) comparison of angle estimation variances
of Lasso, WSS-TLS, without and with interpolation.

depict the actual source angles, and benchmark the true angular
spectrum.
To further illustrate the merits of WSS-TLS in estimating

correctly the closest grid point and subsequently each DoA,
the sample variance of a DoA estimate is plotted versus SNR
in Fig. 5(b) using Monte Carlo runs, each with a single source
randomly placed over . Both WSS-TLS and Lasso
are post-processed by interpolating peaks in the obtained
spectra from two nearest grid points, linearly weighted by
the estimated amplitudes as in [17]. Both curves confirm that
WSS-TLS outperforms the Lasso. More interestingly, the two
WSS-TLS curves almost coincide, which further corroborates
that WSS-TLS manages in a single step to identify correctly
the support of without requiring post processing.

VIII. CONCLUDING REMARKS

An innovative approach was developed in this paper to ac-
count for sparsity in estimating coefficient vectors of fully per-
turbed linear regression models. This approach enriches TLS
criteria that have been traditionally used to fit such models with
the ability to handle under-determined linear systems. The novel
S-TLS framework also enables sparsity-exploiting approaches

(CS, BP, and Lasso) to cope with perturbations present not only
in the data but also in the regression matrix.
Near-optimum and reduced-complexity suboptimum solvers

with global and local convergence guarantees were also devel-
oped to optimize the generally nonconvex S-TLS criteria. They
rely on bisection, branch-and-bound, or coordinate descent it-
erations, and have universal applicability regardless of whether
perturbations are modeled as deterministic or random. Valuable
generalizations were also provided when prior information is
available on the deterministic structure or statistics of the associ-
ated (augmented) data matrix. Under specific statistical models
with errors-in-variables, the resultant (generally weighted and
structured) S-TLS estimators were proved to be optimal in the
MAP sense. Simulated tests corroborated the analytical claims,
compared competing alternatives, and demonstrated the prac-
tical impact of the novel S-TLS framework to grid-based spar-
sity-exploiting approaches for cognitive radio sensing, and di-
rection-of-arrival estimation with possibly uncalibrated antenna
arrays.
Interesting topics to explore in future research, include per-

formance analysis for the proposed S-TLS algorithms, and on-
line implementations for S-TLS optimal adaptive processing.
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